Basit öğe kaydını göster

dc.contributor.advisorÇağrı Mesut, Temuçin
dc.contributor.authorHacıyeva, Nigar
dc.date.accessioned2019-04-01T12:05:02Z
dc.date.issued2019-02-18
dc.date.submitted2019-02-18
dc.identifier.citation7. KAYNAKLAR 1. Defazio G, Jankovic J, Giel JL, Papapetropoulos S. Descriptive epidemiology of cervical dystonia. Tremor Other Hyperkinet Mov (N Y). 2013;3. 2. Shaikh AG, Zee DS, Crawford JD, Jinnah HA. Cervical dystonia: a neural integrator disorder. Brain : a journal of neurology. 2016;139(Pt 10):2590-9. 3. Jankovic J, Leder S, Warner D, Schwartz K. Cervical dystonia: clinical findings and associated movement disorders. Neurology. 1991;41(7):1088-91. 4. Prescott IA, Dostrovsky JO, Moro E, Hodaie M, Lozano AM, Hutchison WD. Reduced paired pulse depression in the basal ganglia of dystonia patients. Neurobiology of disease. 2013;51:214-21. 5. Lozeron P, Poujois A, Richard A, Masmoudi S, Meppiel E, Woimant F, et al. Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia. Frontiers in neural circuits. 2016;10:90. 6. Haug BA, Schonle PW, Knobloch C, Kohne M. Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1992;85(2):158-60. 7. Samargia S, Schmidt R, Kimberley TJ. Cortical Silent Period Reveals Differences Between Adductor Spasmodic Dysphonia and Muscle Tension Dysphonia. Neurorehabil Neural Repair. 2016;30(3):221-32. 8. Wagle-Shukla A, Ni Z, Gunraj CA, Bahl N, Chen R. Effects of short interval intracortical inhibition and intracortical facilitation on short interval intracortical facilitation in human primary motor cortex. J Physiol. 2009;587(Pt 23):5665-78. 9. Peurala SH, Muller-Dahlhaus JF, Arai N, Ziemann U. Interference of short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2008;119(10):2291-7. 10. Brighina F, Romano M, Giglia G, Saia V, Puma A, Giglia F, et al. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res. 2009;192(4):651-6. 11. Gallea C, Herath P, Voon V, Lerner A, Ostuni J, Saad Z, et al. Loss of inhibition in sensorimotor networks in focal hand dystonia. NeuroImage Clinical. 2018;17:90-7. 12. Stahl CM, Frucht SJ. Focal task specific dystonia: a review and update. Journal of neurology. 2017;264(7):1536-41. 13. Pana A, Saggu BM. Dystonia. StatPearls. Treasure Island (FL): StatPearls Publishing StatPearls Publishing LLC.; 2018. 14. Sohn WJ, Niu CM, Sanger TD. A neuromorphic model of motor overflow in focal hand dystonia due to correlated sensory input. Journal of neural engineering. 2016;13(5):055001. 15. Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD. The pathophysiology of primary dystonia. Brain. 1998;121 ( Pt 7):1195-212. 16. Moghimi N, Jabbari B, Szekely AM. Primary dystonias and genetic disorders with dystonia as clinical feature of the disease. European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society. 2014;18(1):79-105. 17. Skogseid IM. Dystonia--new advances in classification, genetics, pathophysiology and treatment. Acta neurologica Scandinavica Supplementum. 2014(198):13-9. 18. Wijemanne S, Jankovic J. Dopa-responsive dystonia--clinical and genetic heterogeneity. Nature reviews Neurology. 2015;11(7):414-24. 19. Lohmann K, Klein C. Update on the Genetics of Dystonia. Current neurology and neuroscience reports. 2017;17(3):26. 20. Albanese A, Asmus F, Bhatia KP, Elia AE, Elibol B, Filippini G, et al. EFNS guidelines on diagnosis and treatment of primary dystonias. Eur J Neurol. 2011;18(1):5-18. 21. Zech M, Boesch S, Jochim A, Weber S, Meindl T, Schormair B, et al. Clinical exome sequencing in early-onset generalized dystonia and large-scale resequencing follow-up. Movement disorders : official journal of the Movement Disorder Society. 2017;32(4):549-59. 22. Gorman KM, Meyer E, Kurian MA. Review of the phenotype of early-onset generalised progressive dystonia due to mutations in KMT2B. European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society. 2018;22(2):245-56. 23. Svetel M, Pekmezovic T, Tomic A, Kresojevic N, Kostic VS. The spread of primary late-onset focal dystonia in a long-term follow up study. Clinical neurology and neurosurgery. 2015;132:41-3. 24. Albanese A, Bhatia K, Bressman SB, Delong MR, Fahn S, Fung VS, et al. Phenomenology and classification of dystonia: a consensus update. Movement disorders : official journal of the Movement Disorder Society. 2013;28(7):863-73. 25. Jankovic J, Tsui J, Bergeron C. Prevalence of cervical dystonia and spasmodic torticollis in the United States general population. Parkinsonism Relat Disord. 2007;13(7):411-6. 26. Martino D, Liuzzi D, Macerollo A, Aniello MS, Livrea P, Defazio G. The phenomenology of the geste antagoniste in primary blepharospasm and cervical dystonia. Mov Disord. 2010;25(4):407-12. 27. Patel S, Martino D. Cervical dystonia: from pathophysiology to pharmacotherapy. Behavioural neurology. 2013;26(4):275-82. 28. Amadio S, Panizza M, Pisano F, Maderna L, Miscio C, Nilsson J, et al. Transcranial magnetic stimulation and silent period in spasmodic torticollis. Am J Phys Med Rehabil. 2000;79(4):361-8. 29. Ozelius L, Lubarr N. DYT1 Early-Onset Isolated Dystonia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA): University of Washington, Seattle University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.; 1993. 30. Hettich J, Ryan SD, de Souza ON, Saraiva Macedo Timmers LF, Tsai S, Atai NA, et al. Biochemical and cellular analysis of human variants of the DYT1 dystonia protein, TorsinA/TOR1A. Human mutation. 2014;35(9):1101-13. 31. Kanovsky P, Bares M, Streitova H, Klajblova H, Daniel P, Rektor I. Abnormalities of cortical excitability and cortical inhibition in cervical dystonia Evidence from somatosensory evoked potentials and paired transcranial magnetic stimulation recordings. J Neurol. 2003;250(1):42-50. 32. Zacchi LF, Dittmar JC, Mihalevic MJ, Shewan AM, Schulz BL, Brodsky JL, et al. Early-onset torsion dystonia: a novel high-throughput yeast genetic screen for factors modifying protein levels of torsinADeltaE. Dis Model Mech. 2017;10(9):1129-40. 33. Obeso JA, Gimenez-Roldan S. Clinicopathological correlation in symptomatic dystonia. Advances in neurology. 1988;50:113-22. 34. Hopfner F, Schneider SA. Mystery surrounding DYT2 dystonia now solved: HPCA mutations identified in DYT2-like family. Movement disorders : official journal of the Movement Disorder Society. 2015;30(8):1035. 35. Lohmann K, Wilcox RA, Winkler S, Ramirez A, Rakovic A, Park JS, et al. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Annals of neurology. 2013;73(4):537-45. 36. Almasy L, Bressman SB, Raymond D, Kramer PL, Greene PE, Heiman GA, et al. Idiopathic torsion dystonia linked to chromosome 8 in two Mennonite families. Annals of neurology. 1997;42(4):670-3. 37. Fuchs T, Gavarini S, Saunders-Pullman R, Raymond D, Ehrlich ME, Bressman SB, et al. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet. 2009;41(3):286-8. 38. Oterdoom DLM, van Egmond ME, Ascencao LC, van Dijk JMC, Saryyeva A, Beudel M, et al. Reversal of Status Dystonicus after Relocation of Pallidal Electrodes in DYT6 Generalized Dystonia. Tremor and other hyperkinetic movements (New York, NY). 2018;8:530. 39. Jurek M, Hoffman-Zacharska D, Koziorowski D, Madry J, Friedman A, Bal J. Intrafamilial variability of the primary dystonia DYT6 phenotype caused by p.Cys5Trp mutation in THAP1 gene. Neurologia i neurochirurgia polska. 2014;48(4):254-7. 40. Ludlow CL, Adler CH, Berke GS, Bielamowicz SA, Blitzer A, Bressman SB, et al. Research priorities in spasmodic dysphonia. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2008;139(4):495-505. 41. Leube B, Rudnicki D, Ratzlaff T, Kessler KR, Benecke R, Auburger G. Idiopathic torsion dystonia: assignment of a gene to chromosome 18p in a German family with adult onset, autosomal dominant inheritance and purely focal distribution. Hum Mol Genet. 1996;5(10):1673-7. 42. Valente EM, Bentivoglio AR, Cassetta E, Dixon PH, Davis MB, Ferraris A, et al. DYT13, a novel primary torsion dystonia locus, maps to chromosome 1p36.13--36.32 in an Italian family with cranial-cervical or upper limb onset. Annals of neurology. 2001;49(3):362-6. 43. Tan EK, Yew K, Chua E, Puvan K, Shen H, Lee E, et al. PINK1 mutations in sporadic early-onset Parkinson's disease. Mov Disord. 2006;21(6):789-93. 44. Chouery E, Kfoury J, Delague V, Jalkh N, Bejjani P, Serre JL, et al. A novel locus for autosomal recessive primary torsion dystonia (DYT17) maps to 20p11.22-q13.12. Neurogenetics. 2008;9(4):287-93. 45. Hooper JF. Prediction of neuroleptic-induced dystonia. J Clin Psychopharmacol. 1989;9(4):307-8. 46. Kiriakakis V, Bhatia KP, Quinn NP, Marsden CD. The natural history of tardive dystonia. A long-term follow-up study of 107 cases. Brain. 1998;121 ( Pt 11):2053-66. 47. Castelao M, Marques RE, Duarte GS, Rodrigues FB, Ferreira J, Sampaio C, et al. Botulinum toxin type A therapy for cervical dystonia. The Cochrane database of systematic reviews. 2017;12:Cd003633. 48. LeDoux MS, Vemula SR, Xiao J, Thompson MM, Perlmutter JS, Wright LJ, et al. Clinical and genetic features of cervical dystonia in a large multicenter cohort. Neurology Genetics. 2016;2(3):e69. 49. Tarsy D, First ER. Painful cervical dystonia: clinical features and response to treatment with botulinum toxin. Movement disorders : official journal of the Movement Disorder Society. 1999;14(6):1043-5. 50. Jahanshahi M. Neuropsychological and Neuropsychiatric Features of Idiopathic and DYT1 Dystonia and the Impact of Medical and Surgical treatment. Archives of clinical neuropsychology : the official journal of the National Academy of Neuropsychologists. 2017;32(7):888-905. 51. Matthews WB, Beasley P, Parry-Jones W, Garland G. Spasmodic torticollis: a combined clinical study. Journal of neurology, neurosurgery, and psychiatry. 1978;41(6):485-92. 52. Jinnah HA, Factor SA. Diagnosis and treatment of dystonia. Neurologic clinics. 2015;33(1):77-100. 53. Tomczak KK, Rosman NP. Torticollis. Journal of child neurology. 2013;28(3):365-78. 54. Chan J, Brin MF, Fahn S. Idiopathic cervical dystonia: clinical characteristics. Mov Disord. 1991;6(2):119-26. 55. Pandey S, Soni G, Sarma N. Sensory tricks in primary blepharospasm and idiopathic cervical dystonia. Neurology India. 2017;65(3):532-6. 56. Tomic S, Petkovic I, Pucic T, Resan B, Juric S, Rotim T. Cervical dystonia and quality of life. Acta neurologica Belgica. 2016;116(4):589-92. 57. Frei K. Posttraumatic dystonia. Journal of the neurological sciences. 2017;379:183-91. 58. Kuyper DJ, Parra V, Aerts S, Okun MS, Kluger BM. Nonmotor manifestations of dystonia: a systematic review. Mov Disord. 2011;26(7):1206-17. 59. Naumann M, Magyar-Lehmann S, Reiners K, Erbguth F, Leenders KL. Sensory tricks in cervical dystonia: perceptual dysbalance of parietal cortex modulates frontal motor programming. Ann Neurol. 2000;47(3):322-8. 60. Jost WH, Hefter H, Stenner A, Reichel G. Rating scales for cervical dystonia: a critical evaluation of tools for outcome assessment of botulinum toxin therapy. J Neural Transm (Vienna). 2013;120(3):487-96. 61. General discussion of drug therapy in dystonia. Advances in neurology. 1976;14:417-22. 62. Krauss JK, Toups EG, Jankovic J, Grossman RG. Symptomatic and functional outcome of surgical treatment of cervical dystonia. Journal of neurology, neurosurgery, and psychiatry. 1997;63(5):642-8. 63. Bronte-Stewart H. Surgical therapy for dystonia. Curr Neurol Neurosci Rep. 2003;3(4):296-305. 64. Comella CL, Perlmutter JS, Jinnah HA, Waliczek TA, Rosen AR, Galpern WR, et al. Clinimetric testing of the comprehensive cervical dystonia rating scale. Mov Disord. 2016;31(4):563-9. 65. Pappas SS, Liang CC, Kim S, Rivera CO, Dauer WT. TorsinA dysfunction causes persistent neuronal nuclear pore defects. Hum Mol Genet. 2018;27(3):407-20. 66. Dressler D. Electromyographic evaluation of cervical dystonia for planning of botulinum toxin therapy. Eur J Neurol. 2000;7(6):713-8. 67. Costa J, Espirito-Santo C, Borges A, Ferreira JJ, Coelho M, Moore P, et al. Botulinum toxin type A therapy for cervical dystonia. The Cochrane database of systematic reviews. 2005(1):Cd003633. 68. Comella CL, Jankovic J, Brin MF. Use of botulinum toxin type A in the treatment of cervical dystonia. Neurology. 2000;55(12 Suppl 5):S15-21. 69. Comella CL, Thompson PD. Treatment of cervical dystonia with botulinum toxins. European journal of neurology. 2006;13 Suppl 1:16-20. 70. Colosimo C, Suppa A, Fabbrini G, Bologna M, Berardelli A. Craniocervical dystonia: clinical and pathophysiological features. Eur J Neurol. 2010;17 Suppl 1:15-21. 71. Brin MF, Blitzer A, Stewart C. Laryngeal dystonia (spasmodic dysphonia): observations of 901 patients and treatment with botulinum toxin. Adv Neurol. 1998;78:237-52. 72. Blitzer A, Brin MF, Fahn S, Lovelace RE. Localized injections of botulinum toxin for the treatment of focal laryngeal dystonia (spastic dysphonia). Laryngoscope. 1988;98(2):193-7. 73. Hwang WJ, Calne DB, Tsui JK, de la Fuente-Fernandez R. The long-term response to levodopa in dopa-responsive dystonia. Parkinsonism Relat Disord. 2001;8(1):1-5. 74. Hagner M. The electrical excitability of the brain: toward the emergence of an experiment. Journal of the history of the neurosciences. 2012;21(3):237-49. 75. Boling W, Olivier A, Fabinyi G. Historical contributions to the modern understanding of function in the central area. Neurosurgery. 2002;50(6):1296-309, discussion 309-10. 76. Gross CG. The discovery of motor cortex and its background. Journal of the history of the neurosciences. 2007;16(3):320-31. 77. Pogliano C. Penfield's homunculus and other grotesque creatures from the Land of If. Nuncius. 2012;27(1):141-62. 78. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145-56. 79. Miller R. Distribution and properties of commissural and other neurons in cat sensorimotor cortex. The Journal of comparative neurology. 1975;164(3):361-73. 80. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):227. 81. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci. 1997;17(9):3178-84. 82. Horvath JC, Perez JM, Forrow L, Fregni F, Pascual-Leone A. Transcranial magnetic stimulation: a historical evaluation and future prognosis of therapeutically relevant ethical concerns. Journal of medical ethics. 2011;37(3):137-43. 83. Sheffield A, Ahn S, Alagapan S, Frohlich F. Modulating neural oscillations by transcranial static magnetic field stimulation of the dorsolateral prefrontal cortex: A crossover, double-blind, sham-controlled pilot study. The European journal of neuroscience. 2019;49(2):250-62. 84. Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology. 2007;68(7):484-8. 85. Boylan LS, Sackeim HA. Magnetoelectric brain stimulation in the assessment of brain physiology and pathophysiology. Clin Neurophysiol. 2000;111(3):504-12. 86. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2009;120(12):2008-39. 87. Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2012;123(5):858-82. 88. Chokroverty S, Flynn D, Picone MA, Chokroverty M, Belsh J. Magnetic coil stimulation of the human lumbosacral vertebral column: site of stimulation and clinical application. Electroencephalogr Clin Neurophysiol. 1993;89(1):54-60. 89. Christie A, Kamen G. Cortical inhibition is reduced following short-term training in young and older adults. Age (Dordr). 2014;36(2):749-58. 90. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79-92. 91. Ziemann U. TMS and drugs. Clin Neurophysiol. 2004;115(8):1717-29. 92. Awad BI, Carmody MA, Zhang X, Lin VW, Steinmetz MP. Transcranial magnetic stimulation after spinal cord injury. World neurosurgery. 2015;83(2):232-5. 93. Wu ZA, Lin KP, Su MS. [Motor evoked potentials in patients with cervical spondylotic myelopathy]. Zhonghua yi xue za zhi = Chinese medical journal; Free China ed. 1992;50(3):226-33. 94. Emery E, Hort-Legrand C, Hurth M, Metral S. [Correlations between clinical deficits, motor and sensory evoked potentials and radiologic aspects of MRI in malformative syringomyelia. 27 Cases]. Neurophysiologie clinique = Clinical neurophysiology. 1998;28(1):56-72. 95. Abbruzzese G, Vische M, Ratto S, Abbruzzese M, Favale E. Assessment of motor neuron excitability in parkinsonian rigidity by the F wave. J Neurol. 1985;232(4):246-9. 96. Rothwell JC. Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. Journal of neuroscience methods. 1997;74(2):113-22. 97. Awiszus F, Feistner H, Urbach D, Bostock H. Characterisation of paired-pulse transcranial magnetic stimulation conditions yielding intracortical inhibition or I-wave facilitation using a threshold-hunting paradigm. Experimental brain research. 1999;129(2):317-24. 98. Turton A, Wroe S, Trepte N, Fraser C, Lemon RN. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol. 1996;101(4):316-28. 99. Nakamae T, Tanaka N, Nakanishi K, Fujimoto Y, Sasaki H, Kamei N, et al. Quantitative assessment of myelopathy patients using motor evoked potentials produced by transcranial magnetic stimulation. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2010;19(5):685-90. 100. Nardone R, Holler Y, Brigo F, Orioli A, Tezzon F, Schwenker K, et al. Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review. Brain Res. 2015;1619:139-54. 101. McGregor KM, Carpenter H, Kleim E, Sudhyadhom A, White KD, Butler AJ, et al. Motor map reliability and aging: a TMS/fMRI study. Exp Brain Res. 2012;219(1):97-106. 102. Yarossi M, Adamovich S, Tunik E. Sensorimotor cortex reorganization in subacute and chronic stroke: A neuronavigated TMS study. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5788-91. 103. McDonnell MN, Stinear CM. TMS measures of motor cortex function after stroke: A meta-analysis. Brain stimulation. 2017;10(4):721-34. 104. Babajani-Feremi A, Narayana S, Rezaie R, Choudhri AF, Fulton SP, Boop FA, et al. Language mapping using high gamma electrocorticography, fMRI, and TMS versus electrocortical stimulation. Clin Neurophysiol. 2016;127(3):1822-36. 105. Tarapore PE, Findlay AM, Honma SM, Mizuiri D, Houde JF, Berger MS, et al. Language mapping with navigated repetitive TMS: proof of technique and validation. Neuroimage. 2013;82:260-72. 106. Vallence AM, Schneider LA, Pitcher JB, Ridding MC. Long-interval facilitation and inhibition are differentially affected by conditioning stimulus intensity over different time courses. Neurosci Lett. 2014;570:114-8. 107. Siebner HR, Dressnandt J, Auer C, Conrad B. Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve. 1998;21(9):1209-12. 108. Kuo YL, Dubuc T, Boufadel DF, Fisher BE. Measuring ipsilateral silent period: Effects of muscle contraction levels and quantification methods. Brain research. 2017;1674:77-83. 109. Jung P, Beyerle A, Humpich M, Neumann-Haefelin T, Lanfermann H, Ziemann U. Ipsilateral silent period: a marker of callosal conduction abnormality in early relapsing-remitting multiple sclerosis? J Neurol Sci. 2006;250(1-2):133-9. 110. Giovannelli F, Borgheresi A, Balestrieri F, Zaccara G, Viggiano MP, Cincotta M, et al. Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol. 2009;587(Pt 22):5393-410. 111. Petitjean M, Ko JY. An age-related change in the ipsilateral silent period of a small hand muscle. Clin Neurophysiol. 2013;124(2):346-53. 112. Boroojerdi B, Hungs M, Mull M, Topper R, Noth J. Interhemispheric inhibition in patients with multiple sclerosis. Electroencephalogr Clin Neurophysiol. 1998;109(3):230-7. 113. Carson RG, Kennedy NC. Modulation of human corticospinal excitability by paired associative stimulation. Front Hum Neurosci. 2013;7:823. 114. Taylor SF, Tso IF. GABA abnormalities in schizophrenia: a methodological review of in vivo studies. Schizophrenia research. 2015;167(1-3):84-90. 115. Grieve SM, Menon P, Korgaonkar MS, Gomes L, Foster S, Kiernan MC, et al. Potential structural and functional biomarkers of upper motor neuron dysfunction in ALS. Amyotrophic lateral sclerosis & frontotemporal degeneration. 2015;17(1-2):85-92. 116. Udupa K, Ni Z, Gunraj C, Chen R. Effects of short-latency afferent inhibition on short-interval intracortical inhibition. J Neurophysiol. 2014;111(6):1350-61. 117. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W. Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol. 1996;40(3):367-78. 118. Vucic S, Cheah BC, Krishnan AV, Burke D, Kiernan MC. The effects of alterations in conditioning stimulus intensity on short interval intracortical inhibition. Brain research. 2009;1273:39-47. 119. Roshan L, Paradiso GO, Chen R. Two phases of short-interval intracortical inhibition. Experimental brain research. 2003;151(3):330-7. 120. Strafella AP, Paus T. Cerebral blood-flow changes induced by paired-pulse transcranial magnetic stimulation of the primary motor cortex. Journal of neurophysiology. 2001;85(6):2624-9. 121. Garry MI, Thomson RH. The effect of test TMS intensity on short-interval intracortical inhibition in different excitability states. Experimental brain research. 2009;193(2):267-74. 122. Chen R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Experimental brain research. 2004;154(1):1-10. 123. Ridding MC, Inzelberg R, Rothwell JC. Changes in excitability of motor cortical circuitry in patients with Parkinson's disease. Annals of neurology. 1995;37(2):181-8. 124. Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. Journal of neurology, neurosurgery, and psychiatry. 1995;59(5):493-8. 125. Liepert J, Bar KJ, Meske U, Weiller C. Motor cortex disinhibition in Alzheimer's disease. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2001;112(8):1436-41. 126. Ziemann U, Paulus W, Rothenberger A. Decreased motor inhibition in Tourette's disorder: evidence from transcranial magnetic stimulation. The American journal of psychiatry. 1997;154(9):1277-84. 127. Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S. Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Archives of general psychiatry. 2002;59(4):347-54. 128. Yu Q, Zhang SH, Wang T, Peng F, Han D, Gu YD. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration. Neural regeneration research. 2017;12(10):1703-7. 129. Cohen LG, Ziemann U, Chen R, Classen J, Hallett M, Gerloff C, et al. Studies of neuroplasticity with transcranial magnetic stimulation. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 1998;15(4):305-24. 130. Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, et al. Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol. 1997;104(5):453-8. 131. Makani R, Pradhan B, Shah U, Parikh T. Role of Repetitive Transcranial Magnetic Stimulation (rTMS) in Treatment of Addiction and Related Disorders: A Systematic Review. Current drug abuse reviews. 2017;10(1):31-43. 132. Gupta M, Lal Rajak B, Bhatia D, Mukherjee A. Effect of r-TMS over standard therapy in decreasing muscle tone of spastic cerebral palsy patients. Journal of medical engineering & technology. 2016;40(4):210-6. 133. Wassermann EM, Lisanby SH. Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2001;112(8):1367-77. 134. Nordmann G, Azorina V, Langguth B, Schecklmann M. A systematic review of non-motor rTMS induced motor cortex plasticity. Front Hum Neurosci. 2015;9:416. 135. Wittstock M, Pohley I, Walter U, Grossmann A, Benecke R, Wolters A. Interhemispheric inhibition in different phenotypes of progressive supranuclear palsy. J Neural Transm (Vienna). 2013;120(3):453-61. 136. Lu MK, Chen CM, Duann JR, Ziemann U, Chen JC, Chiou SM, et al. Investigation of Motor Cortical Plasticity and Corticospinal Tract Diffusion Tensor Imaging in Patients with Parkinsons Disease and Essential Tremor. PLoS One. 2016;11(9):e0162265. 137. Cantello R, Gianelli M, Bettucci D, Civardi C, De Angelis MS, Mutani R. Parkinson's disease rigidity: magnetic motor evoked potentials in a small hand muscle. Neurology. 1991;41(9):1449-56. 138. Tremblay F, Tremblay LE. Cortico-motor excitability of the lower limb motor representation: a comparative study in Parkinson's disease and healthy controls. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2002;113(12):2006-12. 139. Lelli S, Panizza M, Hallett M. Spinal cord inhibitory mechanisms in Parkinson's disease. Neurology. 1991;41(4):553-6. 140. Chen R, Garg RR, Lozano AM, Lang AE. Effects of internal globus pallidus stimulation on motor cortex excitability. Neurology. 2001;56(6):716-23. 141. Mak M, Hallett M. Effect of cued training on motor evoked potential and cortical silent period in people with Parkinson's disease. Clin Neurophysiol. 2013;124(3):545-50. 142. Davidson T, Tremblay F. Age and hemispheric differences in transcallosal inhibition between motor cortices: an ispsilateral silent period study. BMC neuroscience. 2013;14:62. 143. Compta Y, Valls-Sole J, Valldeoriola F, Kumru H, Rumia J. The silent period of the thenar muscles to contralateral and ipsilateral deep brain stimulation. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2006;117(11):2512-20. 144. Spagnolo F, Coppi E, Chieffo R, Straffi L, Fichera M, Nuara A, et al. Interhemispheric balance in Parkinson's disease: a transcranial magnetic stimulation study. Brain Stimul. 2013;6(6):892-7. 145. Ni Z, Bahl N, Gunraj CA, Mazzella F, Chen R. Increased motor cortical facilitation and decreased inhibition in Parkinson disease. Neurology. 2013;80(19):1746-53. 146. Kawashima S, Ueki Y, Mima T, Fukuyama H, Ojika K, Matsukawa N. Differences in dopaminergic modulation to motor cortical plasticity between Parkinson's disease and multiple system atrophy. PLoS One. 2013;8(5):e62515. 147. Perretti A, De Rosa A, Marcantonio L, Iodice V, Estraneo A, Manganelli F, et al. Neurophysiological evaluation of motor corticospinal pathways by TMS in idiopathic early-onset Parkinson's disease. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2011;122(3):546-9. 148. Baumer T, Pramstaller PP, Siebner HR, Schippling S, Hagenah J, Peller M, et al. Sensorimotor integration is abnormal in asymptomatic Parkin mutation carriers: a TMS study. Neurology. 2007;69(21):1976-81. 149. Schippling S, Schneider SA, Bhatia KP, Munchau A, Rothwell JC, Tabrizi SJ, et al. Abnormal motor cortex excitability in preclinical and very early Huntington's disease. Biol Psychiatry. 2009;65(11):959-65. 150. Salem L, Saleh N, Youssov K, Olivier A, Charles P, Scherer C, et al. The most appropriate primary outcomes to design clinical trials on Huntington's disease: meta-analyses of cohort studies and randomized placebo-controlled trials. Fundam Clin Pharmacol. 2014;28(6):700-10. 151. Kamble N, Netravathi M, Nagaraju BC, Lenka A, Kumar K, Sowmya V, et al. Evaluation of Cognition and Cortical Excitability in Huntington's Disease. The Canadian journal of neurological sciences Le journal canadien des sciences neurologiques. 2018;45(2):176-81. 152. Berardelli A, Suppa A. Noninvasive brain stimulation in Huntington's disease. Handbook of clinical neurology. 2013;116:555-60. 153. Ljubisavljevic MR, Ismail FY, Filipovic S. Transcranial magnetic stimulation of degenerating brain: a comparison of normal aging, Alzheimer's, Parkinson's and Huntington's disease. Curr Alzheimer Res. 2013;10(6):578-96. 154. Romeo S, Berardelli A, Pedace F, Inghilleri M, Giovannelli M, Manfredi M. Cortical excitability in patients with essential tremor. Muscle & nerve. 1998;21(10):1304-8. 155. Shih LC, Pascual-Leone A. Non-invasive Brain Stimulation for Essential Tremor. Tremor and other hyperkinetic movements (New York, NY). 2017;7:458. 156. Lefaucheur JP. Myoclonus and transcranial magnetic stimulation. Neurophysiol Clin. 2006;36(5-6):293-7. 157. Bloch Y, Arad S, Levkovitz Y. Deep TMS add-on treatment for intractable Tourette syndrome: A feasibility study. World J Biol Psychiatry. 2016;17(7):557-61. 158. Jackson SR, Parkinson A, Manfredi V, Millon G, Hollis C, Jackson GM. Motor excitability is reduced prior to voluntary movements in children and adolescents with Tourette syndrome. J Neuropsychol. 2013;7(1):29-44. 159. Gilio F, Curra A, Inghilleri M, Lorenzano C, Suppa A, Manfredi M, et al. Abnormalities of motor cortex excitability preceding movement in patients with dystonia. Brain : a journal of neurology. 2003;126(Pt 8):1745-54. 160. Quartarone A. Transcranial magnetic stimulation in dystonia. Handbook of clinical neurology. 2013;116:543-53. 161. Amadio S, Houdayer E, Bianchi F, Tesfaghebriel Tekle H, Urban IP, Butera C, et al. Sensory tricks and brain excitability in cervical dystonia: a transcranial magnetic stimulation study. Mov Disord. 2014;29(9):1185-8. 162. Abbruzzese G, Marchese R, Buccolieri A, Gasparetto B, Trompetto C. Abnormalities of sensorimotor integration in focal dystonia: a transcranial magnetic stimulation study. Brain : a journal of neurology. 2001;124(Pt 3):537-45. 163. McLeod JG, Walsh JC. H reflex studies in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 1972;35(1):77-80. 164. Schabrun SM, Stinear CM, Byblow WD, Ridding MC. Normalizing motor cortex representations in focal hand dystonia. Cereb Cortex. 2009;19(9):1968-77. 165. Kojovic M, Caronni A, Bologna M, Rothwell JC, Bhatia KP, Edwards MJ. Botulinum toxin injections reduce associative plasticity in patients with primary dystonia. Mov Disord. 2011;26(7):1282-9. 166. Russmann H, Lamy JC, Shamim EA, Meunier S, Hallett M. Associative plasticity in intracortical inhibitory circuits in human motor cortex. Clin Neurophysiol. 2009;120(6):1204-12. 167. Shin HW, Kang SY, Hallett M, Sohn YH. Reduced surround inhibition in musicians. Exp Brain Res. 2012;219(3):403-8. 168. Rona S, Berardelli A, Vacca L, Inghilleri M, Manfredi M. Alterations of motor cortical inhibition in patients with dystonia. Movement disorders : official journal of the Movement Disorder Society. 1998;13(1):118-24. 169. Hanajima R, Nomura Y, Segawa M, Ugawa Y. Intracortical inhibition of the motor cortex in Segawa disease (DYT5). Neurology. 2007;68(13):1039-44. 170. Edwards MJ, Talelli P, Rothwell JC. Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurol. 2008;7(9):827-40. 171. Bakker N, Shahab S, Giacobbe P, Blumberger DM, Daskalakis ZJ, Kennedy SH, et al. rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain stimulation. 2015;8(2):208-15. 172. Hoffland BS, Kassavetis P, Bologna M, Teo JT, Bhatia KP, Rothwell JC, et al. Cerebellum-dependent associative learning deficits in primary dystonia are normalized by rTMS and practice. The European journal of neuroscience. 2013;38(1):2166-71. 173. Siebner HR, Filipovic SR, Rowe JB, Cordivari C, Gerschlager W, Rothwell JC, et al. Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain : a journal of neurology. 2003;126(Pt 12):2710-25. 174. Edwards MJ, Huang YZ, Mir P, Rothwell JC, Bhatia KP. Abnormalities in motor cortical plasticity differentiate manifesting and nonmanifesting DYT1 carriers. Movement disorders : official journal of the Movement Disorder Society. 2006;21(12):2181-6. 175. Pirio Richardson S, Tinaz S, Chen R. Repetitive transcranial magnetic stimulation in cervical dystonia: effect of site and repetition in a randomized pilot trial. PloS one. 2015;10(4):e0124937. 176. Byrnes ML, Thickbroom GW, Wilson SA, Sacco P, Shipman JM, Stell R, et al. The corticomotor representation of upper limb muscles in writer's cramp and changes following botulinum toxin injection. Brain : a journal of neurology. 1998;121 ( Pt 5):977-88. 177. Gilio F, Curra A, Lorenzano C, Modugno N, Manfredi M, Berardelli A. Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia. Annals of neurology. 2000;48(1):20-6. 178. Allam N, Fonte-Boa PM, Tomaz CA, Brasil-Neto JP. Lack of effect of botulinum toxin on cortical excitability in patients with cranial dystonia. Clinical neuropharmacology. 2005;28(1):1-5. 179. Priori A, Berardelli A, Mercuri B, Manfredi M. Physiological effects produced by botulinum toxin treatment of upper limb dystonia. Changes in reciprocal inhibition between forearm muscles. Brain : a journal of neurology. 1995;118 ( Pt 3):801-7. 180. Valls-Sole J, Tolosa ES, Marti MJ, Allam N. Treatment with botulinum toxin injections does not change brainstem interneuronal excitability in patients with cervical dystonia. Clinical neuropharmacology. 1994;17(3):229-35. 181. Valls-Sole J, Tolosa ES, Ribera G. Neurophysiological observations on the effects of botulinum toxin treatment in patients with dystonic blepharospasm. Journal of neurology, neurosurgery, and psychiatry. 1991;54(4):310-3. 182. Boroojerdi B, Cohen LG, Hallett M. Effects of botulinum toxin on motor system excitability in patients with writer's cramp. Neurology. 2003;61(11):1546-50.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/6317
dc.description.abstractHajiyeva N. Electrophysiological evaluation of sensory-motor integration in cervical dystonia. Hacettepe University Faculty of Medicine, Department of Neurology, Thesis, Ankara 2019. Cervical dystonia is a focal dystonia that affects muscles of neck and shoulder, and it causes characteristically recurrent tonic and clonic movements lead to abnormal head postures. There are various studies about excitability in focal dystonia using single and paired pulse transcranial magnetic stimulations (TMS) in the literature. The aim of our study was to compare short latency intracortical inhibition (SICI), intracortical facilitation (ICF) and the cortical silent period (CSP) data that obtained using single and double pulse transcranial magnetic stimulations on sternocleidomastoid muscle in cervical dystonia patients with the data obtained from healthy individuals and thus to investigate patophysiological changes in excitatory and inhibitory circuits in patients. 20 patients and 21 healthy induvidials enrolled in the study. In the studies using double pulse TMS, mainly, there were applied test stimulus with specific interstimulus intervals after conditioning stimulus and obtained amplitude of MEP responses compared with amplitude of MEP responses that obtained by applying test stimuli alone without contidioning stimulus. Cortical silent period was measured in patients and healthy controls. In conclusion cortical inhibition reflected by SICI and CSP parameters was decreased (dysinhibiton) at cervical dystonia patients at SCM muscle which was responsible from the direction of the dystonic neck movements. These findings were more significant at dystonic patients that were not treated with BoTN-A. These findings support the role of dysinhibiton in pathophysiology of dystonia as well as the effect of BoTN-A on cortical plasticity probably by changing the sensorial inputs. Keywords: Dystonia, botox, transcranial magnetic stimulationtr_TR
dc.description.tableofcontentsTEŞEKKÜR iii ÖZET iv ABSTRACT v İÇİNDEKİLER vi ŞEKİLLER DİZİNİ ix TABLOLAR DİZİNİ x SİMGELER VE KISALTMALAR DİZİNİ xi 1. GİRİŞ 1 2. GENEL BİLGİLER 3 2.1. Distoni 3 2.1.1. Tanım ve Fenomenolojisi 3 2.1.2. Distoni Patofizyolojisi 3 2.1.3. Distoni Sınıflaması 4 2.2. Korteksin Non-İnvazif Uyarımı 16 2.2.1. Tarihçe 16 2.3. Transkraniyal Manyetik Uyarım (“Transcranial Magnetic Stimulation”; Tms) 17 2.3.1. Motor uyarılmış potansiyeller (“Motor Evoked Potentials”;MEP) 19 2.3.2. İstirahat motor eşik 21 2.3.3. Santral motor ileti zamanı (SMİZ) 21 2.3.4. Kortikal motor haritalama 21 2.3.5. Kortikal sessiz süre (KoSS) 22 2.3.6. Çift uyaran TMS çalışmaları 23 2.3.7. SICI 25 2.3.8. ICF 25 2.3.9. Repetetif TMS (rTMS) 26 2.4. Hareket hastalıklarında TMS ve kortikal uyarılabilirlik çalışmaları 26 2.4.1. Parkinson hastalığında TMS ve kortikal uyarılabilirlik çalışmaları 27 2.4.2. Huntington hastalığında TMS ve kortikal uyarılabilirlik çalışmaları 27 2.4.3. Esansiyel tremorda TMS ve kortikal uyarılabilirlik çalışmaları 28 2.4.4. Kortikal miyoklonusta TMS ve kortikal uyarılabilirlik çalışmaları 28 2.4.5. Gilles de la Tourette hastalığında TMS ve kortikal uyarılabilirlik çalışmaları 28 2.4.6. Distonide TMS ve kortikal uyarılabilirlik çalışmaları 28 2.5. Distonilerde Botulinum Toksin A Uygulaması Sonrası Kortikal Plastisite Değişiklikleri 31 3. GEREÇ VE YÖNTEMLER 33 3.1. Hastaların ve Kontrol Grubunun Seçimi 33 3.1.1. Kontrol Grubu çalışmaya dahil edilme kriterleri 33 3.2. Hasta Gruplarının oluşturulması ve çalışmaya dahil edilme kriterleri 33 3.3. Olguların dışlama kriterleri 33 3.4. Transkraniyal manyetik uyarım (“Transcranial magnetic stimulation:TMS”) ile kortikal uyarılabilirlik çalışmaları 34 3.4.1. Hot spot saptanması 36 3.4.2. İstirahat motor eşik (İME) 37 3.4.3. TMS ile çift uyaran çalışmaları 37 3.4.4. Kısa aralıklı intrakortikal inhibisyon çalışması (“short interval inntracortical inhibition:SICI”) 37 3.4.5. İntrakortikal fasilitasyon çalışması (“intracortikal facilitation:ICF”) 39 3.5. Kortikal sessiz süre çalışması (KoSS) 40 3.6. İstatistiksel Analiz 41 4. BULGULAR 43 4.1. Hastaların ve kontrol grubunun demografik özellikleri 43 4.1.1. Kontrol grubu 43 4.1.2. Hasta grupları 43 4.2. Transkraniyal manyetik uyarım (“Transcranial magnetic stimulation:TMS”) ile kortikal uyarılabilirlik çalışmaları 45 4.2.1. Verilerin normal dağılım analizi 45 4.2.2. Gruplar içinde MEPSICI_test_ort değerleri ile MEPSICI_koşul_ort değerlerinin karşılaştırılması 45 4.2.3. Gruplar içinde MEPICF_test_ort değerleri ile MEPICF_koşul_ort değerlerinin karşılaştırılması 46 5. TARTIŞMA 54 6. SONUÇ 58 7. KAYNAKLAR 59  tr_TR
dc.language.isoturtr_TR
dc.publisherTıp Fakültesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjecttranskraniyal manyetik uyarımtr_TR
dc.titleServikal Distoni Hastalığında Duyusal- Motor Entegrasyonun Elektrofizyolojik Yöntemlerle Değerlendirilmesitr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetÖZET Hajiyeva N. Servikal distoni hastalığında duyusal-motor entegrasyonun elektrofizyolojik yöntemlerle değerlendirilmesi. Hacettepe Üniversitesi Tıp Fakültesi Nöroloji Anabilim Dalı, Uzmanlık Tezi, Ankara, 2019. Servikal distoni (SD) boyun ve omuz kaslarını etkileyen, tekrarlayıcı özellikte, klonik ve tonik hareketlere yol açarak başın anormal postürüne neden olan fokal bir distonidir. Literatürde fokal distonilerde tek ve çift uyarım transmanyetik stimulasyon (TMS) yöntemleri kullanılarak çeşitli uyarılabilirlik çalışmaları yapılmıştır. Çalışmamızın amacı servikal distoni hastalarında sternokleidomastoid kasında gerçekleştirilen tek ve çift uyarım TMS ile elde edilen kısa süreli intrakortikal inhibisyon (SICI), intrakortikal fasilitasyon (İKF) ve kortikal sessiz süre (KoSS) verilerinin sağlıklı bireylerden elde edilen verilerle karşılaştırılarak, hastalarda eksitatör ve inhibitör devrelerdeki patofizyolojik değişikliklerin araştırılmasıdır. Çalışmaya 21 kontrol ve 20 hasta alınmıştır. Çift uyaran çalışmalarında temel olarak koşullandırıcı bir uyaran sonrası belli interstimulus intervalleri (ISI) ile test uyaran uygulanmış ve elde edilen MEP yanıtlarının genliği (amplitüt) ile koşullandırıcı uyaran olmadan tek başına test uyaran uygulanması ile elde edilen MEP yanıtlarının genliği karşılaştırılmıştır. Hastalarda ve sağlam kontrollerde kortikal sessiz süre bakılmıştır. Çalışma sonucunda servikal distoni hastalarında distonik hareket yönünden sorumlu SCM kasında SICI ve KoSS parametrelerinde kortikal inhibisyonda azalmayı- disinhibisyonu gösteren bulgular elde edilmiştir. Bu disinhibisyonun BoTN-A tedavisi uygulanmayan servikal distoni hastalarında ise uygulananlara göre daha belirgin olduğu da saptanmıştır. Elde edilen bu bulgular distoni patofizyolojisnde kortikal disinhibisyonun rolünü göstermesinin yanı sıra, BoTN-A uygulamasının muhtemelen duyusal girdilerde oluşturduğu değişiklikler ile kortikal plastisite üzerine etkilerini de desteklemiştir. Anahtar kelimeler: Distoni, botoks, transkraniyel manyetik stimülasyon  tr_TR
dc.contributor.departmentNörolojitr_TR
dc.embargo.terms2 yiltr_TR


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster