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We prove that a ring R is serial if and only if every finitely presented right and
left R-module is [-supplemented, and that R is artinian serial if and only if every
right and left R-module is [-supplemented. Q 1999 Academic Press

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper we assume that R is an associative ring with
identity and all R-modules are unitary right R-modules, unless otherwise

Ž .specified. The Jacobson radical of R is denoted by J.
An R-module M is uniserial if its submodules are linearly ordered by

inclusion and it is serial if it is a direct sum of uniserial submodules. The
Ž . Ž . Ž .ring R is right left serial if the right left R-module R R is serial andR R

it is serial if it is both right and left serial.
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Ž .Let M be an R-module. A submodule N of M is superfluous small if
N q L / M for every proper submodule L of M. The notation N < M

Žmeans that N is a superfluous submodule of M. M is called lifting or
Ž ..satisfies D1 if for every submodule N of M there are submodules K 9

and K of M such that M s K [ K 9, K 9 F N, and N l K < K. It is easy
to see that every uniserial module is lifting.

w xVanaja and Purav VP proved that a ring R has the property that all
right R-modules are lifting if and only if R is an artinian serial ring with
J 2 s 0. Also, Oshiro and Wisbauer obtained this result as a corollary in
w xOW .

w xAs a generalization of lifting modules, Mohamed and Muller MM call¨
an R-module M [-supplemented if for every submodule N of M there is
a summand K of M such that M s N q K and N l K < K. It was shown

w xin KHS, Theorem 1.4 that a finite direct sum of [-supplemented
modules is [-supplemented.

In this paper we study rings whose modules are [-supplemented. In
Ž .Section 2, we show that every f.g. finitely generated right R-module is

[-supplemented if and only if every cyclic right R-module is [-supple-
mented and every f.g. right R-module is a direct sum of cyclic modules.
Arbitrary direct sums of lifting right R-modules over a right perfect ring R
are shown to be [-supplemented. In Section 3, we prove that R is serial if

Ž .and only if every f.p. finitely presented right R-module and f.p. left
R-module is [-supplemented. Rings whose f.g. right and f.g. left modules
are [-supplemented are also characterized. This class of rings properly
contains noetherian serial rings. As stated in the Abstract, we show that R
is artinian serial if and only if every right and left R-module is [-supple-
mented. However, we note that an artinian left serial ring R need not be
right serial although every right R-module is [-supplemented.

For characterizations of [-supplemented modules and lifting modules
w x w xwe refer to MM and Wi . Also, for the other definition and notation in

w xthis paper we refer to AF .

2. [-SUPPLEMENTED MODULES

THEOREM 2.1. The following statements are equï alent for a ring R with
radical J.

Ž .1 R is semiperfect.
Ž .2 E¨ery f. g. free R-module is [-supplemented.
Ž .3 R is [-supplemented.R

Ž .4 For e¨ery maximal right ideal A of R there exists an idempotent
e g R y A such that A l eR : J.

Ž . Ž . Ž . Ž .5 Any of the left-handed ¨ersions of 2 , 3 or 4 .
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Ž . Ž .Proof. 1 « 2 Let R be a semiperfect ring. Let F be a f.g. free
w Ž . xR-module. By MM, Theorem 4.41 2 and Proposition 4.8 , F is [-supple-

mented.
Ž . Ž .2 « 3 Clear.
Ž . Ž .3 « 4 Let A be a maximal right ideal of R. There exists a direct

summand K of R such that R s A q K and A l K < K. There exists an
idempotent e in R such that K s eR. Clearly e f A. Moreover, A l K <
R so that A l K : J.R

Ž . Ž .4 « 1 Let U be any simple R-module. Let 0 / u g U and B s
� < 4r g R ur s 0 . Then B is a maximal right ideal of R and U ( RrB. By
Ž .4 , there exists an idempotent f g R y B such that B l fR : J. Clearly
R s B q fR. Moreover, B l fR < R implies that B l fR < fR. Now

Ž . Ž .fRr B l fR ( B q fR rB s RrB ( U. It follows that U has a projec-
w xtive cover. By AF, Theorem 27.6 , R is semiperfect.

Ž . Ž .1 m 5 By symmetry.

COROLLARY 2.2. A commutatï e ring R is semiperfect if and only if e¨ery
cyclic R-module is [-supplemented.

Ž .Proof. ¥ By Theorem 2.1.
Ž .« Let I be any ideal of R. Then the factor ring R s RrI is still a

semiperfect ring. By Theorem 2.1, R is [-supplemented as an R-module
and hence [-supplemented as an R-module. Thus every cyclic R-module
is [-supplemented.

THEOREM 2.3. Let R be any ring and let M be a f. g. R-module such that
e¨ery direct summand of M is [-supplemented. Then M is a direct sum of
cyclic modules.

Proof. Suppose that M s m R q ??? qm R for some positive integer k1 k
Ž .and elements m g M 1 F i F k . If k s 1 then there is nothing to prove.i

Ž .Suppose that k ) 1 and that the result holds for k y 1 -generated mod-
ules with the stated condition. There exist submodules K, K 9 of M such
that M s K [ K 9, M s m R q K, and m R l K < K. Note that K 9 (1 1
Ž . Ž . Ž .MrK s m R q K rK ( m Rr m R l K , so that K 9 is cyclic. On1 1 1

Ž . Ž .the other hand, Kr m R l K ( m R q K rm R s Mrm R, so that1 1 1 1
Ž . Ž .Kr m R l K is k y 1 -generated. Since m R l K < K it follows that1 1
Ž .K is k y 1 -generated. By induction, K is a direct sum of cyclic modules.

Thus M s K [ K 9 is a direct sum of cyclic modules.

Using the proof of Theorem 2.3, we have

COROLLARY 2.4. Let R be a ring. Then e¨ery 2-generated [-supplemented
R-module is a direct sum of cyclic modules.



[-SUPPLEMENTED MODULES 473

COROLLARY 2.5. Let R be a ring and let n be a positï e integer. Then
e¨ery n-generated R-module is [-supplemented if and only if

Ž .i e¨ery cyclic R-module is [-supplemented, and
Ž .ii e¨ery n-generated R-module is a direct sum of cyclic modules.

Ž .Proof. « By Theorem 2.3, since every direct summand of an n-gen-
erated module is n-generated.

Ž . w x¥ By KHS, Theorem 1.4 .

COROLLARY 2.6. Let R be a ring. Then e¨ery f. g. R-module is [-sup-
plemented if and only if

Ž .i e¨ery cyclic R-module is [-supplemented, and
Ž .ii e¨ery f. g. R-module is a direct sum of cyclic modules.

A commutative ring R is called an FGC ring if every f.g. R-module is a
direct sum of cyclic modules. FGC rings are discussed by Brandal where he

w xgives a complete characterization B, Theorem 9.1 .
It is easy to give an example of a semiperfect ring which is not FGC. Let

ww xxF be any field and R s F X, Y , the ring of formal power series over F
in the indeterminates X, Y. Then R is a commutative noetherian local
domain and thus is semiperfect. However, the ideal J s RX q RY is the
unique maximal ideal of R and is uniform, so is not a direct sum of cyclic

Ž .modules. Thus J is not a [-supplemented R-module Corollary 2.4 and
R is not an FGC ring.

w xThe following definitions are given in B , and we recall them for the
convenience of the reader:

A family of sets is said to have the finite intersection property if the
intersection of every finite subfamily is non-empty. An R-module M is

� 4linearly compact if whenever m q M is a family of cosets of submod-i i ig I
Ž .ules of M m g M and M F M for each i g I with the finite intersec-i i

Ž .tion property, then F m q M is non-empty. A commutative ring R isig I i i
a maximal ring if R is a linearly compact R-module; R is an almost
maximal ring if RrI is a linearly compact R-module for all non-zero ideals
I of R, and R is a ¨aluation ring if R is a uniserial R-module.

Ž . w xEXAMPLE 2.7. Let R s A p , the ring of p-adic integers AF, p. 54 . The
wring R is a maximal valuation ring, which is an FGC ring by B, Theorem

x9.1 , and hence every f.g. R-module is [-supplemented. Consider the
Ž `. Ž .countably generated R-module M s Z p the Prufer p-group . Clearly¨

M is a hollow module and so is [-supplemented but is not a direct sum of
cyclic R-modules. Thus it is not the case that every countably generated
module with every direct summand [-supplemented is a direct sum of

Ž .cyclic modules cf. Theorem 2.3. .
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PROPOSITION 2.8. Let R be a commutatï e ring. Then the following
statements are equï alent.

Ž .1 E¨ery f. g. R-module is [-supplemented.
Ž .2 R is a semiperfect FGC ring.
Ž .3 R is a direct sum of almost maximal ¨aluation rings.

Ž . Ž .Proof. 1 m 2 follows from Corollaries 2.2 and 2.6.
Ž . Ž .2 « 3 Since R is semiperfect we have R s R [ ??? [ R where1 n

w xevery R is a local FGC ring for all 1 F i F n. By B, Theorem 4.5 , everyi
R is an almost maximal valuation ring.i

Ž . Ž .3 « 2 Let R s R [ ??? [ R where every R is an almost maxi-1 n i
w xmal valuation ring for all 1 F i F n. By B, Theorem 4.5 again, every R isi

an FGC ring. Being a valuation ring, every R is local and so R isi
semiperfect.

COROLLARY 2.9. A commutatï e indecomposable ring R is an almost
maximal ¨aluation ring if and only if e¨ery f. g. R-module is [-supplemented.

Now we come back to rings that are not necessarily commutative.
w xThe following fact is known from K . We give a different proof in this

study.

THEOREM 2.10. A ring R is right perfect if and only if RŽN . is a
[-supplemented R-module.

Ž . w xProof. « By MM, Theorem 4.41 and Proposition 4.8 .
Ž . ŽN .¥ Let F denote the countably generated free R-module R . Let

N be any proper submodule of F. There exists a direct summand G of F
Ž .such that F s G q N and N l G < G. Then FrN s G q N rN (

Ž . w xGr N l G . By AF, Proposition 17.14 , there exists a maximal submodule
H of G. Since N l G < G it follows that N l G F H. Thus N is
contained in a maximal submodule L of F. Clearly, FJ F L and hence

w xN q FJ F L. It follows that FJ < F. By AF, Lemma 28.3 , J is right
T-nilpotent. Since F is [-supplemented, FrFJ is semisimple, and so, we

w xhave that RrJ is semisimple. Hence by AF, Theorem 28.4 , R is right
perfect.

COROLLARY 2.11. The following statements are equï alent for a ring R.

Ž .1 R is right perfect.
Ž . ŽN .2 The R-module R is [-supplemented.
Ž .3 E¨ery countably generated free right R-module is [-supplemented.
Ž .4 E¨ery free right R-module is [-supplemented.
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Ž . Ž .Proof. 1 m 2 By Theorem 2.10.
Ž . Ž . w x w x1 m 4 By MM, Theorem 4.41 and KHS, Lemma 1.2 .
Ž . Ž . Ž .4 « 3 « 2 Clear.

THEOREM 2.12. Let R be any ring and let M be an R-module such that
M s [ M where M is a lifting module for each i g I. Suppose furtheri iig I

Ž .that Rad M < M. Then M is [-supplemented.

Ž .Proof. Let N be a submodule of M. For each i g I let J s Rad M .i i
Ž . w xIf T s Rad M then T s [ J by AF, Proposition 9.19 . For eachiig I

Ž .i g I, J s T l M and hence M rJ ( M q T rT and so is semi-i i i i i
Ž . w xsimple. Now MrT s Ý M q T rT. By AF, Lemma 9.2 , MrT sig I i

ŽŽ . . � ŽŽ . .4N q T rT [ [ L q T rT for some submodule L of Ma a aa g L
Ž . w Ž .xa g L and an index set L : I. By MM, Proposition 4.8 2 , for each
a g L there exists a direct summand K of M such that K : L :a a a a

K q J . Let K s [ K . Then K is a direct summand of M. Notea a aa g L
Ž .that M s N q Ý L q T : N q K q T , so that M s N q K q Ta g L a

Ž . Ž .and hence M s N q K since Rad M < M. Next, N l K : N q T l
Ž .Ý L q T : T < M. It follows that N l K < K. Therefore M isa g L a

[-supplemented.

COROLLARY 2.13. Let R be a right perfect ring and let M be an R-module
such that M s [ M where M is a lifting module for each i g I. Then Mi iig I
is [-supplemented.

THEOREM 2.14. Let R be a ring. Then R is right perfect if and only if R is
semiperfect and e¨ery R-module M s [ M , where M is a lifting modulei iig I
for all i g I, is [-supplemented.

Proof. The necessity follows from Corollary 2.13. Conversely, let F be
w xa free right R-module. By MM, Corollary 4.42 , R is lifting and hence F is

[-supplemented by hypothesis. Hence R is right perfect from Corol-
lary 2.11.

It is well known that an artinian serial ring R is of finite representation
type, and every right and left R-module is a direct sum of uniserial

Ž w x.R-modules see AF, Theorem 32.3 . Since every uniserial module is lifting
the following result follows from Corollary 2.13.

COROLLARY 2.15. If R is an artinian serial ring then e¨ery right and left
R-module is [-supplemented.

In fact the converse of the above result is also true, and we shall
establish it in the next section.

It is known that R is an artinian serial ring with J 2 s 0 if and only if
Ž w x wevery right R-module is lifting see VP, Proposition 2.13 or OW, Corol-
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x.lary 2.5 . Since the ring R of 3 = 3 upper triangular matrices over a field
is artinian serial with J 2 / 0, we see that every R-module is [-supple-
mented but not every R-module is lifting.

We now aim to prove the following result in a series of lemmas. The
Ž .injective envelope of an R-module M is denoted by E M .

THEOREM 2.16. Let R be a right nonsingular right perfect ring such that
Ž .any submodule of E R is [-supplemented. Then R is right artinian.R

LEMMA 2.17. Let R be any ring and let U be a uniform R-module such
that e¨ery 2-generated submodule of U is [-supplemented. Then U is
uniserial.

Proof. Let x, y g U and let V s xR q yR. Let W be a maximal sub-
module of V. By hypothesis, there exist submodules V 9, V 0 of V such
that V s V 9 [ V 0 s W q V 9 and W l V 9 < V 9. Clearly V 9 / 0 so that
V 0 s 0, V s V 9, and W < V. Either x f W or y f W so that V s xR
or V s yR. Thus yR : xR or xR : yR. It follows that U is uniserial.

LEMMA 2.18. Let R be a right perfect ring and let U be a uniform right
R-module such that e¨ery submodule of U is [-supplemented. Then U is
noetherian.

Proof. Let V be any non-zero submodule of U. Let W be a maximal
submodule of V. By the proof of Lemma 2.17 we have W < V. Let
¨ g V y W. Then V s W q ¨R and hence V s ¨R. Hence every submod-
ule of U is cyclic and hence U is noetherian.

LEMMA 2.19. Let R be a right perfect ring and let E be a nonsingular
[-supplemented injectï e right R-module. Then E has an indecomposable
decomposition.

Proof. Without loss of generality, we can assume that E / 0. Because
R is right perfect, E has a maximal submodule N. By hypothesis, E s
E9 [ E0 s E9 q N and N l E9 < E9 for some submodules E9, E0. Note

Ž . Ž .that E9r N l E9 ( E9 q N rN s ErN so that N l E9 is a maximal
submodule of E9. It follows that E9 is hollow and hence E9 is an
indecomposable injective summand of E.

� < 4By Zorn’s lemma, there exists a maximal collection E i g I of inde-i
pendent indecomposable injective summands of E. Suppose that E /
[ E . Because R is right perfect, E has a maximal submodule L suchiig I
that [ E : L. Now E is [-supplemented, so that E s F9 [ F0 siig I
F9 q L and L l F9 < F9 for some submodules F9, F0. By the above
argument, F9 is an indecomposable injective summand of E. By the choice

� < 4 Ž .of E i g I we see that F9 l [ E / 0. There exists a finite subseti iig I
Ž .J of I such that F9 l [ E / 0. Note that G s [ E is injectivei iig J ig J
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and hence E s G [ G9 for some submodule G9. Now ErG ( G9 so that
ErG is nonsingular.

Ž .Next observe that F9 is uniform so that F9 q G rG is singular because
Ž . Ž .F9 q G rG ( F9r F9 l G . It follows that F9 : G : L and E s F9 q
L s L, a contradiction. Thus E s [ E , as required.iig I

COROLLARY 2.20. Let R be a right perfect ring and let E be a nonsingular
injectï e R-module such that e¨ery submodule of E is [-supplemented. Then
E is a direct sum of noetherian modules.

Proof. By Lemmas 2.18 and 2.19.

A module M is called locally noetherian if every f.g. submodule of M is
noetherian.

COROLLARY 2.21. Let R be a right perfect ring and let M be a nonsingular
Ž .R-module such that e¨ery submodule of E M is [-supplemented. Then M is

locally noetherian.

Ž .Proof. Because M is nonsingular and M is essential in E M , the
Ž . w xmodule E M is nonsingular G, Proposition 1.22 and injective. By Corol-
Ž .lary 2.20, E M s [ E for some index set I and noetherian submod-iig I

Ž .ules E i g I . Let N be any f.g. submodule of M. There exists a finitei
subset J of I such that N : [ E . But [ E is noetherian andi iig J ig J
hence so too is N. Thus M is locally noetherian.

Proof of Theorem 2.16. Let R be a right nonsingular right perfect ring
Ž .such that all submodules of E R are [-supplemented. Then CorollaryR

2.21 gives R is locally noetherian and hence R is right noetherian.R
Ž .Therefore, R is right artinian since R is right perfect .

The crux of the above proof is Lemma 2.19 and the reason the argument
works is because if E is a nonsingular injective R-module then every
submodule of E has a unique injective envelope in E. This is not true for
injective modules which are not nonsingular.

3. SERIAL RINGS AND [-SUPPLEMENTED MODULES

w x Ž .Recall that an R-module M is local AF, p. 357 if Rad M is a
superfluous maximal submodule of M; equivalently, M is cyclic and has a
unique maximal submodule. Hence an R-module M over a semiperfect
ring R is local if and only if it is an epimorphic image of eR for some
primitive idempotent e of R.

LEMMA 3.1. E¨ery indecomposable [-supplemented R-module M with
maximal submodules is local.
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Proof. Let N be a maximal submodule of M. Since M is indecompos-
able and [-supplemented, N is superfluous. Hence N is the unique
maximal submodule of M.

Ž . Ž `.The indecomposable injective A p -module Z p in Example 2.7 is
uniserial, and so is [-supplemented but it is not local. Hence the condi-
tion ‘‘with maximal submodules’’ in the above lemma is necessary.

w xAn element m in a left R-module is primitï e I if m s em for some
primitive idempotent e of R. The next lemma should be known, but we
include it here for completeness.

LEMMA 3.2. Let R be a semiperfect ring. The following statements are
equï alent for a left R-module M.

Ž .1 M is uniserial.
Ž .2 E¨ery f. g. submodule of M is local.
Ž .3 E¨ery 2-primitï e generated submodule of M is local.

Proof. Let e , . . . , e be a complete set of orthogonal primitive idempo-1 n
tents of R.

Ž . Ž .1 « 2 Since M is uniserial, every f.g. submodule N of M is
cyclic. Let N s Rm. Then N s Re m q ??? qRe m. We must have N s1 n
Re m for some i since again M is uniserial.i

Ž . Ž .2 « 3 Obvious.
Ž . Ž .3 « 1 If M is not uniserial then there are x, y g M such that

Rx ­ Ry and Ry ­ Rx. Now Rx s Ýn Re x and Ry s Ýn Re y. Usingis1 i is1 i
Rx ­ Ry and Ry ­ Rx, we must have Re x ­ Re y and Re y ­ Re x fori j j i
some i and j. Hence both Re x and Re y are proper submodules of thei j
2-primitive generated submodule Re x q Re y of M. So Re x q Re y isi j i j
local by the assumption, and then both Re x and Re y are superfluous ini j
Re x q Re y. This is impossible.i j

Let M be a f.p. R-module with no non-zero projective summands. We
call M a 2-f.p. module if there are primitive idempotents e, e , and e of R1 2

Ž w x.and there is a minimal projective presentation see AF .

eR ª e R [ e R ª M ª 0.1 2

Hence a 2-f.p. module is both 2-primitive generated and f.p.

PROPOSITION 3.3. The following statements are equï alent for a semiper-
fect ring R.

Ž .1 R is left serial.
Ž .2 E¨ery f. g. left ideal L : Re is local for each primitï e idempotent e

of R.
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Ž .3 E¨ery 2-primitï e generated left ideal L : Re is local for each
primitï e idempotent e of R.

Ž .4 E¨ery 2-f. p. right R-module is [-supplemented.
Ž .5 There are no 2-f. p. right R-modules.

Ž . Ž . Ž .Proof. By Lemma 3.2 we have 1 m 2 m 3 . Clearly we have
Ž . Ž .5 « 4 .

Ž . Ž .4 « 3 Suppose there is a primitive idempotent e of R and there
is a 2-primitive generated left ideal L : Re such that L is not local. Then

fwe have a projective cover Re [ Re ª L where e and e are two1 2 1 2
primitive idempotents of R. Then we have a minimal projective presenta-
tion

f
Re [ Re ª Re ª RerL ª 0,1 2

which induces a minimal projective presentation

f *
eR ª e R [ e R ª T RerL ª 0Ž .1 2

w x Ž .by AF, Theorem 32.13 where T RerL s Coker f * is the transpose of
RerL. Now RerL is indecomposable with no non-zero projective sum-R

Ž . w xmand and hence so too is T RerL by AF, Corollary 32.14 . HenceR
Ž . Ž .T RerL is 2-f.p. and then is [-supplemented. By Lemma 3.1, T RerLR R

is local, which contradicts the above minimal projective presentation.
Ž . Ž .3 « 5 Suppose M is a 2-f.p. right R-module and

f
eR ª e R [ e R ª M ª 01 2

is a minimal projective presentation, where e, e , and e are primitive1 2
idempotents. Then we have a minimal projective presentation

f *
Re [ Re ª RE ª T M ª 0.Ž .1 2

Ž .Now we have a 2-primitive generated left ideal Im f * : Re and hence
*fŽ . Ž . Ž .Im f * is local by 3 . We obtain a contradiction since Re [ Re ª Im f *1 2

is a projective cover.

Since the ring R is semiperfect if and only if the right R-module R isR
[-supplemented by Theorem 2.1, we have the following corollary by

Ž .Proposition 3.3 4 .

COROLLARY 3.4. If e¨ery 2-generated f. p. right R-module is [-
supplemented, then R is left serial.
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The converse of Corollary 3.4 is false, even for artinian rings which are
Ž .commutative modulo their radicals see Example 3.17 . However, the

converse of Corollary 3.4 is true for commutative rings using the following
characterizations of serial rings.

THEOREM 3.5. The following statements are equï alent for a ring R.

Ž .1 R is serial.
Ž .2 E¨ery f. p. right R-module and f. p. left R-module is [-

supplemented.
Ž .3 E¨ery 2-generated f. p. right R-module and 2-f. p. left R-module is

[-supplemented.
Ž .4 R is semiperfect, and e¨ery 2-f. p. right R-module and 2-f. p. left

R-module is [-supplemented.

w xProof. Warfield W, Corollary 3.4 proved that every f.p. right R-mod-
Ž .ule and left R-module over a serial ring R is a finite direct sum of local

submodules. Since every local module is [-supplemented, and a finite
wdirect sum of [-supplemented modules is [-supplemented by KHS,

x Ž . Ž .Theorem 1.4 , we have the first implication 1 « 2 . Clearly we have
Ž . Ž . Ž . Ž . Ž .2 « 3 « 4 . Finally 4 « 1 follows from Proposition 3.3.

Ž .Using Proposition 3.3, we see that the condition ‘‘2-f.p. left right
Ž .Ž .R-module is [-supplemented’ in Theorem 3.5 3 4 can be replaced by

Ž .that ‘‘there are no 2-f.p. left right R-modules.’’ This is the case for the
rest of the theorems.

Ž . Ž .The equivalence 1 m 2 of the next result was established by Ivanov in
w xI, Theorem 2 .

THEOREM 3.6. The following statements are equï alent for a ring R.

Ž .1 R is serial and e¨ery indecomposable injectï e right R-module is
uniserial.

Ž .2 E¨ery f. g. right R-module is serial.
Ž .3 E¨ery f. g. right R-module and f. p. left R-module is [-sup-

plemented.
Ž .4 E¨ery f. g. right R-module and 2-f. p. left R-module is [-sup-

plemented.
Ž .5 E¨ery 2-generated right R-module and 2-f. p. left R-module is

[-supplemented.
Ž .6 R is semiperfect, and e¨ery 2-primitï e generated right R-module

and 2-f. p. left R-module is [-supplemented.

Ž . Ž . w xProof. 1 m 2 By I, Theorem 2 .



[-SUPPLEMENTED MODULES 481

Ž . Ž .2 « 3 Since every f.g. uniserial right R-module is [-supple-
mented, every f.g. right R-module, being a finite direct sum of f.g. uniserial

w xmodules, is [-supplemented by KHS, Theorem 1.4 . Since we already
Ž . Ž . Ž .have 2 « 1 , the rest of 3 follows from Theorem 3.5.
Ž . Ž . Ž . Ž .3 « 4 « 5 « 6 Clear.
Ž . Ž .6 « 1 By Theorem 3.5, R is a serial ring. Let U be an indecom-

posable injective right R-module with a 2-primitive generated submodule
V s xR q yR. Modifying the proof of Lemma 2.17, we see that V s xR or
V s yR. Hence V is a local R-module. By Lemma 3.2, U is uniserial.

Using Theorem 3.6, we have the following characterizations of rings
whose f.g. right and f.g. left modules are [-supplemented.

THEOREM 3.7. The following statements are equï alent for a ring R.

Ž .1 R is serial, and e¨ery indecomposable injectï e right R-module and
indecomposable injectï e left R-module is uniserial.

Ž .2 E¨ery f. g. right R-module and f. g. left R-module is serial.
Ž .3 E¨ery f. g. right R-module and f. g. left R-module is [-sup-

plemented.
Ž .4 E¨ery 2-generated right R-module and 2-generated left R-module is

[-supplemented.
Ž .5 R is semiperfect, and e¨ery 2-primitï e generated right R-module

and 2-primitï e generated left R-module is [-supplemented.

By Theorem 3.5, serial right noetherian rings belong to the class of rings
in Theorem 3.6. Consequently, noetherian serial rings belong to the class
of rings in Theorem 3.7. However, by Proposition 2.8, even commutative
rings whose f.g. modules are [-supplemented need not be noetherian.

Let S be a noetherian valuation domain with non-zero radical J.
w xAccording to H , S is said to be complete if it is complete with respect to

its J-adic topology. Let Q be the quotient ring of S. Then the ring

S Q
R s

0 Q

is serial and right noetherian but not left noetherian. Hence R satisfies the
conditions of Theorem 3.6.

Ž � < 4Suppose S is not complete e.g., the ring Z s arb a, b g Z, b f pZ ,Ž p.
. w xthe localization of Z at the prime ideal pZ . Then by H, Corollary 2.4 ,

not every f.g. left R-module is serial, and so R is not one of the rings in
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Theorem 3.7. Consequently, R = Rop is a serial ring but this ring does not
belong to the class of rings in Theorem 3.6. Hence we have the following
strict containments of classes of serial rings:

� 4 � 4serial rings > serial rings in Theorem 3.6

� 4> serial rings in Theorem 3.7

� 4> noetherian serial rings .

Ž Ž . .Suppose S is complete e.g., the ring A p of p-adic integers . Then by
w xH, Corollary 2.4 , R is one of the rings in Theorem 3.7, and so is the ring
R = Rop which is not right noetherian. Consequently, R = Rop is one of
the rings in Theorem 3.6. So we also have the following strict containments
of classes of serial rings.

� 4 � 4serial rings > serial rings in Theorem 3.6

� 4> serial right noetherian rings

� 4> noetherian serial rings .

Moreover, we have

� 4 � 4serial rings in Theorem 3.7 W serial right noetherian rings ,

� 4 � 4serial right noetherian rings W serial rings in Theorem 3.7 .

Next we consider artinian serial rings, which are properly contained in
the class of noetherian serial rings.

It is known that a semiprimary left serial ring is left artinian. We
Ž .generalize this as follows. This may be known.

PROPOSITION 3.8. Let R be a left serial ring. If R is either right perfect or
left perfect then R is left artinian.

Ž wProof. To show R is a semiprimary ring, we may assume see AF,
x.Proposition 28.11 that R is a local ring. Then the left R-module R isR

uniserial.

Ž .1 Let R be left perfect. We show R is left noetherian. Suppose
there is a left ideal A which is not f.g. Since R is left perfect A has a
maximal submodule B. For each a g A, Ra is a proper submodule of A.
Hence Ra : B since R is uniserial and B is a maximal submodule of A.R
It follows that A : B, a contradiction.

Ž .2 Let R be right perfect but no semiprimary. Then there is an
infinite chain J > J 2 > J 3 > ??? where J is the radical of R. Let B s
F` J n. Since R is right perfect there is a left ideal A > B such thatns1
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ArB is simple. Since R is uniserial and for each n we have B ; J n weR
n ` nmust have A : J . Then A : F J s B. This is a contradiction.ns1

COROLLARY 3.9. Let R be a serial ring. If R is either right perfect or left
perfect then R is an artinian serial ring.

Recall that R is right perfect if and only if every countably generated
Ž .free right R-module is [-supplemented see Corollary 2.11 .

COROLLARY 3.10. If e¨ery countably generated right R-module is [-
supplemented, then R is left artinian and left serial.

Proof. By the assumption, R is right perfect. By Corollary 3.4, R is left
serial. Hence R is left artinian by Proposition 3.8.

The converse of Corollary 3.10 is false, even for artinian left serial rings
Ž .which are commutative modulo the radicals see Example 3.17 .

The next theorem gives characterizations of artinian serial rings via their
[-supplemented modules.

THEOREM 3.11. The following statements are equï alent for a ring R.

Ž .1 R is artinian serial.
Ž .2 E¨ery right R-module and left R-module is [-supplemented.
Ž .3 E¨ery right R-module and f. g. left R-module is [-supplemented.
Ž .4 E¨ery countable generated right R-module and f. g. left R-module is

[-supplemented.
Ž .5 E¨ery countably generated right R-module and f. p. left R-module is

[-supplemented.
Ž .6 E¨ery countably generated right R-module and 2-f. p. left R-module

is [-supplemented.
Ž . Ž .7 R is right left perfect, and e¨ery 2-f. p. right R-module and 2-f. p.

left R-module is [-supplemented.

Ž . Ž . Ž . Ž . Ž .Proof. 1 « 2 is Corollary 2.15. Clearly we have 2 « 3 « 4 «
Ž . Ž . Ž . Ž . Ž .5 « 6 « 7 , and 7 « 1 follows from Theorem 3.5 and Corol-

Ž . Ž . Ž .lary 3.9. Finally, using the equivalence 1 m 7 , we see that 1 is also
Ž .equivalent to the parenthetical version of 7 .

COROLLARY 3.12. The following statements are equï alent for a ring R.

Ž .1 R is artinian serial.
Ž .2 E¨ery right R-module and indecomposable injectï e left R-module is

[-supplemented.
Ž .3 E¨ery countably generated right R-module and indecomposable

injectï e left R-module is [-supplemented.
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Ž . Ž .4 R is right left perfect, and e¨ery 2-f. p. right R-module and
indecomposable injectï e left R-module is [-supplemented.

Ž . Ž .Proof. It remains to prove 4 « 1 . By Proposition 3.3, R is left serial.
Then by Proposition 3.8, R is left artinian in either case. Let U be an
indecomposable injective left R-module. Since U is [-supplemented, it is
local by Lemma 3.1, so, U is an epimorphic image of an indecomposable

wprojective left R-module which is uniserial. Hence U is uniserial. By AF,
x w xTheorem 32.3 , which was due to Fuller F , R is artinian serial.

COROLLARY 3.13. The following statements are equï alent for a commuta-
tï e ring R.

Ž .1 R is artinian serial.
Ž .2 E¨ery R-module is [-supplemented.
Ž .3 E¨ery countably generated R-module is [-supplemented.
Ž .4 R is perfect, and e¨ery f. p. R-module is [-supplemented.
Ž .5 R is perfect, and e¨ery 2-f. p. R-module is [-supplemented.

We do not know if every right R-module is [-supplemented, provided
Žthat every countably generated right R-module is [-supplemented in this

.case, R is left artinian and left serial by Corollary 3.10 .

THEOREM 3.14. The following statements are equï alent for a right serial
ring R.

Ž .1 R is artinian serial.
Ž .2 E¨ery right R-module is [-supplemented.
Ž .3 E¨ery countably generated right R-module is [-supplemented.
Ž . Ž .4 R is right left perfect, and e¨ery f. g. right R-module is [-sup-

plemented.
Ž . Ž .5 R is right left perfect, and e¨ery f. p. right R-module is [-sup-

plemented.
Ž . Ž .6 R is right left perfect, and 2-f. p. right R-module is [-sup-

plemented.
Ž . Ž .7 R is right left perfect, and e¨ery indecomposable injectï e right

R-module is [-supplemented.

Ž . Ž . Ž . Ž . Ž . Ž .Proof. We clearly have 1 « 2 « 3 « 4 « 5 « 6 . The impli-
Ž . Ž .cation 6 « 1 follows from Proposition 3.3 and Corollary 3.9.
Ž . Ž .Let i9 denote the parenthetical version of i for i s 4, 5, 6, 7. Then we
Ž . Ž . Ž . Ž .have 1 « 49 « 59 « 69 . By Proposition 3.3 and Corollary 3.9 again

Ž . Ž .we have 69 « 1 .
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Ž . Ž . Ž .By Theorem 3.11, we have 1 « 7 , 79 . Using Proposition 3.8, we
Ž . Ž .know that R is right artinian and right serial in either case of 7 or 79 .

Ž . Ž . Ž . Ž .Then we have 7 « 1 and 79 « 1 by modifying the proof of Corol-
lary 3.12.

Recall that R is an artinian serial ring with J 2 s 0 if and only if every
Ž w x wright R-module is lifting see VP, Proposition 2.13 or OW, Corol-

x.lary 2.5 . We generalize the direction ‘‘¥’’ as follows.

THEOREM 3.15. The following statements are equï alent for a ring R with
radical J.

Ž . 21 R is artinian serial and J s 0.
Ž .2 E¨ery right R-module is lifting.
Ž .3 E¨ery f. g. right R-module is lifting.
Ž .4 E¨ery 2-generated right R-module is lifting.
Ž .5 R is semiperfect, and e¨ery 2-primitï e generated right R-module is

lifting.

Ž . Ž . Ž . Ž .Proof. We first have 1 « 2 « 3 « 4 . Since every lifting module
Ž . Ž .is [-supplemented we have 4 « 5 by Theorem 2.1.

Ž . Ž .It remains to prove 5 « 1 . By Proposition 3.3, R is left serial.
Let U be an indecomposable injective right R-module. Every 2-primitive

generated submodule of U is lifting and hence [-supplemented. Using
Ž . Ž . Ž .the proof of Theorem 3.6 6 « 1 , we see that U is uniserial. If c U G 3

we can produce a uniserial R-module M with the composition series
0 ; V ; N ; M. Then the 2-primitive generated right R-module M [
Ž . w x Ž . 2NrV is not lifting by OW, Lemma 2.3 . Hence c U F 2. Since UJ s 0
for every indecomposable injective right R-module U we must have
J 2 s 0, so R is semiprimary.

Now it suffices to show that R is right serial; i.e., the right R-module eJ
Ž .is simple or 0 for each primitive idempotent e of R. Suppose c eJ G 2 for

some primitive idempotent e. Then eR has a submodule N such that
Ž .eRrN has length 3 and Soc eRrN s S [ S where S and S are1 2 1 2

Ž . Ž . Ž .simple R-modules. Then eRrN F E eRrN s E S [ S s E S [1 2 1
Ž .E S . Since the indecomposable module eRrN has length 3 and each2
Ž Ž .. Ž Ž ..c E S F 2, we must have each c E S s 2. Since the 2-primitivei i

Ž . Ž . Ž . Ž .generated module E S [ E S s E eRrN is lifting, we have E eRrN1 2
Ž . .s K 9 [ K with K 9 : eRrN and eRrN l K < K. Since the indecom-

posable non-injective module eRrN has length 3 and K 9 is injective, we
Ž . Ž . Ž . Ž .have K 9 s 0. Then K s E eRrN , and eRrN s eRrN l E eRrN

Ž . Ž . Ž Ž ..< E eRrN . It follows that eRrN : Rad E eRrN s S [ S which1 2
Ž . Ž .is a contradiction since c eRrN s 3 and c S [ S s 2.1 2
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If every right R-module is [-supplemented then R is left artinian and
left serial by Corollary 3.10. But R need not be right serial by the following
example.

w xEXAMPLE 3.16 DR1 . Let R be a local artinian ring with radical W
2 Ž . Ž .such that W s 0, Q s RrW is commutative, dim W s 1, and dim WQ Q

ws 2. Then R is left serial but not right serial. Let W s uR [ ¨R. By DR1,
xProposition 3 , there are three isomorphism types of indecomposable right

Ž . ŽR-modules, namely, A s RrW the simple module , A s RruR the1 2
.injective module , and A s R . Moreover every right R-module is a3 R

Ž .direct sum of indecomposables so R is of finite representation type . It is
easy to see that each of the A ’s is a lifting module. We conclude byi
Corollary 2.13 that every right R-module is [-supplemented.

The concluding example shows that the converse of Corollary 3.4 or
Corollary 3.10 is false, even for local artinian rings which are commutative
modulo their radicals.

w xEXAMPLE 3.17 DR2 . Let R be a local artinian ring with radical W
2 Ž . Ž .such that W s 0, Q s RrW is commutative, dim W s 1, and dim WQ Q

s 3. Then R is left serial but not right serial. Let W s w R [ w R [ w R.1 2 3
w xBy DR 2, Proposition 4.9 , there are five isomorphism types of indecom-

w xposable right R-modules defined in DR2, Lemmas 4.1 and 4.2 , where
Ž . ŽŽ . Ž . Ž . .X s R [ R r w , 0 R q 0, w R q w , w R is an indecomposable5 R R 1 1 2 3

right R-module of length 5 and it is not local. Hence X is not [-supple-5
Žmented by Lemma 3.1. Clearly, X is 2-generated and f.p. even 2-primi-5

.tive generated .
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