• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Neural Networks For Named Entity Recognition On Social Media

View/Open
Tez Dosyası (4.980Mb)
Date
2018
Author
Akkaya , Emre Kağan
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
Named entity recognition (NER) on noisy data, specifically user-generated content (e.g. on- line reviews, tweets) is a challenging task because of the presence of ill-formed text. In this regard, while studies on morphologically-poor languages such as English has been rapidly advancing in recent years, studies on morphologically-rich languages such as Turkish has fallen behind for noisy data. This is mostly due to Turkish being an agglutinative language, having a rich morphology and also having scarce annotated data. Existing studies on Turkish both for noisy and formal (e.g. news text) data still make use of hand-crafted features and/or external domain-specific resources (e.g. gazetteers). In this thesis, we investigate the effects of neural architectures without the help of any external domain-specific resources and/or manually-constructed features. So that the proposed model can also be used for different morphologically-rich languages and for different domains. Moreover, we also experimented with different word and sub-word level (e.g. morpheme, character or character n-gram level) embedding techniques and we argue that sub-word level embeddings provide better word representations for morphologically-rich languages syntactically and semantically. For this purpose, we propose a transfer learning model that is an extension of a baseline, bidirectional LSTM-CRF architecture. The model is trained on two different datasets simultaneously for ithe purpose of transfer learning from formal to noisy data and it exploits morpheme-level, character n-gram level and orthographic character-level embeddings as its feature set. Con- sequently, we have obtained an F1 score of 65.72% on Turkish tweet dataset and 41.97% on English WNUT’17 dataset.
URI
http://hdl.handle.net/11655/5459
xmlui.mirage2.itemSummaryView.Collections
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [161]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV