• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Producing Synthetic Person Images with Deep Generative Artificial Neural Networks

View/Open
10223621.pdf (39.78Mb)
Date
2018
Author
Günel, Mehmet
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
Producing synthetic person images has wide variety of applications including digital photo sharing and editing, visual surveillance, fashion and art design and human interactive autonomous machines, among others. In the scope of this thesis, we explored two problems related to person image generation, namely attribute based person image generation and language guided editing of person images, especially for outfits. While the former problem considers generating realistic person images using attributes like pose, gender, clothes, whether a bag is present or not etc., the latter focuses on editing an outfit image through natural sentences and accordingly generating new outfits while keeping the unstated sections in the text description untouched. Realization of synthetic person image generation processes is quite difficult due to several reasons such as foreground/background, partial occlusion, stance of a person, camera angle and distance, complex relationships between attributes or natural language descriptions and unbalanced and poor quality data. In this thesis, we developed conditional generative adversarial network based models to solve each problem. With quantitative and qualitative experiments, we have shown that our first attribute related model produces reasonable synthetic person images and our language guided second model generates more plausible results than the baseline work with better localization capability when generating new outfits consistent with the target text descriptions.
URI
http://hdl.handle.net/11655/5460
xmlui.mirage2.itemSummaryView.Collections
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [162]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV