Journal of Membrane Science 479 (2015) 175-189

Contents lists available at ScienceDirect

Journal of Membrane Science

=
journal of
MEMBRANE
SCIENCE

20,0,0"
{0

journal homepage: www.elsevier.com/locate/memsci =

Immobilization of superoxide dismutase/catalase onto polysulfone
membranes to suppress hemodialysis-induced oxidative stress: A

@ CrossMark

comparison of two immobilization methods

Filiz Yasar Mabhlicli ¢, Yasin Sen b Mehmet Mutlu €, Sacide Alsoy Altinkaya **

@ Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Kampusu, 35430 Urla, Izmir, Turkey
b plasma Aided Bioengineering and Biotechnology (PABB) Research Group, Food Engineering Division, Institute for Pure and Applied Sciences, Hacettepe

University, Ankara, Turkey

€ Plasma Aided Biomedical (pabmed) Research Group, Biomedical Engineering Department, TOBB ETU University of Economics and Technology,

Ankara, Turkey

ARTICLE INFO

ABSTRACT

Article history:

Received 17 October 2014
Received in revised form

16 December 2014

Accepted 17 December 2014
Available online 3 January 2015

Keywords:

Superoxide dismutase

Catalase

Polysulfone membrane

Self assembly of polyelectrolyte (ionic
immobilization)

Plasma treatment

The objective of this study is to improve the blood compatibility of polysulfone (PSF) based hemodialysis
membranes through generating antioxidative surfaces with superoxide dismutase (SOD)/catalase (CAT)
enzyme couple immobilization. Enzymes were attached both covalently and ionically on the plasma
treated and polyethyleneimine (PEI) deposited membranes, respectively. The loss of enzymes from PEI
modified surface at the end of 4 h was found to be relatively higher during storage in phosphate buffered
saline (PBS) at pH 7.4 when compared to the enzymes on the plasma treated surface. The kinetic studies
indicated that SOD catalyzed the reaction in the diffusion-limited regime at all substrate concentrations
and its inactivation by hydrogen peroxide was prevented in the presence of CAT. SOD/CAT coated PSF
membranes were capable of reducing the levels of reactive oxygen species in blood and can significantly
prolong activated partial thromboplastin time. In addition, both the adsorption of human plasma
proteins and platelet activation on all modified membranes decreased significantly compared to the
unmodified PSF membranes. Proposed modification methods did not affect high permeability, high
mechanical strength or the non-toxic properties of the PSF membranes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Leukocyte adhesion and activation during blood-membrane
interactions cause generation of free radicals. Reaction of these
radicals with the proteins and lipids in blood is the main reason
underlying hemodialysis-induced oxidative stress. To address this
issue, several groups recently focused on developing hemodialysis
membranes with antioxidative properties. The most commonly used
approach is to immobilize antioxidants, such as vitamin E [1-3],
linoleic acid [4-7], soybean-derived phytochemical, genistein [8] and
alpha lipoic acid [9], on surfaces of the membranes that are in
contact with blood. Antioxidant immobilization did not only allow
for the inhibition of reactive oxygen species (ROS) generation but
also reduced platelet adhesion and protein adsorption and pro-
longed blood coagulation time [4-7].

Superoxide dismutase (SOD) and catalase (CAT), two antiox-
idant enzymes in the body that always co-exist, constitute the
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most effective system regulating the levels of free radicals. SOD
degrades free radical superoxide anions to hydrogen peroxide and
CAT removes hydrogen peroxide from the tissues, preventing the
formation of other harmful free radicals. Encapsulation or immo-
bilization of individual SOD or CAT was used in different applica-
tions, such as drug delivery [10] and biosensors [11]. However,
there is a limited number of studies focused on SOD-CAT multi-
enzyme immobilization [12].

In this study we aimed to utilize the unique antioxidant proper-
ties of SOD/CAT enzyme couple to suppress hemodialysis induced
oxidative stress. For this purpose, the enyzmes were immobilized
onto plasma modified and polyethyleneimine (PEI) deposited poly-
sulfone membranes. Plasma-based approaches have gained consid-
erable interest for immobilization of biomolecules, since they do not
require complicated wet chemical steps to achieve binding allowing
linker-free immobilization [13]. Moreover, in some conditions low-
ered stability of bioactive molecules due to usage of spacers can be
prevented [14]. A key challenge for the plasma treatment process is
aging as a result of post-plasma oxidation initiated by the reaction
between remaining radicals and in-diffusing atmospheric oxygen as
well as the movement of some of the polymer chains from the
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surface into the bulk [15]. Recently, adsorption of enzymes on
polyelectrolyte-modified membrane surfaces has emerged as a
versatile, gentle and easy method for immobilization [16-21] which
occurs mainly via ionic binding of enzyme molecules to the charged
surface. The adsorption process can be conducted in an aqueous
solution under mild conditions which minimize the loss of enzyme
activity. The main disadvantage of this method is the possible
interference of ions in solution that are not involved in the ionic
reaction leading to easy detachment of the enzyme. In this study, we
evaluated the efficacies of these two immobilization techniques
based on the blood compatibilities of the membranes. In particular,
we measured the inhibition of ROS in blood plasma, the amount of
adsorbed plasma proteins, the activated partial thromboplastin time
(APTT), cytoxicity on blood cells and platelet adhesion and activation
on the membranes. In addition, we also characterized the transport,
structural and mechanical properties of the membranes. To the best
of our knowledge, the SOD-CAT enzymes have not been used
together previously to improve the hemocompatibility of hemodia-
lysis membranes. Here we also demonstrated the first data on the
change of the conformation and activity of this enzyme couple upon
immobilization on polysulfone membranes.

2. Materials and methods
2.1. Materials

Polysulfone (PSF) with a molecular weight of 26,000 g mol~!,
branched polyethylenimine (PEI) (750,000 g mol~') which contains
25% of tertiary amine groups, 50% of secondary amine groups, and
25% primary amine groups, sodium alginate, 1-2-dichloroethane,
chlorosulfonic acid and sodium dodecylsulfate (SDS) were puchased
from Sigma-Aldrich. 1-methyl-2-pyrrolidone (NMP) with a purity of
»>98% and micro BCA protein assay reagent kit were purchased from
Fluka and Thermoscientific, respectively. Bovine serum albumin
(65,000 g mol~ '), urea, vitamin By, lysozyme, 22-diphenyl-1-
picrylhydrazyl, alpha-lipoic acid, superoxide dismutase and catalase
enzymes and chemicals used for determining enzyme activities,
nitro blue tetrazolium, .-methionine, EDTA, riboflavin and hydrogen
peroxide, were also supplied by Sigma-Aldrich. Cell viability kits,
thiazole orange (TO) and propidium iodide (PI), and the monoclonal
antibodies, PAC1, FITC and CD62 PE, used for determining platelet
activation were purchased from Becton Dickinson Immunocyometry
Systems. H,NaPO, and Na,HPO, were from Fluka and Riedel,
respectively. Water used in the experiments was distilled ion-
exchanged water.

Phosphate buffer solution was prepared with 0.05 M H,NaPO4
and Na,HPO,. It was buffered with saline for in vitro studies,
which had a final concentration of 137 mM NaCl, 10 mM phos-
phate, 2.7 mM KCl, and a pH of 74.

Whole blood was taken from a healthy single donor with
approval from the ethics committee.

2.2. Preparation of the membranes

Polysulfone and sulfonated polysulfone (PSF-SPSF) membranes
were used as a support for enzyme immobilization and were
prepared as described in our previous study [9]. Enzymes (SOD,
CAT or SOD/CAT) were first immobilized via physical (ionic) bonding
between the negatively charged enzyme and positively charged PEI
located on the PSF-SPSF membrane. Initally, the PSF-SPSF support
membrane was dipped in a 0.1 wt% PEI solution for 10 min. In order
to obtain a sufficiently protonated form of PEI, the pH of the PEI
solution was adjusted by hydrochloric acid (HCl) to a value of
8.0 which was under the isoelectric point of PEI (pH 8.8) [22-23].
After thorough washing to remove the excess polyelectrolytes, the

membrane was immersed in a solution of 0.1-1.0 mg ml~! of SOD
and/or CAT (pH 7.4) for 24 h at 4 °C. The isoelectric point of SOD and
CAT enzymes are 4.95 and 5.4, respectively, and they are highly
negatively charged at the immobilization pH (pH 7.4). In the second
method, immobilization of enzymes was achieved with covalent
bonding between amine groups on the surface of plasma treated PSF
membranes and carboxylic groups of enzymes without using any
intermediate chemical linker groups. Amine groups on the surface of
the PSF membranes were created by means of plasma polymeriza-
tion (PlzP) of ethylenediamine (EDA) under various conditions
including low frequency (LF) and radio frequency (RF) plasma
system (PICO-type plasma equipment), discharge power (30-150 W)
and exposure time (10-30 min). The plasma chambers were stain-
less steel (150 mm radius and 320 mm length). A 40 kHz LF
generator (power range 0-200 W) and a 13.6 MHz RF generators
(power range 0-100 W) were used to sustain the plasma in the
reactors. Plasma polymerization was carried out in the fully closed
and semi-automatic system. The plasma procedure was carried out
in the same way for both LF and RF plasma systems. The membranes
were placed onto the ground electrode in the middle of the reactor.
To generate plasma, firstly low pressure was created in a recipient by
means of a vacuum pump (Trivac, Germany). At a pressure of
approximately 0.1 mbar, monomer EDA vapor was fed into the
chamber and allowed to flow at a special rate from 0.1 mbar to
0.3 mbar. Next, the plasma power was adjusted and the membranes
were exposed to glow-discharge. At the end of the process, the
plasma generator was turned off automatically and monomer inlet
was closed manually. The plasma system was fed with argon gas for
10 min. and then placed in 0.1 mbar vacuum pressure for 15 min.
Argon feeding and vacuum applications were applied to deactivate
free radicals in the plasma atmosphere. The details of the plasma
modification of surfaces carried out by our research group were
given elsewhere [24-29]. For the immobilization of enzymes, the
plasma treated membranes were immersed directly in a solution of
0.1-1.0 mg ml~ ! of SOD or CAT (pH 7.4) for 24 h at room tempera-
ture. The amount of immobilized enzymes was determined using
the Bradford method, which utilizes the principle of protein-dye
binding [30].

2.3. Surface characterization studies

Contact angle measurements for distilled water were carried
out with a Attension Optical tensiometer by means of a horizontal
microscope, equipped with a video camera which is connected to a
computer. The volume of a liquid drop varied between 3 and 5 pl.
The contact angle was calculated from the droplet screen image.
Each reported contact angle measurement represents an average
value of five separate drops on different areas of the membranes
obtained from three different batches. Contact angle measure-
ments for n-octane and air were carried out to determine the total
surface free energy of membranes (y,,) and the interfacial free
energy between water and membrane surfaces (y,,) which are
composed of the polar component (y%) and the dispersive
component (y;i,,) of the total surface free energy (Egs. (1) and (2)).

Vsv= ng +Yde (1)

Vsw= 72-8"_7/sv -93 ygv —143 yEV (2)

We identified the change in surface charge of the membrane
caused by polyelectrolyte deposition through staining of the
membranes. The negatively charged groups (carboxyl and sulfo-
nate groups) on the membrane can form complexes with toluidine
blue O dye at pH 10 and the positively charged groups (amine
groups) with congo red at pH 7. The staining was performed by
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dipping the membranes in a 30 ppm solution of the dye dissolved
in its associated solvent for 30 min, followed by washing the
sample until the solvent became colorless [31]. The amount of the
charged groups on the membranes stained with toluidine blue O
and congo red was determined spectrophotometrically in the
visible region (Aventes-Avemouse62). The intensity of each color
resulting from adsorption of dyes on the membranes was reported
as an average of 10 measurements.

The deposition and conformation of enzymes were followed by
Attenuated Total Reflectance Fourier Transform Infrared Spectro-
scopy (ATR-FTIR) (80 scans, 4 cm~! resolution, wavelength range
4000-650 cm~!) measurements.

To determine the surface roughness of the membranes, a
topographical map of the membrane surfaces was obtained with
Atomic Force Microscopy (AFM) on a Digital Instruments MMSPM
Nanoscope IVmodel. 10 um x 10 pm surface was scanned with
512 x 512 pixel resolution using a silicon tip attached to a canti-
lever, while maintaining a constant force between the tip and the
sample.

The bulk morphology of the membranes was examined by
scanning electron microscopy (SEM) on a FEI-Quanta 250 FEG
model. The samples were coated with gold using a Magnetron
Sputter Coating Instrument.

2.4. Measurement of superoxide dismutase (SOD) activity

The antioxidant activities of free and immobilized SOD were
determined by measuring the ability to inhibit the photochemical
reduction of Nitrotetrazolium Blue Chloride (NBT). The experiments
were conducted in 3 ml disposable cuvettes at 35 °C. Each 3 ml
mixture contained 2 ml Sodium phosphate buffer (PBS) of 50 mM at
pH 74,200 pl 75 pM NBT, 13 mM Methionine, 100 nM EDTA and 30 pl
of 0.025 mg ml~! of SOD. Lastly, 200 pl of 2 uM riboflavin solution
was added, the cuvettes were shaken and the reaction was started
under illumination of a 15 W fluorescent lamp. Each sample was kept
under the light for 10 min before the lamp was switched off in order
to stop the reaction. Two absorbance data points were collected for
each sample: before adding the riboflavin solution into the cuvette
and after the 10 min time period was completed. The absorbance of
each sample was measured by a UV-spectrophotometer (Perkin Elmer,
model no: Lambda 45) at 560 nm against a 3 ml solution of PBS. Each
measurement was repeated five times for each test. To determine
immobilized SOD activity, instead of using free enzyme, 1cm?
membrane was immersed into 3 ml reaction mixture.

SOD activity is expressed as the percentage of inhibition in
reduction of NBT (inhibition of the formazan production) per g of
SOD (or cm? membrane). The amount of superoxide dismutase
required to inhibit the rate of formation of formazan by 50% is
defined as 1 U of activity.

2.5. Measurement of catalase (CAT) activity

The antioxidant activities of free and immobilized CAT were
determined by measuring the amount of hydrogen peroxide con-
sumed enzymatically where hydrogen peroxide (H,0,) was used as a
substrate. In order to determine the free activity of CAT, 25 ul of
0.01 mg ml~'CAT was added into 2 ml H,O, solution. This reaction
mixture was allowed to incubate for 10 min at 25 °C inside a light-
free container. The absorbance of each cuvette was measured before
and after the reaction by a UV-spectrophotometer (Perkin Elmer,
mode no: Lambda 45) at 240 nm against a 2.0 ml PBS. The immo-
bilized CAT activity of the membranes was determined by immersing
a 1 cm? membrane into a 2 ml volume of H,0,.

The activity of free catalase was given as U/mg protein and
immobilized catalase activities were expressed as U mg~! protein

or Ucm~2 membrane where 1 U is defined as pmol H,0, min~".

2.6. Determination of operational stability of the immobilized
enzymes

To determine the stability of immobilized SOD or CAT, mem-
branes were immersed into 25 ml of 0.05 M phosphate buffer
solution at pH 7.4 and 37 °C for 4 h which corresponds to a typical
hemodialysis period. The solution was stirred thoroughly and the
membrane samples were removed from the solution at the end of
240 min. The enzymatic activities were measured using same
procedure described above.

2.7. Hemocompatibility experiments

Hemocompatibility of the membranes prepared was evaluated
in terms of blood protein adsorption, platelet activation, blood
coagulation time, ROS levels in plasma and cell viability. The
protocols for each hemocompatibility measurement were described
in detail in the study of Mabhlicli and Altinkaya [9].

2.8. Permeation experiments

Permeation experiments were carried out in a side by side
diffusion cell (Permegear Membrane Transport Systems) using
urea, vitamin B, and lysozyme as model solutes. The overall mass
transfer coefficient which has contributions both from the bulk
fluid and the membrane was evaluated from the solute concentra-
tion data. The effective permeability of the solute was then
determined from the overall and individual mass transfer coeffi-
cients [32].

2.9. Mechanical tests

The tensile strength of the membranes was measured using a
Shimadzu AG-I-250 KN testing machine. The membranes were
strained at constant rates of 0.25 mm min~! and 0.5 mm min !
until failure. The test method and sample preparation is in
accordance with ASTM D 882-02 standard. At least five test
coupons 10 mm in width and 5cm in length were used for
measurements.

2.10. Data analysis

Statistical evaluation of the data was performed using Student's
paired t test. The probability (p) values p < 0.05 were considered to
be statistically significant differences. The results were expressed
as mean + standard error and the propagation of error was taken
into account.

3. Results and discussion

In this study, superoxide dismutase (SOD)-catalase (CAT) enzyme
mixture was immobilized onto the polysulfone membranes by
modifying and activating the surface with PEI deposition or plasma
treatment. To compare Kinetic parameters, both enzymes were also
immobilized individually thus a total of 6 membranes were pre-
pared (Table 1). In the following section, free and immobilized
enzyme kinetics and the biocompatibility, transport and mechanical
properties of the modified membranes are discussed.

3.1. Optimization of the plasma treatment parameters

To obtain the optimum plasma treatment parameters, plasma-
generating conditions (plasma treatment time and power) were
varied and the interfacial free energy (y,,) calculated using the
contact angle measurements are given in Fig. 1. Data for RF studies



178

Table 1
Codes of the unmodified and modified PSF membranes.
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Membrane code Weight percentages (wt%)

Molecule type on the last layer

Immobilization method

PSF SPSF NMP
PSF-PLS 20 0 80 - -
PSF-PLS-CAT 20 0 80 CAT Covalent bonding through plasma treated surface
PSF-PLS-SOD 20 0 80 SOD
PSF-PLS-SOD/CAT 20 0 80 SOD/CAT
PSF-SPSF-PEI-CAT 10 10 80 CAT Ionic bonding through PEI coated surface
PSF-SPSF-PEI-SOD 10 10 80 SOD
PSF-SPSF-PEI-SOD/CAT 10 10 80 SOD/CAT

were not included since the results obtained in LF studies were
more stable and accurate than RF studies. Plasma treatment
applied to membrane surfaces led to significant decreases in y,
values where the low values of y,,, correspond to a high interac-
tion between the surface and water. It was found that y,,, value for
unmodified PSF membrane decreased from 8.274 mj/m? to
0.669 mJ/m? (90 W; 20 min) and 0.979 mJ]/m? (60 W; 30 min) after
surface modification. Although the parameters of 90 W plasma
power and 20 min plasma treatment time make the surface more
hydrophilic, in our experiments we used 60 W and 30 min, since
this combination provided a more stable membrane surface.

3.2. Optimization conditions for SOD/CAT immobilization

It is well-known that the activity of enzymes is influenced by the
pH, temperature, concentration of the enzyme solution and immo-
bilization time. Previously, the optimum immobilization time and
temperature for catalase were reported as 24 h and 5 °C [33-34].
Based on these results, in this study, the SOD and CAT enzyme
immobilizations were carried out at 4 °C and physiological pH of
7.4 within 24 h by varying the initial enzyme and PEI concentrations.
Enzymes did not show significantly different activities when
adsorbed on two different support membranes that were modified
with 01 mgml~! or 1 mgml~" of PEI solution (Fig. 2). We con-
cluded that 0.1 mg ml~! of PEI, was sufficient to cover the negatively
charged surface of the support membrane. The influence of enzyme
concentration on the immobilized amount and the activity is shown
in terms of specific activities (U mg enzyme ') in Fig. 3. The highest
specific activity was obtained with the lowest initial concentrations
of SOD and CAT. At high enzyme concentrations, the activity
decreased since the membrane surface is over-saturated and pro-
tein—protein interactions between the loaded enzyme molecules
become more dominant both of which hinder substrate diffusion
and conversion. Fig. 4 shows the change in catalytic activities of the

membranes during a 4 h period. The highest loss in the activity
(45+8.2%) was observed for the membrane immersed into
01 mgml~! enzyme concentration during immobilization. The
other membranes prepared with 0.25mgml~' (20%+3.9) and
0.5 mg ml~! (16 + 3.1%) enzyme concentrations showed similar loss
in their catalytic activities at the end of 4 h. On the basis of these

results, the optimum enzyme concentration for immobilization was
chosen as 0.25 mg ml~ .

3.3. Characterization of membranes

The prepared membranes were characterized to determine
their hydrophilic character, roughness, bulk structure and the
change in the conformation of the enzymes upon immobilization.

The water contact angle values in Fig. 5 illustrated the enhanced
hydrophilic character of the PSF surface after plasma treatment. The
hydrophilicities of PSF-SPSF blend membrane or PEI modified and
plasma activated PSF membranes were found to be similar (p > 0.05).

—
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Fig. 1. Interfacial free energies of unmodified and LF plasma modified PSF
membranes.
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Fig. 2. Amount of SOD and the activity of SOD immobilized on the (a) PEI modified
and (b) plasma treated surfaces. Experimental conditions applied during mem-
brane preparation and activity measurements are: Cpgpinitiaiz 0.1 mgml~' and
Criboflavin: 2 M.

Immobilization of SOD/CAT enzymes either covalently on plasma
treated or ionically on PEI adsorbed surfaces significantly decreased
the hydrophobicity of the starting PSF membrane.

The surface roughness of the membranes obtained from the AFM
images (Fig. 6) is shown in Fig. 7. The unmodified PSF membrane
had the smoothest surface which did not change significantly after
plasma treatment or enzyme immobilization on the plasma treated
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surface. Blending PSF with sulfonated PSF (PSF-SPSF) adversely
affected the smoothness of PSF membrane while PEI deposition
(PSF-SPSF-PEI) significantly decreased the surface roughness. This
can be attributed to the conformational change of PEI to minimize
the surface area as a result of diffusional mobility of its chains. When
compared to the roughness of the PSF-SPSF-PEI-SOD/CAT mem-
brane, the roughness upon immobilization on the plasma treated
surface (PSF-PLS-SOD/CAT) was found to be smaller. This is due to
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Fig. 5. Water contact angles of unmodified and modified PSF membranes.

the restricted motion of the enzyme molecules on the plasma
treated surface as a result of the strong and rigid covalent bonding.

Changes in the bulk structure of the PSF membrane through
blending with SPSF, plasma treatment and enzyme immobilization
were observed with SEM. Fig. 8 shows that native (PSF) and
modified membranes all have asymmetric structures where blend-
ing with SPSF increased the porosity of the PSF membrane. On the
other hand, the pore size of the blend (PSF-SPSF) membrane
decreased with PEI penetration, hence, the bulk structures of the
PSF-SPSF-PEI-SOD/CAT and PSF membranes were found to be of
similar morphology. The SEM pictures also illustrated that neither
plasma treatment nor enzyme immobilization on the plasma
treated surface changed the bulk structure of the unmodified
PSF membrane.

Fig. 9a illustrates the ATR-FTIR spectrum of native SOD/CAT
enzyme couple. In the spectrum, the amide I, amide II and amide III
bands are located at approximately 1650 cm~!, 1550 cm~! and
1290 cm~'. The amide I band is a strong and broad band containing
several spectral contributions arising from different types of protein
secondary structures. Additional vibrational bands, which are not
assigned to structured features but originate from the various side
chains, were also observed. The strongest ones are 1082, 1455 and
1467 cm~ . The bands centered at 1467 cm~ ! and 1455 cm~ ! belong
to protein side chain deformation vibrations (CH3 and CH,, respec-
tively), while the strong band at 1082 cm~! can be attributed to C-C
and C-O vibrations [35]. The broad NH, band centered on 3200 cm ™!
is usually overlapped with the OH-stretching band of hydrating H,0
molecules. The ATR-FTIR spectrum of SOD/CAT couple immobilized on
PEI modified and plasma activated surfaces are shown in Fig. 9b and c,
respectively. This method gives an insight into the structure down to
few hundred nanometers below the outer surface, which is much
deeper than the thickness of the immobilized enzyme layer. The
presence of the most characteristic amide I and amide II bands in the
range of 1700-1500 cm ! confirms successful immobilization of the
enzymes. The higher peak intensity of amide bonds for PSF-PLS-SOD/
CAT membrane also clearly reveals the presence of the amide bond
formed by enzyme immobilization.

ATR-FTIR analysis was also used to investigate how the surface
properties of the membranes affected the conformation of immo-
bilized enzymes and the resulting enzymatic activity. Little con-
formational information can be obtained directly from the original
IR spectra of the enzymes (Fig. 9a-c). Since the assignment of
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Fig. 6. AFM images of (a) PSF (b) PSF-SPSF (c) PSF-PLS (d) PSF-PLS-SOD/CAT and
(e) PSF-SPSF-PEI-SOD/CAT membranes.

140
120 4

E 100 -

g

2

£ 80

=

o0

-

<

-1 60 1

51

£

3 40
20 4

$ $ >
& « Sl & S
& N & N
< & <
(‘3
$* <¢3\)
& e

Fig. 7. Surface roughness of unmodified and modified PSF membranes.

amide I absorbance components provides more detailed informa-
tion about the secondary structures, in turn the conformation
integrity of enzymes, the FTIR spectra in the 1600-1700 cm ™!
region was deconvoluted (Fig. 9d-f). The contents of each band in
the total amide I absorbance obtained by integrating each compo-
nent are summarized in Table 2. It is known that the secondary
structure of Cu-Zn-SOD (determined by x-ray crystallographic
structural analysis) contains more than 50% of f strands and turns
and approximately 40% of unordered structures with a small
fraction of a-helix [36]. The major feature of Cu-Zn-SOD second-
ary structures is that the enzyme contains 8-stranded beta-barrel
with the active site held between the barrel and two surface loops
[37]. p-strand structure is an important determinant in stability of
the Cu-Zn-SOD. The secondary structure of CAT consists of 30% a-
helical, 34% f-sheet, 17% f-turn and 19% unordered structures [38].
In this case, a-helix is the preferred determinant of the CAT
structural integrity [39]. In the context of protein structure, the
term stability is usually defined as the tendency to maintain a
native conformation [40]. Hence, the change in the content of /3
strand and a-helix of immobilized SOD-CAT with respect to native
SOD-CAT was used to determine the stability of immobilized
enzymes and the results are shown in Table 2.

SOD immobilized onto plasma treated or PEI modified surfaces
had similar f-sheet content with the native enzyme, indicating no
significant conformational change upon immobilization. On the other
hand, the CAT enzyme lost its native conformation when adsorbed
onto both surfaces as confirmed by a decrease in a-helix content from
30% to 16% and 13%, respectively. CAT (250,000 g mol~!) is a larger
molecule compared to SOD (32,500 gmol~') and is preferentially
adsorbed on the membrane surface. In addition, adsorption of SOD on
the CAT, and hence, consequent interactions between CAT and SOD
molecules may have influenced the conformation of CAT.

H,0,, the product of the reaction catalyzed by SOD and the
substrate of the reaction catalyzed by CAT, is a known denaturant. To
observe conformational change in the presence of H,0O,, ATR-FTIR
analyses were repeated after the immobilized enzymes were incu-
bated for 10 min (reaction time) in a 30 mM H,O, solution. The
results indicated that the 3-sheet content of SOD decreased from 39%
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Fig. 8. SEM pictures of (a) PSF (b) PSF-SPSF (c) PSF-SPSF-PEI-SOD/CAT (d) PSF-PLS (e) PSF-PLS-SOD/CAT membranes. Magnification 2000 x .

to 23% and from 37% to 13% when SOD was immobilized onto plasma
treated and PEI modified surfaces, respectively. The conformation of
an adsorbed enzyme is strongly influenced by the surface character-
istics of the membranes, hence, the interaction forces (electrostatic
interactions, hydrogen bonding, hydrophobic and van der Waals
interactions) between the membrane surfaces and the enzymes.
Since the hydrophilicities of the PEI modified and plasma treated
surfaces are similar, the difference in the stabilities of the enzymes
immobilized onto two different modified surfaces is likely due to the
difference in the surface roughness and surface charge of the
membranes. a-helix content of the CAT enzyme did not change after
immobilization and incubation in H,O, suggesting that H,O, dosage
of 30 mM is not denaturant against CAT enzyme.

3.4. Stability of immobilized SOD/CAT

Fig. 10 shows the change in the enzyme activities when the
membranes were stored at 37 °C in pH 7.4 phosphate buffer
solution for 4 h. The losses in the initial CAT activities were 21%
and 32%, while corresponding values for the SOD were 23% and
37% when the enzyme couple was co-immobilized on the plasma
treated and PEI modified surfaces, respectively. After storing in PBS
buffer for 4 h, the amount of SOD and CAT enzymes remaining on
the plasma treated surface was found to be higher than that on the
PEI modified surface (Fig. 11) due to stronger attachment between
the enzymes and plasma treated surface via covalent bonding. On
the other hand, one might argue that 20% detachment from
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plasma treated surface is still high. This simply indicated that
10 min of washing was not enough to eliminate loosely-bound
enzymes through nonspecific binding. However, this relatively
short time period was chosen to ensure preventing the loss in
the activity of the enzymes. The differences in the residual
catalytic activities of the plasma treated and PEI modified surfaces
can be explained by the differences in the strength of the binding,
consequently, by the conformation of the enzymes on the surfaces.
Simply, the conformational change as a result of interactions

between enzyme-enzyme molecules or enzyme ionic components
in PBS buffer solution during 4 h storage is more restricted with
the presence of covalent bonding on the plasma treated surface.

3.5. Kinetic study of immobilized SOD/CAT

The Michaelis-Menten rate expressions can be used to desc-
ribe the reaction kinetics when SOD and CAT are immobilized
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Table 2
Secondary structure of native and immobilized SOD and CAT estimated from the
deconvoluted FTIR spectra.

Secondary p- Unordered «- B-
structure Sheet structure Helix Turn
Assigned 1620- 1641-1649 1652- 1660-
Frequency 1635 1658 1700
(em™)
Native Zn-Cu-SOD % Content 34 49 - 17
[36]
Native-CAT [37] 34 19 30 17
Native SOD/CAT 44 18 16 22
PSF-PLS-SOD/CAT 39 21 13 27
PSF-SPSF-PEI-SOD/ 37 24 16 23
CAT
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Fig. 10. Stabilities of immobilized enzymes at operating conditions (T=37 °C and
pH 7.4). Experimental conditions applied during membrane preparation and
activity measurements are as follows: Cpg;: 0.1 mg ml~'; Cear: 0.25 mg ml~'; Csop:
0.25 mg ml~! Gyz02: 30 mMM; Criboflavin: 2 RM.
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Fig. 11. Amount of SOD and CAT released at typical operating conditions (T=37 °C
and pH 7.4).

separately, as given in Egs. (3) and (4).

kSOD
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Two kinetic parameters that appear in these equations are
useful to characterize an enzyme in free or immobilized forms. The
first parameter, V,,ax, represents the maximum reaction rate, while
the Michaelis constant Ky, is a measure of the strength of binding
between the substrate and enzyme. When SOD and CAT are co-
immobilized, each intrinsic step in the reaction sequence follows
Michaelis-Menten kinetics and the rate expressions are given by;

ksop

K
05 +2H" 28 H,0,=5H,0+10,

Viax sop X Coy

5
Knsop +Co; ©)

To, =

Vimax catCi,0, = Vmax sopCoj;

~ Kmcar+Chyo, Kusop+Co,

©)

Th,0, =

Figs. 12 and 13 show the activities of free and immobilized CAT
and SOD measured at various levels of H,0, and riboflavin
concentrations, respectively. Kinetic parameters calculated from
the data in these figures are listed in Table 3.

The Vihax values of both enzymes decreased upon immobiliza-
tion onto either PEI modified or plasma treated surface due to
steric hindrance of the support, hence, lower accessibility of the
substrate to the active sites of the enzymes. The Ky, values of
immobilized enzymes were found higher than those of their free
counterparts, indicating the decrease in the affinity of the enzymes
to their substrate. This could be attributed to the loss in flexibility
of the enzymes as a result of conformational change. The catalytic
activity of CAT was not influenced by the immobilization method.
On the other hand, the activity of SOD was higher on the plasma
treated surface than the PEI modified surface. In the presence of
CAT, inactivation of SOD by H,0, was prevented since H,O, was
consumed as soon as it formed, consequently, the activity of SOD
was enhanced by a factor of two when the enzymes were
immobilized on the PEI modified surface (The V,ax/Kin values for
the PSF-SPSF-PEI-SOD and PSF-SPSF-PEI-SOD membranes are
3.85+0.84 and 6.88 + 1.65 Umg~ ! mM ™!, respectively).

The enzymatic reaction rates reported are defined as observed
reaction rates due to the presence of mass transfer resistance. In
immobilized enzymes, substrate conversion takes place in three
steps; (i) substrate transport from the bulk medium to the surface
of enzyme, (ii) enzymatic conversion of the substrate into product
and (iii) product transport from the surface back to the bulk
medium. The influence of external mass transfer resistance on the
observed reaction rates and the relative importance of the mass
transfer compared to the enzymatic reaction is determined by a
dimensionless number called Damkohler number, Day. The Dam-
kohler number is defined as the ratio of the maximum reaction
rate to the maximum mass transfer rate.

_ Vmax
Day = m (7)
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applied during membrane preparation and activity measurements are as follows:
Cpei: 01 mgml™"; Cear: 025mgml™"; Cyzoo: 30 mM. Experiments were con-
ducted with CPEl-initial: 0.1 mg ml~'; Cenzyme-initial: 0.25 mg ml~! and CH,0,:
30 mM.

where V. (mmolcm~2s™1) is the maximum reaction rate; K

(cm s~ 1) is the liquid phase mass transfer coefficient of substrate
and Cs (mmolml~!) is the concentration of substrate at the
surface of the enzyme.

The change in Damkohler number with respect to the stirring rate
for native and immobilized CAT is shown in Table 4. Experimentally,
the same activities were measured for immobilized CAT when the
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Fig. 13. Substrate concentration vs activity of free SOD (a), immuobilized on the PEI
modified (b) and plasma treated (c) surfaces. Experimental conditions applied
during membrane preparation and activity measurements are as follows: Cpg:
0.1 mgml~; Csop: 0.25 mg ml~'; Crivofiavin: 2 pM.

stirring rate was increased from 600 to 800 rpm. Consistent with this
observation, Damkoéhler numbers calculated to be smaller than 1 at
these stirring rates indicate negligible mass transfer limitations.
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Table 3
Michealis-Menten kinetic parameters of native and immobilized CAT and SOD.

Membrane Code Michealis-Menten kinetic parameters of CAT

Michealis-Menten kinetic parameters of SOD

Vmax (U mgii) KM (mM) Vmax/KM (U mg*“ mMii) Vmax (U mgil) ’(M (l‘l‘lM) VmaleM (U mg71 mMil)
Native CAT 11579 + 1168 22.7+44 510 + 111 - - -
PSF-SPSF-PEI-CAT 83.8+10.1 49.1+10.2 171+ 041 - - -
PSF-PLS-CAT 80.9+5.8 38.7+5.2 2.09 +0.32 - - -
Native SOD - - - 14080 + 489 13+0.2 10839 + 1708
PSF-SPSF-PEI-SOD - - - 18.1+038 47+10 3.85+0.84
PSF-PLS-SOD - - - 1173 +5.5 18+0.5 65.17 + 18.36
Native SOD-CAT 13238 + 1354 259 +4.5 511 + 103 15983 + 250 1.6+0.3 9989 + 1880
PSF-SPSF-PEI-SOD/CAT 91.7 + 16.1 45.9+14.2 1.99 +0.71 709+3.8 103+24 6.88 + 1.65
PSF-PLS-SOD/CAT 117.3 + 16.0 33.9+9.9 3.46 + 111 1422 +63 31+0.3 45.87 + 4.88
Table 4 10
The change in Damkohler numbers with respect to the stirring rate for the native
and immobilized CAT and SOD. -
3
Sample Stirring rate 'E 81
S
600rpm  800rpm  600rpm 800 rpm <'s
R S
; 3
Native CAT 0.02 0.02 - - £ =
PSF-SPSF-PEI-CAT 0.06 0.05 - - s 3
PSF-PLS-CAT 0.06 0.05 - - =N
Native SOD - - 328 279 = E
PSF-SPSF-PEI-SOD - - 62 52 T =
PSF-PLS-SOD - - 336 285 Ez
Native SOD-CAT 0.02 0.02 308 262 g 2 A
PSF-SPSF-PEI-SOD/CAT ~ 0.04 0.03 313 266 <
PSF-PLS-SOD/CAT 0.07 0.06 336 285
0 -
8 g 3 3
& &£ N s
e s &
SOD, known as the diffusion-controlled enzyme, is defined as a N &
superefficient enzyme with kea/Km of 1.7 x 101 M~' s 7! (keae=[E] é:" é?
Vmax Where [E] is the enzyme concentration) the highest catalytic ] &
rate ever reported for any enzyme [41]. As seen in Table 4, the ‘,?

Damkoéhler numbers for all SOD immobilized membranes and free
SOD are much higher than 1 for both stirring rates (600 rpm and
800 rpm). A sharp increase in the activity of immobilized SOD to
the maximum reaction rate at low substrate concentrations
(Fig. 13a and b) and the degree of conversion, which is about
0.9 for all cases, suggest that that the reaction is in the mass
transfer limited region. Mass transfer resistance is usually mini-
mized by high stirring rates. On the other hand, this might cause
partial or complete denaturation and the detachment of the
enzyme. It is clear that SOD enzyme in free or immobilized form
cannot work in the reaction-limited regime.

3.6. Protein adsorption capacity of membranes

The amount of plasma protein adsorbed on the membranes
was determined since it is critical for blood-material interactions
followed by an increase in the levels of ROS. Fig. 14 shows that the
PSF-PLS membrane generated through plasma polymerization of
PSF with ethylenediamine reduced protein adsorption by 53% with
respect to PSF membrane. In many studies, it is reported that
plasma polymerization of hydrophilic monomeric gases at low
temperature reduced protein fouling due to the formation of polar
groups on the surface [42]. The water contact angle values (Fig. 5)
illustrated the enhanced hydrophilic character of the PSF surface
after plasma treatment. Lower amount of protein adsorbed onto
the plasma treated PSF surface than the PSF-SPSF membrane is
due to a smoother and a much more neutral membrane surface of
PSF. The PSF-SPSF membrane is highly negatively charged with
SO3 groups which favor protein adsorption by electrostatic

Fig. 14. The amount of blood plasma proteins adsorbed onto unmodified and
modified PSF membranes.

interactions [43]| while plasma treated membranes are neutral
due to non-protonated NH, groups. The improvement of the
membrane hydrophilicity by enzyme immobilization weakened
the protein surface hydrophobic interactions, thus, significantly
decreased the protein adsorption. SOD/CAT immobilization on the
plasma treated membrane created a surface which shows slightly
higher resistance to protein adsorption compared with the surface
generated by immobilizing the same enzymes on the PEI adsorbed
PSF-SPSF membrane (Fig. 14). This is not only due to much
smoother surface of the plasma treated membrane, but also to
the lower protein adsorption capacity of the surface underneath
the enzyme layer (PSF-PLS) than that on the PSF-SPSF-PEI surface.

3.7. Platelet adhesion and activation

Several studies have suggested that ROS can significantly affect
platelet responses including platelet surface marker expression
and platelet aggregation [44]. Fig. 15 shows that the plasma
treatment and SOD/CAT immobilization remarkably decreased
the platelet activation. The suppression of platelet activation on
all of the modified membranes prepared in this study is most
likely to come from diminished protein adsorption. In addition, it
was reported that when SOD induces the platelet activation, CAT
fully prevents SOD-dependent platelet activation [45-46].

We have also investigated the morphology and activation of
adhered platelets on the membranes through SEM pictures. Fig. 16
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illustrates that platelet adhesion and activation were observed only on
the PSF-SPSF membrane. The loss in the discoid shape of the platelets
indicated the beginning of activation on this membrane.
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Fig. 15. Amount of platelet activation on the unmodified and modified PSF
membranes.

3.8. Inhibition of ROS in plasma

The in vitro antioxidant activities of SOD/CAT coated membranes
were investigated in relevance to the inhibition of ROS in blood.
Fig. 17 shows that the SOD/CAT immobilized on the membranes
significantly suppressed the ROS generation (expressed as CL counts
of HOCI) in blood. The SOD/CAT immobilized on either PEI modified
or plasma treated surfaces did not cause a significant difference
(p>0.05) in the CL counts of HOCL

The enzyme couple catalyzed the conversion of superoxide
anion to water and oxygen.

As a result of the reduction in the O; and H,0, levels in blood,
oxidative balance is restored in favor of the antioxidants in blood.
Consequently, the increased level of antioxidants can dissipate the
other ROS, such as HOC], in blood.

3.9. Activated partial thromboplastin time (APTT)

The APTT values for SOD/CAT immobilized membranes were
measured since the decreased adsorption of blood proteins and
platelet activation on these membranes and inhibition of ROS
production raised the possibility that these membranes could also
prolong the coagulation time (APTT). Compared to the PSF,
PSF-SPSF and the control membranes, the SOD/CAT immobiliza-
tion provided significantly longer APTT values regardless of the
immobilization method (Table 5). Although enzyme immobiliza-
tion caused lower protein adsorption and platelet activation when
the surface was activated with plasma treatment, the choice of
immobilization method did not significantly affect the ability of
the membranes in inhibiting the ROS formation (APTT values for

Fig. 16. The SEM pictures of (a) PSF-SPSF (b) PSF-PLS (c) PSF-PLS-SOD/CAT and (d) PSF-SPSF-PEI-SOD/CAT membranes after incubating with platelet rich plasma (PRP) for

25 min, magnification 2000 x .
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Fig. 17. The inhibition HOCI in blood by unmodified and modified membranes.

Table 5

APTT values for unmodified and modified PSF membranes and % live peripheral
mononuclear blood cells after 4 h treatment with unmodified and modified PSF
membranes.

Membrane Code APTT (s) Live cell %
Control 39+2 100

PSF 36+3 98.7 + 1.1
PSF-SPSF 37+4 979+0.9
PSF-PLS 49+3 98.1+0.7
PSF-SPSF-PEI-SOD/CAT 67+4 983+ 1.2
PSF-PLS-SOD/CAT 62+3 99.4+0.2

the PSF-SPSF-PEI-SOD/CAT and PSF-PLS-SOD/CAT membranes are
67 +4s and 62 + 3 s, respectively). This result suggests that in
order to prolong the coagulation time the suppression of ROS
formation is a more effective strategy than improvement of
antifouling by SOD/CAT immobilization.

3.10. Cytotoxicity of membranes

The cytotoxicities of pure SOD and CAT were not measured since
they are the most important blood antioxidants with a concentra-
tion of 548 pgl1~! in blood serum (240 mgl~! in erythrocytes in
blood) [47]. While SOD can be very toxic in the presence of iron in
blood, it is non-toxic when used in combination with CAT or another
peroxidase [48]. Cytotoxicity studies conducted with the SOD/CAT
immobilized membranes have shown that the viability of peripheral
mononuclear blood cells (PMBC) after 4 h-treatment with unmodi-
fied and modified membranes is nearly 100% (Table 5). The excellent
cell viability of the modified membranes confirms that the SOD/CAT
immobilization does not have a significant negative effect on the
non-toxic property of the unmodified PSF membrane.

The positively charged PEI is known to be toxic, therefore, we
determined amount of PEI released from PSF-SPSF-PEI membrane
into PBS (pH 7.4, including 137 mM NacCl and 2.7 mM KCI) at 37 °C.
At the end of 4 h, PEI eluted from this membrane (3.3 pg PEI/ml
blood) was found to be lower than the toxic dosage of branched
PEI (10 pg/ml cell) as reported by Wen et al. [49]. Obviously, higher
release rate is expected during a real hemodialysis process under
high flow rate and it can be roughly estimated by comparing the

mass transfer coefficients under static and dynamic flow condi-
tions. The mass transfer coefficient of a solute in blood (kg) can be
predicted from the following equation [50].

ko 4.36113eff

where d is the inner diameter of hollow fiber and D is the effective
diffusion coefficient of the solute in blood. The effective diffusion
coefficient consists of two terms. The first term represents the
reduction in the diffusion coefficient (D;) due to presence of red
blood cells. The second term represents mixing which is proportional
to the shear rate (y,,) and it becomes zero when there is no flow. The
ratio of mass transfer coefficient of the solute under dynamic and
static conditions can then be expressed as:

Degt = (0.53DU+5.292 x 10*97W) 8)

5.292 x 10~ %7,

kB, with flow 1
0.53D;

©

kB, without flow

Using shear rate value of 250 s~ reported for blood flow in a

hollow fiber dialyzer and the albumin diffusion coefficient at 37 °C
(6.34x 1077 cm?[s) as an approximate value for the diffusion
coefficient of PEI in blood, the ratio was calculated around 5
[50]. This means the release rate of PEI from the membrane under
blood flow will be approximately 5 times higher than the rate
when there is no flow. According to this estimation, released PEI
(15 pg/ml blood) exceeds the limit of toxic dosage, on the other
hand, one can expect lower amount eluted from the enzyme
immobilized membrane (PSF-SPSF-PEI-SOD/CAT) since in this
case elution of PEI will mainly take place after the upper enzyme
layer is lost.

We have also determined cytotoxicity of the PEI coated PSF
membrane (PSF-SPSF-PEI) after 48 h of incubation to allow nearly
maximum possible PEI elution from this membrane. Even after such
a long incubation period, the viability of cells did not drop below
85+ 3%. As a result, we can conclude that even if the membrane
releases PEI into the blood stream, it is not expected to observe
significant toxicity on PBMCs under high blood flow conditions.

3.11. Transport and mechanical properties of the membranes

It is known that plasma treatment may cause etching on the
surface of the membrane [51]. This may result in the disruption of
the dense skin layer and the semi-permeable character of the
membrane. According to the data in Fig. 18, permeabilities of the
solutes did not change significantly (p > 0.05) after plasma treat-
ment suggesting that there is no etching on the PSF-PLS mem-
brane which is also proven by SEM and AFM pictures (Figs. 6-8).
SOD/CAT immobilization did not change the permeation charac-
teristics of the unmodified PSF membranes since neither the bulk
structure of the support membrane nor the thickness of dense skin
layer was affected by enzyme immobilization.

Mechanical properties of the unmodified and modified mem-
branes are listed in Table 6. Plasma treatment caused a slight
decrease in maximum tensile strength of the PSF membrane while
deposition of SOD/CAT on either the plasma treated or PEI
modified membranes did not significantly change the mechanical
properties (p > 0.05).

4. Conclusion

We have developed PSF based hemodialysis membranes modified
with co-immobilized SOD/CAT enzymes. Adsorption of enzymes on
plasma treated surface provided stronger attachment with covalent
bonding than that with ionic bonding on PEI modified surfaces. On
the other hand, enzymes immobilized on these surfaces controlled
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Fig. 18. The permeation coefficient of urea, vitamin B12 and lysozyme through
unmodified and modified PSF membranes. *Permeation coefficients of the solutes
through the membranes are not statistically different from each other (p > 0.05).

Table 6
Mechanical properties of the unmodified and modified PSF membranes.

Membrane code Maximum tensile stress Young modulus

(MPa) (MPa)
PSF 2.78+0.22 39.82+5.97
PSF-SPSF 2254018 50.25+7.54
PSF-PLS 2.39+0.21 49.72 +£5.51
PSF-PLS-SOD/CAT 226 +0.17 51.19 +7.73
PSF-SPSF-PEI-SOD/ 231+0.19 43.27 +4.11

CAT

platelet activation and the ROS levels in blood plasma at similar rates.
All modified membranes displayed higher blood compatibilities than
native PSF membranes. This enhanced hemocompatibility correlates
well with reduced protein adsorption capacities of the modified
membranes as a consequence of their increased hydrophilic proper-
ties. Hemodialysis induced oxidative stress is still a problem in
clinical applications and the SOD/CAT immobilization proposed in
this study could become an attractive alternative for producing
functional membranes that are capable of suppressing oxidative
stress. Considering the fact that SOD and CAT enzymes are known
as the most important antioxidant couple in blood, our modified
membranes have the great potential to lead to favorable results also
in in vivo studies.
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