Basit öğe kaydını göster

dc.contributor.advisorBağdadioğlu, Necmiddin
dc.contributor.authorÜlgen, Anıl
dc.date.accessioned2018-12-26T10:19:30Z
dc.date.issued2018-10-01
dc.date.submitted2018-09-05
dc.identifier.citation[1] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology, Renew. Sustain. Energy Rev., vol. 39, pp. 748–764, 2014. [2] IEA, Deploying Renewables 2011: Best and Future Policy Practice. Paris, France, 2011. [3] S. Müller, A. Brown, and S. Ölz, Policy Considerations for Deploying Renewables, Renew. Energy, p. 72, 2011. [4] W. P. Linak et al., Ultrafine Ash Aerosols from Coal Combustion: Characterization And Health Effects, Proc. Combust. Inst., vol. 31 II, pp. 1929–1937, 2007. [5] K. Donaldson et al., Combustion-Derived Nanoparticles: A Review Of Their Toxicology Following İnhalation Exposure, Part. Fibre Toxicol., vol. 2, pp. 1–14, 2005. [6] F. Aguilera, J. Méndez, E. Pásaroa, and B. Laffona, Review On The Effects Of Exposure To Spilled Oils On Human Health, J. Appl. Toxicol., vol. 30, no. 4, pp. 291–301, 2010. [7] M. . Hamlat, S. Djeffal, and H. Kadi, Assessment Of Radiation Exposures From Naturally Occurring Radioactive Materials İn The Oil And Gas İndustry, Appl. Radiat. Isot., vol. 55, no. 1, pp. 141–146, 2001. [8] C. S. Lee, M. E. Lutcavage, E. Chandler, D. J. Madigan, R. M. Cerrato, and N. S. Fisher, Declining Mercury Concentrations n Bluefin Tuna Reflect Reduced Emissions To The North Atlantic Ocean, Environ. Sci. Technol., vol. 50, no. 23, pp. 12825–12830, 2016. [9] E. Sunderland, Mercury Exposure from Domestic and Imported Estuarine and Marine Fish in the U.S. Seafood Market, Env. Heal. Perspect., vol. 115, pp. 235–242, 2007. [10] Rueters, China To Close More Than 1,000 Coal Mines, Web Article, 2016. [Online]. Available: https://www.reuters.com/article/us-china-energy-coal/china-to-close-more-than-1000-coal-mines-in-2016-energy-bureau-idUSKCN0VV0U5. (Temmuz, 2018). [11] S. Yan, China Plans To Cut 1.8 Million Steel And Coal Jobs, CNN Money, 2016. [Online]. Available: http://money.cnn.com/2016/02/29/news/economy/china-steel-coal-jobs/index.html. (Temmuz, 2018). [12] IRENA, Renewable Energy and Jobs Annual Review (2018), Annual Review Series, Abu Dhabi 2018. [13] NASEO, U.S. Energy And Employment Report, Washington 2017. [14] EIA, What is U.S. Electricity Generation By Energy Source?, 2017. [Online]. Available: https://www.eia.gov/tools/faqs/faq.php?id=427&t=3. (Temmuz, 2018). [15] D. Coady, I. Parry, L. Sears, and B. Shang, How Large Are Global Fossil Fuel Subsidies?, World Dev., vol. 91, pp. 11–27, 2017. [16] B. Clements, H. S. Jung, and S. Gupta, Real And Distributive Effects Of Petroleum Price Liberation: The Case of Indonesia, Dev. Econ., vol. 45, no. 2, pp. 220–237, 2007. [17] I. Fofana, M. Chitiga, and R. Mabugu, Oil Prices And The South African Economy: A Macro-Meso-Micro Analysis, Energy Policy, vol. 37, no. 12, pp. 5509–5518, 2009. [18] IRENA, Renewable Energy in the Water Energy & Food Nexus, Abu Dhabi, 2015. [19] IEA, World Energy Outlook 2012, Data and Publications, Paris, 2012. [20] M. Bazilian and F. Roques, Analytical Methods For Energy Diversity And Security, Elsevier Science, 2008. [21] S. Awerbuch and R. Sauter, Exploiting the oil-GDP effect to support renewables deployment, Energy Policy, vol. 34, no. 17, pp. 2805–2819, 2006. [22] F. Cherubini Neil D. Bird, Annette Cowie, Gerfried Jungmeier, Bernhard Schalamadinger, Susanne Woess-Gallasch, Energy and Greenhouse Gas Based Lca of Biofuel and Bioenergy Systems: Key Issues, Ragnes, and Recommendations, Resour. Conserv. Recycl., vol. 53, no. 8, pp. 434–447, 2009. [23] IEA, World Energy Outlook 2010, Data and Publications, Paris, 2010. [24] M. B. Müller, S.G, A. Marmion, Markets and Prospects, IEA Reports, Paris, 2011. [25] IEA, Energy Technology Perspectives 2010: Scenarios & Strategies to 2050, Report, Paris, 2010. [26] U.S. Department of Energy, U.S. Energy and Employment Report, p. 84, 2017. [27] IRENA, Data and Statistics, 2018. [Online]. Available: http://resourceirena.irena.org/gateway/dashboard/?topic=4&subTopic=17. (Mart, 2018). [28] US Department of Energy, Solar Energy Technologies Office. [Online]. Available: https://www.energy.gov/eere/solar/solar-energy-technologies-office. (Eylül, 2018). [29] WEC, World Energy Resources 2016, Annual Report, London, 2016. [30] IRENA, Power Generation Costs in 2017, Technical Report Series, Abu Dhabi, 2017. [31] SOLARGIS, Photovoltaic Electricity Potential, Photovoltaic Electricity Potential. [Online]. Available: https://solargis.com/maps-and-gis-data/download/world. (Ağustos, 2018). [32] R. Fu, D. Feldman, and R. Margolis, U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017, NREL Technical Report, Denver, 2017. [33] H. Zou, H. Du, J. Ren, B. K. Sovacool, Y. Zhang, and G. Mao, Market Dynamics, Innovation, and Transition in China’s Solar Photovoltaic (Pv) Industry: A Critical Review, Renew. Sustain. Energy Rev., vol. 69, no. February 2016, pp. 197–206, 2017. [34] Solarpower, What’s Next for Solar in Europe?, http://www.solarpowereurope.org/whats-next-for-solar-in-europe/ (Temmuz, 2018). [35] R. Fu, Innovations in Solar Plant Assembly Drive Costs Towards $1 Per Watt in 2017, 2016. [Online]. Available: http://analysis.newenergyupdate.com/pv-insider/innovations-solar-plant-assembly-drive-costs-towards-1-watt-2017. (Mayıs, 2018). [36] M. Osborne, Global PV Manufacturing Capacity Expansion Announcements in March Increase To 7.3gw, PV-Tech, 2016. [37] M. Schmela and G. Concas, Solar Cell & Module Production 2016 in Europe Survey, SolarPower Europe Report, 2017. [38] SolarPowerEurope, Global Market Outlook For Solar Power 2018 - 2022, Technical Report, Brussels, 2018. [39] Z. Zhao, S. Zhang, B. Hubbard, and X. Yao, The Emergence of the Solar Photovoltaic Power Industry in China, Renew. Sustain. Energy Rev., vol. 21, pp. 229–236, 2013. [40] X. Lei, W. Xiurong, and H. Lixin, Study On Dynamic Mechanism Of Photovoltaic İndustry Development, Sci Technol Prog Policy, vol. 27, no. 22, p. 91, 2010. [41] L. Xiaohua, The Development Model Comparison Between China’s Photovoltaic İndustry And Solarthermal İndustry, Sino-Global Energy, vol. 2, pp. 29–34, 2011. [42] R. Zhao, G. Shi, H. Chen, A. Ren, and D. Finlow, Present Status And Prospects Of Photovoltaic Market İn China, Energy Policy, vol. 39, no. 4, pp. 2204–2207, 2011. [43] Solar Energy Development Programmatic EIS, Concentrating Solar Power (CSP) Technologies. [Online]. Available: http://solareis.anl.gov/guide/solar/csp/, (Ağustos, 2018). [44] M. Christopher and Y. Goswami, Solar Energy Pocket Reference. Earthscan Publishing, 2005. [45] California Energy Comission, Solar Energy Projects in California, 2018. [Online]. Available: http://www.energy.ca.gov/sitingcases/solar/. (Mayıs, 2018). [46] IRENA, Renewable Cost Database. [Online]. Available: http://www.irena.org/costs, (Mayıs, 2018). [47] S. Dieckmann et al., LCOE Reduction Potential of Parabolic Trough and Solar Tower Csp Technology Until 2025, AIP Conf. Proc., vol. 1850, 2017. [48] J. Burney, L. Woltering, M. Burke, R. Naylor, and D. Pasternak, Solar-Powered Drip Irrigation Enhances Food Security In The Sudano-Sahel, Proc. Natl. Acad. Sci., vol. 107, no. 5, pp. 1848–1853, 2010. [49] T. Tsoutsos, N. Frantzeskaki, and V. Gekas, Environmental Impacts from the Solar Energy Technologies, Energy Policy, vol. 33, no. 3, pp. 289–296, 2005. [50] A. B. Lovins, Energy Strategy: The Road Not Taken?, Foreign Aff., vol. 55, no. 1, p. 65, 1976. [51] T. P. Fluri, The Potential of Concentrating Solar Power In South Africa, Energy Policy, vol. 37, no. 12, pp. 5075–5080, 2009. [52] R. R. Hernandez et al., Environmental Impacts of Utility-Scale Solar Energy, Renew. Sustain. Energy Rev., vol. 29, pp. 766–779, 2014. [53] J. Fischer and D. B. Lindenmayer, An Assessment of the Published Results of Animal Relocations, Biological Conservation, vol. 96, no. 1. pp. 1–11, 2000. [54] DRECP, Recommendations of Independent Science Advisors for the California Desert Renewable Energy Conservation Plan ( DRECP ), 2010. [55] J. E. Lovich and J. R. Ennen, Wildlife Conservation and Solar Energy Development in the Desert Southwest, United States, Bioscience, vol. 61, no. 12, pp. 982–992, 2011. [56] M. D. McCrary, R. L. McKernan, R. W. Schreiber, W. D. Wagner, and T. C. Sciarrotta, Avian Mortality at a Solar Energy Power Plant, Journal of Field Ornithology, vol. 57. pp. 135–141, 1986. [57] J. L. Gelbard and J. Belnap, Roads as Conduits for Exotic Plant Invasions in a Semiarid Landscape, Conserv. Biol., vol. 17, no. 2, pp. 420–432, 2003. [58] T. A. Zink, M. F. Allen, B. Heindl‐Tenhunen, and E. B. Allen, The Effect of a Disturbance Corridor on an Ecological Reserve, Restor. Ecol., vol. 3, no. 4, pp. 304–310, 1995. [59] S. A. Abbasi and N. Abbasi, The Likely Adverse Environmental Impacts of Renewable Energy Sources, in Applied Energy, vol. 65, no. 1–4, pp. 121–144, 2000. [60] U.S. Dept. of Energy, Energy Demands On Water Resources, Report to Congress on the Interdependency of Energy and Water, Washington, 2006. [61] V. Fthenakis and H. C. Kim, Life-Cycle Uses of Water in U.S. Electricity Generation, Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 2039–2048, 2010. [62] G. He, C. Zhou, and Z. Li, Review of Self-Cleaning Method for Solar Cell Array, Procedia Engineering, vol. 16, pp. 640–645, 2011. [63] C. L. Schwartz, Concentrated Thermal Solar Power and the Value of Water for Electricity, Edward Elgar Publishing Ltd., 2011. [64] K. E. Holbert and C. J. Haverkamp, Impact of Solar Thermal Power Plants on Water Resources and Electricity Costs in the Southwest, in North American Power Symposium (NAPS), pp. 1–6, 2009. [65] R. R. Hernandez, M. K. Hoffacker, and C. B. Field, Land-Use Efficiency of Big Solar, Environ. Sci. Technol., vol. 48, no. 2, pp. 1315–1323, 2014. [66] J. Li, G. S. Okin, L. Alvarez, and H. Epstein, Quantitative Effects of Vegetation Cover on Wind Erosion and Soil Nutrient Loss in a Desert Grassland of Southern New Mexico, USA, Biogeochemistry, vol. 85, no. 3, pp. 317–332, 2007. [67] W. H. Schlesinger et al., Biological Feedbacks in Global Desertification, Science (80-. )., vol. 247, no. 4946, pp. 1043–1048, 1990. [68] V. M. Fthenakis, End-of-Life Management and Recycling of PV Modules, Energy Policy, vol. 28, no. 14, pp. 1051–1058, 2000. [69] P. Gevorkian, Large-Scale Solar Power System Design: an Engineering Guide for Grid Connected Solar Power, The McGraw-Hill Companies, 2003. [70] G. F. Nemet, Net Radiative Forcing from Widespread Deployment of Photovoltaics, Environ. Sci. Technol., vol. 43, no. 6, pp. 2173–2178, 2009. [71] D. Millstein and S. Menon, Regional Climate Consequences of Large-Scale Cool Roof and Photovoltaic Array Deployment, Environ. Res. Lett., vol. 6, no. 3, 2011. [72] P. Zhai, P. Larsen, D. Millstein, S. Menon, and E. Masanet, The Potential for Avoided Emissions from Photovoltaic Electricity in the United States, Energy, vol. 47, no. 1, pp. 443–450, 2012. [73] W. Witzel and D. Seifried, Renewable Energy, the Facts. Earthscan Publishing, 2010. [74] C. L. Archer, Evaluation of Global Wind Power, J. Geophys. Res., vol. 110, no. September 2004, pp. 1–20, 2005. [75] A. McCrone, U. Moslener, F. D’Estais, and C. Grünig, Global Trends in Renewable Energy Investment 2017, Frankfurt School UNEP Collaborating Centre for Climate and Sustainable Energy Finance Frankfurt School of Finance & Management, 2017. [76] International Energy Agency (IEA), Medium-Term Renewable Energy Market Report 2016, Paris, 2016. [77] C. Moné, M. Hand, M. Bolinger, J. Rand, D. Heimiller, and J. Ho, 2015 Cost of Wind Energy Review, Natl. Renew. Energy Lab., no. February, p. 113, 2017. [78] NREL, NREL Bioenergy Lab. [Online]. Available: https://www.energy.gov/eere/bioenergy/full-text-glossary#bioenergy. (Mayıs, 2018). [79] WBA, WBA Global Bioenergy Statistics 2017, Stockholm, 2017. [80] A. McCrone, U. Moslener, F. D’Estais, and C. Grünig, Global Trends in Renewable Energy Investment 2017, Frankfurt School UNEP Collaborating Centre for Climate and Sustainable Energy Finance Frankfurt School of Finance & Management, 2017. [81] IRENA, Cost-Competitive Renewable Power Generation: Potential Across South East Europe, Abu Dhabi, 2017. [82] E. Barbier, Geothermal Energy Technology and Current Status : an Overview, Renew. Sustain. Energy Rev., vol. 6, pp. 3–65, 2002. [83] E. E. S. Michaelides, Future Directions and Cycles for Electricity Production from Geothermal Resources, Energy Convers. Manag., vol. Article in, 2015. [84] L. Muffler and R. Cataldi, Methods for Regional Assessment of Geothermal Resources, Geothermics, vol. 7, pp. 53–89, 1978. [85] EIA, Use of Geothermal Energy. [Online]. Available: www.eia.gov. , (Mayıs, 2018). [86] W. A. Elders, G. Ó. Fri, and A. Albertsson, Geothermics Drilling into Magma and the Implications of the Iceland Deep Drilling Project ( Iddp ) for High-Temperature Geothermal Systems Worldwide, Geothermics, vol. 49, pp. 111–118, 2014. [87] C. N. Hance, Factors Affecting Costs of Geothermal Power Development, Geotherm. Energy Assoc., no. August, 2005. [88] IEA, Technology Roadmap Geothermal Heat and Power, Paris, France, 2011. [89] IHA, Hydropower Country Profiles - China, 2016. [Online]. Available: https://www.hydropower.org/country-profiles/china. (Mayıs, 2018). [90] IRENA, Renewable Capacity Statistics 2017, Abu Dhabi, 2017. [91] M. S. M. Jentsch, M. S. Iwes, and M. S. Zsw, Erneuerbares Methan Kopplung von Strom- und Gasnetz Inhalt, Fraunhofer-Institut für Windenergie und Energiesystemtechnik, 2010. [92] REN21, Renewables 2017: Global Status Report, Paris, 2017. [93] Sandia National Laboratories, DOE Global Energy Storage Database, 2018. [Online]. Available: https://www.energystorageexchange.org/projects?utf8=✓&technology_type_sort_eqs=&technology_type_sort_eqs_category=&country_sort_eq=&state_sort_eq=&kW=&kWh=&service_use_case_inf=&ownership_model_eq=&status_eq=&siting_eq=&order_by=&sort_order=&search_page=&. (Mayıs, 2018). [94] World Energy Council, E-storage: Shifting from Cost to Value Wind and solar applications, London, 2016. [95] EIA, How Much of U.S. Carbon Dioxide Emissions are Associated With Electricity Generation? [Online]. Available: https://www.eia.gov/tools/faqs/faq.php?id=77&t=11, (Ağustos, 2018). [96] U.S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015, Washington, 2017. [97] IEA, Deploying renewables: Principles for Effective Policies, Paris, 2008. [98] E. L. Boasson and J. Wettestad, Eu Climate Policy: Industry, Policy Interaction and External Environment, Ashgate Publishing Ltd, 2013. [99] N. I. Meyer, European Schemes for Promoting Renewables In Liberalised Markets, Energy Policy, vol. 31, no. 7, pp. 665–676, 2003. [100] J. B. SKJERSETH, The Climate Policy of the EC: Too Hot to Handle?, JCMS J. Common Mark. Stud., vol. 32, no. 1, pp. 25–46, 1994. [101] R. Hildingsson, J. Stripple, and A. Jordan, Governing Renewable Energy in the EU: Confronting a Governance Dilemma, European Political Science, vol. 11, no. 1, pp. 18–30, 2012. [102] P. O. Busch and H. Jörgens, The International Sources of Policy Convergence: Explaining the Spread of Environmental Policy Innovations, Journal of European Public Policy, vol. 12, no. 5, pp. 860–884, 2005. [103] V. Lauber, Switching to renewable power: A framework for the 21st century, Taylor and Francis, 2012. [104] F. and I. S. (eds) Morata, European Energy Policy: An Environmental Approach. Edward Elgar, 2012. [105] D. Reiche and M. Bechberger, Policy Differences in the Promotion of Renewable Energies in the EU Member States, Energy Policy, vol. 32, no. 7, pp. 843–849, 2004. [106] I. H. Rowlands, The European Directive on Renewable Electricity: Conflicts And Compromises, Energy Policy, vol. 33, no. 8. pp. 965–974, 2005. [107] S. Langsdorf, EU Energy Policy : From the ECSC to the Energy Roadmap 2050, Green Eur. Found., no. December, p. 9, 2011. [108] EPİAŞ, Gün Öncesi̇ Elektri̇k Pi̇yasasi - Piyasa Takas Fiyatı Belirleme Yöntemi, Ankara, 2016. [109] M. Klobasa, M. Ragwitz, and I. Research, Demand Response – A New Option for Wind Integration, Proc. Eur. Wind Energy Conf. Exhib., pp. 85–89, 2006. [110] M. Frondel, N. Ritter, C. M. Schmidt, and C. Vance, Economic Impacts from the Promotion of Renewable Energy Technologies: The German Experience, Energy Policy, vol. 38, no. 8, pp. 4048–4056, 2010. [111] J. Cludius, H. Hermann, F. C. Matthes, and V. Graichen, The Merit Order Effect of Wind and Photovoltaic Electricity Generation in Germany 2008-2016 Estimation and Distributional Implications, Energy Econ., vol. 44, no. 2014, pp. 302–313, 2014. [112] A. C. Marques, J. A. Fuinhas, and J. R. Pires Manso, Motivations Driving Renewable Energy in European Countries: A Panel Data Approach, Energy Policy, vol. 38, no. 11, pp. 6877–6885, 2010. [113] F. C. Menz and S. Vachon, The Effectiveness of Different Policy Regimes for Promoting Wind Power: Experiences From the States, Energy Policy, vol. 34, no. 14, pp. 1786–1796, 2006. [114] S. Carley, State renewable energy electricity policies: An empirical evaluation of effectiveness, Energy Policy, vol. 37, no. 8, pp. 3071–3081, Aug. 2009. [115] L. Stokes, The Politics of Renewable Energy and Ambitious Policies : Comparing Ontario , California , and Texas, 2015, pp. 1–5, 2015. [116] D. Popp, I. Hascic, and N. Medhi, Technology and the Diffusion of Renewable Energy, Energy Econ., vol. 33, no. 4, pp. 648–662, 2011. [117] T. Chien and J. L. Hu, Renewable Energy: an Efficient Mechanism to Improve GDP, Energy Policy, vol. 36, no. 8, pp. 3035–3042, 2008. [118] L. Gan, G. S. Eskeland, and H. H. Kolshus, Green Electricity Market Development: Lessons from Europe and the US, Energy Policy, vol. 35, no. 1, pp. 144–155, 2007. [119] B. van Ruijven and D. P. van Vuuren, Oil and Natural Gas Prices and Greenhouse Gas Emission Mitigation, Energy Policy, vol. 37, no. 11, pp. 4797–4808, 2009. [120] K. Würzburg, X. Labandeira, and P. Linares, Renewable Generation and Electricity Prices: Taking Stock and New Evidence for Germany and Austria, Energy Econ., vol. 40, 2013. [121] L. Gelabert, X. Labandeira, and P. Linares, An Ex-Post Analysis of the Effect of Renewables and Cogeneration on Spanish Electricity Prices, Energy Econ., vol. 33, no. SUPPL. 1, 2011. [122] T. H. Chang, C. M. Huang, and M. C. Lee, Threshold Effect of the Economic Growth Rate on the Renewable Energy Development from a Change in Energy Price: Evidence From OECD Countries, Energy Policy, vol. 37, no. 12, pp. 5796–5802, 2009. [123] M. Aguirre, G. Ibikunle, Determinants of Renewable Energy Growth: a Global Sample Analysis, Energy Policy, vol. 69, pp. 374–384, Jun. 2014. [124] A. Campoccia, L. Dusonchet, E. Telaretti, and G. Zizzo, An Analysis Of Feed-in Tariffs for Solar PV in Six Representative Countries of the European Union, Sol. Energy, vol. 107, pp. 530–542, 2014. [125] D. Nelson, B. O ’connell, L. De, and L. M. Huxham, European Renewable Energy Policy and Investment, Climate Policy Initiative Report, 2016. [126] Y. Wang, Renewable Electricity in Sweden: an Analysis of Policy and Regulations, Energy Policy, vol. 34, no. 10, pp. 1209–1220, 2006. [127] P. Lamers, Assesment of Non-Economic Barriers to the Development of Renewable Electricity: Global Recommendations, ECORYS Report, Berlin, 2009. [128] J. P. Painuly, Barriers To Renewable Energy Penetration: a Framework for Analysis, Renew. Energy, vol. 24, no. 1, pp. 73–89, 2001. [129] B. Cointe, The Politics of (Bad) Policy Design: French Solar Panels and Northern Irish Boilers, 2017. [Online]. Available: https://environmentaleurope.ideasoneurope.eu/2017/01/27/french-solar-rhi/. (Temmuz, 2018). [130] T. D. Couture, K. Cory, and E. Williams, A Policymaker’s Guide to Feed-in Tariff Policy Design, NREL Technical Reports, Denver, 2010. [131] F. Beck and E. Martinot, Renewable Energy Policies and Barriers, Encyclopedia of Energy, vol. 34, no. 3. pp. 365–383, 2004. [132] REN21, Global Status Report 2012, Annual Report, Paris, 2012. [133] IEA, Renewable Energy: Market and Policy Trends in IEA Countries, Report, Paris, 2004. [134] Solar Energy Industries Association, Net Metering, 2018. [Online]. Available: https://www.seia.org/initiatives/net-metering. (Eylül, 2018). [135] IEA, Renewable Energy, Market and Policy Trends in IEA Countries, Report, Paris, 2004. [136] NAO, Report by the Comptroller and Auditor General, 2005. [Online]. Available: www.nao.org.uk/wp-content/uploads/2005/02/0405210.pdf. (Nisan, 2018). [137] H. Zhou, Impacts of Renewables Obligation With Recycling of the Buy-Out Fund, Energy Policy, vol. 46, pp. 284–291, 2012. [138] A. Flamos, W. Van der Gaast, H. Doukas, and G. Deng, EU and Asian Countries Policies and Programmes for the Diffusion of Sustainable Energy Technologies, Asia Eur. J., vol. 6, no. 2, pp. 261–276, 2008. [139] IEA, Solar Energy Perspectives, Technical Report, Paris, 2011. [140] D. Toke, Ecological Modernization and Renewable Energy. London: Palgrave Macmillan, 2011. [141] F. Aydınlı, Supporting Renewable Energy: The Role of Incentive Mechanisms, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Ankara, 2013. [142] EC, Excise Duties: Energy Tax Proposal. [Online]. Available: https://ec.europa.eu/taxation_customs/business/excise-duties-alcohol-tobacco-energy/excise-duties-energy/excise-duties-energy-tax-proposal_en. (Nisan, 2018). [143] R. Missaoui and S. Marrouki, Study on Innovative Financing Mechanisms for Renewable Energy Projects in North Africa, Provisional Report, 2012. [144] IEA, Cities, Towns & Renewable Energy: Yes In My Front Yard, Report, Paris, 2009. [145] A. T. C. J. Dangerman and H. J. Schellnhuber, Energy Systems Transformation, Proc. Natl. Acad. Sci., vol. 110, no. 7, pp. E549–E558, 2013. [146] Eurostat, Over half of EU’s energy consumption from imports, 2018. [Online]. Available: http://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/DDN-20180420-1. (Mayıs, 2018). [147] European Commission, A policy framework for climate and energy in the period from 2020 up to 2030, Brussels, 2014. [148] R. Eriksson, The European Energy Policy - In Framing of Energy Security in the European Union. Lund: Lund University Publications, 2011. [149] IEA, European Union 2014 Review, Report, Paris, 2014. [150] Öko Institute, Study on Technical Assistance in Realisation of the 2016 Report on Renewable Energy , in preparation of the Renewable Energy Package for the Period 2020-2030 in the European Union, Freiburg, 2017. [151] European Commission, Renewable Energy Progress Report 2017, Report, Brussels, 2017. [152] European Commission, Accelerating Clean Energy Innovation, Report, Brussels, 2016. [153] EurObserv’ER, Renewable Energy Policy Fact Sheet, RES Policy Reports, Frankfurt, 2017. [154] European Commission, REFIT evaluation of the Directive 2009/28/EC of the European Parliament and of the Council, Brussels, SWD(2016) 417 final, 2016. [155] O. Renn and J. P. Marshall, Coal, Nuclear and Renewable Energy Policies in Germany: From the 1950s to the ‘Energiewende,’ Energy Policy, vol. 99, pp. 224–232, 2016. [156] G. Kenk and H. Fischer, Evidence from nitrogen fertilisation in the forests of Germany, Environ. Pollut., vol. 54, no. 3–4, pp. 199–218, 1988. [157] World Energy Council, World Energy Perspective: Nuclear Energy One Year After Fukushima, Report, Paris, 2012. [158] AG Energiebilanzen, Ausgewählte Effizienzindikatoren zur Energiebilanz Deutschland. Daten für die Jahre 1990 bis 2014, Report, Berlin, 2015. [159] AG Energiebilanzen, Bruttostromerzeugung in Deutschland ab 1990 nach Energieträgern, Report, Berlin, 2015. [160] Arbeitsgemeinschaft Energiebilanzen (AGEB), Entwicklungen in der Deutschen Stromwirtschaft 2013 Entwicklung des Gesamt-Stromverbrauchs, Report, Hannover, 2017. [161] M. T. Hatch, Politics And Nuclear Power Energy Policy in Western Europe. Kentucky: The University Press of Kentucky, 1986. [162] Ethik-Kommission Sichere Energieversorgung, Deutschlands Energiewende - Ein Gemeinschaftswerk für die Zukunft. Berlin, 2011. [163] O. Renn and M. Dreyer, Risk Governance: Ein neues Steuerungsmodell zur Bewältigung der Energiewende, 2013. [164] D. Energy, After Fukushima: EU Stress Tests Start on 1 June, EU Commissioner for Energy Report, Commission Report, 2011. [165] Ethik-Kommission Sichere Energieversorgung, Deutschlands Energiewende - Ein Gemeinschaftswerk für die Zukunft, Report, Berlin, 2011. [166] H. Chrischilles, E., Bardt, Ein Strommarkt für die Energiewende – Leitlinien für die Zukunft?, IDDWS Report, Cologne, 2015. [167] AG Energiebilanzen, Auswertungstabellen zur Energiebilanz Deutschland, Auswertungstabellen zur Energiebilanz Deutschl. 1990 bis 2016, Report, Berlin, 2017. [168] Statica, Stromeinfuhr und -ausfuhr von und nach Deutschland in den Jahren 1991 bis 2016 (in Terawattstunden), 2016. [Online]. Available: https://de.statista.com/statistik/daten/studie/164150/umfrage/stromeinfuhr-und--ausfuhr-von-und-nach-deutschland-seit-1999/, (Nisan, 2018). [169] R. Haas, C. Panzer, G. Resch, M. Ragwitz, G. Reece, and A. Held, A Historical Review of Promotion Strategies for Electricity From Renewable Energy Sources in EU Countries, Renew. Sustain. Energy Rev., vol. 15, no. 2, pp. 1003–1034, 2011. [170] BMWi, Briefing by the German Government: Experience Report by the German Ministry of Economy on the Feed-in Law, Report, Berlin, 1995. [171] S. Jacobsson and V. Lauber, The Politics and Policy of Energy System Transformation—Explaining the German Diffusion of Renewable Energy Technology, Energy Policy, vol. 34, no. 3, pp. 256–276, 2006. [172] F. (Ed) Staiss, Jahrbuch Erneuerbare Energien, Annual Report, Radebeul, 2003. [173] J. Hoppmann, J. Huenteler, and B. Girod, Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power, pp. 1–20, 2014. [174] M. Andor, M. Frondel, C. M. Schmidt, M. Simora, and S. Sommer, Klima- und Energiepolitik in Deutschland: Dissens und Konsens, List Forum, vol. 41, no. 1, pp. 3–21, 2015. [175] M. González-Eguino, Energy Poverty: An overview, Renew. Sustain. Energy Rev., vol. 47, pp. 377–385, 2015. [176] Federal Republic of Germany, Act on the Development of Renewable Energy Sources - RES Act 2017, no. July, p. 179, 2017. [177] BMWi, EEG in Zahlen : Vergütungen , Differenzkosten und EEG-Umlage 2000 bis 2018, Report, Berlin, 2017. [178] T. Sternkopf, Legal sources on renewable energy - Promotion in Germany. [Online]. Available: http://www.res-legal.eu/search-by-country/germany/tools-list/c/germany/s/res-e/t/promotion/sum/136/lpid/135/. (Eylül, 2018). [179] BMWi, EEG-Umlage 2017 : Fakten und Hintergründe, Report, Berlin, 2017. [180] BMWi, Putting policies in place for an electricity supply that is fit for the future: the ‘Electricity 2030’ discussion process. [Online]. Available: https://www.bmwi.de/Redaktion/EN/Artikel/Energy/electricity-2030.html. (Mayıs, 2018). [181] S. Lüthi, Effective Renewable Energy Policy - Empirical Insights from Choice Experiments with Project Developers, University of St. Gallen, 2011. [182] I. Weiss, Assesment of 12 National Policy Frameworks for Photovoltaics, European Best Practice Report, 2006. [183] J. Sieber, A Hot Market: Investments in Solar Parks in Spain, Photon, pp. 34–36, 2007. [184] P. Del Río and P. Mir-Artigues, Support for Solar PV Deployment in Spain: Some Policy Lessons, Renewable and Sustainable Energy Reviews, vol. 16, no. 8. pp. 5557–5566, 2012. [185] P. Río González and P. Mir-Artigues, A Cautionary Tale: Spains Solar PV Investment Bubble, IISD Report, Manitoba, 2014. [186] M. Tsikintikou, Improving Feed-in Tariff Policy Design for Solar PV, Yüksek Lisans Tezi, TU Delft, Delft, 2015. [187] Comisión Nacional de Mercados de Competencia, CNMC - Reports - Energy. [Online]. Available: https://www.cnmc.es/en/informes?t=solar&idambito=9&edit-submit-buscador-informes=Buscar&idprocedim=All&idtipoexp=All&datefrom=&dateto=. (Mayıs, 2018). [188] K. H. Solangi, M. R. Islam, R. Saidur, N. a. Rahim, and H. Fayaz, a Review on Global Solar Energy Policy, Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 2149–2163, 2011. [189] P. Mir-Artigues, E. Cerdá, and P. Del Río, Analyzing the Impact of Cost-Containment Mechanisms on the Profitability of Solar PV Plants in Spain, Renew. Sustain. Energy Rev., vol. 46, pp. 166–177, 2015. [190] Red Eléctrica de España, Producción De Energía Eléctrica Eléctrica, Report, Barcelona, 2016. [191] Red Eléctrica de España, The Spanish Electricity System 2016, Barcelona, Report, 2016. [192] IDAE, Spain’s National Renewable Energy Action Plan 2011-2020, Report, Barcelona, 2010. [193] RISE, Regulatory Indicators For Sustainable Energy [Online]. Available: https://rise.org/ .(Temmuz, 2018). [194] EC, Energy Union Factsheet Spain, Brussels, 2017. [195] World Energy Council, World Energy Trilemma Index, Report, Paris, 2017. [196] Danish Wind Industry Association, Offshore. [Online]. Available: http://www.windpower.org/en/policy/offshore.html. (Temmuz, 2018). [197] E. Ogden, Structures , Norms , and Renewable Energy Policy : A Comparative Analysis of the Driving Forces Behind Energy Policymaking in the United States and Denmark, Lisans Tezi, Trinity College, Hartford, 2017. [198] Danish Energy Agency., Energistatistik 2014, Report, Kopenhagen, 2015. [199] R. Parajuli, Looking into the Danish Energy System: Lesson to be Learned by Other Communities, Renewable and Sustainable Energy Reviews, vol. 16, no. 4. pp. 2191–2199, 2012. [200] A. Chittum and P. A. Østergaard, How Danish Communal Heat Planning Empowers Municipalities and Benefits Individual Consumers, Energy Policy, vol. 74, no. C, pp. 465–474, 2014. [201] P. S. Kwon and P. A. Østergaard, Comparison of Future Energy Scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050, Energy, vol. 46, no. 1, pp. 275–282, 2012. [202] B. V. Mathiesen, H. Lund, and D. Connolly, Limiting biomass consumption for heating in 100% renewable energy systems, Energy, vol. 48, no. 1, pp. 160–168, 2012. [203] G. B. Andresen, R. A. Rodriguez, S. Becker, and M. Greiner, The Potential for Arbitrage of Wind and Solar Surplus Power in Denmark, Energy, vol. 76, pp. 49–58, 2014. [204] Danish Energy Agency, Danish Energy Policy 1970-2010, Report, Copenhagen, 2010. [205] IRENA, 30 Years of Policies for Wind Energy: Lessons from 12 Wind Energy Markets, Report, Paris, 2013. [206] Grobbelaar, The Danish Commercial Wind Turbines Industry: A Business Eco-System Perspective. Cambridge: University of Cambridge, 2010. [207] P. Maegaard, Danish Renewable Energy Policy, World Council of Renewable Energy Report, 2009. [208] IEA, World Energy Balances: An Overview of Global Trends, Report, Paris, 2017. [209] A. Pobłocka-Dirakis, Premium tariff (Law on the Promotion of Renewable Energy) / Denmark, 2017. [Online]. Available: http://www.res-legal.eu/search-by-country/denmark/single/s/res-e/t/promotion/aid/premium-tariff-law-on-the-promotion-of-renewable-energy/lastp/96/.(Temmuz, 2018). [210] IEA, Energy Policies of IEA Countries: Denmark 2017, Report, Paris, 2017. [211] Z. Peidong, Y. Yanli, S. jin, Z. Yonghong, W. Lisheng, and L. Xinrong, Opportunities and Challenges for Renewable Energy Policy in China, Renewable and Sustainable Energy Reviews, vol. 13, no. 2. pp. 439–449, 2009. [212] National People’s Congress, Renewable Energy Law of People’s Republic of China, Beijing, 2005. [213] S. Schuman and A. Lin, China’s Renewable Energy Law and its Impact On Renewable Power in China: Progress, Challenges and Recommendations for Improving Implementation, Energy Policy, vol. 51, pp. 89–109, 2012. [214] E. Martinot, Renewable power for China: Past, Present, and Future, Front. Energy Power Eng. China, vol. 4, no. 3, pp. 287–294, 2010. [215] L. Hong, N. Zhou, D. Fridley, and C. Raczkowski, Assessment of China’s Renewable Energy Contribution During the 12th Five Year Plan, Energy Policy, vol. 62, pp. 1533–1543, 2013. [216] Z. Y. Zhao, J. Zuo, T. T. Feng, and G. Zillante, International Cooperation on Renewable Energy Development in China - a Critical Analysis, Renew. Energy, vol. 36, no. 3, pp. 1105–1110, 2011. [217] Q. Wang, Effective policies for renewable energy-the example of China’s wind power-lessons for China’s photovoltaic power, Renewable and Sustainable Energy Reviews, vol. 14, no. 2. pp. 702–712, 2010. [218] X. Zhao, G. Wan, and Y. Yang, The Turning Point of Solar Photovoltaic Industry in China: Will it Come?, Renew. Sustain. Energy Rev., vol. 41, pp. 178–188, 2017. [219] H. Bahar, Renewables 2017, IEA Report, Tokyo, 2017. [220] Fraunhofer ISE Institute, Photovoltaics Report 2018, Report, Frankfurt, 2018. [221] China Energy Portal, 2017 Electricity & Other Energy Statistics (update of June 2018), 2018. [Online]. Available: https://chinaenergyportal.org/en/2017-electricity-other-energy-statistics-update-of-june-2018/. (Temmuz, 2018). [222] Q. Y. Yan, Q. Zhang, L. Yang, and X. Wang, Overall Review of Feed-In Tariff and Renewable Portfolio Standard Policy: a Perspective of China, in IOP Conference Series: Earth and Environmental Science, vol. 40, no. 1, 2016. [223] M. Pocci, Feed-In Tariff Handbook for Asian Renewable Energy Systems, Winston & Strawn, 2014. [224] B. Dilli, Turkey’s Energy Transition: Milestones and Challanges, World Bank Report, Washington, 2015. [225] IEA, Energy Policies of IEA Countries - Turkey 2016, Country Report Series, Paris, 2016. [226] D. Gaupp, Turkey ’ s New Law on Renewable Energy Sources within the Context of the Accession Negotiations with the EU, Ger. Law J., vol. 08, no. 04, pp. 413–416, 2007. [227] European Commission, Turkey 2010 Progress Report, Commission Report, Brussels, 2010. [228] Makine Mühendisleri Odası, Enerji̇ Eki̇pmanlari Yerli̇ Üreti̇mi̇ Durum Değerlendi̇rmesi̇ ve Öneri̇ler, Oda Yayını, Ankara, 2014. [229] EPDK, Mevzuatlar. [Online]. Available: https://www.epdk.org.tr/Detay/Icerik/23-2-3/mevzuat, (Ağustos, 2018). [230] S. Acar and L. Kitson, Türkiye’ de Kömür ve Yenilenebilir Enerji Teşvikleri, IISD Raporu, Manitoba, 2015. [231] TEİAS, Türkiye Elektrik Sistemi Kuruluş ve Kaynaklara Göre Kurulu Güç 2018/04, 2018. [Online]. Available: https://www.teias.gov.tr/sites/default/files/2018-04/kuruluguc.pdf, (Mayıs, 2018). [232] TEİAS, Türkiye Elektrik Sistemi Kuruluş ve Kaynaklara Göre Kurulu Güç 2018/04, 2018. [Online]. Available: https://www.teias.gov.tr/sites/default/files/2018-04/kuruluguc.pdf, (Mayıs, 2018). [233] J. Jewell, Ready for Nuclear Energy?: An Assessment of Capacities and Motivations for Launching New National Nuclear Power Programs, Energy Policy, vol. 39, no. 3, pp. 1041–1055, 2011. [234] D. Kaufmann, A. Kraay, and M. Mastruzzi, Governance Matters VI: Aggregate and Individual Governance Indicators for 1996-2006, World Bank Policy Res. Pap. No. 4280, p. Washington, DC, 2007. [235] J. Jewell and S. A. Ates, Introducing Nuclear Power in Turkey: a Historic State Strategy and Future Prospects, Energy Res. Soc. Sci., vol. 10, pp. 273–282, 2015. [236] Elektrik Mühendisleri Odası, Nükleer Enerji Raporu - II 2016, Oda Yayını, Ankara, 2016. [237] World Energy Council, World Energy Trilemma Index 2016, Report, Paris, 2016. [238] ETKB, 2015 - 2019 Stratejik Plan, Ankara, 2017. [239] ETKB, Türki̇ye Ulusal Yeni̇lenebi̇li̇r Enerji̇ Eylem Plani, Ankara, 2014. [240] K. Baris and S. Kucukali, Availibility of Renewable Energy Sources in Turkey: Current Situation, Potential, Government Policies and the EU Perspective, Energy Policy, vol. 42, pp. 377–391, 2012. [241] A. Demirbaş, Sustainable Developments of Hydropower Energy in Turkey, Energy Sources, vol. 24, no. 1, pp. 27–40, 2002. [242] I. Yuksel, Water Management for Sustainable and Clean Energy in Turkey, Energy Reports, vol. 1, pp. 129–133, 2015. [243] UNDESA, Water Scarcity. Water for Life Decade, United Nations Report, New York, 2013. [244] A. Kilickaplan, D. Bogdanov, O. Peker, U. Caldera, A. Aghahosseini, and C. Breyer, An Energy Transition Pathway for Turkey to Achieve 100% Renewable Energy Powered Electricity, Desalination and Non-Energetic Industrial Gas Demand Sectors by 2050, Sol. Energy, vol. 158, no. June, pp. 218–235, 2017. [245] IRENA, Renewable Power Generation Costs in 2014 : An Overview, Technical Report, Abu Dhabi, 2015. [246] M. Melikoglu, The Role of Renewables and Nuclear Energy in Turkeys Vision 2023 Energy Targets: Economic And Technical Scrutiny, Renew. Sustain. Energy Rev., vol. 62, pp. 1–12, 2016. [247] Y. A. Kaplan, Overview of Wind Energy in the World and Assessment of Current Wind Energy Policies in Turkey, Renewable and Sustainable Energy Reviews, vol. 43. pp. 562–568, 2015. [248] M. Šúri, T. A. Huld, E. D. Dunlop, and H. A. Ossenbrink, Potential of solar Electricity Generation in the European Union Member States and Candidate Countries, Sol. Energy, vol. 81, no. 10, pp. 1295–1305, 2007. [249] NREL, Concentrating Solar Power Projects. [Online]. Available: https://www.nrel.gov/csp/solarpaces/by_country_detail.cfm/country=TR, (Ağustos, 2018). [250] J. Farfan and C. Breyer, Structural Changes of Global Power Generation Capacity Towards Sustainability and the Risk of Stranded Investments Supported by a Sustainability Indicator, Journal of Cleaner Production, vol. 141. pp. 370–384, 2017. [251] Yenilenebilir Enerji Genel Müdürlüğü, Türkiye Biyokütle Enerjisi Potansiyel Atlası. [Online]. Available: http://bepa.yegm.gov.tr/, (Temmuz, 2018). [252] D. Thrän et al., Globale und Regionale Verteilung von Biomassepotenzialen, BMVBS Report, Berlin, 2010. [253] M. Melikoglu, Vision 2023: Feasibility Analysis of Turkey’s Renewable Energy Projection, Renew. Energy, vol. 50, pp. 570–575, 2013. [254] B. Knopf, P. Nahmmacher, and E. Schmid, The European renewable energy target for 2030 - An impact assessment of the electricity sector, Energy Policy, vol. 85, pp. 50–60, 2015. [255] Enerji Hukuku Araştırma Enstitüsü, 2020 Sonrası YEK Kanunu ve YEKDEM Nasıl Olmalı, Çalıştay Raporu, Ankara, 2018. [256] TC Avrupa Birliği Bakanlığı, Fasıl 15 - Enerji. [Online]. Available: https://www.ab.gov.tr/fasil-15-enerji_80.html. (Mayıs, 2018). [257] EC, Turkey 2018 Report, Commission Report, Brussels, 2018. [258] EC, Turkey 2016 Report, Commission Report, Brussels, 2016. [259] EC, Eurostat DataBase. [Online]. Available: http://ec.europa.eu/eurostat/data/database. (Mayıs, 2018). [260] World Bank, DataBank. [Online]. Available: https://data.worldbank.org/. (Mayıs, 2018). [261] CEIC Price Monitoring Center, China CN: Service Price: 36 City Avg: Electricity: for Resident: 220v, 2018. [Online]. Available: https://www.ceicdata.com/en/china/electricity-price. (Ağustos, 2018).tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/5470
dc.description.abstractThe objective of this thesis is to examine the incentive mechanisms that are applied for the renewable energy across selected countries and to put forward a set of suggestions for the future revision of incentive policy, especially in the photovoltaic technology, that will end in 2020 in Turkey. Three members of European Union, Germany, Denmark and Spain, are analysed with a particular emphasis on their successful/unsuccessful incentive applications. China is also analysed due to its noticeable industrial development in the field of renewable energy. The causal comparative method is used to evaluate the success of incentive policy applications and how they are affected by the external conditions. As a result of the research, it is seen that the best progress in technology-based developments is obtained by constantly observing the technological changes and market monitoring along with the fixed price guarantee. Additionally, the promotion of regular and stable policies, transparent administrative processes, good classification of resources and technologies in applications are found to be important. Announcement of medium and long term incentive policies, removal of fossil incentives, shortening the administrative processes and making constructive changes for domestic part production, determining new tenders for the capacity increase are considered as important for the Turkish case.tr_TR
dc.description.tableofcontentsÖZET ............................................................................................................................. i ABSTRACT ................................................................................................................. iii TEŞEKKÜR .................................................................................................................. v İÇİNDEKİLER .............................................................................................................. vi ÇİZELGELER .............................................................................................................. ix ŞEKİLLER .................................................................................................................... x SİMGELER VE KISALTMALAR .................................................................................. xi 1 GİRİŞ ................................................................................................................... 1 2 YENİLENEBİLİR ENERJİ KAYNAKLARININ ÖZELLİKLERİ VE KULLANIMLARI 5 2.1 Yenilenebilir Enerji Kaynaklarının Tanımı, Kullanım Avantajları ve Piyasalara Etkisi 5 2.1.1 Enerji Güvenliği ...................................................................................... 10 2.1.2 CO2 Salımı ve Çevresel Etkiler .............................................................. 11 2.1.3 Ekonomik Gelişim .................................................................................. 12 2.2 Yenilenebilir Enerji Türleri ve Teknolojileri .................................................... 13 2.2.1 Güneş Enerjisi ....................................................................................... 13 2.2.2 Rüzgâr Enerjisi ...................................................................................... 22 2.2.3 Bioenerji ................................................................................................. 23 2.2.4 Jeotermal Enerji ..................................................................................... 25 2.2.5 Hidrolik Enerji......................................................................................... 26 2.2.6 Okyanus Enerjisi .................................................................................... 27 2.3 Enerji Depolama ........................................................................................... 28 3 YENİLENEBİLİR ENERJİ KULLANIMININ TEŞVİK YOLLARI ........................... 31 3.1 Neden Teşvik Verilmeli ................................................................................. 31 3.2 Yenilenebilir Enerji Piyasalarının Gelişimi .................................................... 33 3.3 Teşvik Yöntemlerinin Tarihsel Gelişimi ......................................................... 35 3.4 Teşvikler ve Piyasa Etkisi ............................................................................. 37 3.5 Yenilenebilir Enerji Kullanımı için Geliştiriciler ve Engeller ........................... 38 3.5.1 Geliştirici Etkenler .................................................................................. 39 3.5.2 Engeller ................................................................................................. 41 3.6 Günümüzde Kullanılan Teşvik Yöntemleri .................................................... 44 3.6.1 Düzenleyici Politikalar ............................................................................ 44 3.6.2 Mali Teşvikler ve Kamu Finansmanı ...................................................... 51 3.7 Teşvikler İçin Mali Kaynaklar ........................................................................ 52 3.8 Avrupa Birliği ve Enerji ................................................................................. 53 3.8.1 Genel Görünüm ..................................................................................... 53 3.8.2 Yenilenebilir Enerjiler için Mevcut Durum .............................................. 55 4 SEÇİLMİŞ ÜLKELERDE DURUM ...................................................................... 59 4.1 Almanya ....................................................................................................... 59 4.1.1 Enerji Politikası ve Endüstrisinin Gelişimi .............................................. 59 4.1.2 Mevcut Durum ve Hedefler .................................................................... 64 4.2 İspanya ......................................................................................................... 67 4.2.1 Enerji Politikası ve Endüstrisinin Gelişimi .............................................. 68 4.2.2 Mevcut Durum ve Hedefler .................................................................... 72 4.3 Danimarka .................................................................................................... 74 4.3.1 Enerji Politikası ve Endüstrisinin Gelişimi .............................................. 75 4.3.2 Mevcut Durum ve Hedefler .................................................................... 79 4.4 Çin ................................................................................................................ 82 4.4.1 Enerji Politikası ve Endüstrisinin Gelişimi .............................................. 83 4.4.2 Mevcut Durum ve Hedefler .................................................................... 87 5 TÜRKİYE’DEKİ DURUM VE DİĞER ÜLKELER İLE KARŞILAŞTIRMA ............. 92 5.1 Piyasanın ve Teşvik Mekanizmalarının Tarihsel Gelişimi ............................. 92 5.2 Mevcut Durum ve Hedefler ........................................................................... 98 5.3 AB Müktesebatı ile Karşılaştırma ............................................................... 105 5.4 Seçilmiş Ülkeler ile Karşılaştırma ............................................................... 109 6 SONUÇ ............................................................................................................ 111 7 KAYNAKLAR .................................................................................................... 113tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectYenilenebilir Enerji Düzenleyici Politikaları
dc.subjectMali Teşvikler ve Kamu Finansmanı
dc.subjectFotovoltaik
dc.subjectAvrupa Birliği Müktesebatı
dc.titleYenilenebilir Enerji Kullanımını Teşvik Yolları Üzerine Bir Değerlendirmetr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetBu tezin amacı seçilmiş ülkeler örneğinde yenilenebilir enerjiler için uygulanan teşvik mekanizmalarını inceleyerek Türkiye’nin 2020 yılında bitecek teşvik politikasının yeniden şekillenmesi sürecinde, özellikle fotovoltaik teknolojisine yönelik, dikkate alınabilecek öneriler sunmaktır. Çalışma Avrupa Birliği’ne üyelik temelinde ele alındığı için üç Avrupa ülkesi; Almanya, Danimarka ve İspanya incelenmiş uygulamalarındaki süreçler ile başarılı ve başarısız oldukları noktalar tespit edilmeye çalışılmıştır. Bu ülkelere ek olarak yenilenebilir enerji alanındaki dikkat çekici endüstriyel gelişimi nedeniyle Çin de araştırmaya dâhil edilmiştir. Çalışmada nedensel karşılaştırma metodu kullanılarak hangi teşviklerin diğerlerine göre daha başarılı oldukları ve teşviklerin hangi dış koşullardan nasıl etkilendikleri araştırılmıştır. Bu araştırmalar sonucunda teknoloji bazında gelişimlerde en iyi ilerlemenin sabit fiyat garantisi yolu ile birlikte dinamik bir teknoloji ve piyasa gözlemi yapılarak elde edildiği görülmüştür. Diğer taraftan teşviklerin olumlu sonuç verebilmesi için düzenli ve istikrarlı politikaların, şeffaf idari süreçlerin, uygulamalarda kaynak ve teknolojilerin iyi sınıflandırılmasının önemli olduğu saptanmıştır. Türkiye’nin orta ve uzun dönem için teşvik politikalarının açıklanması, yerli aksam üretimi için yapıcı değişiklikler yapması, kapasite artışı için yeni ihaleler belirlemesi, idari süreçlerin kısaltılması ve fosil teşviklerin kaldırılması konularında değişiklikler yapması gerektiği sonucuna ulaşılmıştır.tr_TR
dc.contributor.departmentTemiz Tükenmez Enerjilertr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2018-12-26T10:19:30Z


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster