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Steady state heat conduction in a convectively cooled sphere having arbitrarily located
spherical heat sources inside is treated with the method of Green’s function accompanied
by a coordinate transform. Green’s function of the heat diffusion operator for a finite sphere
with Robin boundary condition is obtained by spherical harmonics expansion. Verification
of the analytical solution is exemplified in some generic cases related to the pebbles of
South-African PBMR as of year 2000 with 268 MW thermal power. Analytical results for
different sectors of the sphere (pebble) are compared with the results of computational
fluid dynamics code FLUENTTM. This work is motivated through a modest effort to assess
the stochastic effects of distribution and volumetric effects of fuel kernels within the peb-
bles of future-promising pebble bed reactors.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Green’s function (GF) method is a conceptually elegant tool in the solution of linear differential equations describing a
various range of physical problems such as diffusion, transport of particles, heat, etc. In the method, the diffusing (transport-
ing) unknown quantity is given in an integral expression involving the boundary conditions and the GF. If the GF is known
and the integral can be evaluated then the GF method is a powerful tool for solving a very wide range of problems. Evaluation
of the integral is not an easy task in general and constitutes an integral part of the solution as will become apparent later in
this work.

There is an extensive literature on the application of GF method. Cole and Yen [1] have provided a comprehensive liter-
ature on GF method: a good overview of the subject has been provided in classical books of Morse and Feshbach [2], Carlsaw
and Jaeger [3] and Stakgold [4]. Barton [5] has carefully discussed the properties of the Dirac delta function and described
pseudo GF for the Neumann boundary condition. Differential equations are organized using a number system according
to the type of the differential equation in two books by Butkovskii [6,7]. A similar number system for the number of spatial
dimensions, the order of the highest time derivative, and the order of the highest spatial derivative has been used by Beck
et al. [8] to categorize Green’s functions. Beck et al. [8] give extensive tables of GF for heat conduction and diffusion. The
steady 2D heat conduction in Cartesian and cylindrical coordinates has been discussed by Dolgova and Melnikov [9]. Follow-
ing Dolgova and Melnikov, the approach of identifying slowly converging portions of Fourier series expansion and replacing
them with the closed form expressions has been extended and expanded in two recent books by Melnikov [10,11]. With this
approach numerical convergence of the GF method has been improved for a variety of equations, coordinate systems and
boundary conditions. The work on heat conduction in a rectangle by Cole and Kim [12] provides a complete list of all
. All rights reserved.
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Nomenclature

a rotation (Euler) angle about z-axis
b rotation (Euler) angle about y-axis
Bi Biot number
D pebble diameter
e void fraction
fe arrangement factor
g‘ radial part of Green’s function
G Green’s function
h convection coefficient
k conduction coefficient
l dynamic viscosity
D Laplacian operator
N number of spherical sources
Nu Nusselt number
n unit normal vector
P‘ Legendre function of degree ‘
Pm
‘ associated Legendre function of degree ‘ order m

Pr Prandtl number
/ azimuth angle
q source strength
_q volumetric heat generation rate
r position vector
R pebble radius
Ri source radius
S surface
w excess temperature
T temperature
h zenith angle
V coolant velocity, volume
Ym
‘ spherical harmonics of degree ‘ order m

Subscripts
eff effective
i source index
1 bulk coolant
l laminar
s single sphere
t turbulent
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single-sum GF with boundary conditions of type 1, 2, or 3. In their subsequent work, Cole and Yen [1] have replaced hyper-
bolic functions with a single-sum form involving exponentials and demonstrated better convergency.

Solution of heat conduction or other diffusion-like problems by GF method have been carried out mostly in Cartesian or
cylindrical coordinates because of the similarity of a variety of real systems or components to these geometries. A lot of
numerical work has been published on heat transfer in solid spheres, for fluidized beds, cracking processes, etc. [13–15].
For the case of spherical coordinates, fuel pebbles of a pebble bed reactor, among promising candidates of generation IV nu-
clear reactors, would be a delightful application of the GF method due to the following reasons: spherical heat generating
fuel kernels dispersed throughout the spherical pebble introduce an academically lively conduction problem. Additionally,
typically limiting design criteria of maximum pebble temperature has been obtained for synthesized pebble bed or as a fur-
ther step heat conduction equation is solved for a specified location of the reactor where gas and average pebble tempera-
tures have already been calculated. When solving heat conduction equation in the pebble, heat generation of tiny spherical
fuel particles (kernels) is assumed to be continuous throughout the pebble. However, solving the conduction equation for
thousands of such kernels dispersed arbitrarily within the pebble is more realistic and would allow one to discuss stochastic
effects of kernels’ distribution on temperature and other dependent variables.

One of the crucial parameters effecting behavior of the fuel particles (kernels) is the temperature distribution within the
pebble in which fuel particles are dispersed. Temperature field within the pebble has a major effect on the thermal stress
distribution over the fuel particles and migration of fission products through coating layers of the fuel particle which
may increase failure rate of fuel particles. Considering these facts, this work is motivated through a modest effort to assess
the stochastic effects of distribution and volumetric effects of fuel kernels within the pebbles of future-promising pebble bed
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reactors. As an initiative step, it is aimed to investigate the feasibility of the GF method to the steady state heat conduction
equation in a convectively cooled sphere having arbitrarily located spherical heat sources inside.

The paper is organized as follows: after a brief overview of the pebbles of a pebble bed reactor the heat diffusion problem
in a sphere together with convective boundary conditions and effective physical properties are formulated. Following the
formulation of GF solution of the problem, GF is obtained by using spherical harmonics expansion. Completing the analytical
work, some generic cases are studied for the South-African pebble bed modular reactor (PBMR) with 268 MW thermal power
[16]. Analytical results are compared with the computational fluid dynamics code FLUENTTM. A brief conclusion is included
particularly to explain the numerical difficulties encountered in the calculations.
2. Governing equations

Modern pebble bed reactor fuel elements are composed of small (0.5 mm diameter) uranium oxide (UO2) kernels sur-
rounded by various layers of prolific carbon, silicon carbide, and buffer graphite [17]. Kernels composed of uranium carbide
(UC2) or a mixture of UO2 and UC2 have also been designed and fabricated. The prolific carbon layers are applied in chemical
vapor deposition process to form fuel particle of just under 1 mm diameter. The layers serve as pressure boundary and reten-
tion zone for fission products. Many thousands of these so-called TRISO particles are then mixed with graphite binder. The
mixture is formed into sphere of about 5 cm in diameter. A 0.5 cm layer of pure graphite surrounds the fuel zone to form the
6 cm pebble.

2.1. Heat diffusion equation

Heat diffusion equation for a spherical pebble is given as follows:
DT þ
_q

keff
¼ 0; ð1Þ

� keff
@T
@n
¼ hðT � T1Þ on the surface of the pebble; ð2Þ
where keff denotes the effective thermal conductivity of pebble in which N spherical sources are embedded, D is the Laplacian
operator in spherical polar coordinates, h is the convection coefficient, and T1 is the bulk coolant temperature. Effective ther-
mal conductivity approximation instead of handling the pebble as a composite material is reasonable due to comparatively
small volume fraction (less then 1%) of fuel kernels in the pebble. Estimation of keff of heterogeneous solids could be made by
Maxwell’s formula [18]. Maxwell’s derivation was for electrical conductivity, but the same arguments apply for thermal con-
ductivity. He showed that keff of a material made of spheres of conductivity k1 embedded in a continuous solid phase with
conductivity ko for small volume fraction of / is given as
keff

ko
¼ 1þ 3/

k1þ2ko
k1�ko

� �
� /

: ð3Þ
If the excess temperature is defined as
wðr; h;/Þ ¼ Tðr; h;/Þ � T1; ð4Þ
Eqs. (1) and (2) take the form
Dwþ
_q

keff
¼ 0; ð5Þ

@w
@n
þ Bi

R
w ¼ 0 on the surface of the graphite sphere; ð6Þ
where Bi ¼ hR
k is the Biot number and @

@n stands for outward normal derivative.
Lets assume that N spherical sources are located arbitrarily in a graphite sphere (PBR fuel element) of radius R and de-

note ith source strength by qi(W), radius Ri and location by (ri,/i,hi). Lets further assume that volumetric heat generation
rate in each spherical source (kernel) is uniform and given by _qi ¼ qi=Vi where Vi is the volume of ith spherical source.
Contribution of a this single source to the excess temperature could be calculated by the solution of the following
equations:
Dwiðr;/; hÞ þ
_qi

keff
¼ 0; ð7Þ

@wi

@n
þ Bi

R
wi ¼ 0 at r ¼ R: ð8Þ
Notice that keff is the one that used for N spheres, not only for ith source. Summing up excess temperature of all sources re-
sults in
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_I¼1

wiðr;/; hÞ ¼ wðr;/; hÞ ¼ Tðr;/; hÞ � T1; ð9Þ
by virtue of principle of superposition.
2.2. Green’s function formulation

Solving Eqs. (7) and (8) suffices to find the solution of the original problem numerated by Eqs. (1) and (2). In the primed
coordinate system, Eqs. (7) and (8) for ith spherical source of radius Ri is located at ðr0i;/

0
i; h
0
iÞ become
D0wiðr0;/0; h0Þ þ
_qiðr0;/0; h0Þ

keff
¼ 0; ð10Þ

@wi

@n
þ Bi

R
wiðr0;/0; h0Þ ¼ 0 at r0 ¼ R: ð11Þ
In the same coordinate system, Green’s function satisfies the following equations:
D0Gðr0;/0; h0=r;/; hÞ þ dðr0 � rÞ ¼ 0; ð12Þ
@G
@n
þ Bi

R
Gðr0; h0;/0=r; h;/Þ ¼ 0 at r0 ¼ R: ð13Þ
for a unit impulse source located at r0 = r and denoted by three-dimensional Dirac’s delta function d(r0 � r) in polar spherical
coordinates.

If both sides of Eq. (10) is multiplied byG and Eq. (12) by wi, and then resulting two equations are subtracted and inte-
grated over the volume V0 of the graphite sphere bounded by a surface S0
wiðr;/; hÞ ¼
Z

S0
G
@wi

@n
� wi

@G
@n

� �
dS0 þ

Z
V 0

_qi

k
GdV 0; ð14Þ
is obtained for the excess temperature after using Green’s Theorem. The surface integral vanishes due to boundary condi-
tions. Then, excess temperature becomes
wiðr; h;/Þ ¼
1

keff

Z
V 0

_qiðr0;/0; h0ÞGðr0;/0; h0=r;/; hÞdV 0: ð15Þ
3. Finding Green’s function

Using the below spherical harmonics expansion for Green’s function [19]
Gðr0;/0; h0=r;/; hÞ ¼
X1
‘¼0

X‘
m¼�‘

g‘ðr0; rÞY
m
‘ ðh

0;/0ÞYm�
‘ ðh;/Þ; ð16Þ
reciprocity property of Green’s function yields in
Gðr;/; h=r0;/0; h0Þ ¼
X1
‘¼0

X‘
m¼�‘

g‘ðr; r0ÞY
m
‘ ðh;/ÞY

m�
‘ ðh

0;/0Þ: ð17Þ
Eqs. (12) and (13) for the unprimed or physical coordinate systems take the following form:
DGðr;/; h=r0;/0; h0Þ þ dðr� r0Þ ¼ 0; ð18Þ
@G
@n
þ Bi

R
Gðr;/; hÞ ¼ 0 at r ¼ R: ð19Þ
Three-dimensional Dirac delta function in spherical coordinates is known to be as
dðr� r0Þ ¼ dðr � r0Þ
r2

X1
‘¼0

X‘
m¼�‘

Ym
‘ ðh;/ÞY

m�
‘ ðh

0;/0Þ: ð20Þ
Inserting spherical harmonics expansions ofG and d(r � r0) given by Eqs. (17) and (20), respectively, into Eq. (18), following
differential equation for the radial part of the Green’s function is obtained:
r
d2

dr2 rg‘ðr; r0Þ½ � � ‘ð‘þ 1Þg‘ðr; r0Þ ¼ �dðr � r0Þ: ð21Þ
Independent solutions of the homogeneous form of the above equation are r‘ and r�‘�1. Therefore, g‘(r,r0) can be
chosen as
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g‘ðr; r0Þ ¼
g1
‘ ðr; r0Þ ¼ Ar‘ þ Br�‘�1; r < r0;

g2
‘ ðr; r0Þ ¼ Cr‘ þ Dr�‘�1; r > r0:

(
ð22Þ
Since g‘(r,r0) must be finite at r = 0, B vanishes. Continuity at r = r0 reads as
g1ðr; r0Þ ¼ g2ðr; r0Þ at r ¼ r0: ð23Þ
Integrating Eq. (21) in the neighborhood of r = r0 results in
Z r0þe

r0�e

d2

dr2 ½rg‘ðr; r0Þ�dr �
Z r0þe

r0�e

‘ð‘þ 1Þg‘ðr; r0Þ
r

dr ¼ �
Z r0þe

r0�e

dðr � r0Þ
r

dr: ð24Þ
In the limiting case, when e ? 0 second integral on the left-hand side vanishes since ‘ð‘þ1Þg‘ðr;r0 Þ
r is continuous at r = r0, and right

hand side becomes 1
r0 due to the sifting property of the Dirac’s Delta function. Then, jump discontinuity at r = r0 becomes
d
dr
½rg2

‘ ðr; r0Þ�r¼r0 �
d
dr
½rg1

‘ ðr; r0Þ�r¼r0 ¼ �
1
r0
: ð25Þ
GF takes the homogeneous form of the boundary condition on the surface; refer to Eq. (19), of the sphere as follows:
d
dr
½g2
‘ ðr; r0Þ�r¼R þ

Bi
R

g2
‘ ðr; r0Þ�r¼R ¼ 0: ð26Þ
Using Eqs. (23), (25) and (26) the radial part of the Green’s Function is obtained as follows:
g‘ðr; r0Þ ¼
g1
‘ ðr; r0Þ ¼ r0‘

R2‘þ1

� �
‘þ1�Bi
‘þBi

� �
þ r0ð�‘�1Þ

h i
r‘

2‘þ1 ; r < r0;

g2
‘ ðr; r0Þ ¼ r‘

R2‘þ1

� �
‘þ1�Bi
‘þBi

� �
þ rð�‘�1Þ

h i
r0‘

2‘þ1 ; r > r0:

8><
>: ð27Þ
4. Examples

In this part, our analytical solution is exemplified in some generic cases starting from the simplest to more general case.
Verification for a single spherical source which is eccentric with the pebble is the simplest case and achieved easily. Calcu-
lated results for a single non-eccentric spherical source placed on a specified coordinate axis which corresponds to the azi-
muthally symmetric case are compared with the CFD code FLUENT. Comparison for a single spherical source placed
arbitrarily within the pebble is made with FLUENT too. Similar runs and comparisons are carried out up to three spherical
sources located within pebble. Since the kernels have diameters negligible in comparison with pebble diameter, volumetric
effects is investigated by taking kernels as point sources in the calculations carried out for three sources.

The computational grids for all cases considered are generated using GAMBIT software. Tetrahedral meshes are used. To
guarantee mesh size-independent results, various mesh sizes are tested. After 200,000 meshes no significant changes are
observed in the calculated temperatures. Hence, 230,000 meshes are selected in the computations. In a computer with a
3.0 GHz-Pentium 4 processor, it takes approximately 2 min to obtain converged results.

Calculations, in all of the following case studies, are based on the data relevant to the South-African PBMR as of year 2000
with 268 MW thermal power whose thermal-hydraulics data is given in Table 1.

Power production of the pebble for which temperature distribution is calculated is assumed to be 268 MW/
330,000 = 8.121 � 102 W which is the average power production per pebble in the core. Total volume of 15,000 kernels, each
with a diameter of 0.5 mm, within the graphite pebble is 9.817 � 10�1 cm3 and the volume of one pebble with a diameter of
6 cm is 113.097 cm3. The volume fraction of kernels in the pebble is about 0.868%. To develop a methodology to examine the
effect of distribution of 15,000 kernels in graphite matrix (pebble) on temperature distribution calculations are started from
l-hydraulics data of PBMR-268.

68 characteristics

wer 268 MW
ameter (m) 3.5
ight (m) 8.5
r of pebbles-fuel/graphite 330,000/110,000
packing fraction 0.613
r of kernels per pebble 15,000
diameter (cm) 6.0
diameter (mm) 0.5
perature (�C) – inlet/outlet 503/900

rate (kg/s) 125.74
t pressure (Mpa) 7.0
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a single spherical source located arbitrarily and having total volume of fuel kernels. Then, calculations are continued by
dividing this spherical source into equal volumes of two, three, etc. The radius of the single spherical source corresponding
to total volume of the kernel is 6.165 � 10�1 cm, of two spherical sources are 4.893 � 10�1 cm, and three spherical sources
are 4.275 � 10�1 cm, respectively.

Gnielinski correlation [20] is used for the average Nusselt number. It is based on the assumption that heat transfer of peb-
ble beds can be related to that of a single sphere by an arrangement factor fe dependent on the void fraction e
Nu ¼ feNus; ð28Þ
with
fe ¼ 1þ 1:5ð1� eÞ: ð29Þ
Nusselt number for a single sphere is given as follows:
Nus ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nu2

l þ Nu2
t

q
; ð30Þ
with the Nusselt number given for laminar flow by
Nul ¼ 0:663
Re
e

� �1=2

Pr1=3; ð31Þ
the Nusselt number for turbulent flow given by
Nul ¼
0:037 Re

e

� �0:8Pr

1þ 2:443 Re
e

� ��0:1ðPr2=3 � 1Þ
; ð32Þ
and the Reynolds number given by
Re ¼ VD
l
; ð33Þ
where V is the average He velocity throughout the core, D is the pebble diameter, and l is the dynamic viscosity of the
helium.

Helium is assumed to be at an average temperature of the core inlet and outlet temperatures of about 700 �C. Since the
pressure drop throughout the core is small in comparison with the operating pressure 7 MPa, helium properties are calcu-
lated at these values of temperature and pressure considering it as an ideal gas. Convective heat transfer coefficient h is taken
as 4000 W/m2 K in all of the subsequent calculations, an approximate value which is evaluated by using the Gnielinski cor-
relation given by Eq. (28) and using thermal-hydraulics data of the reactor given in Table 1.

Effective conductivity of pebble depends on neutron irradiation and temperature. It is calculated at 700 �C by the follow-
ing [21] empirical correlation:
keff ¼ 1:2768 ð�0:3906:T þ 0:06829Þ=ðDOSISþ 1:931:10�4T þ 0:105Þ þ 1:228:10�4:T þ 0:042
h i

ðW=m KÞ; ð34Þ
instead of using effective conductivity approximation of composite materials given by Eq. (3). T is in �C andDOSIS stands for
the fast neutron irradiation dose in Eq. (34). A value of 38 W/m K for effective conductivity is used in all calculations, which
corresponds to zero irradiation rates (fresh fuel element).

4.1. Radially symmetric case

Let’s assume a single spherical source of radius Ri with a uniform volumetric heat generation rate _qi is placed eccentrically
with the graphite sphere of radius R. The problem could be stated as
1
r2

d
dr

r2 dwiðrÞ
@r

þ
_qi

keff
¼ 0; r 6 Ri; ð35Þ

1
r2

d
dr

r2 dwiðrÞ
@r

¼ 0; Ri 6 r 6 R; ð36Þ

wiðR�i Þ ¼ wiðRþi Þ; ð37Þ

� keff
dwi

dr

				
r¼R�
¼ �keff

dwi

dr

				
r¼Rþ

; ð38Þ

dwi

dr
þ Bi

R
wi ¼ 0 at r ¼ R: ð39Þ
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Analytical solution to the above set is simple and straightforward:
wiðrÞ ¼ TiðrÞ � T1 ¼
_qi

6keff
R2

i � r2
� �

þ
_qiR

3
i

3R2h
1þ hR2

keff

1
Ri
� 1

R

� �" #
; r 6 Ri; ð40Þ

wiðrÞ ¼ TiðrÞ � T1 ¼
_qiR

3
i

3R2h
þ

_qiR
3
i

3keff

1
r
� 1

R

� �
; Ri 6 r 6 R: ð41Þ
Let’s prove that Green’s function solution is identical to the solution given by Eqs. (40) and (41). Green’s function solution
given by Eq. (15) could be rearranged more explicitly as
wiðr;/; hÞ ¼ Tiðr;/; hÞ � T1 ¼
1

keff

Z R

r0¼0

Z p

h0¼0

Z 2p

/0¼0
Gðr0;/0; h0=r;/; hÞ _qiðr0;/0; h0Þ sin h0d/0dh0r02dr0: ð42Þ
If spherical harmonics expansion of Green’s function given by Eq. (17) is introduced into Eq. (42), excess temperature is ob-
tained after using reciprocity property of Green’s function as
wiðr;/; hÞ ¼
_qi

keff

Z r

r0¼0

Z p

h0¼0

Z 2p

/0¼0

X1
‘¼0

X‘
m¼�‘

g2
‘ ðr; r0ÞY

m
‘ ðh;/ÞY

m�
‘ ðh

0;/0Þ sin h0d/0dh0r02dr0

þ
_qi

keff

Z R

r0¼r

Z p

h0¼0

Z 2p

/0¼0

X1
‘¼0

X‘
m¼�‘

g1
‘ ðr; r0ÞY

m
‘ ðh;/ÞY

m�
‘ ðh

0;/0Þ sin h0d/0dh0r02dr0: ð43Þ
Using
 Z 2p

0

Z p

0
sinðh0ÞYm�

‘ ðh
0;/0Þdh0d/0 ¼ 2

ffiffiffiffi
p
p

d‘;0dm;0; ð44Þ
and
Y0
0ðh

0;/0Þ ¼ 1
2
ffiffiffiffi
p
p : ð45Þ
Eq. (43) simplifies to
wiðr;/; hÞ ¼
_qi

keff

Z r

r0¼0
g2

0ðr; r0Þr02dr0 þ
Z Ri

r0¼r
g1

0ðr; r0Þr02dr0

 �

; 0 6 r0 ¼ r 6 Ri ðinside the sourceÞ; ð46Þ

wiðr;/; hÞ ¼
_qi

keff

Z Ri

r0¼0
g2

0ðr; r0Þr02dr0; Ri 6 r0 ¼ r 6 R ðoutside the sourceÞ: ð47Þ
Green’s function given by Eq. (27) for ‘ = 0 becomes
g0ðr; r0Þ ¼
g1

0ðr; r0Þ ¼ ð1RÞ 1�Bi
Bi

� �
þ r0�1; r < r0;

g2
0ðr; r0Þ ¼ ð1RÞ 1�Bi

Bi

� �
þ r�1; r > r0:

(
ð48Þ
Introducing Eq. (48) into Eqs. (46) and (47) and using the definition Bi = hR/keff produce the same excess temperature distri-
butions as Eqs. (40) and (41) which validates the GF solution for this simple case.

4.2. Azimuthally symmetric case

Let’s consider a spherical source of radius Ri with a uniform volumetric heat generation rate _qi, whose center is located on
a specified axis, say z-axis, at a position (0,0,zi) within the graphite sphere of radius R (Fig. 1).

The main difficulty in the calculation of the temperature distribution within the pebble is to accomplish volume integra-
tion over the spherical source for different sectors of the computational domain which is the primed coordinate system in
the Green’s function solution given by (15). For this purpose graphite sphere of radius R is divided into three regions. I rep-
resents the sphere with a radius zi � Ri eccentric with the graphite sphere, II represents the spherical shell which extends
from r0 = zi � Ri to r0 = zi + Ri, and III is the outermost spherical shell beyond region II as shown in Fig. 1. Volume integration
is carried out by a simple geometrical interpretation. The intersection of the sphere centered at the origin with radius r0 and
the spherical source with radius Ri centered at (0,0,zi) is the circle whose y0 � z0 plane projection is shown by AB-line in Fig. 1.
Equations representing these two spheres are
x02 þ y02 þ z02 ¼ r02

x02 þ y02 þ ðz0�ziÞ2 ¼ R2
i

; Ri 6 r0 ¼ r 6 R: ð49Þ
Solving Eq. (49) together gives the equation of the AB-line as follows:
z0 ¼ z2
i � R2

i þ r02

2zi
: ð50Þ
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Fig. 1. Computational domains for a spherical source placed on the z-axis.
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For a point on the intersection circle of two spheres, polar angle h0 could be related to the other coordinate parameters by
cos h0 ¼ z0

r0
¼ z2

i � R2
i þ r02

2zir0
: ð51Þ
Hence, the differential volume element becomes
dV 0 ¼ r02 sin h0dh0d/0dr0 ¼ �r02dðcos h0Þd/0dr0; ð52Þ
where cosh0 is given by (51). This approach could easily be verified simply by evaluating volume of the spherical source with
radius Ri centered at (0,0,zi) as
Z
source

dV 0 ¼ �
Z 2p

/0¼0

Z r0¼ziþRi

r0¼zi�Ri

Z z2
i
�R2

i
þr02

2zi r0

cos h0¼1
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z2
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2zir0
� 1

 !
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3
pR3

i : ð53Þ
Using the expressions given by Eqs. (51) and (52) the GF solution could be restated as follows:
wiðr;/; hÞ ¼
1
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Z r
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Z 2p
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m
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‘ ðh

0;/0Þr02 sin h0dh0d/0: ð54Þ
(1) For a point inside region I, Eq. (54) reads as
z2�R2þr02
� �
wiðr;/; hÞ ¼
_qi

keff

Z r0¼ziþRi

r0¼zi�Ri
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m
‘ ðh;/ÞY
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‘ ðh

0;/0Þr02 sin h0dh0d/0; ð55Þ
or
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wiðr;/; hÞ ¼
_qi

keff

X1
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Z ziþRi

r0¼zi�Ri

r02g1
‘ ðr; r0Þdr0
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i
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‘ ðh

0;/0Þ sin h0dh0d/0: ð56Þ
Using
 Z a

h0¼0
P‘ðcos h0Þ sin h0dh0 ¼ 1

2‘þ 1
P‘�1ðcos aÞ � P‘þ1ðcos aÞ½ �; ð57Þ
and the addition theorem for spherical harmonics
X‘
m¼�‘

Ym
‘ ðh;/ÞY
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( )
; ð58Þ
excess temperature given by Eq. (56) simplifies to
wiðr;/; hÞ ¼
_qi
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(2) For a point inside region II, proceeding in a similar way to (1) results in
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: ð60Þ
(3) For a point inside region III, excess temperature is obtained as
X1 Z ziþRi 2 2 02
 !

2 2 02
 !" #" #
wiðr;/; hÞ ¼
_qi
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P‘ðcos hÞ
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2zir0
� P‘þ1
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2zir0

r02g1
‘ ðr; r0Þdr0 : ð61Þ
As a numerical example, temperature field on y–z plane of a pebble is calculated for a spherical source of strength
8.121 � 102 W with a radius of 6.165 � 10�1 cm whose center is placed on the z-axis and 1.5 cm apart from the center of
the pebble. Excess temperatures calculated analytically by Eqs. (59)–(61) and by computational fluid dynamics code FLUENT
are presented in Table 2.

Series in Eqs. (59)–(61) for three solution domains are truncated when the contribution of the series term begins to cause
oscillations in the solution. This is due to the relatively higher frequency oscillations of higher order Legendre polynomials
than low order Legendre polynomials. This behavior prevents to calculate the excess temperature to an arbitrary precision.
Maximum relative error in excess temperature of analytically obtained results in comparison with FLUENT results is found as
7%. This error falls as much as 1.7% when temperatures are compared instead of excess temperatures. Relative error in excess
temperature is about a few percent except for high temperature regions, that is the neighborhood of the spherical source.
4.3. An arbitrarily located spherical source

In this most general case, a spherical source of radius Ri with a uniform volumetric heat generation rate _qi is located at a
position ri = (ri,/i,hi) in polar spherical coordinates system or (xi,yi,zi) in Cartesian coordinate system, within the graphite
sphere of radius R. The solution obtained in the previous part for a source located on a specified axis allows one to calculate
temperature distribution for an arbitrarily located source by using orthogonal coordinate transformations (Fig. 2).

The strategy is to fit the position vector ri of the center of the spherical source with the z-axis of the final coordinate sys-
tem. This is accomplished rotating our physical coordinate system (x,y,z) first about z-axis by an angle a, and then rotating
new coordinate system denoted by (x1,y1,z1) about y1-axis by an angle b to get final coordinate system denoted by (x,y,z).
Since the length of vectors is invariant under orthogonal transformations, these Euler angles will be a = /i and b = hi, where hi

and /i are polar and azimuth angles of the position of the center of the spherical source, respectively.
Rotation matrices about z and y1 axis denoted by Rz and Ry are given as
Rz ¼
cos ui sinui 0
� sinui cos ui 0

2
64

3
75; Ry ¼

cos hi 0 � sin hi

0 1 0

2
64

3
75: ð62Þ
0 0 1 sin hi 0 cos hi
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Fig. 2. Coordinate transformation for an arbitrarily placed spherical source.

Table 2
Excess temperatures on the y–z plane calculated analytically and by FLUENT for a spherical source located at (x, y, z) = (0,0,1.5).

r h

0 p/10 2p/10 3p/10 4p/10 5p/10 6p/10 7p/10 8p/10 9p/10 p

0.0 75.48 75.48 75.48 75.48 75.48 75.48 75.48 75.48 75.48 75.48 75.48 Fluent
74.64 74.64 74.64 74.64 74.64 74.64 74.64 74.64 74.64 74.64 74.64 Analytic

0.3 106.79 104.72 98.75 91.32 82.66 73.57 67.74 62.17 59.85 57.63 56.35 Fluent
102.19 100.11 94.57 87.17 79.45 72.44 66.61 62.13 58.99 57.14 56.52 Analytic

0.6 145.71 137.67 118.33 101.19 82.94 66.67 55.64 50.44 46.39 43.60 42.17 Fluent
148.64 139.21 117.90 97.22 79.08 66.90 56.97 51.34 46.86 44.55 43.80 Analytic

0.9 226.33 196.69 140.07 105.51 78.53 60.19 47.92 40.22 35.60 33.00 32.21 Fluent
242.18 201.43 141.07 99.98 79.50 59.63 48.19 41.55 37.41 30.74 34.42 Analytic

1.2 319.59 259.78 154.22 97.18 68.19 49.52 40.10 31.99 27.85 26.64 26.26 Fluent
338.53 274.99 151.34 93.32 66.92 50.68 39.54 33.70 29.80 27.00 27.63 Analytic

1.5 350.85 274.55 145.00 84.15 56.02 38.80 31.13 26.30 23.78 21.34 20.53 Fluent
364.42 273.89 142.01 83.80 56.59 40.35 32.81 27.24 24.00 22.40 20.85 Analytic

1.8 320.98 229.09 117.56 71.88 45.95 32.99 25.31 21.31 19.17 17.70 16.85 Fluent
330.55 228.86 117.30 69.96 45.95 33.94 26.38 21.82 19.12 17.65 17.06 Analytic

2.1 229.02 166.19 96.58 58.84 38.68 25.41 20.64 16.97 14.88 14.26 13.43 Fluent
239.17 164.16 97.83 57.01 38.78 27.12 21.12 17.01 15.17 13.97 13.53 Analytic

2.4 150.88 123.61 75.97 45.11 29.36 21.26 16.77 13.28 11.37 10.78 10.38 Fluent
144.85 113.52 70.95 44.67 30.03 21.62 16.60 13.66 11.87 10.94 10.71 Analytic

2.7 104.12 88.40 53.69 33.84 22.66 17.03 12.97 10.38 8.84 8.19 8.00 Fluent
97.59 80.73 53.46 34.39 23.19 16.67 12.80 10.49 9.11 8.39 8.16 Analytic

3.0 75.83 64.02 39.20 25.93 17.64 12.87 9.76 7.98 6.84 6.38 6.21 Fluent
69.64 58.54 39.52 25.62 17.29 12.43 9.54 7.81 6.78 6.24 6.14 Analytic
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The rotation matrix for these two successive rotations is
RyRz ¼ Ryz ¼
cos hi cos /i cos hi sin /i � sin /i

� sin /i cos /i 0
sin hi cos /i sin hi sin /i cos hi

2
64

3
75: ð63Þ
The physical domain (x,y,z) is related to the computational domain (x2,y2,z2) as follows:
x2

y2

z2

2
64

3
75 ¼

cos hi cos /i cos hi sin /i � sin /i

� sin /i cos /i 0
sin hi cos /i sin hi sin /i cos hi

2
64

3
75

x

y

z

2
64
3
75: ð64Þ
For a point (x,y,z) = (rsinhcos/,rsinhsin/,rcosh) in our physical domain, this point’s correspondence in the computational
domain (x2,y2,z2) could be calculated using Eq. (64). Since the spherical source is located on the z2-axis of the computational
domain, azimuthally symmetric case solutions given by Eqs. (59)–(61) apply with the modification that h is replaced by
h2 = cos�1(z2/r).

The outlined procedure is applied to calculate excess temperature field on the y–z plane for a spherical source of strength
812.1 W with a radius of 6.165 � 10�1 cm whose center is placed at ri = (2,p/4,3p/4) in spherical coordinates. Calculated re-
sults are given in Table 3 together with the results of FLUENT. Maximum relative error in excess temperature of analytically



Table 3
Excess temperatures on the y–z plane calculated analytically and by FLUENT for a spherical source located at (ri,/i,hi) = (2,p/4,3p/4).

/ p/2 3p/2

r h h

0 2p/10 4p/10 6p/10 8p/10 p 8p/10 6p/10 4p/10 2p/10

0.0 44.79 44.79 44.79 44.79 44.79 44.79 44.79 44.79 44.79 44.79 Fluent
46.29 46.29 46.29 46.29 46.29 46.29 46.29 46.29 46.29 46.29 Analytic

0.3 37.28 41.11 46.90 52.67 55.85 53.24 47.11 41.20 37.33 36.28 Fluent
38.53 42.41 48.45 54.76 57.71 54.97 48.72 42.62 38.64 37.26 Analytic

0.6 30.89 36.75 47.33 61.12 69.14 61.99 47.35 36.82 31.28 29.41 Fluent
31.84 37.71 48.63 63.39 72.01 63.97 49.18 38.05 32.00 30.08 Analytic

0.9 25.59 31.69 45.20 68.33 86.39 69.14 45.99 32.24 25.73 23.81 Fluent
26.18 32.73 46.74 70.89 89.22 72.00 47.53 33.13 26.35 24.33 Analytic

1.2 20.93 27.22 41.69 72.40 102.10 75.15 42.76 27.78 21.10 19.44 Fluent
21.43 27.87 43.12 75.36 107.70 77.09 44.04 28.28 21.58 19.68 Analytic

1.5 17.11 22.63 37.29 72.44 117.83 74.89 38.19 23.21 17.29 15.60 Fluent
17.43 23.33 38.36 75.06 122.23 77.25 39.33 23.69 17.59 15.93 Analytic

1.8 13.93 18.82 32.35 67.17 119.97 70.27 33.18 19.14 14.03 12.59 Fluent
14.09 19.18 33.21 69.51 124.46 71.91 34.14 19.44 14.28 12.99 Analytic

2.1 11.20 15.29 26.98 59.44 109.74 61.61 27.85 15.69 11.33 10.08 Fluent
11.26 15.52 27.82 60.67 113.27 62.90 28.65 15.71 11.45 10.45 Analytic

2.4 8.84 12.32 21.96 49.83 92.71 52.11 22.55 12.52 8.93 8.00 Fluent
8.85 12.38 22.32 50.82 94.86 52.67 23.02 12.59 8.95 8.04 Analytic

2.7 6.93 9.61 17.29 39.88 72.32 41.03 17.87 9.86 6.91 6.19 Fluent
6.82 9.59 17.38 40.45 74.27 41.95 17.91 9.79 6.87 6.09 Analytic

3.0 5.21 7.28 13.19 30.40 54.97 31.57 13.64 7.47 5.26 4.68 Fluent
5.08 7.16 13.04 30.39 55.46 31.52 13.44 7.30 5.12 4.55 Analytic
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obtained results in comparison with FLUENT results is found as 5.48%. This error falls as much as 0.69% when temperatures
are compared instead of excess temperatures.

4.4. Two spherical sources

This case provides no further qualitative knowledge than the previous case in which a single arbitrarily placed source is
studied except that whether truncating errors phase out by using superposition principle. Calculations are carried out for
two spherical sources and resulting excess temperatures are compared with the FLUENT results. Each sources are of with
a strength of 406.061 W with radius 0.489 cm and located at the positions (x1,y1,z1) = (0,0,1.5) and (r2,/2,h2) = (2,p/4,3p/
4), respectively. Calculated results are given in Table 4 with results of FLUENT.

In this case study, maximum relative error of analytically obtained results in comparison with FLUENT results is found as
6.67%. This error falls as much as 1.49% when temperatures are compared instead of excess temperatures. It is observed that
truncating errors arising from series solution for each source are not magnified when principle of superposition is used.

4.5. Three spherical sources

When the kernels have relatively too small dimensions in comparison with the pebble, negligibility of volumetric effects
could be investigated by taking kernels as point sources in analytical solution. In the FLUENT runs, heat generating kernels
within the pebble is represented by three spherical sources each has volumes with one-third of the total volume of kernels.
These three sources are assumed to be point sources in the analytical GF solution. Results of two calculations are compared
to assess the validity of point source approximation.

A point source located at ri = (ri,ui,hi) with strength qi could be represented in the computational or primed coordinate
system as
_qiðr0;u0; h0Þ ¼ qidðr0 � riÞ ¼ qi
dðr0 � riÞdðh0 � hiÞdðu0 �uiÞ

r02 sin h0
: ð65Þ
Introducing Eqs. (65) and (17) into Eq. (15), excess temperature is obtained as follows:
wiðr;u; hÞ ¼
qi

keff

Z
r0

Z
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Z
h0

X1
‘¼0

X‘
m¼�‘

dðr0 � riÞdðh0 � hiÞdðu0 �uiÞg‘ðr0; rÞY
m
‘ ðh
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Above expression is simplified using sifting property of Dirac’s delta function as
wiðr;/; hÞ ¼
qi

keff

X1
‘¼0

g‘ðri; rÞ
X‘

m¼�‘
Ym
‘ ðh;/ÞY

m�
‘ ðh;/Þ: ð67Þ



Table 4
Excess temperatures on the y–z plane calculated analytically and by FLUENT for two spherical sources located at (x1, y1, z1) = (0,0,1.5) and (r2,/2,h2) = (2,p/4,3p/
4).

/ p/2 3p/2

r h h

0 2p/10 4p/10 6p/10 8p/10 p 8p/10 6p/10 4p/10 2p/10

0.0 58.42 58.42 58.42 58.42 58.42 58.42 58.42 58.42 58.42 58.42 Fluent
60.46 60.46 60.46 60.46 60.46 60.46 60.46 60.46 60.46 60.46 Analytic

0.3 67.43 65.93 61.65 58.43 56.45 53.90 52.15 52.60 57.11 63.45 Fluent
70.36 68.49 63.95 60.68 58.35 55.75 53.85 54.62 59.05 65.91 Analytic

0.6 86.97 74.81 61.81 58.26 57.35 52.22 46.38 45.93 53.89 71.18 Fluent
90.24 78.01 64.04 60.36 59.44 53.89 48.02 47.69 55.72 74.19 Analytic

0.9 126.71 83.26 58.43 57.52 61.40 51.42 41.22 39.37 48.72 79.31 Fluent
132.55 86.90 60.64 59.54 63.32 53.22 42.53 41.08 50.05 83.09 Analytic

1.2 202.44 86.27 52.79 55.67 65.76 50.87 35.97 33.08 42.41 82.23 Fluent
215.28 89.84 54.66 57.59 68.78 52.02 36.96 34.05 43.90 85.75 Analytic

1.5 232.53 78.44 46.03 52.25 70.71 48.10 30.82 27.35 35.80 74.90 Fluent
245.54 82.96 47.46 53.87 73.08 50.76 31.63 28.17 37.03 78.88 Analytic

1.8 202.14 65.84 39.07 46.59 69.57 43.64 25.98 22.44 29.56 62.36 Fluent
215.62 63.06 39.96 48.23 72.48 44.48 26.96 22.99 30.53 65.50 Analytic

2.1 120.79 52.03 32.04 40.18 62.52 37.55 21.43 18.15 24.15 49.88 Fluent
125.45 54.08 32.53 41.32 65.11 38.58 21.60 18.53 24.70 51.46 Analytic

2.4 73.62 40.24 25.76 33.21 52.39 31.43 17.15 14.43 19.16 38.54 Fluent
76.76 41.70 26.24 33.74 53.25 31.76 17.51 14.63 19.38 39.35 Analytic

2.7 51.20 30.92 20.13 26.41 40.83 24.63 13.51 11.31 14.85 29.18 Fluent
51.25 33.29 20.31 26.59 41.69 25.03 12.83 11.29 15.02 31.13 Analytic

3.0 36.86 23.21 15.28 20.08 31.02 18.91 10.28 8.57 11.31 21.95 Fluent
38.46 23.25 15.04 19.80 30.94 18.64 10.01 8.30 11.06 21.90 Analytic
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Using addition theorem of spherical harmonics stated in Eqs. (58) and (67) becomes
Table 5
Excess
(r2,/2,h

/

r

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0
wiðr;/; hÞ ¼
qi

keff
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2‘þ 1

4p

"
P‘ðcos hÞP‘ðcos hiÞþ2

X‘
m¼1

ð‘�mÞ!
ð‘þmÞ! Pm

‘ ðcos hÞPm
‘ ðcos hiÞ cos mð/� /iÞ

#
: ð68Þ
temperatures on the y–z plane calculated with point source approximation and by FLUENT for three spherical sources located at (x1,y1,z1) = (0,0,1.5),
2) = (2,p/4,3p/4) and (r3,/3,h3) = (2.5,5p/4,3p/4).

p/2 3p/2

h h

0 2p/10 4p/10 6p/10 8p/10 p 8p/10 6p/10 4p/10 2p/10

48.54 48.54 48.54 48.54 48.54 48.54 48.54 48.54 48.54 48.54 Fluent
50.07 50.07 50.07 50.07 50.07 50.07 50.07 50.07 50.07 50.07 Analytic
53.15 51.83 49.26 47.94 47.69 47.16 46.46 46.30 48.07 51.22 Fluent
55.14 53.63 50.89 49.52 49.16 48.61 47.86 47.82 49.57 52.96 Analytic
64.82 56.35 48.12 46.96 48.55 47.75 45.30 43.52 46.11 55.53 Fluent
67.04 58.51 49.61 48.43 50.06 49.14 46.64 44.91 47.47 57.58 Analytic
90.16 60.80 44.70 45.56 51.06 48.90 44.74 40.60 42.45 60.05 Fluent
95.18 63.25 46.19 46.93 52.45 50.39 46.13 41.83 43.71 62.27 Analytic
151.65 61.87 39.99 43.41 53.54 49.77 44.81 37.77 37.69 61.10 Fluent
186.44 64.13 41.21 44.67 55.59 51.12 46.11 38.72 38.78 63.23 Analytic
181.79 55.82 34.64 40.23 56.03 48.82 45.00 34.52 32.47 55.31 Fluent
– 56.70 36.99 43.86 60.77 68.77 49.41 38.05 35.16 55.92 Analytic
151.63 46.77 29.30 35.58 54.37 45.71 44.98 30.91 27.28 46.03 Fluent
182.69 48.56 29.78 36.63 56.13 46.90 45.93 31.76 27.98 47.91 Analytic
83.71 37.00 23.97 30.53 48.55 40.69 43.21 27.24 22.56 36.89 Fluent
86.58 38.28 24.53 31.56 51.09 41.63 44.31 27.41 23.12 37.74 Analytic
51.27 28.67 19.25 25.17 40.60 34.84 38.71 22.96 18.09 28.63 Fluent
53.63 29.46 19.69 25.13 41.55 35.15 40.98 23.71 18.52 29.06 Analytic
35.82 22.04 15.03 20.00 31.80 27.96 32.51 18.60 14.15 21.75 Fluent
36.45 22.38 15.14 19.92 32.24 28.22 33.35 18.68 14.28 22.06 Analytic
25.83 16.56 11.41 15.20 24.16 21.53 25.40 14.23 10.79 16.37 Fluent
26.08 16.59 11.28 15.00 24.04 21.33 25.31 14.03 10.64 16.35 Analytic
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Excess temperature for three point sources could be calculated using principle of superposition which reads as
wðr;u; hÞ ¼
X3

i¼1

wiðr;u; hÞ; ð69Þ
where wi(r,u,h) is calculated according to (68).
Numerical example of this part considers three equal volumes of spherical sources each with source strength of

270.707 W which is one-third of pebble heat generating rate. Radii of these sources are 0.427 cm and positions of their cen-
ters are chosen as (x1,y1,z1) = (0,0,1.5), (r2,/2,h2) = (2,p/4,3p/4), and (r3,/3,h3) = (2.5,5p/4,3p/4).

Table 5 shows results of analytical computations with point source approximation and FLUENT results for spherical
sources having the same strengths with the point sources. An increased maximum relative error of 22.94% in excess temper-
ature is observed around the center of the spherical source as expected due to point source approximation in our analytical
solution. This error falls as much as 4.08%, if temperatures are compared. Another disadvantage of the point source approx-
imation is the failure to calculate the excess temperature at the center of the spherical sources as seen from the Table 5. Ex-
cept for the closed periphery of the point sources a faster convergency and better accuracy is achieved in the point source
approximation. It is clear that point source approximation would provide a more effective analytical solution with accept-
ably small relative error for 15,000 kernels (approximate actual number of fuel kernels in a pebble) each with a diameter of
0.5 mm which is two small in comparison with the dimensions used (42.7 mm) in this part of the calculations.

5. Conclusions

Green’s function solution of heat diffusion equation for a finite sphere cooled convectively and containing arbitrarily
placed spherical sources is obtained in this study. Spherical harmonics expansion is employed to find the GF of heat diffusion
operator with Robin (mixed) boundary condition. Analytical solution to this seemingly simple problem has been observed to
be associated with some numerical convergency problems resulting from high-frequency oscillatory behavior of Legendre
polynomials at high order. It is further demonstrated that analytical solution to the diffusion equation in a sphere having
spherical sources inside could be reduced to a more simple form with point source approximation when the dimensions
of the sources are relatively small in comparison with the pebble, which is the case for pebble bed reactors.

Even though analytical treatment seems feasible it is concluded that examining the stochastic effect of distribution of
thousands tiny fuel kernels inside the pebbles of a pebble bed reactors dictates much better convergency to eliminate over-
lapping of truncation error and small contribution of each kernel to the temperature field. The analytical solution derived in
this work could be used as a verification tool of the CFD codes to some extent.

Acknowledgements

Author would like to expresses special thanks to Mehmet Tombakoglu of Nuclear Engineering Department of Hacettepe
University and Muhammet Barik of Turkish Atomic Energy Authority for their valuable suggestions and help.

References

[1] K.D. Cole, D.H.Y. Yen, Green’s functions, temperature and heat flux in the rectangle, Int. J. Heat Mass Transfer 44 (2001) 3883–3894.
[2] P.M. Morse, H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.
[3] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press, Oxford, 1959.
[4] I. Stakgold, Boundary Value Problems of Mathematical Physics, Macmillan, New York, 1967.
[5] G. Barton, Elements of Green’s Functions and Propagation, Oxford University Press, Oxford, 1989.
[6] A.G. Butkovskii, Green’s Functions and Transfer Functions Handbook, Halsted Press (division of Wiley), New York, 1992.
[7] A.G. Butkovskii, L.M. Pustyl’nikov, Characteristics of Distributed-Parameter Systems, Kluwer Academic Publishers., Dorddrecht, 1993.
[8] J.V. Beck, K.D. Cole, A. Haji-Sheikh, B. Litkouhi, Heat Conduction Using Green’s Function, Hemisphere, New York, 1992.
[9] I.M. Dolgova, Y.A. Melnikov, Construction of Green’s functions and matrices for equations and systems of the elliptic type, J. Appl. Math. Mech. 42

(1978) 740–746.
[10] Y.A. Melnikov, Green’s Functions in Applied Mechanics, Computational Mechanics Publications, Boston, 1995.
[11] Y.A. Melnikov, Influence Functions and Matrices, Marcel Dekker, New York, 1999.
[12] K.D. Cole, H.K. Kim, Green’s functions for steady two-dimension heat conduction, in: Proceedings of the 10th International Heat Transfer Conference,

Brighton, UK, vol. 6, 1994, pp. 331–336.
[13] K.N. Theologos, I.D. Nikou, A.I. Lygeros, N.C. Markatos, Simulation and design of fluid catalytic-cracking riser-type reactors, AIChE J. 43 (1997) 486–494.
[14] N.V. Dewachtere, G.F. Froment, I. Vasalos, N. Markotos, N. Skandalis, Advanced modeling of riser-type catalytic-cracking reactors, Appl. Therm. Eng. 17

(1997) 837–844.
[15] N.C. Markatos, Modelling of two-phase transient flow and combustion of granular propellants, Int. J. Multiphase Flow 12 (1986) 913–933.
[16] PBMR Ltd., Reactor safety analysis report of the South-African pebble bed modular reactor (PBMR), Rev. E, 2000, Centurion, South Africa.
[17] H.D. Gougar, Advanced core design and fuel management for pebble-bed reactors, Ph.D. Dissertation, The Graduate School, Department of Mechanical

and Nuclear Engineering, The Pennsylvania State University, 1983.
[18] B.R. Bird, W.E. Stewart, E.N. Lightfood, Transport Phenomena, second ed., Wiley, New York, 2001 (Chapter 9.6).
[19] G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, fivth ed., Academic Press, London, 2001 (Chapter 8.7).
[20] V. Gnielinski, Gleichungen zur Berechnung des wärme- und stoffaustausches in durchströmten ruhenden kugelschütten bei mittleren und großen

Peclet-Zahlen, Verfahrenstechnik 12 (6) (1978) 363–366.
[21] Y. Sun, Z.Gao, Evaluation of high temperature gas cooled reactor performance, prepared for the IAEA coordinated research program (CRP-5), Institute of

Nuclear Energy Technology, Beijing 100084, PR China, December 2003.


	Green’s Function, Temperature function, temperature in a convectively cooled sphere with arbitrarily located spherical heat sources
	Introduction
	Governing equations
	Heat diffusion equation
	Green’s function formulation

	Finding Green’s function
	Examples
	Radially symmetric case
	Azimuthally Symmetric Casesymmetric case
	An Arbitrarily Located Spherical Sourcearbitrarily located spherical source
	Two spherical sources
	Three spherical sources

	Conclusions
	AcknowledgementAcknowledgements
	References


