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1. INTRODUCTION

We consider the equation

ut&a 2ut&b 2u+{ } F(u)=h(x), x # Rn, t # R+ (1)

with the initial condition

u(x, 0)=u0(x), x # Rn (2)

and the periodic boundary condition

u(x+Li ei , t)=u(x, t), x # Rn, t>0, Li>0, i=1, 2, ..., n, (3)
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where a and b are positive constants; e1 , ..., en is the canonical basis of Rn,
u0(x) and h(x) are given functions, { } F=�n

i=1 (���xi ) Fi , and F(s)=(F1(s),
F2(s), ..., Fn(s)) is a given vector field satisfying the following properties:

(i) Fk (0)=0, k=1, 2, ..., n;

(ii) the functions Fk , k=1, 2, ..., n are twice continuously differen-
tiable in R1 ;

(iii) the functions fk (s)=(d�ds) Fk (s), k=1, 2, ..., n, satisfy the
growth conditions

| fk (s)|�C(1+|s| m), k=1, 2, ..., n,

where 0�m<� if n=2, 0�m<2 if n=3 and m=0 if n�4. No growth
condition is required if n=1.

Using the standard Faedo�Galerkin method, it is not difficult to prove
that if h # L4 2(0) and u0 # H4 1

per (0), then the problem (1)�(3) has a unique
solution u # C(R+; H4 1

per (0)) in the sense of distributions, where 0=
>n

i=1 (0, Li), L4 2(0) is the space of functions v # L2(0) such that �0 v dx
=0, and the space H4 s

per (0), s # R+ is the space of functions u # L2(0)
satisfying

:
k # Z n

(1+|k| 2)s |uk |2<�, |
0

u(x) dx=0,

where uk are the Fourier coefficients of u with respect to the system
[exp(2i? �N

j=1 kj (x j �Lj )), k=(k1 , k2 , ..., kn) # Zn], H4 &s
per (0) is the dual of

H4 s
per (0). So the problem (1)�(3) generates a semigroup Vt : X1 � X1,

t # R+ where X1 :=H4 1
per (0). In this article we prove that the semigroup Vt

has a global attractor, that is, a minimal closed set M/X1 which attracts
each bounded subset of X1. It will be shown that this attractor has a finite
fractal dimension.

The Cauchy problem for the Benjamin�Bona�Mahony equation

ut&uxxt&vuxx+ux+uux=0 (4)

and some of its generalizations has been investigated by several authors,
such as Amick et al. [2], Bona and Dougalis [6], and Karch [11]. In these
articles the problem of global unique solvability and long time behaviour
of solutions are studied. Kalantarov [10] has proved the existence of a
global attractor for the semigroup generated by the initial-boundary value
problem for the Kelvin�Voigt equations

vt&: 2vt&& 2v+grad p+vkvxk
=h(x),

(5)
div v=0.
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On the other hand Wang [16�18] using the technique of Ghidaglia [8]
has proved the existence of a global attractor for the semigroup generated
by (1)�(3) in one dimensional case, that is, the periodic initial-boundary
value problem for the equation

ut&uxxt&&uxx+ f (u) ux= g(x), x # R, t # R+ (6)

In our studies, we have used the ideas of Hale [9] and Ladyzhenskaya
[13] on attractors for asymptotically compact semigroups. In the sequel
we will use the following theorems.

Theorem 1 [9, 13]. If a semigroup Vt , t # R+ acts on a Banach space X,
and Vt can be represented as a sum Wt+Zt in which Wt , t # R+, is a family
of operators, such that

&Wt (B)&X�m1(t) m2(&B&X ), (7)

where m1( } ) and m2( } ) are continuous functions on R+ and m1(t) � 0, as
t � �, &B&X=supv # B &v&X , while Zt , t # R+ maps bounded sets into
precompact sets, then Vt : t # R+ is asymptotically compact semigroup.

Theorem 2 [9, 13]. Let Vt : X � X, t # R+, be a continuous bounded
point-dissipative asymptotically compact semigroup. Then for this semigroup
there exists a non-empty global attractor M. It is compact, invariant, and
connected.

Theorem 3 [12]. Let B be a bounded set in a Hilbert space X, and let
there be defined a map V : B � X such that B�V(B) and for all v, v~ # B

&V(v)&V(v~ )&X�l &v&v~ &X , (8)

and

&QNV(v)&QNV(v~ )&X�$ &v&v~ &X , $<1, (9)

where QN is the orthogonal projection of X onto the subspace X =
N of

codimension N. Then for the fractal dimension of B the inequality

dF (B)�N log \8}2l2

1&$2+<log
2

1&$2 (10)

is true, where } is the Gauss constant.
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2. EXISTENCE OF THE GLOBAL ATTRACTOR

First let us show that the semigroup Vt is bounded dissipative in a phase
space X1 ; that is, it has an absorbing ball in X1. Multiplying Eq. (1) by u
in L2(0) we get

1
2

d
dt

[&u( } , t)&2+a &{u( } , t)&2]+b &{u( } , t)&2=(h, u). (11)

We will use the notations & }&, ( } , } ) for the norm and inner product in
L2(0), respectively. Using the Poincare� �Friedrichs inequality

&u&�*&1�2
1 &{u&, (12)

which is valid for each x # X1, we can easily get

|(h, u)|�
b
2

&{u&2+
*&1

1

2b
&h&2, (13)

where *1 is the lowest eigenvalue of the periodic boundary value problem

&2�(x)=*�(x),

�(x+Li ei)=�(x), i=1, ..., n, (E )

|
0

�(x) dx=0.

Due to (12) we have

b
2

&{u( } , t)&2+
b*1

2
&u( } , t)&2�b &{u( } , t)&2. (14)

By using (13), (14) we get from (11)

d
dt

[&u( } , t)&2+a &{u( } , t)&2]+
b
2

&{u( } , t)&2+
b*1

2
&u( } , t)&2�

1
b*1

&h&2

or

d
dt

[&u( } , t)&2+a &{u( } , t)&2]+K0[&u( } , t)&2+a &{u( } , t)&2]�
1

b*1

&h&2,

(15)
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where K0=min[b*1 �2, b�2a]. Integrating (15) we find

&{u( } , t)&2�
1
a

[&u0&2+a &{u0&2] e&K0 t+
1

bK0*1

&h&2.

From this inequality it follows that

B0 :={u # X1 : &u( } , t)&X 1�\ 2
*1bK0+

1�2

&h&=
is an absorbing ball for the semigroup Vt in X1.

Now, we will prove that the semigroup Vt is asymptotically compact,
that is, for each sequence tk � � and each bounded sequence [vk]/X 1,
the set [Vtk

(vk)] is precompact. To do this we will use Theorem 1. It is
clear that the solution u(x, t) of the problem (1)�(3) can be represented in
the form

u(x, t)=w(x, t)+z(x, t),

where w(x, t) is a solution of the problem

wt&a 2wt&b 2w=0, x # Rn, t # R+, (16)

w(x, 0)=u0(x), x # Rn, (17)

w(x, t)=w(x+Liei , t), i=1, ..., n, t # R+ (18)

while z(x, t) is a solution of the problem

zt&a 2zt&b 2z+{ } F(w+z)=h(x), x # Rn, t # R+

(19)

z(x, 0)=0, x # 0 (20)

z(x, t)=z(x+Liei , t), x # Rn i=1, ..., n, t # R+.

(21)

Thus, the semigroup Vt has the representation

Vt=Wt+Zt , (22)

where Wt is the semigroup generated by (16)�(18) and Zt is a solution
operator of the problem (19)�(21). Multiplying Eq. (16) by w in L2(0),
after some elementary operations we can easily get

d
dt

[&w( } , t)&2+a &{w( } , t)&2]+k1 [&w( } , t)&2+a &{w( } , t)&2]�0. (23)
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Integrating (23) and then using Poincare� �Friedrichs inequality we obtain

&{w( } , t)&2�e&k1 t \ 1
*1a

+1+ &{w( } , 0)&2.

That is, the semigroup Wt : X1 � X1 satisfies the condition (7) of Theorem 1
with m1(t)=e&k1t (d�(*1a)+1) and m2(t)=t.

It remains now to show that Zt : X1 � X1 is precompact for each t>0,
when n=3; the cases n=1, 2 and n>3 can be dealt with in a similar way.
In order to see this property, let us rewrite Eq. (19) in the form

zt&a 2zt&b 2z=h(x)& :
n

i=1

fi (u) uxi

=g(x, t). (24)

Let p=6�(m+3); using the Ho� lder's inequality and the condition (iii) we
can easily get the estimate

|
0

| fi (u) uxi
| p dx�|

0
(C1+C2 |u| mp) |uxi

| p dx

�C3 \1+|
0

|uxi
|2 dx+

+C2 \|0
|uxi

|2 dx+
p�2

\|0
|u|mp(2�(2& p)) dx+

(2& p)�2

.

Since mp(2�(2& p))=6, by using the well-known inequality [14, p. 45]

&u( } , t)&L6 (0)�c &{u( } , t)&L2 (0) , (25)

which is valid for each u # H4 1
per (0), 0/R3 we obtain

|
0

| f1(u) uxi
| p dx�C3 \1+|

0
|{u|2 dx++C4 \|0

|{u|2 dx+
3(2& p)�2

.

Since Vt : X1 � X1 is bounded dissipative

max
t # R+

&{u( } , t)&L2 (0)�C5
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and h # L2(0), we get g # C(R+; Lp(0)). By the embedding theorem (see
Triebel [15, p. 327]) Lp(0)/H4 &1+_

per (0), _=1&(m�2), we have

g#h+ :
n

i=1

fi (u) uxi
# L2(0, T; H4 1+_

per (0)), \T>0

and the precompactness of the operator Wt : X1 � X1 follows from

Proposition 4. If g # L2(0, T; H4 s
per (0)) and v0 # H4 s+2

per (0), then the initial
value problem

vt&a 2vt&b 2v=g(x, t), x # Rn, t # (0, T)

v(x, 0)=v0(x), x # Rn,

v(x, t)=v(x+Liei , t), i=1, ..., n, t # (0, T),

has a solution v(x, t) in C(0, T; H4 s+2
per (0)) for s # R.

This proposition can be proved by using the standard Fourier method.
Following the technique used in Babin and Vishik [4, Theorem 6.2] it can
be proved that M is bounded in X2=H 2

per (0) & H4 1
per (0). So we have

obtained

Theorem 5. Suppose that the vector field F satisfies the conditions (i)�(iii)
and h # L4 2(0). Then the semigroup Vt : X1 � X1 has a global attractor M

which is compact, invariant and connected in X1. M is included and bounded
in X2.

3. ESTIMATE OF THE FRACTAL DIMENSIONS OF
THE ATTRACTOR

Now we are going to show that for some t1>0, the operator V=Vt1

satisfies the conditions of Theorem 3, from which we get the estimate of the
dimension of the global attractor. Let u and v be two solutions of the
problem (1)�(3) with u(x, 0)=u0(x) and v(x, 0)=v0(x) in M. Then from
the Theorem 5, it follows that u( } , t), v( } , t) # M, \t # R+. Let us define
w=u&v; then w will satisfy the equation

wt&a 2wt&b 2w+{ } (F(u)&F(v))=0. (26)

Taking the inner product with w(x, t) in L2(0), we obtain

1
2

d
dt

[&w( } , t)&2+a &{w( } , t&2]+b &{w( } , t)&2+({ } (F(u)&F(v)), w)=0.
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Now let us consider the last term,

|({ } (F(u)&F(v)), w)|= } :
n

i=1

(Fi (u)&Fi (v), {w)}
= } :

n

i=1
\|

1

0

d
d%

F i (%u+(1&%)v) d%, {w+}
� :

n

i=1
|

0 }|
1

0
fi (%u+(1&%)v) d% } |w| |{w| dx.

Since

| f i (%u+(1&%)v|�C6(1+|u|m+|v|m), i=1, 2, ..., n,

using the Ho� lder's inequality and (25) we get

|({ } (F(u)&F(v)), w)|�C6 :
n

i=1
|

0
(1+|u|m+|v|m) |w| |{w| dx

�C7 &w& &{w&

and utilizing Young's inequality

|({ } (F(u)&F(v)), w)|�C7 _a &{w&2+
1

4a
&w&2&

�+[&w&2+a &{w&2],

where +=C7 max[1, 1�4a]. So we obtain

d
dt

[&w( } , t)&2+a &{w( } , t)&2]�+[&w( } , t)&2+a &{w( } , t)&2].

Thus

&w( } , t)&2+a &{w( } , t)&2�[&w( } , 0)&2+a &{w( } , 0)&2] e+t

and

&{w( } , t)&�(a+*&1
1 )1�2 &{w( } , 0)& e +t�2. (27)

Now, let PN denote the orthogonal projection to the subspace X 1
N

of X1 spanned by the first N basis elements of X1, that is, the first N
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eigenfunctions of the problem (E). Multiplying Eq. (26) in L2(0) by QNw :=
(I&PN )w, we obtain

(wt ( } , t), QNw( } , t))&a(2wt ( } , t), QNw( } , t))+b &{QNw( } , t)&2

=({ } F(u)&{ } F(v), QNw)

=\ :
n

i=1

f i (u) uxi
& fi (v) vxi

, QNw+
=\ :

n

i=1

[ fi (u) wxi
+( f i (u)& f i (v)) vxi

], QNw+
=\ :

n

i=1

f i (u) wxi
, QNw+

+\ :
n

i=1
|

1

0
f $i (%u+(1&%)v) d%wvxi

, QNw+ . (28)

Since the attractor M is bounded in H 2
per (0) we have

max
x # 0

|u|, max
x # 0

|v|, &u&H2 (0) , &v&H 2 (0)�M0 . (29)

Using the condition (iii), the Ho� lder inequality (29), (25) we can estimate
the right hand side of (28) as

}\ :
n

i=1

f i (u) wxi
, QNw++\ :

n

i=1
|

1

0
f $i (%u+(1&%)v) d%wvxi

, QN w+}
�C8 |

0
|{w(x, t)| |QNw(x, t)| dx

+C9 |
0

|w(x, t)| |{v(x, t)| |QNw(x, t)| dx

�C8 &{w( } , t)& &QN w( } , t)&

+C9 \|0
|w(x, t)| 6 dx+

1�6

\|0
|{v(x, t)| 3 dx+

1�3

\|0
|QNw(x, t)| 2 dx+

1�2

�C8 &{w( } , t)& &QN w( } , t)&

+C10 &{w( } , t)& &v( } , t)&H 2 (0) &QNw( } , t)&

�C11 &{w( } , t)& &QNw( } , t)&.
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So (28) implies

1
2

d
dt

[&QNw( } , t)&2+a &{QNw( } , t)&2]+b &{QNw( } , t)&2

�C11 &{w( } , t)& &QNw( } , t)&. (30)

By using the inequality

&QN�&�*&1�2
N+1 &{QN�&, \� # (X 1

N)=,

where *N is the N th eigenvalue of the problem (E ), we can rewrite (30) as

d
dt

[&QNw( } , t)&2+a &{QNw( } , t)&2]

+b &{QNw( } , t)&2+*1b &QNw( } , t)&2

�2C11 &{w( } , t)& &{QNw( } , t)& *&1�2
N+1

�C11*&1�2
N+1 &{w( } , t)&2+C11*&1�2

N+1 &{QNw( } , t)&2 (31)

or

d
dt

[&QNw( } , t)&2+a &{QNw( } , t)&2]+(b&C11*&1�2
N+1) &{QNw( } , t)&2

+b*1 &QNw( } , t)&2�C11*&1�2
N+1 &{w( } , t)&2.

Let us choose N large enough, so that b&C11*&1�2
N+1>0 and set

+1=min {b&C11 *&1�2
N+1

a
, *1b= .

From the last inequality we get

d
dt

[&QNw( } , t)&2+a &{QNw( } , t)&2]

++1 [&QNw( } , t)&2+a &{QN w( } , t)&2]

�C11*&1�2
N+1 &{w( } , t)&2

�(a+*&1
1 ) C11*&1�2

N+1 &{w( } , 0)&2 } e+t

by use of (27). Integrating this inequality, and after some elementary
operations we obtain

&QNw( } , t)&2
X 1�a&1(a+*&1

1 )[C11*&1�2
N+1(+++1)&1 e+t+e&+1 t] &{w( } , 0)&2.
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Now we can choose N and t0>0 so that

a&1(a+*&1
1 )[C11*&1�2

N+1(+++1)&1 e+t0+e&+1 t0 ]�$<1.

Hence the conditions of the Theorem 3 are satisfied with V=Vt0
and we

obtain the estimate

dF (M)�N
log(8}l2�(1&$2))

log(2�(1+$2))

for the fractal dimension of the global attractor.
So we have established the following theorem:

Theorem 6. Let all conditions of the Theorem 5 be satisfied. Then the
attractor of the semigroup Vt : X1 � X1 has a finite fractal dimension

4. A REMARK ON THE EXISTENCE OF THE
EXPONENTIAL ATTRACTOR

Consider now the one-dimensional version of the problem (1)�(3),

ut&auxxt&buxx+ f (u) ux=h(x), x # R, t # R+, (32)

u(x, 0)=u0(x), x # R, (33)

u(x, t)=u(x+L, t), x # R, t # R+. (34)

It follows from the Theorem 5, that the problem (32)�(34) has an absorb-
ing ball B0 /X 1 and a global attractor M, which is compact.

Now, assume that u0 , v0 are arbitrary two elements of B0 , then for
w( } , t)=Vt (u0)&Vt (v0)=u( } , t)&v( } , t) the inequality (27) is valid:

&wx( } , t)&X 1�(a+*&1
1 )1�2 &{w( } , 0)& e+t�2. (35)

It follows from (32) that w satisfies the equation

wt&awxxt&bwxx+|
1

0
f $(%u+(1&%)v) d% } w } ux+ f (v) wx=0. (36)

Let us multiply (36) by QNw in L2(0, L),

1
2

d
dt

&QNw&2 1+
a
2

d
dt

&QNwx&2+b &QNwx&2

+|
L

0
|

1

0
f $(%u+(1&%)v) d% } w } uxQN w dx+|

L

0
f (v) wxQNw dx=0.

(37)

449THE BENJAMIN�BONA�MAHONY EQUATION



Due to the Sobolev inequality

max
x # [0, L]

|z(x)|�d0 &z$&, \z # H4 1
per (0, L)

we get from the relation (37)

1
2

d
dt

[&QNw( } , t)&2+a &QNwx( } , t)&2]+b &QNwx( } , t)&2

�C12 max
x # [0, L]

|w(x, t)| &ux& &QNw&+C13 &wx& &QNw&

�C14 &wx( } , t)& &QNw( } , t)&

�
1
2

C14 *&1�2
N+1 &wx( } , t)&2+

1
2

C14*&1�2
N+1 &QNwx( } , t)&2.

So we have got the inequality similar to (31). Therefore the following
inequality holds:

&QNw( } , t)&�a&1(a+*&1
1 )[C14 *&1�2

N+1(+++1)&1 e+t+e&+1 t] &{w( } , 0)&2.

It follows from the last estimate that the semigroup Vt : X1 � X 1
1 , t # R+

satisfies the discrete squeezing property (see [7]), that is, there exists N0

and t1 such that the operator T :=Vt1
satisfies the conditions

&Tx&Ty&X 1�l0 &x& y&X1 , \x, y # B0

and for some $ # (0, 1�- 2)

&(I&PN0
)(Tx&Ty)&X1�$ &x& y&X1 , \x, y # B0 .

Therefore the semigroup Vt : X1 � X1, t # R+ has an exponential attractor
Me , (see [3, 7]), that is a compact set Me such that

(i) M�Me �B0 ,

(ii) VtMe �Me ,

(iii) Me has finite fractal dimension,

(iv) there exist C1 and C2 , which does not depend on x such that
\x # B and each t>0

dist(Vt x, Me)�C1 exp[&C2 t].
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