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Abstract: One morpheme may have several surface forms that correspond to allomorphs. In English, ed and d are

surface forms of the past tense morpheme, and s , es, and ies are surface forms of the plural or present tense morpheme.

Turkish has a large number of allomorphs due to its morphophonemic processes. One morpheme can have tens of different

surface forms in Turkish. This leads to a sparsity problem in natural language processing tasks in Turkish. Detection

of allomorphs has not been studied much because of its difficulty. For example, tü and di are Turkish allomorphs (i.e.

past tense morpheme), but all of their letters are different. This paper presents an unsupervised model to extract the

allomorphs in Turkish. We are able to obtain an F-measure of 73.71% in the detection of allomorphs, and our model

outperforms previous unsupervised models on morpheme clustering.

Key words: Natural language processing, morphology, allomorphs, clustering, unsupervised learning, nonparametric

Bayesian learning

1. Introduction

Morphological segmentation is an essential task in many natural language processing (NLP) applications such

as question answering, information retrieval, and sentiment analysis. Due to a large number of different word

forms, a sparsity problem emerges for morphologically rich languages during such NLP tasks. For example,

the number of word forms in Turkish is theoretically infinite because of heavy inflection and derivation during

morphological generation. Hankamer [1] argued that listing every word form in an agglutinative language is

impossible. Therefore, words are morphologically segmented into their smallest units, called morphemes. For

example, the Turkish word Türkçeleştiremediklerimizden (which means ‘it is the one we could not translate into

Turkish’) is split into the following morphemes: Türkçe, leş, tir, e , me, dik, ler, imiz, and den.

Many morphological segmentation systems [2–5] only split words into their surface morphs rather than

finding lexical morphemes. Morphs are distinct realizations that belong to the same type of morpheme. For

example, s and es are two different morphs belonging to the same morpheme type (i.e. plural/present tense) in

English. However, a complete morphological analysis also requires finding the underlying realizations of morphs

and their morphological tags (e.g., plural, past tense, case, and person).

To our knowledge, unsupervised work that provides morphological analysis with morphological tags does

not exist. This process also requires finding allomorphs. There are rule-based systems that provide labeled

morphological segmentation [6,7]. However, these are supervised and require manual annotation of all suffixes,

roots, and morphotactic rules. Cotterell et al. [8] introduced a semi-Markov model for labeled morphological

segmentation that is semisupervised.
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Labeled morphological segmentation, and thereby finding allomorphs, not only mitigates the sparsity in

NLP tasks, but it is also essential for some NLP tasks. For example, in sentiment analysis it is essential to

distinguish the negation morpheme from the noun derivation morpheme in Turkish. Both are written ma or

me, depending on the orthographic features of the stem.

Allomorphs are very common in Turkish because of two morphophonemic processes, i.e. vowel harmony

and consonant harmony. Different surface forms of the same morpheme are selected based on the vowels and

consonants in the surrounding segments, thereby forcing all the letters (both consonants and vowels) to be

harmonized with each other. This may lead up to 16 different allomorphs of the same morpheme in Turkish.

For example, cık, cik, cük, cuk, çık, çik, çuk, çük, cığ, ciğ, cuğ, cüğ, çığ, çiğ, çuğ, and çüğ care are all allomorphs

(i.e. derivational suffixes that give the meaning of ‘small’ to a noun; kitap means ‘book’, whereas kitapçık means

‘brochure’ or ‘leaflet’).

The detection of allomorphs has not been studied much in natural language processing. Spiegler [9]

introduced two algorithms for morpheme labeling, which are both supervised. Virpioja et al. [10] extracted

allomorphs by detecting the mutations (substitution or deletion) between morphs. However, Virpioja et al. [10]

could only find 1.9% of the mutations in Turkish, which is a very small set of allomorphs in Turkish and is not

sufficient for morphological analysis.

This article is organized as follows: Section 2 describes the phenomenon of allomorphs with Turkish

examples, Section 3 describes the mathematical model and the algorithm for extracting allomorphs in Turkish,

Section 4 presents the experimental results by comparing them with other models and, finally, Section 5

concludes the paper along with mention of potential future work.

2. The model and algorithm

In our model, we cluster allomorphs by using the distributional similarities of their neighborhoods. For example,

the morphs that follow the allomorphs ir, ur, ür, and ir are very similar when they are devowelized (Table 1),

or the previous morphs of the allomorphs lik and liğ are very similar when they are devowelized (Table 2). We

utilize both the following and previous morph distributions of allomorphs in order to cluster them.

Table 1. The following morphs of the allomorphs ir, ır, ür, and ur.

ir d(i), l(e)r, s(e), m(i)ş, etc.
ır d(ı), l(a)r, s(a), m(ı)ş, etc.
ur d(u), l(a)r, s(a), m(u)ş, etc.
ür d(ü), l(e)r, s(e), m(ü)ş, etc.

Table 2. Previous morphs of the allomorphs lik and liğ.

lik c(i), l(i), (i)ş, s(i)z, (i)c(i), etc.
liğ c(i), l(i), (i)c(i), etc.

2.1. Clustering vowel allophones

In order to cluster vowel allophones, we exploit the distribution of the following morphs that are devowelized

(e.g., the devowelized form of lar is l r and ler is l r). We define a multinomial-Dirichlet distribution over
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the devowelized following morphs. The multinomial distribution is defined on a set of devowelized morphs

Mfol= {m1m2, . . . ,mN with parameters θ whereas prior probability is defined for the parameters of the

multinomial distribution in a Dirichlet distribution form with hyperparameters β :

mi|θ ∼ Multinomial(θ) (1)

θ|β ∼ Dirichlet(β) (2)

The definition of the Dirichlet distribution follows the form:

1

B(β)

K∏
k=1

θβk−1 (3)

where B(β) is a normalizing constant in beta function form, and K represents the number of allomorph clusters.

The multinomial distribution is defined over the outcomes Mfol={m1m2. . . ,mk} as follows:

p(Mfol|θ) =
N !

K∏
k=1

n (mk) !

K∏
k=1

θ
n(mk)
k (4)

where N denotes the total number of morph tokens belonging to one of the possible allomorph clusters; that

is, N=
K∏

k=1

n (mk), where n (mk) is the number of morph tokens that are allomorphs with mk .

The first factor in Eq. (4) provides the exchangeability over the morph tokens; the second factor computes

the probability of observing each morph token. We integrate out θ to obtain the joint distribution over all

morphs: Mfol={m1m2, . . . ,mN} :

p(Mfol|β) =
Γ(B)

Γ(N +B)

K∏
i=1

Γ(n (mk)+βk)

Γ(βk)
(5)

where B =
∑
k

βk . We use symmetric hyperparameters for the clusters because morph clusters are a priori

uniform.

We only model allomorph clusters based on vowel allophones here, such as lar and ler (a and e are

allophones); tır, tir, tur, and tür (ı, i, u, and ü are allophones); and so on. In other words, we extract

allomorphs that differ from each other. Noting that a and e are allophones, all morphs that involve a or e are

forced to be allomorphs (lar and ler, dan and den, tan and ten, and sa and se become allomorphs).

2.2. Clustering consonant allophones

In order to cluster allomorphs further that differ from each other based on consonants such as lik and liğ or cik

and ciğ, we use previous morphs that are devowelized. The following morphs do not give enough information

on this type of allomorphs because the last consonants of morphs may change depending on the following

morphs because of consonant harmony. For example, lik and liğ have completely different following morphs. k

transforms into ğ because of the following morph. However, the previous morphs of allomorphs with consonant

allophones are similar to each other (Table 2).
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This leads us to use the similarity in the devowelized previous morphs in order to discover the allomorphs

that involve consonant allophones. We analogously define a multinomial-Dirichlet distribution for clustering

allomorphs with consonant allophones. Let the devowelized previous morphemes be Mpre={s1s2, . . . ,st} . The

multinomial-Dirichlet distribution is then defined for the previous morphs as follows:

si|γ ∼ Multinomial(γ) (6)

γ|α ∼ Dirichlet(α) (7)

with multinomial parameters γ and Dirichlet hyperparameters α . The joint distribution over the devowelized

previous morphs of each morph is defined as follows:

p(Mpre|α) =
Γ(A)

Γ(T +A)

K∏
i=1

Γ(n (sk)+αk)

Γ(αk)
(8)

where K is the number of allomorph clusters, T is the total frequency of allomorphs, and A =
∑
k

αk . We also

use symmetric hyperparameters for each allomorph cluster here.

3. Algorithm

The clustering algorithm involves two steps:

a. clustering allomorphs based on vowel allophones,

b. clustering allomorphs based on consonant allophones by using the allomorph clusters obtained in Step a.

In both steps, we use the Metropolis–Hastings algorithm [11] for the inference. In order to cluster

vowel allophones, we begin with one cluster for each single vowel. We gradually replace the vowels either by

creating a new cluster or inserting the selected vowel in one of the existing clusters uniformly. According to

this replacement, we determine which morphs will gather in the same allomorph cluster and which will fall into

different clusters. For example, if a and e are in the same allophone cluster, all morphs with a and e (provided

that all other characters in the morphs are either the same or also allophones of each other) are grouped in

the same allomorph cluster. We postulate that all morph tokens of the same type will be in the same cluster.

Homophonous morphs are not in the scope of this paper. We either accept or reject the new clustering with

the given probability:

PAcc=
Pnew

Pold
(9)

where Pnew and Pold are the new and old joint probabilities (see Eq. (5)). If PAcc ≥ 1 we accept the new

sample. We still accept the new sample with PAcc to randomize the search in order to find the global maximum.

We cluster the consonants and the corresponding allomorph clusters based on the clusters that are

found in the previous step analogously by again applying the Metropolis–Hastings algorithm. We use the joint

probability for consonants, given in Eq. (8).
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4. Experiments and results

4.1. Data

We use the Turkish word list provided by Morpho Challenge 2010 [12], which consists of 617,298 words that are

not morphologically segmented and only involves the frequency of each word. Morphological segmentation of

words is assumed to be known a priori in our model. We use an open source morphological analyzer, Zemberek

[13], to parse the word list into its morphs. We discard the stems that are not seen with any suffix in the corpus.

Therefore, our final word list involves 604,091 words, 813,832 morph tokens, and 369 morph types.

Simulated annealing is applied with an initial temperature t = 2.0, and the system is cooled down to 0.1

with decrements of 0.1 in each iteration. The settings are the same for both inference steps (learning vowel and

consonant allophones) in the algorithm. We did several experiments for various values of α and β in order to

empirically set their values.

4.2. Results

Some of the allomorph clusters obtained from the model are given in Table 3. There are not any clusters in

the results that consist of morphs that are not allomorphs of each other. Some of the allomorphs are instead

scattered over two different clusters, rather than gathering into one cluster. For example, ti, tu, tı, tü and di,

du, dı, and dü fall into two different clusters, whereas they must be gathered in a single cluster. Many of the

allophones are correctly found. For example, {a, e} , {ğ, k} , and {ı, i, u, ü} are correctly found, and they

are the most common allophones in Turkish. Therefore, all the corresponding allomorphs that involve these

allophones are correctly learned.

Table 3. Some of the allomorph clusters.

iyor, ıyor, üyor, uyor
ici, ücü, ucu, ıcı
ımız, ümüz, imiz, umuz
cik, cuğ, cık, cük, cüğ
luk, lık, liğ, lüğ, lığ, lik, lük, luğ
dükçe, dikçe, dıkça, dukça
tüğ, tuk, tik, tuğ, tığ, tiğ, tük, tık
dığ, düğ, dık, diğ, dük, duk, duğ, dik

In order to evaluate the allomorph clusters, we use the purity and F-measure. We compute purity as

follows:

Purity =
1

N

∑
i

max|ci ∩ ti| (10)

where N is the total number of morphs, ci is the number of morphs in result cluster ci , and ti is the number

of morphs in gold cluster ti . We obtain a purity of 0.84% when α = β = 0.0001.

In order to calculate the F-measure, we use the same evaluation method used by Morpho Challenge [12].

In the Morpho Challenge evaluation method, word pairs are compared to check whether they share a common

segment or not. For example, in order to evaluate the segmentation year + s, another word that involves -s is

found in the results. Whether two words share a common segment in the gold segmentations is checked. To

apply the same evaluation method, each allomorph cluster is given a unique ID and morphs are replaced with

their cluster IDs in the wordlist. Since the Morpho Challenge evaluation method computes the scores based
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on common morphs between word pairs, it does not make a difference if there are actual morphs or tags. For

example, the gold analyses of üniversite + ler + in (of the universities) and iste + se + ler (if they want) are

as follows in the Morpho Challenge gold analyses:

üniversitelerin üniversite + PL + GEN
isteseler iste +TNS sa +PER3P

Although the morpheme ler has the same surface form in both words, the labels are different (PL and

PER3P) since the first one is a plural morpheme and the second morpheme refers to the third person plural.

We replace the Zemberek-segmented words here with their cluster IDs in order to calculate the F-measure:

ertelediGimiz ertele Cluster1 Cluster42
kongreleri kongre Cluster26 Cluster13

We obtain an F-measure of 73.71% when α = β = 0.0001. All results for different values of α and β are

given in Table 4.

Table 4. Purity and F-measure scores of clusters obtained from the multinomial-Dirichlet model for different values of

α and β .

α, β Tag size Purity F-Measure (%)
0.5, 0.5 301 0.42 64.77
0.1, 0.1 307 0.59 70.79
0.01, 0.01 168 0.58 69.99
0.001, 0.001 122 0.63 72.92
0.0001, 0.0001 130 0.84 73.71

There not many studies on morpheme tag classification. We compare our model with the agglomerative

hierarchical clustering algorithm by Can and Manandhar [14] and the semi-Markov model by Cotterell et al. [8].

The agglomerative hierarchical clustering algorithm of Can and Manandhar [14] clusters morphs according to

their meanings within words, thereby finding the allomorphs and homophonous morphemes. The semi-Markov

model does labeled morphological segmentation that assigns labels to each morph based on different granularity

levels (from a coarse-grained level that only has prefix, root, and suffix to a fine-grained level that involves case,

person, etc.). The results are given in Table 5. However, it should be noted that the semi-Markov model used

by Cotterell et al. is semisupervised whereas the other two models are unsupervised. Our model outperforms

the agglomerative hierarchical clustering model.

Table 5. F-measure scores of the multinomial-Dirichlet model, the agglomerative hierarchical clustering algorithm [14],

and the semi-Markov model [8].

Model Tag size F-measure (%)
Semi-Markov model [8] 50 85.07
Multinomial-Dirichlet 130 73.71
Agglomerative clustering [14] 162 53.74

For an extrinsic evaluation, we use our final allomorphs for the morphological generation task. We build

finite state automata by assigning each state an allomorph cluster (Figure). States are linked to each other if
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any morph between two allomorph clusters are seen together within the same word in the corpus. The same also

applies for links between stems and allomorphs. We used the first 5000 sentences in the text corpus provided by

Morpho Challenge 2009 [12] that involve 3049 unique words. We generated 237,219 words in total. Zemberek is

used for checking whether a generated word form is a valid Turkish word form or not. We obtained an accuracy

rate of 76.79% for this task.

Figure. A finite state automaton where S i corresponds to a stem category and M i , M j , Mk , and M l correspond to

allomorph clusters.

5. Conclusion and future work

Allomorphs are very common in Turkish and lead to sparsity in natural language processing tasks. This has

been one of the prominent problems in Turkish natural language processing because of the sparsity that it

introduces in any natural language processing task. Finding allomorphs will be beneficial for natural language

processing tasks by reducing sparsity. Therefore, allomorphs can be treated similarly in such tasks instead of

treating a single morpheme on its own.

We introduce an unsupervised method for clustering allomorphs in Turkish. Our method is Bayesian

and exploits the contextual distributions of morphemes in order to capture the distributional similarity between

allomorphs. Multinomial-Dirichlet distribution is used for modeling the contextual distributions in this article.

Results show that our model outperforms previous unsupervised work based on agglomerative hierarchical

clustering [14]. Extrinsic evaluation scores obtained from morphological generation also show that the generation

task performs with 76.79% accuracy by using the allomorphs obtained from our model. Hence, the model can

capture allomorphs well in an unsupervised framework.

When the final allomorph clusters are investigated, it can be observed that allomorphs that diverge from

each other in the last consonant (e.g., k vs. ğ) or any vowels in the middle can be captured by the model.

However, allomorphs that diverge from each other in the first consonant (e.g., c and ç) cannot be captured by

the model due to consonant mutation.

In this article, we do not learn homophonous morphemes that are phonologically the same but different

in meaning (such as plural s and present tense s). Therefore, one of the drawbacks of the model is that it

assumes that all morpheme tokens belonging to the same morpheme type are assigned only one allomorph

cluster. Finding homophonous morphs will be kept for future work.
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