Attractors for the Generalized Benjamin–Bona–Mahony Equation

A. O. Çelebi

Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

V. K. Kalantarov

Department of Mathematics, Hacettepe University, 05532 Beytepe, Ankara, Turkey

and

M. Polat

Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

Received August 3, 1998; revised December 10, 1998

We consider the periodic initial-boundary value problem for a multidimensional generalized Benjamin–Bona–Mahony equation. We show the existence of the global attractor with a finite fractal dimension and the existence of the exponential attractor for the corresponding semigroup. © 1999 Academic Press

Key Words: attractor; exponential attractor; fractal dimension.

1. INTRODUCTION

We consider the equation

 $u_t - a \, \varDelta u_t - b \, \varDelta u + \nabla \cdot \mathbf{F}(u) = h(x), \qquad x \in \mathbb{R}^n, \quad t \in \mathbb{R}^+ \tag{1}$

with the initial condition

$$u(x,0) = u_0(x), \qquad x \in \mathbb{R}^n \tag{2}$$

and the periodic boundary condition

 $u(x + L_i e_i, t) = u(x, t), \quad x \in \mathbb{R}^n, \quad t > 0, \quad L_i > 0, \quad i = 1, 2, ..., n,$ (3)

439

0022-0396/99 \$30.00

where *a* and *b* are positive constants; $e_1, ..., e_n$ is the canonical basis of \mathbb{R}^n , $u_0(x)$ and h(x) are given functions, $\nabla \cdot \mathbf{F} = \sum_{i=1}^n (\partial/\partial x_i) F_i$, and $\mathbf{F}(s) = (F_1(s), F_2(s), ..., F_n(s))$ is a given vector field satisfying the following properties:

(i) $F_k(0) = 0, k = 1, 2, ..., n;$

(ii) the functions F_k , k = 1, 2, ..., n are twice continuously differentiable in R^1 ;

(iii) the functions $f_k(s) = (d/ds) F_k(s)$, k = 1, 2, ..., n, satisfy the growth conditions

$$|f_k(s)| \le C(1+|s|^m), \qquad k=1, 2, ..., n,$$

where $0 \le m < \infty$ if n = 2, $0 \le m < 2$ if n = 3 and m = 0 if $n \ge 4$. No growth condition is required if n = 1.

Using the standard Faedo-Galerkin method, it is not difficult to prove that if $h \in \dot{L}_2(\Omega)$ and $u_0 \in \dot{H}^1_{per}(\Omega)$, then the problem (1)-(3) has a unique solution $u \in C(\mathbb{R}^+; \dot{H}^1_{per}(\Omega))$ in the sense of distributions, where $\Omega = \prod_{i=1}^n (0, L_i), \dot{L}_2(\Omega)$ is the space of functions $v \in L_2(\Omega)$ such that $\int_{\Omega} v \, dx$ = 0, and the space $\dot{H}^s_{per}(\Omega)$, $s \in \mathbb{R}^+$ is the space of functions $u \in L_2(\Omega)$ satisfying

$$\sum_{k \in \mathbb{Z}^n} (1 + |k|^2)^s |u_k|^2 < \infty, \qquad \int_{\Omega} u(x) \, dx = 0,$$

where u_k are the Fourier coefficients of u with respect to the system $\{\exp(2i\pi \sum_{j=1}^{N} k_j(x_j/L_j)), k = (k_1, k_2, ..., k_n) \in \mathbb{Z}^n\}, \dot{H}_{per}^{-s}(\Omega)$ is the dual of $\dot{H}_{per}^s(\Omega)$. So the problem (1)–(3) generates a semigroup $V_t: X^1 \to X^1$, $t \in \mathbb{R}^+$ where $X^1 := \dot{H}_{per}^1(\Omega)$. In this article we prove that the semigroup V_t has a global attractor, that is, a minimal closed set $\mathcal{M} \subset X^1$ which attracts each bounded subset of X^1 . It will be shown that this attractor has a finite fractal dimension.

The Cauchy problem for the Benjamin-Bona-Mahony equation

$$u_t - u_{xxt} - vu_{xx} + u_x + uu_x = 0 \tag{4}$$

and some of its generalizations has been investigated by several authors, such as Amick *et al.* [2], Bona and Dougalis [6], and Karch [11]. In these articles the problem of global unique solvability and long time behaviour of solutions are studied. Kalantarov [10] has proved the existence of a global attractor for the semigroup generated by the initial-boundary value problem for the Kelvin–Voigt equations

$$\mathbf{v}_{t} - \alpha \, \varDelta \mathbf{v}_{t} - \nu \, \varDelta \mathbf{v} + \text{grad } p + v_{k} \mathbf{v}_{x_{k}} = \mathbf{h}(x),$$

$$div \, \mathbf{v} = 0.$$
 (5)

On the other hand Wang [16-18] using the technique of Ghidaglia [8] has proved the existence of a global attractor for the semigroup generated by (1)-(3) in one dimensional case, that is, the periodic initial-boundary value problem for the equation

$$u_t - u_{xxt} - vu_{xx} + f(u) u_x = g(x), \qquad x \in \mathbb{R}, \quad t \in \mathbb{R}^+$$
(6)

In our studies, we have used the ideas of Hale [9] and Ladyzhenskaya [13] on attractors for asymptotically compact semigroups. In the sequel we will use the following theorems.

THEOREM 1 [9, 13]. If a semigroup V_t , $t \in \mathbb{R}^+$ acts on a Banach space X, and V_t can be represented as a sum $W_t + Z_t$ in which W_t , $t \in \mathbb{R}^+$, is a family of operators, such that

$$\|W_t(B)\|_X \leq m_1(t) \, m_2(\|B\|_X), \tag{7}$$

where $m_1(\cdot)$ and $m_2(\cdot)$ are continuous functions on \mathbb{R}^+ and $m_1(t) \to 0$, as $t \to \infty$, $\|B\|_X = \sup_{v \in B} \|v\|_X$, while Z_t , $t \in \mathbb{R}^+$ maps bounded sets into precompact sets, then $V_t: t \in \mathbb{R}^+$ is asymptotically compact semigroup.

THEOREM 2 [9, 13]. Let $V_t: X \to X$, $t \in \mathbb{R}^+$, be a continuous bounded point-dissipative asymptotically compact semigroup. Then for this semigroup there exists a non-empty global attractor \mathcal{M} . It is compact, invariant, and connected.

THEOREM 3 [12]. Let B be a bounded set in a Hilbert space X, and let there be defined a map $V: B \to X$ such that $B \subseteq V(B)$ and for all $v, \tilde{v} \in B$

$$\|V(v) - V(\tilde{v})\|_{X} \leq \ell \|v - \tilde{v}\|_{X}, \tag{8}$$

and

$$\|Q_N V(v) - Q_N V(\tilde{v})\|_X \leq \delta \|v - \tilde{v}\|_X, \qquad \delta < 1, \tag{9}$$

where Q_N is the orthogonal projection of X onto the subspace X_N^{\perp} of codimension N. Then for the fractal dimension of B the inequality

$$d_F(B) \leq N \log\left(\frac{8\kappa^2\ell^2}{1-\delta^2}\right) / \log\frac{2}{1-\delta^2} \tag{10}$$

is true, where κ is the Gauss constant.

2. EXISTENCE OF THE GLOBAL ATTRACTOR

First let us show that the semigroup V_t is bounded dissipative in a phase space X^1 ; that is, it has an absorbing ball in X^1 . Multiplying Eq. (1) by u in $L_2(\Omega)$ we get

$$\frac{1}{2}\frac{d}{dt}\left[\|u(\cdot,t)\|^2 + a\|\nabla u(\cdot,t)\|^2\right] + b\|\nabla u(\cdot,t)\|^2 = (h,u).$$
(11)

We will use the notations $\|\cdot\|$, (\cdot, \cdot) for the norm and inner product in $L_2(\Omega)$, respectively. Using the *Poincaré–Friedrichs* inequality

$$\|u\| \leqslant \lambda_1^{-1/2} \|\nabla u\|,\tag{12}$$

which is valid for each $x \in X^1$, we can easily get

$$|(h, u)| \leq \frac{b}{2} \|\nabla u\|^2 + \frac{\lambda_1^{-1}}{2b} \|h\|^2,$$
(13)

where λ_1 is the lowest eigenvalue of the periodic boundary value problem

$$-\Delta \psi(x) = \lambda \psi(x),$$

$$\psi(x + L_i e_i) = \psi(x), \qquad i = 1, ..., n,$$

$$\int_{\Omega} \psi(x) \, dx = 0.$$
(E)

Due to (12) we have

$$\frac{b}{2} \|\nabla u(\cdot, t)\|^2 + \frac{b\lambda_1}{2} \|u(\cdot, t)\|^2 \leq b \|\nabla u(\cdot, t)\|^2.$$
(14)

By using (13), (14) we get from (11)

$$\frac{d}{dt} \left[\|u(\cdot, t)\|^2 + a \|\nabla u(\cdot, t)\|^2 \right] + \frac{b}{2} \|\nabla u(\cdot, t)\|^2 + \frac{b\lambda_1}{2} \|u(\cdot, t)\|^2 \leq \frac{1}{b\lambda_1} \|h\|^2$$

or

$$\frac{d}{dt} \left[\|u(\cdot, t)\|^2 + a \|\nabla u(\cdot, t)\|^2 \right] + K_0 \left[\|u(\cdot, t)\|^2 + a \|\nabla u(\cdot, t)\|^2 \right] \leq \frac{1}{b\lambda_1} \|h\|^2,$$
(15)

where $K_0 = \min\{b\lambda_1/2, b/2a\}$. Integrating (15) we find

$$\|\nabla u(\cdot, t)\|^{2} \leq \frac{1}{a} \left[\|u_{0}\|^{2} + a \|\nabla u_{0}\|^{2} \right] e^{-K_{0}t} + \frac{1}{bK_{0}\lambda_{1}} \|h\|^{2}$$

From this inequality it follows that

$$B_0 := \left\{ u \in X^1 : \|u(\cdot, t)\|_{X^1} \leq \left(\frac{2}{\lambda_1 b K_0}\right)^{1/2} \|h\| \right\}$$

is an absorbing ball for the semigroup V_t in X^1 .

Now, we will prove that the semigroup V_t is asymptotically compact, that is, for each sequence $t_k \to \infty$ and each bounded sequence $\{v_k\} \subset X^1$, the set $\{V_{t_k}(v_k)\}$ is precompact. To do this we will use Theorem 1. It is clear that the solution u(x, t) of the problem (1)–(3) can be represented in the form

$$u(x, t) = w(x, t) + z(x, t),$$

where w(x, t) is a solution of the problem

$$w_t - a \, \varDelta w_t - b \, \varDelta w = 0, \qquad \qquad x \in \mathbb{R}^n, \qquad t \in \mathbb{R}^+, \tag{16}$$

$$w(x,0) = u_0(x), \qquad x \in \mathbb{R}^n, \tag{17}$$

$$w(x, t) = w(x + L_i e_i, t), \qquad i = 1, ..., n, \quad t \in \mathbb{R}^+$$
(18)

while z(x, t) is a solution of the problem

$$z_t - a \, \varDelta z_t - b \, \varDelta z + \nabla \cdot \mathbf{F}(w + z) = h(x), \qquad \qquad x \in \mathbb{R}^n, \qquad \qquad t \in \mathbb{R}^+$$

(19)

$$z(x,0) = 0, \qquad x \in \Omega \tag{20}$$

$$z(x, t) = z(x + L_i e_i, t), \quad x \in \mathbb{R}^n \ i = 1, ..., n, \quad t \in \mathbb{R}^+.$$

(21)

Thus, the semigroup V_t has the representation

$$V_t = W_t + Z_t, \tag{22}$$

where W_t is the semigroup generated by (16)–(18) and Z_t is a solution operator of the problem (19)–(21). Multiplying Eq. (16) by w in $L_2(\Omega)$, after some elementary operations we can easily get

$$\frac{d}{dt} \left[\|w(\cdot, t)\|^2 + a \|\nabla w(\cdot, t)\|^2 \right] + k_1 \left[\|w(\cdot, t)\|^2 + a \|\nabla w(\cdot, t)\|^2 \right] \le 0.$$
(23)

Integrating (23) and then using Poincaré-Friedrichs inequality we obtain

$$\|\nabla w(\cdot, t)\|^2 \leq e^{-k_1 t} \left(\frac{1}{\lambda_1 a} + 1\right) \|\nabla w(\cdot, 0)\|^2.$$

That is, the semigroup $W_t: X^1 \to X^1$ satisfies the condition (7) of Theorem 1 with $m_1(t) = e^{-k_1 t} (d/(\lambda_1 a) + 1)$ and $m_2(t) = t$.

It remains now to show that $Z_t: X^1 \to X^1$ is precompact for each t > 0, when n = 3; the cases n = 1, 2 and n > 3 can be dealt with in a similar way. In order to see this property, let us rewrite Eq. (19) in the form

$$z_{t} - a \, \Delta z_{t} - b \, \Delta z = h(x) - \sum_{i=1}^{n} f_{i}(u) \, u_{x_{i}}$$
$$= g(x, t).$$
(24)

Let p = 6/(m + 3); using the Hölder's inequality and the condition (iii) we can easily get the estimate

$$\begin{split} \int_{\Omega} |f_i(u) \, u_{x_i}|^p \, dx &\leq \int_{\Omega} \left(C_1 + C_2 \, |u|^{mp} \right) |u_{x_i}|^p \, dx \\ &\leq C_3 \left(1 + \int_{\Omega} |u_{x_i}|^2 \, dx \right) \\ &+ C_2 \left(\int_{\Omega} |u_{x_i}|^2 \, dx \right)^{p/2} \left(\int_{\Omega} |u|^{mp(2/(2-p))} \, dx \right)^{(2-p)/2}. \end{split}$$

Since mp(2/(2-p)) = 6, by using the well-known inequality [14, p. 45]

$$\|u(\cdot, t)\|_{L^{6}(\Omega)} \leq c \|\nabla u(\cdot, t)\|_{L_{2}(\Omega)},$$
(25)

which is valid for each $u \in \dot{H}^1_{per}(\Omega)$, $\Omega \subset \mathbb{R}^3$ we obtain

$$\int_{\Omega} |f_1(u) \, u_{x_i}|^p \, dx \leqslant C_3 \left(1 + \int_{\Omega} |\nabla u|^2 \, dx \right) + C_4 \left(\int_{\Omega} |\nabla u|^2 \, dx \right)^{3(2-p)/2}$$

Since $V_t: X^1 \to X^1$ is bounded dissipative

$$\max_{t \in \mathbb{R}^+} \|\nabla u(\cdot, t)\|_{L^2(\Omega)} \leq C_5$$

and $h \in L_2(\Omega)$, we get $g \in C(\mathbb{R}^+; L_p(\Omega))$. By the embedding theorem (see Triebel [15, p. 327]) $L_p(\Omega) \subset \dot{H}_{per}^{-1+\sigma}(\Omega), \ \sigma = 1 - (m/2)$, we have

$$g \equiv h + \sum_{i=1}^{n} f_{i}(u) \, u_{x_{i}} \in L_{2}(0, \, T; \, \dot{H}_{per}^{1+\sigma}(\Omega)), \qquad \forall T > 0$$

and the precompactness of the operator $W_t: X^1 \to X^1$ follows from

PROPOSITION 4. If $g \in L^2(0, T; \dot{H}^s_{per}(\Omega))$ and $v_0 \in \dot{H}^{s+2}_{per}(\Omega)$, then the initial value problem

$$\begin{split} v_t - a \, \varDelta v_t - b \, \varDelta v = g(x, t), & x \in \mathbb{R}^n, \quad t \in (0, T) \\ v(x, 0) = v_0(x), & x \in \mathbb{R}^n, \\ v(x, t) = v(x + L_i e_i, t), & i = 1, ..., n, \quad t \in (0, T) \end{split}$$

has a solution v(x, t) in $C(0, T; \dot{H}^{s+2}_{per}(\Omega))$ for $s \in \mathbb{R}$.

This proposition can be proved by using the standard Fourier method. Following the technique used in Babin and Vishik [4, Theorem 6.2] it can be proved that \mathcal{M} is bounded in $X^2 = H^2_{per}(\Omega) \cap \dot{H}^1_{per}(\Omega)$. So we have obtained

THEOREM 5. Suppose that the vector field **F** satisfies the conditions (i)–(iii) and $h \in \dot{L}_2(\Omega)$. Then the semigroup $V_t: X^1 \to X^1$ has a global attractor \mathcal{M} which is compact, invariant and connected in X^1 . \mathcal{M} is included and bounded in X^2 .

3. ESTIMATE OF THE FRACTAL DIMENSIONS OF THE ATTRACTOR

Now we are going to show that for some $t_1 > 0$, the operator $V = V_{t_1}$ satisfies the conditions of Theorem 3, from which we get the estimate of the dimension of the global attractor. Let u and v be two solutions of the problem (1)–(3) with $u(x, 0) = u_0(x)$ and $v(x, 0) = v_0(x)$ in \mathcal{M} . Then from the Theorem 5, it follows that $u(\cdot, t)$, $v(\cdot, t) \in \mathcal{M}$, $\forall t \in \mathbb{R}^+$. Let us define w = u - v; then w will satisfy the equation

$$w_t - a \, \varDelta w_t - b \, \varDelta w + \nabla \cdot (\mathbf{F}(u) - \mathbf{F}(v)) = 0. \tag{26}$$

Taking the inner product with w(x, t) in $L_2(\Omega)$, we obtain

$$\frac{1}{2}\frac{d}{dt}\left[\|w(\cdot,t)\|^2 + a\|\nabla w(\cdot,t)\|^2\right] + b\|\nabla w(\cdot,t)\|^2 + (\nabla \cdot (\mathbf{F}(u) - \mathbf{F}(v)), w) = 0.$$

Now let us consider the last term,

$$\begin{split} |(\nabla \cdot (\mathbf{F}(u) - \mathbf{F}(v)), w)| &= \left| \sum_{i=1}^{n} \left(F_i(u) - F_i(v), \nabla w \right) \right| \\ &= \left| \sum_{i=1}^{n} \left(\int_0^1 \frac{d}{d\theta} F_i(\theta u + (1-\theta)v) \, d\theta, \nabla w \right) \right| \\ &\leq \sum_{i=1}^{n} \int_{\Omega} \left| \int_0^1 f_i(\theta u + (1-\theta)v) \, d\theta \right| \, |w| \, |\nabla w| \, dx. \end{split}$$

Since

$$|f_i(\theta u + (1 - \theta)v| \le C_6(1 + |u|^m + |v|^m), \qquad i = 1, 2, ..., n_i$$

using the Hölder's inequality and (25) we get

$$\begin{split} |(\nabla \cdot (\mathbf{F}(u) - \mathbf{F}(v)), w)| &\leq C_6 \sum_{i=1}^n \int_{\Omega} \left(1 + |u|^m + |v|^m\right) |w| \ |\nabla w| \ dx \\ &\leq C_7 \ \|w\| \ \|\nabla w\| \end{split}$$

and utilizing Young's inequality

$$|(\nabla \cdot (\mathbf{F}(u) - \mathbf{F}(v)), w)| \leq C_7 \left[a \|\nabla w\|^2 + \frac{1}{4a} \|w\|^2 \right]$$
$$\leq \mu [\|w\|^2 + a \|\nabla w\|^2],$$

where $\mu = C_7 \max\{1, 1/4a\}$. So we obtain

$$\frac{d}{dt} \left[\|w(\cdot, t)\|^2 + a \|\nabla w(\cdot, t)\|^2 \right] \leq \mu \left[\|w(\cdot, t)\|^2 + a \|\nabla w(\cdot, t)\|^2 \right].$$

Thus

$$\|w(\cdot, t)\|^{2} + a \|\nabla w(\cdot, t)\|^{2} \leq [\|w(\cdot, 0)\|^{2} + a \|\nabla w(\cdot, 0)\|^{2}] e^{\mu t}$$

and

$$\|\nabla w(\cdot, t)\| \leq (a + \lambda_1^{-1})^{1/2} \|\nabla w(\cdot, 0)\| e^{\mu t/2}.$$
(27)

Now, let P_N denote the orthogonal projection to the subspace X_N^1 of X^1 spanned by the first N basis elements of X^1 , that is, the first N

eigenfunctions of the problem (E). Multiplying Eq. (26) in $L_2(\Omega)$ by $Q_N w := (I - P_N)w$, we obtain

$$(w_{t}(\cdot, t), Q_{N}w(\cdot, t)) - a(\Delta w_{t}(\cdot, t), Q_{N}w(\cdot, t)) + b \|\nabla Q_{N}w(\cdot, t)\|^{2}$$

$$= (\nabla \cdot \mathbf{F}(u) - \nabla \cdot \mathbf{F}(v), Q_{N}w)$$

$$= \left(\sum_{i=1}^{n} f_{i}(u) u_{x_{i}} - f_{i}(v) v_{x_{i}}, Q_{N}w\right)$$

$$= \left(\sum_{i=1}^{n} [f_{i}(u) w_{x_{i}} + (f_{i}(u) - f_{i}(v)) v_{x_{i}}], Q_{N}w\right)$$

$$= \left(\sum_{i=1}^{n} f_{i}(u) w_{x_{i}}, Q_{N}w\right)$$

$$+ \left(\sum_{i=1}^{n} \int_{0}^{1} f'_{i}(\theta u + (1 - \theta)v) d\theta w v_{x_{i}}, Q_{N}w\right). \quad (28)$$

Since the attractor \mathcal{M} is bounded in $H^2_{per}(\Omega)$ we have

$$\max_{x \in \Omega} |u|, \qquad \max_{x \in \Omega} |v|, \qquad \|u\|_{H^2(\Omega)}, \qquad \|v\|_{H^2(\Omega)} \leqslant M_0. \tag{29}$$

Using the condition (iii), the Hölder inequality (29), (25) we can estimate the right hand side of (28) as

$$\begin{split} \left| \left(\sum_{i=1}^{n} f_{i}(u) w_{x_{i}}, Q_{N}w \right) + \left(\sum_{i=1}^{n} \int_{0}^{1} f_{i}'(\theta u + (1-\theta)v) d\theta wv_{x_{i}}, Q_{N}w \right) \right| \\ &\leq C_{8} \int_{\Omega} |\nabla w(x, t)| |Q_{N}w(x, t)| dx \\ &+ C_{9} \int_{\Omega} |w(x, t)| |\nabla v(x, t)| |Q_{N}w(x, t)| dx \\ &\leq C_{8} \|\nabla w(\cdot, t)\| \|Q_{N}w(\cdot, t)\| \\ &+ C_{9} \left(\int_{\Omega} |w(x, t)|^{6} dx \right)^{1/6} \left(\int_{\Omega} |\nabla v(x, t)|^{3} dx \right)^{1/3} \left(\int_{\Omega} |Q_{N}w(x, t)|^{2} dx \right)^{1/2} \\ &\leq C_{8} \|\nabla w(\cdot, t)\| \|Q_{N}w(\cdot, t)\| \\ &+ C_{10} \|\nabla w(\cdot, t)\| \|v(\cdot, t)\|_{H^{2}(\Omega)} \|Q_{N}w(\cdot, t)\| \\ &\leq C_{11} \|\nabla w(\cdot, t)\| \|Q_{N}w(\cdot, t)\|. \end{split}$$

So (28) implies

$$\frac{1}{2} \frac{d}{dt} \left[\|Q_N w(\cdot, t)\|^2 + a \|\nabla Q_N w(\cdot, t)\|^2 \right] + b \|\nabla Q_N w(\cdot, t)\|^2 \\ \leqslant C_{11} \|\nabla w(\cdot, t)\| \|Q_N w(\cdot, t)\|.$$
(30)

By using the inequality

$$\|Q_N\psi\| \leqslant \lambda_{N+1}^{-1/2} \|\nabla Q_N\psi\|, \qquad \forall \psi \in (X_N^1)^{\perp},$$

where λ_N is the Nth eigenvalue of the problem (E), we can rewrite (30) as

$$\frac{d}{dt} \left[\|Q_{N}w(\cdot,t)\|^{2} + a \|\nabla Q_{N}w(\cdot,t)\|^{2} \right]
+ b \|\nabla Q_{N}w(\cdot,t)\|^{2} + \lambda_{1}b \|Q_{N}w(\cdot,t)\|^{2}
\leq 2C_{11} \|\nabla w(\cdot,t)\| \|\nabla Q_{N}w(\cdot,t)\| \lambda_{N+1}^{-1/2}
\leq C_{11}\lambda_{N+1}^{-1/2} \|\nabla w(\cdot,t)\|^{2} + C_{11}\lambda_{N+1}^{-1/2} \|\nabla Q_{N}w(\cdot,t)\|^{2}$$
(31)

or

$$\begin{aligned} \frac{d}{dt} \left[\|Q_N w(\cdot, t)\|^2 + a \|\nabla Q_N w(\cdot, t)\|^2 \right] + (b - C_{11} \lambda_{N+1}^{-1/2}) \|\nabla Q_N w(\cdot, t)\|^2 \\ + b\lambda_1 \|Q_N w(\cdot, t)\|^2 &\leqslant C_{11} \lambda_{N+1}^{-1/2} \|\nabla w(\cdot, t)\|^2. \end{aligned}$$

Let us choose N large enough, so that $b - C_{11}\lambda_{N+1}^{-1/2} > 0$ and set

$$\mu_1 = \min\left\{\frac{b - C_{11}\lambda_{N+1}^{-1/2}}{a}, \lambda_1 b\right\}.$$

From the last inequality we get

$$\begin{aligned} \frac{d}{dt} \left[\|Q_N w(\cdot, t)\|^2 + a \|\nabla Q_N w(\cdot, t)\|^2 \right] \\ + \mu_1 \left[\|Q_N w(\cdot, t)\|^2 + a \|\nabla Q_N w(\cdot, t)\|^2 \right] \\ \leqslant C_{11} \lambda_{N+1}^{-1/2} \|\nabla w(\cdot, t)\|^2 \\ \leqslant (a + \lambda_1^{-1}) C_{11} \lambda_{N+1}^{-1/2} \|\nabla w(\cdot, 0)\|^2 \cdot e^{\mu t} \end{aligned}$$

by use of (27). Integrating this inequality, and after some elementary operations we obtain

$$\|Q_N w(\cdot, t)\|_{X^1}^2 \leq a^{-1}(a+\lambda_1^{-1}) [C_{11}\lambda_{N+1}^{-1/2}(\mu+\mu_1)^{-1}e^{\mu t}+e^{-\mu_1 t}] \|\nabla w(\cdot, 0)\|^2.$$

Now we can choose N and $t_0 > 0$ so that

$$a^{-1}(a+\lambda_1^{-1})[C_{11}\lambda_{N+1}^{-1/2}(\mu+\mu_1)^{-1}e^{\mu t_0}+e^{-\mu_1 t_0}] \leq \delta < 1.$$

Hence the conditions of the Theorem 3 are satisfied with $V = V_{t_0}$ and we obtain the estimate

$$d_F(\mathcal{M}) \leqslant N \frac{\log(8\kappa\ell^2/(1-\delta^2))}{\log(2/(1+\delta^2))}$$

for the fractal dimension of the global attractor.

So we have established the following theorem:

THEOREM 6. Let all conditions of the Theorem 5 be satisfied. Then the attractor of the semigroup $V_t: X^1 \to X^1$ has a finite fractal dimension

4. A REMARK ON THE EXISTENCE OF THE EXPONENTIAL ATTRACTOR

Consider now the one-dimensional version of the problem (1)-(3),

$$u_t - au_{xxt} - bu_{xx} + f(u) u_x = h(x), \qquad x \in \mathbb{R}, \quad t \in \mathbb{R}^+,$$
 (32)

$$u(x,0) = u_0(x), \qquad x \in \mathbb{R}, \tag{33}$$

$$u(x, t) = u(x + L, t), \quad x \in \mathbb{R}, \quad t \in R^+.$$
 (34)

It follows from the Theorem 5, that the problem (32)–(34) has an absorbing ball $B_0 \subset X^1$ and a global attractor \mathcal{M} , which is compact.

Now, assume that u_0, v_0 are arbitrary two elements of B_0 , then for $w(\cdot, t) = V_t(u_0) - V_t(v_0) = u(\cdot, t) - v(\cdot, t)$ the inequality (27) is valid:

$$\|w_{x}(\cdot,t)\|_{X^{1}} \leq (a+\lambda_{1}^{-1})^{1/2} \|\nabla w(\cdot,0)\| e^{\mu t/2}.$$
(35)

It follows from (32) that w satisfies the equation

$$w_t - aw_{xxt} - bw_{xx} + \int_0^1 f'(\theta u + (1 - \theta)v) \, d\theta \cdot w \cdot u_x + f(v) \, w_x = 0.$$
(36)

Let us multiply (36) by $Q_N w$ in $L_2(0, L)$,

$$\frac{1}{2}\frac{d}{dt} \|Q_N w\|^2 1 + \frac{a}{2}\frac{d}{dt} \|Q_N w_x\|^2 + b \|Q_N w_x\|^2 + \int_0^L \int_0^1 f'(\theta u + (1-\theta)v) \, d\theta \cdot w \cdot u_x Q_N w \, dx + \int_0^L f(v) \, w_x Q_N w \, dx = 0.$$
(37)

Due to the Sobolev inequality

$$\max_{x \in [0, L]} |z(x)| \leq d_0 ||z'||, \qquad \forall z \in \dot{H}^1_{per}(0, L)$$

we get from the relation (37)

$$\begin{split} &\frac{1}{2} \frac{d}{dt} \left[\| Q_N w(\cdot, t) \|^2 + a \| Q_N w_x(\cdot, t) \|^2 \right] + b \| Q_N w_x(\cdot, t) \|^2 \\ & \leq C_{12} \max_{x \in [0, L]} |w(x, t)| \| u_x \| \| Q_N w \| + C_{13} \| w_x \| \| Q_N w \| \\ & \leq C_{14} \| w_x(\cdot, t) \| \| Q_N w(\cdot, t) \| \\ & \leq \frac{1}{2} C_{14} \lambda_{N+1}^{-1/2} \| w_x(\cdot, t) \|^2 + \frac{1}{2} C_{14} \lambda_{N+1}^{-1/2} \| Q_N w_x(\cdot, t) \|^2. \end{split}$$

So we have got the inequality similar to (31). Therefore the following inequality holds:

$$\|Q_N w(\cdot, t)\| \leq a^{-1}(a + \lambda_1^{-1}) [C_{14}\lambda_{N+1}^{-1/2}(\mu + \mu_1)^{-1} e^{\mu t} + e^{-\mu_1 t}] \|\nabla w(\cdot, 0)\|^2$$

It follows from the last estimate that the semigroup $V_t: X^1 \to X_1^1$, $t \in \mathbb{R}^+$ satisfies the discrete squeezing property (see [7]), that is, there exists N_0 and t_1 such that the operator $T := V_t$, satisfies the conditions

$$||Tx - Ty||_{X^1} \leq \ell_0 ||x - y||_{X^1}, \quad \forall x, y \in B_0$$

and for some $\delta \in (0, 1/\sqrt{2})$

$$\|(I - P_{N_0})(Tx - Ty)\|_{X^1} \leq \delta \|x - y\|_{X^1}, \qquad \forall x, y \in B_0.$$

Therefore the semigroup $V_t: X^1 \to X^1$, $t \in \mathbb{R}^+$ has an exponential attractor \mathcal{M}_e , (see [3, 7]), that is a compact set \mathcal{M}_e such that

- (i) $\mathcal{M} \subseteq \mathcal{M}_e \subseteq B_0$,
- (ii) $V_t \mathcal{M}_e \subseteq \mathcal{M}_e$,

(iii) M_e has finite fractal dimension,

(iv) there exist C_1 and C_2 , which does not depend on x such that $\forall x \in B$ and each t > 0

$$dist(V_t x, \mathcal{M}_e) \leq C_1 \exp\{-C_2 t\}.$$

REFERENCES

- J. Albert, On the decay of solutions of generalized Benjamin-Bona-Mahony equation, J. Math. Anal. Appl. 141 (1989), 527-537.
- Ch. J. Amick, J. L. Bona, and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations 81 (1989), 1–49.
- 3. A. V. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion system in an unbounded domain, J. Dynam. Differential Equations 7 (1995), 567–590.
- A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.
- T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, *Philos. Trans. Roy. Soc. London* 272 (1972), 47–78.
- 6. J. L. Bona and V. A. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl. 75 (1980), 503–522.
- 7. A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Exponential attractros for dissipative evolution equations, *in* "RAM," Vol. 37, Masson, Paris; Wiley, Chichester, 1994.
- J. M. Ghidaglia, Finite dimensional behaviour for weakly driven Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 365–405.
- J. K. Hale, Asymptotic behavior of dissipative system, in "Amer. Math. Soc. Mathematical Surveys and Monographs," Vol. 25, Amer. Math. Soc., Providence, 1988.
- 10. V. K. Kalantarov, On the attractors for some non-linear problems of mathematical physics, *Zap. Nauch. Sem. LOMI* **152** (1986), 50–54.
- G. Karch, Asymptotic behavior of solutions to some pseudoparabolic equations, *Math. Methods Appl. Sci.* 20 (1997), 271–289.
- O. A. Ladyzhenskaya, On finite-dimensionality of bounded invariant sets for the Navier-Stokes equations and for other dissipative systems, *Zap. Nauchn. Sem. LOMI* 115 (1982), 137–155; *J. Soviet Math.* 28 (1985), 714–726.
- O. A. Ladyzhenskaya, On the determination of minimal global attractors for the Navier– Stokes and other partial differential equations, *Russian Math. Surveys* 42, No. 6 (1987), 27–73.
- O. A. Ladyzhenskaya and N. N. Ural'tseva, "Linear and Quasilinear Elliptic Equation," Academic Press, New York/London, 1968.
- H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland, Amsterdam/New York/Oxford, 1978.
- B. Wang, On the strong attractor for the Benjamin–Bona–Mahony equation, *Appl. Math. Lett.* 10, No. 2 (1997), 23–28.
- B. Wang, Attractors and approximate inertial manifolds for the generalized Benjamin– Bona–Mahony equations, *Math. Methods Appl. Sci.* 20 (1997), 199–203.
- B. Wang and Yang Wanli, Finite-dimensional behaviour for the Benjamin-Bona-Mahony equation, J. Phys. A 30, No. 13 (1997), 4877–4885.