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Abstract: In this paper, a new acoustic confidence measure of automatic
speech recognition hypothesis is proposed and it is compared to approaches
proposed in the literature. This approach takes into account prior information
on the acoustic model performance specific to each phoneme. The new
method is tested on two types of recognition errors: the out-of-vocabulary
words and the errors due to additive noise. An efficient way to interpret the
raw confidence measure as a correctness prior probability is also proposed in
the paper.
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1. Introduction

The use of acoustic confidence measures can be very useful for most automatic speech
recognition (ASR) applications. Indeed, it could be of great help to be able to predict whether a
hypothesis provided by an ASR system is correct or not. For instance, high level dialogue
systems can be significantly improved if we have a good idea of the recognition accuracy,1,2

detection of out-of-vocabulary words is required for keyword spotting systems.3,4 Let’s cite also
the selection of reliable acoustics for unsupervised model adaptation,5,6 alternative pruning
methods in efficient search techniques,7 use of confidence measures in diagnostic tools to
evaluate performance of ASR components,8 etc.

Recognition errors can roughly be classified into two groups: (a) the out-of-vocabulary
words (OOV) which occur when words that are not in the recognizer lexicon have been
pronounced and (b) recognition in mismatched conditions, which is when use conditions
strongly differ from training conditions, that is, the acoustic models are not well suited anymore.
This can be due to ambient noise, disfluencies, reverberation, etc. The goal of acoustic
confidence measures is to extract from the acoustic information only, an indicator of the
confidence we can have in the word hypothesis. As we will see in the following, many
approaches can be investigated, unfortunately few of them are well suited for both types of error
(OOV and mismatched condition). In this paper, we will propose a new acoustic confidence
measure and compare it to other approaches in the two specific conditions of OOV words and
noisy speech signal. All the methods have been developed in the framework of hybrid HMM/
ANN system which are well suited to confidence measure calculation as they provide local
phone class posterior probability estimations. Finally, confidence measures need to be
interpreted in order to decide whether a word is probably correct or incorrect. Ideally, the value
should be interpreted as the prior probability that the word hypothesis is correct. We then
propose a mapping of the raw confidence measure on a probability-like scale. Experiments have
been carried out on PHONEBOOK, an American English isolated word database.
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2. Definition of the problem

The problem of confidence measure can be seen as a process of statistical hypothesis testing9 in
which we want to decide to accept or reject the hypothesis that the most probable sequence of
words provided by the recognizer is correct. In this particular case, the acceptance region is
delimited by a single threshold value. Therefore, a value of the test statistic that falls on one side
of the threshold will result in the hypothesis being accepted, while a value falling on the other
side will result in the hypothesis being rejected. Two types of error can occur in such a test: (a) a
type I error if the hypothesis is rejected when it is true, we will call it false rejection error (FR)
in the following, and (b) a type II error if the hypothesis is accepted when it is false, we will call
it false acceptance error (FA). We then define the unconditional classification error rate (CER)
as the metric for the hypothesis test evaluation:

CER5
N~type I errors!1N~type II errors!

N~tested hypothesis!
. (2.1)

Of course, this metric is dependent on the global performance of the system. This is the reason
why in the experiments we carried out, we have defined test conditions for which the word error
rate is set to 50%. In this case, extreme decisions (accept/reject every hypothesis) will lead to a
classification error rate of 50%. The confidence measure can therefore be used as the value used
to perform this test statistic.

Note that this paper is concerned by acoustic confidence measure which is derived
from the acoustic model only; no higher level information such as language model, semantic
analysis, etc. is investigated here. As stated before, two types of recognition errors must be
detected: the out-of-vocabulary words and the mismatched test conditions. It is important to
note that from the acoustic point of view these two kinds of errors must be examined differently.
Indeed, in the case of mismatched conditions, we can expect the acoustic model to poorly clas-
sify acoustic data and provide rather smooth likelihoods with high confusion. On the other side,
in the case of out-of-vocabulary words, the model matches the acoustic data correctly but leads
to sequences of phonetic units that are not covered by the lexicon so that part of the word hy-
pothesis (some phonemes for instance) will not match the acoustic data. As we will see in the
next section, some confidence measures are well suited for one type of error and not the other.
For this reason, we defined two evaluation sets, one specific to out-of-vocabulary words by
modifying the lexicon so that 50% of the set is not recognized anymore, the other one specific to
the mismatched condition by adding white noise to the half database.

3. Confidence measures

All the confidence measures we have tested in this study are based on (possibly scaled) posterior
probabilities provided by ANN.10 As stated in Ref. 11, these posterior probabilities are well
suited to confidence measures as they are independent of what has been uttered, so that no
explicit normalization is required as in Ref. 3.

So, if we denote W5$qk
1 ,¯ ,qk

N%, the best state sequence as provided by the Viterbi
decoding, the basic measure denoted PCM is defined as

PCM~W!5
1

N (
n51

N

log~P~qk
nuXn!!, (3.1)

where P(qk
nuXn) is the posterior probability of being in state qk for acoustic vector Xn, and N is the

number of frames of the hypothesized word. The Confidence measures proposed hereafter are
basically different normalization procedures of the PCM. Note that some of these approaches
can be combined.

3.1 Use of acoustic prior information (PPCM)

A source of disparity between different phonemes comes from the acoustic model itself which
intrinsically better matches some acoustics than others. This will lead to average posterior
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probabilities higher for certain phonemes than for others. So the idea is to compensate for this
effect by normalizing the posterior phoneme probability by the mean posterior probability of
this phoneme when it is actually pronounced.

Practically during the training phase, we compute for each phoneme, and according to
a phonetic alignment, the average posterior probability provided by the ANN. This value gives
an idea of the acoustic score we can expect for a given phoneme when it is correctly recognized.
Normalizing the posterior probabilities by this value comes to give the same importance to each
phoneme. In the following, this confidence measure will be denoted PPCM for prior phone
probability normalized posteriors:

P̄~qk!5
1

T (
t51

T

P~qk
t uXt!, (3.2)

where Xt are the frames corresponding to the phoneme qk as provided by a phonetic alignment.

P̄(qk) are computed during the training phase,

PPCM~W!5
1

N (
n51

N

log~P~qk
nuXn!/P̄~qk!!, (3.3)

where P(qk
nuXn) is the posterior probability of being in state qk for feature vector Xn and N is the

number of frames of the current word.

3.2 Relative posterior probability (RPCM)

This measure is computed by dividing each posterior probability of a frame by the best posterior
probability for this frame, and normalizing over the length of the word. This comes to compare
to the best acoustic score we can expect for a word hypothesis in the same time segment. As we
will see in the results, this confidence measure is very efficient for OOV words but degrades
performance for mismatched conditions:

RPCM~W!5
1

N (
n51

N

log~P~qk
nuXn!/P~qbest

n uXn!!, (3.4)

where P(qk
nuXn) is the posterior probability of being in state qk for feature vector Xn, P(qbest

n uXn) is
the best posterior probability for the current frame, and N is the number of frames of the current
word.

3.3 Entropy (ECM)

The entropy is calculated for each frame and is independent of the optimal state sequence.
Therefore, entropy should rather be seen as a measure of the acoustic model adequacy. The
lower the entropy is, the better the model matches the acoustic data:

ECM~W!52
1

N (
n51

N

(
k51

K

p~qk
nuXn!log~p~qk

nuXn!!, (3.5)

where K is the number of phones and p(qk
nuXn) is the probability estimated by ANN for the

current phone.

3.4 Phone based normalization12

This normalization can be applied to any of the above described measures. It is computed by
normalizing the posterior probabilities of a hypothesis word, first by the phoneme length, then
over the word. This comes to give the same importance to each phoneme of the word whatever
its length is. As we will see in the results, this normalization leads to very good performance.
Indeed, due to their poor acoustic score, mismatched phonemes will be kept as short as possible
by the Viterbi decoding. Without normalization, they would have very little influence on the
global confidence measure,
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PCMPN~W!5
1

M (
m51

M
1

ns2ne
(

n5ns

ne

log~P~qk
nuXn!!, (3.6)

where P(qk
nuXn) is the posterior probability of being in state qk for feature vector Xn, M is the

number of phonemes in the current word, and ns and ne are the beginning and ending time index
of the current phoneme in the word.

Applied to other confidence measures, we obtain

PPCMPN~W!5
1

M
(

m51

M
1

ns2ne
(

n5ns

ne

logSP~qk
nuXn!

P̄~qk!
D, (3.7)

RPCMPN~W!5
1

M (
m51

M
1

ns2ne
(

n5ns

ne

logS P~qk
nuXn!

P~qbest
n uXn!

D, (3.8)

ECMPN~W!5
1

M (
m51

M
1

ns2ne
(

n5ns

ne

(
k51

K

p~qk
nuXn!log~p~qk

nuXn!!. (3.9)

4. Experiments

Experiments have been carried out on the PHONEBOOK database,13 an American English,
telephone speech, isolated word database. To evaluate the efficiency of the confidence measures
described above, we plot the classification error rate (CER) as a function of the word rejection
rate (WRR).12 The word rejection rate is of course directly dependent on the decision threshold
applied to confidence level.

Three tests were defined in such a way that the initial recognition accuracy was 50%.

(1) Test for noise effect: 794 correctly recognized words selected from test set, noise is
added to half of the utterances. Recognition error is caused by noise only. All noisy
utterances lead to recognition errors. The noise is white Gaussian noise with a signal-to-
noise ratio of 13 dB.

(2) Test for OOV words: 2000 correctly recognized words are selected from test set. Confi-
dence measures for first and second hypotheses in the N-best list are calculated. All the
scores (for first and second hypotheses) are used to plot the performance curve. This test
can be considered an OOV test, because in the case of absence of the best word hypoth-
esis in the vocabulary, the recognizer will choose the second word as output. Confidence
scores for the second word of an N-best list is calculated after realignement of phones for
the acoustic data.

(3) Test on all of the PHONEBOOK test sets: eight test sets from the PHONEBOOK data-
base are combined as one test set of 6599 utterances. The number of incorrectly recog-
nized words is 480. To obtain 50% accuracy, only 480 of correct word hypotheses were
selected.

Figure 1 displays the results for the confidence measures introduced in Sec. 3 on the
three test sets with world level normalization. Figure 2 displays the results with the phone-based
normalization. As can be seen from the two figures, PPCM outperforms all the other methods in
the case of test for noise effect. In OOV case, RPPCM, which is the mixed version of RPCM and
PPCM, is the best, which means normalization of the decoded phone probability by the best
phone probability improves the efficiency of the confidence measure in OOV cases. Indeed, this
normalization comes to give the value zero as an upper bound to the confidence score, so we can
expect that correctly recognized words will have confidence scores very close to zero while
OOV words will have lower scores leading to better discrimination between correct and incor-
rect hypotheses. Unfortunately, this normalization degrades the performance in the case of ad-
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ditive noise. Indeed, in this case, we can expect smoothed posteriors so that every hypothesis
will have a confidence score close to zero with no more discrimination. For the normal test set it
is PPCM which is still the best. Figure 2 shows that the use of phone-based normalization sys-
tematically improves the efficiency of confidence measures. This normalization is very efficient
but requires to keep phone level backtracking information during the decoding.

5. Decision threshold

The confidence scores computed as above must be used to take the final decision of accepting or
rejecting a hypothesis. Of course, we would like to have a value that can be directly interpretable
so that the decision threshold can be easily fixed. A smart interpretation of such a value could be
the probability of a word to be correct. Indeed, in such a case, a confidence score of 0.8 would
mean that the word is statistically correctly recognized with 80% chance. During the training
phase, we can build the histogram of word recognition rate according to their confidence score.
We propose to match a sigmoid on this histogram. This sigmoid can be interpreted as a mapping
function from the raw confidence score to probabilitylike values.

The procedure can be described as follows:

• For each confidence score, compute the word recognition rate as the ratio of the number of
correct words on the total number of words, that is, for each score i,

score~i!5
hcorrect~i!

hcorrect~i!1hincorrect~i!
. (5.1)

• The sigmoid to be matched is as follows:

y5
1

11e2b(x2a) . (5.2)

Fig. 1. Performance curves of confidence measures using word level normalization. (a) test for
noise effect, (b) test for OOV cases, and (c) test for PHONEBOOK database test sets.
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• For (x2a)50 we find y50.5. This point can either be immediately taken from the histo-
gram or preferably computed from the distributions of correct and incorrect words. Indeed,
if we assume these distributions can be approximated by Gaussians, we can find a as the
point where the probability of a word to be correct is equal to the probability to it being
incorrect:

a5
mcorrect*sincorrect1mincorrect*scorrect

scorrect1sincorrect
, (5.3)

where m and s are the mean and standard deviation of the Gaussian distributions.

• The last unknown parameter is b, which can be approximated by the golden section search,
algorithm.14 This algorithm finds a polynomial interpolation for a function that minimizes
criteria. In our case, we want to minimize the distance between the histogram points and
the sigmoid as shown in Fig. 3.

6. Conclusion

We can conlude that, if there is a presence of additive noise in test data, use of accoustic prior
information obtained from training data improves the efficiency of confidence measure. For
OOV tests the best confidence measure was obtained after normalizing the decoded phone
posterior probabilities by the best posterior probability of each frame. It was seen that using
phone based normalization improved the efficiency for all methods. It is therefore interesting to
note that ideally different confidence measure should be used for different types of error. Note
also that while the entropy could not be used as a confidence measure (totally inefficient in case
of OOV words), it could possibly be used to identify portions of the signal where the model
mismatches the acoustic data and therefore predict which kind of error we can expect and
eventually which kind of confidence measure should be used.

Fig. 2. Performance curves of confidence measures using phone based normalization. (a) test for
noise effect, (b) test for OOV cases, and (c) test for PHONEBOOK database test sets.
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