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Abstract. Let u be a non-negative super-solution to a 1-dimensional singular

parabolic equation of p-Laplacian type (1 < p < 2). If u is bounded below
on a time-segment {y} × (0, T ] by a positive number M , then it has a power-

like decay of order p
2−p

with respect to the space variable x in R × [T/2, T ].

This fact, stated quantitatively in Proposition 1.2, is a “sidewise spreading of
positivity” of solutions to such singular equations, and can be considered as a

form of Harnack inequality. The proof of such an effect is based on geometrical

ideas.

1. Introduction. Let E = (α, β) and define E−τo,T = E× (−τo, T ], for τo, T > 0.
Consider the non-linear diffusion equation

ut − (|ux|p−2ux)x = 0, 1 < p < 2. (1.1)

A function

u ∈ Cloc

(
− τo, T ;L2

loc(E)
)
∩ Lploc

(
− τo, T ;W 1,p

loc (E)
)

(1.2)

is a local, weak super-solution to 1.1, if for every compact set K ⊂ E and every
sub-interval [t1, t2] ⊂ (−τo, T ]∫

K

uϕdx

∣∣∣∣t2
t1

+

∫ t2

t1

∫
K

[
− uϕt + |ux|p−2ux ϕx

]
dxdt ≥ 0 (1.3)

for all non-negative test functions

ϕ ∈W 1,2
loc

(
− τo, T ;L2(K)

)
∩ Lploc

(
− τo, T ;W 1,p

o (K)
)
.

This guarantees that all the integrals in 1.3 are convergent. These equations are
termed singular since, for 1 < p < 2, the modulus of ellipticity |ux|p−2 → ∞ as
|ux| → 0.
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Remark 1.1. Since we are working with local solutions, we consider the domain
E−τo,T = E× (−τo, T ], instead of dealing with the more natural ET = E× (0, T ], in
order to avoid problems with the initial conditions. The only role played by τo > 0
is precisely to get rid of any difficulty at t = 0, and its precise value plays no role
in the argument to follow.

Proposition 1.2. Let u be a non-negative, local, weak super-solution to 1.1 in
E−τo,T , in the sense of 1.2–1.3, satisfying

u(y, t) > M ∀t ∈ (0,
T

2
] (1.4)

for some y ∈ E, and for some M > 0. Let ρ̄
def
=
(

22−pT
M2−p

) 1
p

, take ρ ≥ 4ρ̄, and

assume that

Bρ(x̄) ⊂ B4ρ(y) ⊂ E, where dist(x̄, y) = 2ρ.

There exists σ̄ ∈ (0, 1), that can be determined a priori, quantitatively only in terms
of the data, and independent of M and T , such that

u(x, t) ≥ σ̄M
(
ρ̄

ρ

) p
2−p

for all (x, t) ∈ B ρ
4
(x̄)× [

T

4
,
T

2
] (1.5)

Remark 1.3. Strictly speaking, it might not be possible to satisfy the assumption

ρ ≥ 4ρ̄ and B4ρ(y) ⊂ E,

if E were too small: nevertheless, we can always assume it without loss of generality.
Indeed, if it were not satisfied, we would decompose the interval (0, T2 ] in smaller
subintervals, each of width τ , such that the previous requirement is satisfied working
with ρ̄ replaced by

ρ̂ =

(
22−pτ

M2−p

) 1
p

.

1.1. Novelty and significance. The measure theoretical information on the “pos-
itivity set” in {y} × (0, T2 ] implies that such a positivity set actually “expands”

sidewise in R × [T4 ,
T
2 ], with a power-like decay of order p

2−p with respect to the

space variable x. Although considered a sort of natural fact, to our knowledge
this result has never been proven before; it is the analogue of the power-like decay
of order 1

p−2 with respect to the time variable t, known in the degenerate setting

p > 2 (see [2], [3, Chapter 4, Section 4], [7]). As the t−
1
p−2 -decay is at the heart

of the Harnack estimate for p > 2, so Proposition 1.2 could be used to give a more
streamlined proof of the Harnack inequality in the singular, super-critical range
2N
N+1 < p < 2. This will be the object of future work, where we plan to address the
general N -dimensional case.

The proof is based on geometrical ideas, originally introduced in two different
contexts: the energy estimates of § 2 and the decay of § 3 rely on a method intro-
duced in [8] in order to prove the Hölder continuity of solutions to an anisotropic
elliptic equation, and further developed in [5, 6]; the change of variable used in the
actual proof of Proposition 1.2 was used in [4].
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1.2. Further generalization. Consider partial differential equations of the form

ut − (A(x, t, u, ux))x = 0 weakly in E−τo,T , (1.6)

where the function A : E−τo,T ×R×R→ R is only assumed to be measurable and
subject to the structure condition{

A(x, t, u, ux)ux ≥ Co|ux|p
|A(x, t, u, ux)| ≤ C1|ux|p−1 a.e. in E−τo,T , (1.7)

where 1 < p < 2, Co and C1 are given positive constants. It is not hard to show
that Proposition 1.2 holds also for weak super-solutions to 1.6–1.7, since our proof
is entirely based on the structural properties of 1.1, and the explicit dependence on
ux plays no role. However, to keep the exposition simple, we have limited ourselves
to the prototype case.

2. Energy estimates. Let u be a non-negative, local, weak super-solution in
E−τo,T , set

0 ≤ µ− = inf
E−τo,T

u,

and let 0 < ω < +∞. Without loss of generality we may assume that 0 ∈ (α, β).
For ρ sufficiently small, so that (−ρ, ρ) ⊂ (α, β), let

Bρ = (−ρ, ρ), Q = Bρ × (0, T ],

Bρ(y) = (y − ρ, y + ρ), Q(y) = Bρ(y)× (0, T ],

a ∈ (0, 1), H ∈ (0, 1] parameters that will be fixed in the following,

A = {(x, t) ∈ Q(y) : u(x, t) < µ− + (1− a)Hω},
A(τ) = {x ∈ Bρ(y) : u(x, τ) < µ− + (1− a)Hω}, 0 ≤ τ ≤ T.

Proposition 2.1. Let u be a non-negative, local, weak super-solution to 1.1 in
E−τo,T , in the sense of 1.2–1.3. There exists a positive constant γ = γ(p), such
that for every cylinder Q(y) = Bρ(y)×(0, T ] ⊂ E−τo,T , and every piecewise smooth,
cutoff function ζ vanishing on ∂Bρ(y), such that 0 ≤ ζ ≤ 1, and ζt ≤ 0,∫

Bρ(y)∩{u(x,0)<µ−+(1−a)Hω}

[
(u(x, 0)− µ− + aωH)2−p

2− p

−u(x, 0)− µ−
(ωH)p−1

]
ζp(x, 0)dx+

∫∫
A

|ux|p

(u− µ− + aωH)p
ζp dxdt (2.1)

≤ γ
∫∫

A

|ζx|p dxdt+ γ

∫∫
A

(u− µ− + aωH)2−pζp−1|ζt| dxdt.

Proof. Without loss of generality, we may assume y = 0. In the weak formulation
of 1.1 take ϕ = G(u)ζp as test function, with

G(u) =

[
1

(u− µ− + aωH)p−1
− 1

(ωH)p−1

]
+

,

and ζ a piecewise smooth, cutoff function vanishing on ∂Bρ and on Bρ×{T}, such
that 0 ≤ ζ ≤ 1, and ζt ≤ 0. It is easy to see that we have

G′(u) = − p− 1

(u− µ− + aωH)p
χA.
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Modulo a Steklov averaging process, we have∫∫
Q

utG(u)ζp dxdt

+

∫∫
Q

ζpG′(u)|ux|p dxdt+ p

∫∫
Q

G(u) |ux|p−2ζp−1ux · ζxdxdt ≥ 0,

(p− 1)

∫∫
A

|ux|p

(u− µ− + aωH)p
ζp dxdt

≤ p
∫∫

A

ζp−1 |ux|p−1

(u− µ− + aωH)p−1
|ζx| dxdt

+

∫∫
A

ut
(u− µ− + aωH)p−1

ζp dxdt−
∫∫

A

ut
(ωH)p−1

ζp dxdt,

(p− 1)

∫∫
A

|ux|p

(u− µ− + aωH)p
ζp dxdt

≤ p
∫∫

A

ζp−1 |ux|p−1

(u− µ− + aωH)p−1
|ζx| dxdt

+

∫∫
A

∂t

[
(u− µ− + aωH)2−p

2− p
− u− µ−

(ωH)p−1

]
ζp dxdt,

(p− 1)

∫∫
A

|ux|p

(u− µ− + aωH)p
ζp dxdt

≤ p
∫∫

A

ζp−1 |ux|p−1

(u− µ− + aωH)p−1
|ζx| dxdt

+

∫
A(T )

[
(u(x, T )− µ− + aωH)2−p

2− p
− u(x, T )− µ−

(ωH)p−1

]
ζp(x, T ) dx

−
∫
A(0)

[
(u(x, 0)− µ− + aωH)2−p

2− p
− u(x, 0)− µ−

(ωH)p−1

]
ζp(x, 0) dx

− p
∫∫

A

[
(u− µ− + aωH)2−p

2− p
− u− µ−

(ωH)p−1

]
ζp−1ζt dxdt.

The second term on the right-hand side vanishes, as ζ(x, T ) = 0. An application of
Young’s inequality yields

(p− 1)

∫∫
A

|ux|p

(u− µ− + aωH)p
ζp dxdt

+

∫
Bρ∩{u(x,0)<µ−+(1−a)Hω}

[
(u(x, 0)− µ− + aωH)2−p

2− p

−u(x, 0)− µ−
(ωH)p−1

]
ζp(x, 0) dx ≤ p− 1

2

∫∫
A

|ux|p

(u− µ− + aωH)p
ζp dxdt

+ γ

∫∫
A

|ζx|p dxdt+ p

∫∫
A

(u− µ− + aωH)2−p

2− p
ζp−1|ζt| dxdt,
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where we have taken into account that ζt ≤ 0. Therefore, we conclude∫
Bρ∩{u(x,0)<µ−+(1−a)Hω}

[
(u(x, 0)− µ− + aωH)2−p

2− p

−u(x, 0)− µ−
(ωH)p−1

]
ζp(x, 0) dx+

p− 1

2

∫∫
A

|ux|p

(u− µ− + aωH)p
ζp dxdt

≤ γ
∫∫

A

|ζx|p dxdt+ γ

∫∫
A

(u− µ− + aωH)2−pζp−1|ζt| dxdt.

Notice that the first term on the left-hand side is non–negative. Indeed, since
1 < p < 2, first of all we have

(u(x, 0)− µ− + aωH)2−p

2− p
− u(x, 0)− µ−

(ωH)p−1

≥ (u(x, 0)− µ− + aωH)2−p − u(x, 0)− µ−
(ωH)p−1

.

Now, if we let v = u(x, 0)− µ−, we have

(u(x, 0)− µ− + aωH)2−p − u(x, 0)− µ−
(ωH)p−1

=
v

(ωH)p−1

[(
v
ωH + a

)2−p
v
ωH

− 1

]
.

To conclude, it suffices to remark that for 0 < s < 1 − a < 1 the function f(s) =
(s+a)2−p

s is monotone decreasing, and f(1− a) = 1
1−a > 1.

Remark 2.2. The constant γ deteriorates, as p→ 1.

Remark 2.3. Even though in the next Section H basically plays no role, we chose
to state the previous Proposition with an explicit dependence also on H for future
applications. The same applies to ω: in the next Section it will play the role of
the lower bound M for u on a proper set, and we could have directly used such a
notation, as indicated below. However, we have in mind future applications, where
ω will have a more general meaning.

3. A decay lemma. Without loss of generality, we may assume µ− = 0. Let
M = ω, L ≤ M

2 , and suppose that

u(0, t) > M ∀t ∈ (0,
T

2
]. (3.1)

Now, let so be an integer to be chosen, define

Fso = {t ∈ (0,
T

2
] : ∃x ∈ B ρ

2
, u(x, t) <

L

2so
}

F (t) = {x ∈ B ρ
2

: u(x, t) < L(1− 1

2so
)}, t ∈ (0,

T

2
],

and notice that with the previous choices,

A = {(x, t) ∈ Bρ × (0, T ] : u(x, t) < L(1− 1

2so
)}.
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Lemma 3.1. Let u be a non-negative, local, weak super-solution to 1.1 in E−τo,T ,
in the sense of 1.2–1.3. Let 3.1 hold and take

L ≤ min{M
2
,

(
T

ρp

) 1
2−p

}.

Then, for any ν ∈ (0, 1), there exists a positive integer so such that

|{t ∈ (0,
T

2
] : ∃x ∈ B ρ

2
, u(x, t) ≤ L

2so
}| ≤ ν|(0, T

2
]|,

where |G| denotes the N -dimensional Lebesgue measure of G ⊂ RN , with N = 1 or
N = 2.

Proof. Take t ∈ Fso : by definition, there exists x̄ ∈ B ρ
2

such that u(x̄, t) < L/2so .

On the other hand, by assumption u(0, t) > 2L, and therefore, u(0, t)+(L/2so) > L.
Hence

ln+

u(0, t) + L
2so

u(x̄, t) + L
2so

> (so − 1) ln 2,

and we obtain

(so − 1) ln 2 ≤ ln+

(
L

u(x̄, t) + L
2so

)
− ln+

(
L

u(0, t) + L
2so

)

=

∫ x̄

0

∂

∂x

(
ln+

(
L

u(ξ, t) + L
2so

))
dξ

≤
∫ ρ

2

− ρ2

∣∣∣∣∣ ∂∂x
(

ln+

(
L

u(x, t) + L
2so

))∣∣∣∣∣ dx
=

∫
B ρ

2
∩F (t)

∣∣∣∣∣ ∂∂x
(

ln+

(
L

u(x, t) + L
2so

))∣∣∣∣∣ dx.
If we integrate with respect to time over the set Fso , we have

(so − 1)|Fso | ln 2 ≤
∫ T

2

0

∫
B ρ

2
∩F (t)

∣∣∣∣∣ ∂∂x
(

ln+

(
L

u(x, t) + L
2so

))∣∣∣∣∣ dxdt
≤

[∫ T
2

0

∫
B ρ

2
∩F (t)

∣∣∣∣∣ ∂∂x
(

ln+

(
L

u(x, t) + L
2so

))∣∣∣∣∣
p

dxdt

] 1
p

|Q|
p−1
p

≤

[∫∫
Q∩A

|ux|p

(u+ L
2so )p

ζp dxdt

] 1
p

|Q|
p−1
p ,

where ζ is as in Proposition 2.1, and is chosen such that ζ = ζ1(x)ζ2(t), where ζ1
vanishes outside Bρ and satisfies

0 ≤ ζ1 ≤ 1, ζ1 = 1 in B ρ
2
, |∂xζ1| ≤

γ1

ρ
,

for an absolute constant γ1 independent of ρ, and ζ2 is monotone decreasing, and
satisfies

0 ≤ ζ2 ≤ 1, ζ2 = 1 in (0,
T

2
], ζ2 = 0 for t ≥ T, |∂tζ2| ≤

γ2

T
,

for an absolute constant γ2 independent of T .
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Apply estimates 2.1 with a = 1
2so , Hω = HM = L. The requirement H ≤ 1 is

satisfied, since L ≤ M
2 . They yield

(so − 1)|Fso | ≤ γ |Q|
p−1
p

[∫∫
A

|ζx|pdxdt
] 1
p

+ γ|Q|
p−1
p

[∫∫
A

(u+
L

2so
)2−p|ζt|dxdt

] 1
p

.

By the choice of ζ we have

(so − 1)|Fso | ≤
γ

ρ
|Q|

p−1
p |Q|

1
p + γ|Q|

p−1
p

(
L2−p

T

) 1
p

|Q|
1
p

≤ γ

[
1

ρ
+

(
L2−p

T

) 1
p

]
|Q|.

If we require L ≤
(
T
ρp

) 1
2−p

, and we substitute it back in the previous estimate, we

have

(so − 1)|Fso | ≤ γ1|(0,
T

2
]|.

Therefore, if we want that |Fso | ≤ ν|(0, T2 ]|, it is enough to require that so =
γ1

ν + 1.

The previous result can also be rewritten as

Lemma 3.2. Let u be a non-negative, local, weak super-solution to 1.1 in E−τo,T ,
in the sense of 1.2–1.3. Let 3.1 hold. For any ν ∈ (0, 1), there exists a positive
integer so such that

|{t ∈ (0,
T

2
] : ∃x ∈ B ρ

2
, u(x, t) ≤

(
T

ρp

) 1
2−p 1

2so
}| ≤ ν|(0, T

2
]|,

provided ρ > 0 is so large that
(
T
ρp

) 1
2−p ≤ M

2 .

Now let ρ̄ be such that(
T

ρ̄p

) 1
2−p

=
M

2
⇒ ρ̄ =

(
22−pT

M2−p

) 1
p

, (3.2)

and assume that Bρ̄ ⊂ (α, β). Then Lemmas 3.1–3.2 can be rephrased as

Lemma 3.3. Let u be a non-negative, local, weak super-solution to 1.1 in E−τo,T ,
in the sense of 1.2–1.3. Let 3.1 hold. For any ν ∈ (0, 1), there exists a positive
integer so such that for any ρ > ρ̄

|{t ∈ (0,
T

2
] : ∃x ∈ B ρ

2
, u(x, t) ≤ M

2so+1

(
ρ̄

ρ

) p
2−p

}| ≤ ν|(0, T
2

]|,

provided that Bρ ⊂ (α, β).

Remark 3.4. The previous corollary gives us the power-like decay, required in
Proposition 1.2.
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Let us now set F cso
def
= (0, T2 ]\Fso . Then, if 3.1 holds, we conclude that for any

t ∈ F cso and for any x ∈ B ρ
2

with ρ > ρ̄

u(x, t) ≥ M

2so+1

(
ρ̄

ρ

) p
2−p

. (3.3)

Let c ≥ 4 denote a positive parameter, choose x̄ ∈ (α, β) such that |x̄| = 2cρ̄, and
consider Bcρ̄(x̄). Then, by 3.3

∀x ∈ Bc ρ̄2 (x̄), ∀ t ∈ F cso u(x, t) ≥ M

2so+1

(
2

5c

) p
2−p

, (3.4)

provided 3.1 holds, and Bcρ̄(x̄) ⊂ (α, β).

4. A DeGiorgi-Type lemma. Assume that some information is available on the
“initial data” relative to the cylinder B2ρ(y)× (s, s+ θρp], say for example

u(x, s) ≥M for a.e. x ∈ B2ρ(y) (4.1)

for some M > 0. Then, the following Proposition is proved in [3, Chapter 3,
Lemma 4.1].

Lemma 4.1. Let u be a non-negative, local, weak super-solution to 1.1, and M be
a positive number such that 4.1 holds. Then

u ≥ 1
2M a.e. in Bρ(y)× (s, s+ θ(4ρ)p],

where

θ = δM2−p (4.2)

for a constant δ ∈ (0, 1) depending only upon p, and independent of M and ρ.

Remark 4.2. Lemma 4.1 is based on the energy estimates and Proposition 3.1 of
[1], Chapter I, which continue to hold in a stable manner for p→ 1. These results
are therefore valid for all p ≥ 1, including a seamless transition from the singular
range p < 2 to the degenerate range p > 2.

5. Proof of Proposition 1.2. Fix y ∈ E, define ρ̄ as in 3.2, and choose a positive
parameter C ≥ 4, such that the cylindrical domain

B
2
p−2
p Cρ̄

(y)×
(
0,
T

2

]
⊂ E−τo,T . (5.1)

This is an assumption both on the size of the reference ball B
2
p−2
p Cρ̄

(y) and on T ; we

can always assume it without loss of generality. Indeed, as we have already pointed
out in Remark 1.3, if 5.1 were not satisfied, we would decompose the interval (0, T2 ]
in smaller subintervals, each of width τ , such that 5.1 is satisfied working with ρ̄
replaced by

ρ̂ =

(
22−pτ

M2−p

) 1
p

.

The only role of C is in determining a sufficiently large reference domain

B
2
p−2
p Cρ̄

(y) ⊂ E,

which contains the smaller ball we will actually work with, and will play no other
role; in particular the structural constants will not depend on C.
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Now, introduce the change of variables and the new unknown function

z = 2
2−p
p
x− y
ρ̄

, −e−τ =
t− T

2
T
2

, v(z, τ) =
1

M
u(x, t)e

τ
2−p . (5.2)

This maps the cylinder in 5.1 into BC × (0,∞) and transforms 1.1 into

vτ −
1

2
(|vz|p−2vz)z =

1

2− p
v weakly in BC × (0,∞). (5.3)

The only effect of the factor 1
2 in front of (|vz|p−2vz)z is to modify the constant γ in

Proposition 2.1, and consequently so in Lemmas 3.1–3.3. By the previous change
of variable, assumption 1.4 of Proposition 1.2 becomes

v(0, τ) ≥ e
τ

2−p for all τ ∈ (0,+∞). (5.4)

Let τo > 0 to be chosen and set

k = e
τo

2−p .

With this symbolism, 5.4 implies

v(0, τ) ≥ k for all τ ∈ (τo,+∞). (5.5)

Now consider the segment

I
def
= {0} ×

(
τo, τo + k2−p).

Let ν = 1
4 and so be the corresponding quantity introduced in Lemma 3.1. We can

then apply Lemmas 3.1–3.3 with T = k2−p, M substituted by k,

Fso = {τ ∈ (τo, τo +
1

2
k2−p] : ∃ z ∈ B ρ

2
, v(z, τ) <

k

2so+1
} for ρ > ρ∗,

with ρ∗
def
= 2

2−p
p . Therefore, if c ≥ 4 denotes a positive parameter, we choose

z̄ ∈ BC such that |z̄| = 2cρ∗, and consider Bcρ∗(z̄), by 3.3

∀ z ∈ Bc ρ∗2 (z̄), ∀ τ ∈ F cso v(z, τ) ≥ k

2so+1

(
2

5c

) p
2−p

, (5.6)

provided Bcρ∗(z̄) ⊂ BC . Summarising, there exists at least a time level τ1 in the
range

τo < τ1 < τo +
1

2
k2−p (5.7)

such that

∀ z ∈ Bc ρ∗2 (z̄), v(z, τ1) ≥ σoe
τo

2−p where σo =
1

2so+1

(
2

5c

) p
2−p

.

Remark 5.1. Notice that σo is determined only in terms of the data and is inde-
pendent of the parameter τo, which is still to be chosen.
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5.1. Returning to the original coordinates. In terms of the original coordi-
nates and the original function u(x, t), this implies

u(·, t1) ≥ σoMe−
τ1−τo
2−p

def
= Mo in Bc ρ̄2

(x̄)

where the time t1 corresponding to τ1 is computed from 5.2 and 5.7, and dist(x̄, y) =
2cρ̄. Now, apply Lemma 4.1 with M replaced by Mo over the cylinder Bc ρ̄2

(x̄) ×(
t1, t1 + θ(cρ̄)p

]
. By choosing

θ = δM2−p
o where δ = δ(data),

the assumption 4.2 is satisfied, and Lemma 4.1 yields

u(·, t) ≥ 1
2Mo = 1

2σoMe−
τ1−τo
2−p

≥ 1

2so+2

(
2

5c

) p
2−p

e−
2

2−p e
τo

M
in B cρ̄

4
(x̄) (5.8)

for all times

t1 ≤ t ≤ t1 + δ
1

2so(2−p)

(
2

5

)p
e−(τ1−τo)T

2
. (5.9)

Notice that 5.8 can be rewritten as

u(·, t) ≥ σ̄
(
ρ̄

ρ

) p
2−p

M in B ρ
4
(x̄), (5.10)

with

σ̄
def
=

1

2so+2

(
2

5

) p
2−p

e−
2

2−p e
τo

(5.11)

If the right hand side of 5.9 equals T
2 , then 5.8 holds for all times in(T

2
− εM2−p(cρ̄)p ,

T

2

]
where ε = δσ2−p

o e−e
τo

; (5.12)

taking into account the expression for ρ̄ and σo, we conclude that 5.8 holds for all
times in the interval (T

2
− e−e

τo δ

2so(2−p)

(
2

5

)p
T

2
,
T

2

]
. (5.13)

Thus, the conclusion of Proposition 1.2 holds, provided the upper time level in
5.9 equals T

2 . The transformed τo level is still undetermined, and it will be so chosen
as to verify such a requirement. Precisely, taking into account 5.2

T

2
e−τ1 = −(t1 −

T

2
) = δ

1

2so(2−p)

(
2

5

)p
e−(τ1−τo)T

2
=⇒ eτo =

(
5

2

)p
2so(2−p)

δ
.

This determines quantitatively τo = τo(data), and inserting such a τo on the right-
hand side of 5.11 and 5.13, yields a bound below that depends only on the data; 5.11
and 5.13 have been obtained relying on the bound below for u along the segment
{y}× (0, T2 ]. However, the same argument on the bound along the shorter segment

{y} × (0, s] for any T
4 ≤ s <

T
2 yields the same result with T

2 substituted by s: the
proof of Proposition 1.2 is then completed.

Remark 5.2. In the proof of Proposition 1.2, the parameter c basically measures
the relative size of ρ with respect to ρ̄.
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5.2. A remark about the limit as p → 2. The change of variables 5.2 and
the subsequent arguments, yield constants that deteriorate as p → 2. This is no
surprise, as the decay of solutions to linear parabolic equations is not power-like,
but rather exponential-like, as in the fundamental solution of the heat equation.

Nevertheless, our estimates can be stabilised, in order to recover the correct
exponential decay in the p = 2 limit. However, this would require a careful tracing
of all the functional dependencies in our estimates, and we postpone it to a future
work.

Acknowledgments. We are grateful to the anonymous referee for the comments
and suggestions, which greatly improved the paper.
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