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Ionosphere is the layer of atmosphere which plays an important role both in space based navigation,
positioning and communication systems and HF signals. The structure of the electron density is a
function of spatio-temporal variables. The electrodynamic medium is also influenced with earth's
magnetic field, atmospheric chemistry and plasma flow and diffusion under earth's gravitation. Thus, the
unified dynamo equation for the ionosphere is a second order partial differential equation for quasi-static
electric potential with variable spatial coefficients. In this study, the inhomogeneous and anisotropic
nature of ionosphere that can be formulated as a divergence equation is solved numerically using Finite
Volume Method for the first time. The ionosphere and the operators are discretized for the midlatitude
region and the solution domain is investigated for Dirichlet type boundary conditions that are built in
into the diffusion equation. The analysis indicates that FVM can be a powerful tool in obtaining para-
metric electrostatic potential distribution in ionosphere.
© 2018 Institute of Seismology, China Earthquake Administration, etc. Production and hosting by Elsevier
B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ionosphere is a plasma layer that extends from 60 km to
1.000 km above earth's surface. It is anisotropic, inhomogeneous,
time and space varying, and spatio-temporally dispersive in nature.
Ionosphere is made up of neutral atmosphere as well as charged
particles that are ionized with the solar radiation [1]. Earth's
Magnetic Field (EMF) interacts with negative electrons and positive
ions that are under electrical, thermodynamic and gravitational
forces. The determining parameter of the ionosphere is the electron
density, Ne, since electrons are significantly lighter than ions and
they move with higher velocities under the EMF [2].

Ionosphere constitutes the main propagation channel for High
Frequency (HF) signals that are transmitted at 3—30 MHz for
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communication, direction finding and Over-The-Horizon (OTH)
radar systems [3]. It also plays an important role for beacon satel-
lites operating at VHF and UHF frequency bands. At the upper end
of UHF, at around 1 GHz, the impact of EMF, contributing to the
anisotropicity and thus multipath phenomenon, is reduced with
increasing operating frequency as compared to the highest plasma
frequency of ionospheric layers. The plasma frequency is a function
of electron density [4] and it is given as:

e2N,
mef)o

(1)

wp = 27fp =

in rad/s, where e is the charge of an electron (1.602 x 10~1° C), m, is
the mass of an electron (9.109 x 1031 kg) and & is the permittivity
of free space (1/36m x 10~2 F/m). Because of the dependence of the
refractive index to time and space derivatives, starting with L-band
for operating frequencies over 1 GHz, the ionosphere still affects
signals due to its dispersive nature. The higher conductivity in the
ionosphere also plays a role in attenuation and absorption of uplink
and downlink satellite signals especially when the ionosphere is
disturbed due to geomagnetic, gravitational and seismic activities.
Therefore, it is becoming an important task to understand and
model the structure of ionosphere as realistically as possible.
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There have been various efforts in the literature to model the
motion of electrons in such a complicated dynamic system as
ionosphere. The magnetohydrodynamics (MHD) consists of one of
the major branches of physics that is based on the induction of
currents in moving conductive fluids due to magnetic fields. Ac-
cording to Maxwell's Equations, such currents are the vector
sources of magnetic fields and due to polarization effect of the
charges and moving currents, the fluid medium is polarized and
thus the magnetic field is modified. Therefore, the basic set of
equations that describe MHD are derived using the Navier—Stokes
equations of fluid dynamics and Maxwell's equations of electro-
magnetism. In order to obtain the physical description of the me-
dium, the differential equations that are stated under
Navier—Stokes and Maxwell's must be solved simultaneously,
either analytically or numerically [5,6]. A detailed review of
possible solution methods on various geometries can be found in
[7] and references therein. A typical example of convective heat
transfer is given in [8], where formulated MHD equations in a
controlled environment with given boundary conditions are solved
using Finite Volume Method (FVM).

Although the bonds and conductivity in an ionospheric plasma
are not as strong as those in a conductive fluid, the general behavior
of motion of electrons and ions in a magnetoplasma such as iono-
sphere can still be handled using the principles of MHD [9]. Yet, the
parameters that need to be determined in solution of the equation
sets are very difficult to determine in the case of ionosphere due to
its spatio-temporally varying nature. Thus, the researchers are
forced to make approximations in order to simplify the equations,
and thus reduce the unknowns and computational complexity of
numerical solution methods. For example in [10], a two dimen-
sional ionospheric potential solver is developed under the
assumption of ‘thin shell model'.

The constituents and concentration of the atmospheric gasses
over ozone layer (after approximately 60 km in altitude) that are
exposed to Extreme Ultra Violet (EUV) and X-ray radiation vary
nonuniformly in height. Thus, the ion and electron densities are
distributed according to the complicated thermal, electrody-
namic, gravitational and magnetic forces. The electric field in the
ionosphere and plasmasphere is the result of highly complicated
charge movements under the influence of geomagnetic field in
the magnetosphere. A detailed descriptions and initial modeling
basis are provided in some early references in the literature
including but not limited to [11—14]. Recently, it has been shown
that the major drivers of ionospheric electric field are solar wind
and its magnetic field and resulting Field Aligned Currents (FAC)
[10,15—17]. The geomagnetic field and related magnetosphere
plays an important role and the most commonly used Interna-
tional Geomagnetic Reference Field (IGRF) model is explained in
detail in [18].

The general representation of continuity equation which pro-
vides the temporal rate of change of electron concentration can be
summarized by the positive gain of ionization through production,
negative loss due to recombination and negative change due to
transport of charged particles [1]. The most common approach in
modeling the behavior of charged particles is to divide the iono-
sphere into two basic regions. The lower layers including the D and
E layers of ionosphere have higher densities of gasses and thus the
generation and recombination of ions, which are mostly governed
by photochemical/photoionization processes, dominate the conti-
nuity equation as discussed in detail in [1]. In the upper layers over
250 km (such as F2 layer that consists of highest plasma density),
the motion of electrons and ions are mostly governed through the
diffusion process and thus plasma transport component of conti-
nuity equation [1]. The region in between is known as the dynamo
region [19].

Typically, the current models of terrestrial ionosphere such as
Thermosphere/lonosphere General Circulation (TIE-GCM) Model
[20] and Coupled Thermosphere-lonosphere-Plasmasphere (CTIP)
Model [21] provide an incomplete representation of plasma motion
especially for the dynamo region. Assimilative Mapping of lono-
spheric Electrodynamics (AMIE) provides an empirical model based
on multivariate regression analysis technique [17]. In [15], a global
model for ionospheric potential is provided using an iterative al-
gorithm to solve 2D continuity equations using boundary values
around polar cap regions.

A more unified approach is presented in [19] where ionospheric
electric field is related to the current that is generated due to both
photochemical and transport processes and thus provides dynamo
equation that can govern both the weak and strong magnetic field
limits in the ionosphere. As opposed to other models and ap-
proaches which are mentioned above, this modeling has the po-
tential of providing electric field behavior in vertical direction as
well as horizontal.

In this study, the solution of the dynamo equation in [19] that
summarizes the movement of charged particles under quasi-static
and steady state ionosphere through the expression of electric
potential, is formulated using Finite Volume Method [22] for
probable Dirichlet and Neumann boundary values. The derivation
of the differential equation for the ionospheric electrostatic po-
tential is presented in Section 2 and the application of FVM is
provided in Section 3. Section 4 consists of discussion and
conclusions.

2. Derivation of differential equation for electric potential

Terrestrial ionosphere is typically modeled as a cold magneto-
plasma where charged species move under gravitational as well as
electric and magnetic forces [1,2,4]. Although separate equations
for motion are derived for electrons and ions, the general structure
for generation and recombination follows the continuity equation
[1,19,23] as

v- —=0 2
T+ = 2
where T represents the volume current density and p is the charge
density. In the quasi-static and quasi-neutral plasma, the current
density can be expressed [1,19] as

T = Zanqns7ns (3)
ng

where ns denotes the charged species (1 < ng < Ng) and N is the
total number of charged species. Ny, is the number density indi-
cating the number of charged particles of type ns in a unit volume,
qn, is the charge and 7'y, is the velocity of species ng. The electric
and magnetic fields can be expressed through Maxwell's Equations
[19,23] as:

V><§=0 (4)
VxH=poJ (5)
V-B=0 (6)

where E and H denote the electric and magnetic field strengths,
respectively. B is the magnetic flux den51ty, and fo i is the perme-
ability of free space (47 x 10~7 H/m), where B = uOH In the above
equations, - and x denote the dot and cross products, respectively,
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and V is the gradient operator. The fourth Maxwell's Equation
corresponding to the Gauss' Law for electricity is satisfied with

ZNHSQnS =0 (7)
ns

under quasi-neutrality [19].

One of the basic representations is the conservation of mo-
mentum for each species of charged particles that are in a plasma
environment as given in [24] and [25]:

—
— —

ov
mnsTns+ M, (Vn, V) Vn, = Mn, g —

ns
—

—Mp Vi (Vn, — U)

mns< > vngn, (Vn, = V'n,)

ng#n,

where my,, denotes the mass of charged species; U is the neutral
wind velocity; g is the acceleration due to gravity; and Ty, is the
temperature of the charge of species ns. k is the Boltzmann's con-
stant (1.381 x 1072 J K1), vpn and vy, denote the diffusion
collision frequencies for collisions between the species ns and the
neutral particles and species nyp, respectively.

Under quasi-static and quasi-neutral approximations for cold
magnetoplasma, the left hand side of (8) is assumed to be zero, and
the effects of collisions between charged particles are neglected
[19]. Under these assumptions and approximations, (8) can be
rewritten as:

0=mpg - N V(NnKTn,) + qn,E + qGn,BA W, — Mn vy n W,
ns

(9)
where
Wy, = Vn, — U (10)
B =Bb (11)
E-F+uxB (12)
and

0 +bz —by
A=|-b, 0 byl (13)
+by, —-bx O

Now, (3) can be modified and the current density can be given in
terms of above definitions [19] as

T =" Na,Gn,Wa,. (14)
nS

When the above equation is linearized to provide a relationship
between the current density and E’, the following equation can be
derived as detailed in [19]:

T =Q+SE (15)

where

- N _ — ]
Q= Y1 A) 7 (B - Y NakT)) (16)

T MnVng:n ns

and

1 — N —
N, V(ananS) +anE +qns Vg X B

(8)

Ny q% -1
S=) — B (I—knA) . 17
S-S 1) (7)

The «kn, denotes the ratio of gyrofrequency (|qn,|B/mn,) to the
collision frequency, vn,n. kn, has the same sign as qn,. Although A is
a non-invertible matrix, (I — kp, A ) is invertible for all kp, # oo as

explained in detail in [19]. k,, plays a crucial role in directions of

components of current density both for 6 and ;Ef for all charge
type ns. If kp,<1, it is called the weak field condition and the
gravitational and pressure gradient forces are in vertical direction.
If kp,>>1, it is called the strong field condition and both @ and
S, E are parallel to B.

Using quasi-static and steady state approximations in (4), the
electric field can be represented as the gradient of scalar potential,
d [23], as:

E = vo. (18)

Also, in (2), the derivative of charge density is assumed to be
zero and the definition in (15) can be replaced for the current
density as:

v.-] =0 (19)
v-(Q+sE) =0 (20)
V-(Q+S(E+7 = B))=0 (21)
v.(6+§(—v¢+ﬁx§)):o (22)
V-(Q-SVh+BSA W) =0 (23)

This final form of differential equation can be solved numerically
for a defined region of ionosphere under the given boundary values
as described in the next section. Once the potential is determined,
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the electric field and the current density can be obtained for the
same region of interest by using (15) and (18).

3. Application of Finite Volume Method to the solution of
electrostatic potential

Finite Volume Method (FVM) is a numerical method for
computation of partial differential equations that are converted
into the form of algebraic equations that are constructed around the
small volumes (voxels) that constitute the main volume of interest
[22]. FVM is based on representation of volume integrals in a partial
differential equation that contain a divergence term in terms of
surface integral, which in term, is computed around discretized
surfaces of the individual voxel that are called the faces. The con-
version from the volume integral to the surface integral is achieved
using the Divergence Theorem [8,22,23]. As compared to other
implementations of finite element and finite difference methods,
FVM inherently ensures the conservation of physical parameter of
interest even for unstructured meshes [7,22].

The application of FVM to the solution of ionospheric electro-
static potential starts with (23) which is defined in a volume V(7),
where 7 is the position vector in the defined coordinate system
[23]. The first step of FVM consists of the discretization of volume of
interest V(7’) into smaller volumes called the voxels in a general
coordinate system defined by unit vectors (d,;, dyy, Gp3). The
initial point of the volume is defined as ¢;(Cjy1, Cin2, Cin3) and the
final point of the volume can be given as ce(Cen1, Cen2, Cens). The
discretization of the volume in 3-D can be accomplished by
defining the number of partitions in each direction and the distance
between each partition in the given direction as:

A(nl) _ ‘CenlN;lCinl‘ (24)
A(nz) _ ‘CGI‘IZNZZCI'TIZ‘ (25)
A(n3) _ ‘CEHBNZBCI'TB‘ (26)

where A(n1), A(n2) and A(n3) denote the distance between two
neighboring voxels and Nj;, N;; and Np3 represent the total
number of voxels in dimensions n1, n2 and n3, respectively.

In the application of FVM, when the cell-centered approach is
implemented [22], each voxel can be uniquely identified using a
lexicographical index [ as

l=nq4+Np1(ny — 1) + NyNpa(n3 — 1) (27)

where 1 <1 < Nu1N»Ny3. The indices nq, n, and ns indicate the
voxel number in the direction of n1, n2, and n3, respectively. The
indices are defined in the ranges as 1 < ny < Ny, 1 < ny < Npp, and
1 < n3 < Np3. The center of voxel [ is defined as ¢;(¢jy1, Cin2, Cin3)-

The volume of interest V(7’) is approximated as the collection of
Np1NpaNy3 voxels as

Nn1Nn2Nn3
V(r)= vi(r) (28)

I=1

where Vj(7') denotes the volume of voxel L The surface of the
volume defined by V;(7') can be expressed as a collection of two
dimensional smaller surfaces called as faces as:

Ny
SI(T)= > S, (T) (29)
ny=1

where S;(7") denotes the surface function of voxel I surrounding the
volume V;(7) and Sl;n/(?) indicate the 2-D surfaces that approxi-
mate surface S;(7) for Ny number of faces, where 1 < ny < N;. In
the case of ionosphere, where the volume is a plasma environment
bounded by mathematical user-defined surfaces, (29) can be
considered as exact.

The second step of FVM constitutes the transformation of the
differential equation given in (23) into an algebraic set of equation
defined in partitioned volume of interest. Therefore, the volume
integral of the divergence equation in (23) is taken as

/_}V.<a)_évq)+8§é7>dv:0. (30)
V(T)

The divergence operator and its volume integral given in (30) is
valid for all individual voxel volumes V;(7') that make up total
volume V(7). Then, the volume integral of divergence in each in-
dividual voxel can be expressed as, VI:

/_}V-(a—évfb—kBééH})dv:O (31)
Vi(r)

that can be converted to a surface integral using the Divergence
Theorem as:

7{_)<E)7§V¢+B§Aﬂ’)-dzzo (32)
JSi(r) - -

where dA denotes the differential surface element. The above
surface integral can now be discretized over the faces of voxel I, VI
as:

N,
Zf: (Q-SVO+BSA W) Gy My, =0 (33)

Tlf:]

where a,;nf and AAy, define the surface unit normal and surface
area for voxel I and face ny, respectively.

Once the volume of interest V(7)) and the surface of voxel |,
S(T"), are discretized as described in the above equations, (33) can
be rewritten as

N Ny
Z <(V¢)T §T) gy = Z (6 +BSA 7) Taknf (34)
ny=1 ny=1

where T denotes the transpose operator. The second step of
application of FVM consists of the discretization of (v®)" ST a,;n, for
each voxel I. The basic assumption in the discretization process as
given in [22] is the computation to be done over the centroid line
that connects voxel | to its neighbor in the direction of a,;,,f over the
face n; in the cell-centered approach using the finite difference
techniques.
Starting with

§Tal:nf = k l;nf (35)

= kl;nfal;nf (36)
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3
= Z kl;nf (nd)and (37)
nd:1

where ny = nq, ny, n3. Then, the inner computations of (34) for
each face can be approximated as

—~ 3 D(crp,) — P(c)
(V) S Ay = 3 kl:l‘lf(nd)M
ng=1

= —
|rl:n - f'[|

(38)

d

where ®&(c;) denotes the value of potential at the center point of
voxel I, and ®(c;,,) is the value of potential at the center point of

@ = [®(1)..®(1)...®(Na1 N2Np3)]", (44)
and @(I) denotes &(c;). Also,

P = [D1..Dpo - PNpNoNs) - (45)
and

D= [dy...d;...dy, NN, - (46)

The vectors d; contain the coefficients that are given (39), (40)
and (42). The matrix D is a square sparse matrix of size
Np1NpaNp3 x NpiNpaNys.

The boundary voxels are defined as those for n; = 1,...,Np3

(47)

Back - | = Nn1N1‘l2 (Tl3 - 1) + an : an : Nn]ann?,

Front — I=Np1Np(n3 — 1) +1:Npq : NyyNpa(n3 — 1) + Npp(Npp — 1) + 1
Left — I=NpNpp(n3 —1)+1:1: Ny Nyp(n3 — 1) + Ny

Right — I=NyNpp(n3 — 1) + Npy(Npp = 1) +1: 1: Ny Nppns

Bottom — I=1:1:N,;Np

Top — 1 =NpiNpa(Np3 — 1) +1:1: Ny NiaNigs

neighbor voxel in the direction of ny. 7 and 7', are the position
vectors to the center point of voxel I and its neighbor voxel in the
direction of ng. Thus, T’l;nd — 7| is the distance between the center
point of voxel I and the center point of its neighbor voxel in the
direction of n,.

Equation (34) can be rewritten by changing the order of sum-
mations after the application of approximation on the gradient of
the potential as:

3. ®(c, ) — D) N
> M D Kin(ng) = > Pin, (39)
ng=1 | Fing = T l| ny=1 n=1
Ay
Let us define
1
BLn, = Mnyr=—""=7 (40)
| T, — T 1\

and (39) can be expressed as

3 Ny
—0(c)vi+ Y Bin,®(Ciny) = Y Pim, (41)
ng=1 ny=1
——
b
where
3
Yi="> Bin, (42)
ng=1

The third step of FVM requires the algebraic expression of the
approximated differential equation. (39) can be represented in a set
of linear equations as:

T

S
&

=P (43)

where

Thus, in this case, the value of the electrostatic potential on the
boundaries can be estimated using the entries of P, p;, for those
voxels | on the boundaries given in (47). This kind of boundary
condition can be classified as Dirichlet type. The solution can be
considered to be accurate to the second order as given in detail in
[22]. On the boundaries, the gradient in (38) is approximated to-
wards the inner volume in the directions of — @j,. The solution for
the ionospheric electrostatic potential can be obtained in the least
square sense as:

& - (pp") ' DP (48)

The solution given in (48) can be obtained for any volume of
interest in the ionosphere either midlatitude, equatorial or high
latitude as long as the model parameters sufficiently represent the
underlying structure of ionosphere.

3.1. Application to ionospheric volume of interest

The volume of interest in the ionosphere is defined using Earth
Centered Earth Fixed (ECEF) coordinate system, using the spherical
voxels. The volume of interest is partitioned in spherical unit vec-
tors (dr, dy, dy)- The voxel centers and the position vectors to the
voxel centers are expressed in Cartesian coordinate system as T =
Xdx + ydy + zd, and ¢;(Cy, Cpy, Cr7).-

The pkg/sical parameters that are necessary to compute the
values of Q, S, BA and U can obtained from empirical ionospheric
models such as International Reference Ionosphere (IRI) as given in
www.irimodel.org [26], Horizontal Wind Model (HWMO07) [27],
MSIS-e—90 atmosphere model given in https://cohoweb.gsfc.nasa.
gov/vitmo/msis_vitmo.html [28] and International Geomagnetic
Reference Field (IGRF) (http://www.geomag.bgs.ac.uk/data_
service/models_compass/igrf.html).

For a given coordinate, date and time, the above mentioned
models provide the parameters of neutral and ionized particles, ion
and electron temperatures and number densities, and EMF direc-
tion and magnitude. An example of model derived parameter set
that will be used in dynamo equation solution is provided in Fig. 1.
For Ankara, Turkey (39.89° N, 32.76° E), on 21 March, 2011 (equinox
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Fig. 1. a) Electron (blue) and ion (red) collision frequencies, b) Electron (blue) and ion (red) cyclotron frequencies, c) Direct (or longitudinal) (blue), Hall (red) and Pedersen (or
transversal) (black) conductivities and magnetic field magnitude for Ankara, Turkey (39.89°N, 32.76° E) on 21 March, 2011 at 12:00 LT.

day) at 12:00 LT, the electron (blue line) and ion (red line) collision
frequencies are provided in Fig. 1a. The corresponding cyclotron
frequencies are given in Fig. 1b for electron (blue line) and ion (red
line). The conductivities that are necessary to understand the
complex dielectric permittivities are provided in Fig. 1c, where
direct (or longitudinal) Hall and Pedersen (or transversal)

conductivities are indicated with blue, red and black lines,
respectively. The geomagnetic field magnitude (or intensity) over
Ankara is drawn in Fig. 1d using the IGRF model.

The main component of all equations rely on electron and ion
number densities and contour plots N are provided in Fig. 2 for
(39° N, 35° E) on a quiet day of September 1, 2011 (Fig. 2a,b,c) and also
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40 45
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40 42 40
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25 30 45 36
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Fig. 2. Electron density contours obtained from IRI-Plas; on September 1, 2011 (geomagnetically quiet day) at 14:00 LT a) fixed latitude of 39° N, b) fixed longitude of 35° E, c) fixed
height of 250 km; on March 10, 2011 (positively disturbed storm day) at 14:00 LT d) fixed latitude of 39° N, e) fixed longitude of 35° E, f) fixed height of 250 km.
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on a geomagnetically (positively) disturbed day of 10 March 2011
(Fig. 2d,e,f) at 14:00 LT. Fig. 2a,d are drawn on a fixed latitude 0f 39° N,
longitude and height are variables; Fig. 2b,e are drawn on a fixed
longitude of 35° E, latitude and height are variables; and Fig. 2¢,f are
drawn on at a fixed height of 250 km, latitude and longitude are
variables. The model values are obtained from International Refer-
ence lonosphere extended to Plasmasphere (IRI-Plas) model as given
in [29] using the online computational form at www.ionolab.org. In
the application of the IRI-Plas model, no external inputs are given.
Thus, as it can be observed from Fig. 2 that the model does not
differentiate between a calm day and a geomagnetically disturbed
day without any additional information. The electron density con-
tours are very similar to each other for any projection.

Using the inputs from the models similar to those given above,
the estimates for the approximate potential distribution in the
voxel centers can be computed using (48). After the estimation of
potential distribution, the electric field can be obtained using (18).
After the computation of E’ in (12), the current density T in (15)
can be obtained. Since the realistic values or the measurement
values are very difficult to obtain (as discussed in [11,14,30]), such a
simulation environment constitutes a major contribution in un-
derstanding the structural ionospheric physics. Detailed simula-
tions and analysis will be posed as a future work.

4. Discussion and conclusion

The conservation of momentum is a defining relationship for
generation and recombination of ions in cold plasma. Solar radia-
tion and wind from above, and Earth's magnetic and gravitational
fields from below force the charged particles in continuous motion.
With the derivation of dynamo equation for a steady state iono-
sphere under quasi neutrality in [19], the representation of charged
particle behavior from bottom side to top side of ionosphere is
made possible for the first time. In this study, the electrostatic
potential formulated using the dynamo equation is solved using
Finite Volume Method for terrestrial ionosphere. The problem
formulation of dynamo equation inherently satisfies the built-in
Dirichlet type boundary values. The solution can be considered to
be valid as long as the model parameter values provide a fair rep-
resentation for the state of ionosphere. In future studies, the solu-
tion for electrostatic potential will be compared with limited
experimental measurement campaign results that are obtained by
Low Earth Orbit (LEO) satellites.
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