Basit öğe kaydını göster

dc.contributor.advisorDuyar Coşkun, Özlem
dc.contributor.authorÇitoğlu, Senem
dc.date.accessioned2019-10-21T11:56:29Z
dc.date.issued2019-07-02
dc.date.submitted2019-06-12
dc.identifier.urihttp://hdl.handle.net/11655/9291
dc.description.abstractCancer is one of the global problems of this century and responsible for the death of one in 8 men and one in 11 women worldwide today. By 2040, 29.5 million new cancer cases are estimated to occur by the International Agency for Research on Cancer (IARC). It is a great need for the development of current cancer diagnosis and treatment methods. This dissertation aims to synthesize monodisperse spherical and/or cubic superparamagnetic Fe3O4 nanoparticles which have potential applications in cancer diagnosis and cancer treatment and investigate in vitro their cytotoxicity on human cervical carcinoma (HeLa) cells. In the presented study, 8.4±1.0 nm spherical and 8.3±1.1 nm, 14.4±0.6 nm, 24.5±1.9 nm cubic highly monodisperse, superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition method. To render them convenient for biomedical applications, they were coated with meso-2,3-Dimercaptosuccinic acid (DMSA) via ligand exchange reaction. The spherical nanoparticles were also functionalized with (3-Aminopropyl)triethoxysilane (APTES) and 2-deoxy-D-glucose (DG) to investigate the effects of surface functionality on their magnetic properties and their cytotoxicities. The structural and magnetic properties of the nanoparticles were characterized comprehensively and systematically by using X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), zeta sizer, thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), inductively coupled plasma mass spectrometry (ICP-MS). Magneto-thermal properties of the water-soluble nanoparticles were measured by an instrument for magnetic hyperthermia. The cytotoxicity of the spherical nanoparticles with three different coatings and DMSA coated cubic nanoparticles with three different sizes were assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells incubated with the nanoparticles for 72 h were stained with Prussian blue and visualized by an inverted microscope to determine intracellular uptake of nanoparticles. The results indicated that the water-soluble nanoparticles with different surface properties such as size, shape and charge caused no significant toxic effects on HeLa cell viability under the tested nanoparticle concentrations and incubation times. Specific absorption rate (SAR) value of the 24.5 nm cubic Fe3O4 nanoparticles was determined as 197.4 W/gFe under 15.95 kA/m alternative current (AC) magnetic field and 488 kHz frequency, resulting in a temperature rise of 15 ̊C in about 5 minutes. The results show a very promising potential on the use of the surface-functionalized Fe3O4 nanoparticles for clinical trials in cancer diagnosis and treatment.tr_TR
dc.description.sponsorshipTÜBİTAK-BİDEB 2211-C Priority Areas PhD Scholarship, Hacettepe University Scientific Research Project (BAP)(Project No: FHD-2018-16742).tr_TR
dc.description.tableofcontentsTABLE OF CONTENTS ABSTRACT i ÖZET iii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vi FIGURES ix TABLES xv ABBREVIATIONS xvi 1. INTRODUCTION 1 1.1. Background and Motivation 1 1.2. Definition of the Problem 2 1.3. Aims and Objectives of the Dissertation 5 1.4. Restrictions and Limitations 7 1.5. Literature Review 7 1.6. Originality 9 2. IRON OXIDE NANOPARTICLES FOR BIOMEDICAL APPLICATIONS: SYNTHESIS AND FUNCTIONALIZATION 11 2.1. Why Iron Oxide Nanoparticles (IONPs) 11 2.2. Magnetic Materials 11 2.2.1. Origins of Magnetism 11 2.2.2. Classification of Magnetic Materials 12 2.3. Synthesis of Iron Oxide Nanoparticles 19 2.3.1. Thermal Decomposition Method 20 2.4. Formation of Nanoparticles 22 2.5. Surface Modification of Nanoparticles 25 2.6. Stabilization of Nanoparticles 29 2.7. Biodistribution and Bioelimination of Nanoparticles 30 2.8. Targeting Nanoparticles to Tumour Cells 31 2.9. Toxicity of Iron Oxide Nanoparticles 32 2.10. Cytotoxicity Mechanism Induced by Superparamagnetic IONPs 35 2.11. Iron Metabolism in Human 37 2.11.1. Iron Distrubution in Humans 38 2.11.2. Iron Absorption 39 2.11.3. Transport and Cellular Uptake of Iron 41 2.11.4. Iron Storage 44 2.11.5. Iron Export 44 3. CHARACTERIZATION TECHNIQUES 46 3.1. Dynamic Light Scattering (DLS) and Zeta Potential Analysis 46 3.2. Vibrating Sample Magnetometer (VSM) 50 3.3. Fourier Transform Infrared Spectroscopy (FTIR) 51 3.4. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 52 3.5. Transmission Electron Microscope (TEM) 53 3.6. Thermogravimetric Analysis (TGA) 53 3.7. X-ray Powder Diffraction (XRD) 54 3.8. Magneto-thermal Property Measurements 55 3.9. MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) Assay 55 3.10. Prussian Blue Staining 55 4. MATERIALS AND METHODS 57 4.1. Experimental Setup for Iron Oxide Nanoparticle Synthesis 57 4.2. Synthesis of Hydrophobic Iron Oxide Nanoparticles 57 4.2.1. Synthesis of Spherical Iron Oxide Nanoparticles 58 4.2.2. Synthesis of Cubic Iron Oxide Nanoparticles 59 4.3. Synthesis of Water Soluble Iron Oxide Nanoparticles 64 4.3.1. DMSA Coated Iron Oxide Nanoparticles 64 4.3.2. DG Coated Iron Oxide Nanoparticles 68 4.3.3. APTES Coated Iron Oxide Nanoparticles 69 4.4. Cell Culture and Cytotoxicity Experiments 74 4.4.1. Sample Preparation 74 4.4.2. Cell Culture and MTT Assay 77 4.4.3. Prussian Blue Staining 78 4.4.4. Statistical Analysis 79 5. RESULTS AND DISCUSSION 80 5.1. Crystallographic Phase Analysis of IONPs 80 5.2. Morphology, Particle Size and Size Distribution Analyses 81 5.2.1. Hydrophobic Spherical Nanoparticles 81 5.2.2. Water-soluble Spherical Nanoparticles 82 5.2.3. Hydrophobic Cubic Nanoparticles Synthesized According to the Procedure 1… 86 5.2.4. Hydrophobic Cubic Nanoparticles Synthesized According to the Procedure 2. 88 5.2.5. Hydrophobic Cubic Nanoparticles Synthesized According to the Procedure 3. 92 5.2.6. Water soluble Cubic Nanoparticles 94 5.3. Surface Chemistry Characterization of IONPs 97 5.4. Thermal Properties Analysis 102 5.5. Magnetization Analysis 108 5.6. Colloidal Stability and Hydrodynamic Size Analyses 113 5.7. Results of Hyperthermia Experiments 116 5.8. Cytotoxicity Assessment 119 6. CONCLUSION AND FUTURE SCOPE 132 REFERENCES 135 SUPPORTING INFORMATION 148 APPENDIX 1- TEM Results of Repeated Synthesis of Spherical Nanoparticles 148 APPENDIX 2- TEM Results of Cubic Nanoparticles Synthesized According to Procedure 1 at different heating rates 152 APPENDIX 3- TGA-DTA Curves of Hydrophobic Spherical Nanoparticles 154 APPENDIX 3 – Oral Presentations 155 APPENDIX 4 – Projects 155 APPENDIX 5 – Dissertation Originality Report 156 CURRICULUM VITAE 157tr_TR
dc.language.isoentr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectIron oxide nanoparticlestr_TR
dc.subjectCytotoxicitytr_TR
dc.subjectDMSAtr_TR
dc.subjectAPTEStr_TR
dc.subjectDGtr_TR
dc.subjectHeLatr_TR
dc.subjectSARtr_TR
dc.subjectDemir oksit nanoparçacıklarıtr_TR
dc.subjectSitotoksisitetr_TR
dc.subjectDimercaptosuccinic acidtr_TR
dc.subjectAminopropyltriethoxysilanetr_TR
dc.subjectDeoxy-D-glucosetr_TR
dc.subject.lcshKonu Başlıkları Listesi::Bilimtr_TR
dc.titleSynthesis of Functionalized Magnetite (Fe3o4) Nanoparticles and Targeting to the Tumour Cell (Hela) For Cancer Diagnosis and Treatmenttr_TR
dc.title.alternativeKanser Teşhis ve Tedavisinde Kullanılabilecek Fonksiyonel Magnetit (Fe3o4) Nanoparçacıkların Sentezi ve Tümör Hücresine (Hela) Hedeflendirilmesitr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetKanser çağımızın küresel sorunlarından biridir ve günümüzde dünya çapında her 8 erkekten ve her 11 kadından birinin ölümüne neden olmaktadır. 2040 yılına kadar, 29.5 milyon yeni kanser vakasının meydana geleceği Uluslararası Kanser Araştırma Ajansı (IARC) tarafından öngörülmektedir. Bu nedenle, günümüz kanser teşhis ve tedavi yöntemlerinin geliştirilmesine büyük bir ihtiyaç vardır. Bu tezin amacı, kanser teşhisinde ve tedavisinde potansiyel uygulamalara sahip tekil boyut dağılımlı küresel ve/veya kübik süperparamanyetik Fe3O4 nanoparçacıklarını sentezlemek ve insan servikal karsinoma (HeLa) hücreleri üzerindeki sitotoksisitelerini in vitro olarak araştırmaktır. Bu tez çalışmasında, 8.4±1.0 nm küresel ve 8.3±1.1 nm, 14.4±0.6 nm, 24.5±1.9 nm boyutlarında kübik, oldukça dar boyut dağılımına sahip süperparamanyetik demir oksit nanoparçacıkları termal ayrıştırma metodu ile sentezlendi. Nanoparçacıklar, biyomedikal uygulamalara uygun hale getirilmek amacıyla ligand değişimi yoluyla mezo-2,3-dimerkaptosusinik asit (DMSA) ile kaplandı. Yüzey fonksiyonelliğinin nanoparçacıkların manyetik özellikleri ve sitotoksisiteleri üzerindeki etkilerini araştırmak amacıyla küresel nanoparçacıklar aminopropiltrietoksisilan (APTES) ve 2-deoksi-D-glikoz (DG) ile de fonksiyonelleştirildi. Nanoparçacıkların yapısal ve manyetik özellikleri x-ışını difraksiyonu (XRD), geçirimli elektron mikroskobu (TEM), Fourier-dönüşüm kızılötesi spektroskopisi (FTIR), Zeta sizer, termogravimetrik analiz (TGA), titreşimli örnek magnetometresi (VSM) ve indüktif eşleşmiş plazma ve kütle spektrometresi (ICP-MS) teknikleri ile kapsamlı ve sistematik olarak karakterize edildi. Suda çözünür nanoparçacıkların manyeto-termal özellikleri manyetik hipertermi cihazı ile ölçüldü. Üç farklı yüzey kaplamasına sahip küresel nanoparçacıkların ve üç farklı boyuttaki DMSA kaplı kübik nanoparçacıkların sitotoksisitesi, 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolyum bromür (MTT) tahlili ile değerlendirildi. 72 saat süreyle nanoparçacıklar ile inkübe edilen hücreler Prusya mavisi ile boyanarak nanoparçacıkların hücre içi alımlarının belirlenmesi amacıyla ters mikroskopla görüntülendi. Sonuçlar, şekil, boyut, yük gibi farklı yüzey özelliklerine sahip olarak sentezlenen nanoparçacıkların test edilen nanoparçacık konsantrasyonları ve inkübasyon süreleri için HeLa hücre canlılığı üzerinde önemli bir toksik etkisinin olmadığını gösterdi. DMSA ile yüzeyi fonksiyonelleştirilen 24.5 nm kenar uzunluğuna sahip kübik Fe3O4 nanoparçacıkların öz-güç soğurma hızı (SAR) değeri, 15.95 kA/m alternatif akım (AC) manyetik alanı ve 488 kHz frekans altında 198.4 W/gFe olarak belirlendi. Kullanılan malzeme miktarı için örnekte yaklaşık olarak 5 dakikada 15 °C’lik bir sıcaklık artışı gözlendi. Çalışma sonuçları, yüzeyi-fonksiyonel Fe3O4 nanoparçacıklarının, klinik denemelerde kanser teşhisi ve tedavisi için umut verici bir potansiyele sahip olduğunu göstermektedir.tr_TR
dc.contributor.departmentNanoteknoloji ve Nanotıptr_TR
dc.identifier.ORCIDhttps://orcid.org/0000-0001-6244-9469tr_TR
dc.subject.ieeeIEEE Thesaurus Terms::Nanotechnologytr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess