• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fen Fakültesi
  • Matematik Bölümü
  • Matematik Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Fen Fakültesi
  • Matematik Bölümü
  • Matematik Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Legendre Düğümlerinin Sınıflandırılması

View/Open
Yüksek Lisans Tez Dosyası (13.14Mb)
Date
2017
Author
Pekavcılar, Berna
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
A contact structure on a 3-manifold is a maximally non-integrable 2-plane field distributed all over the 3-manifold. There are two types of contact structures on 3-manifolds: tight and overtwisted. Knots that are everywhere tangent to the contact planes are called Legendrian knots. In this thesis, we study basic techniques used in the classification Legendrian knots. The aim of this thesis is to examine the techniques used in the classification of Legendrian knots in tight contact manifolds and the techniques used in the classification of Legendrian knots that have tight complements in overtwisted contact manifolds. For this purpose, in this thesis we study the classification of Legendrian unknots in contact 3-sphere S3 in detail.
URI
http://hdl.handle.net/11655/4851
xmlui.mirage2.itemSummaryView.Collections
  • Matematik Bölümü Tez Koleksiyonu [59]
xmlui.dri2xhtml.METS-1.0.item-citation
[1] Marinet J., Formes de contact sur les variétés de dimension 3, Proceedings of Liverpool Singularities Symposium II Lecture Notes in Mathematics Volume 209, 142–163, 1971. [2] Bennequin D., Entrelacements et équations de Pfaff, Astérisque, 107–108, 87–161, 1983. [3] Eliashberg Y., Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98, 623–637, 1989. [4] Etnyre J. B., Honda K., On the nonexistence of tight contact structures, Annals of Math. 153, 749–766, 2001. [5] Eliashberg Y., Fraser M., Topologically trivial Legendrian knots, J. Symplectic Geom., 7(2):77–127, 2009. [6] Etnyre J. B., Honda K., Knots and contact geometry. I. Torus knots and the figure eight knot., J. Symplectic Geom., 1(1):63–120, 2001. [7] Geiges H., Onaran S., Legendrian rational unknots in lens spaces, J.Symplectic Geom, Vol. 13, No. 1, 17–50, 2015. [8] Baker K. L, Etnyre J. B., Rational linking and contact geometry, Progr. Math. 296 19–37, 2009. [9] Ghiggini P., Linear Legendrian curves in T3, Math. Proc. Cambridge Philos. Soc. 140 , no. 3, 451–473, 2006. [10] Geiges H., An introduction to contact topology, Cambridge studies in advanced mathematics Vol.109, 2008. [11] Etnyre, J. B., Introductory Lectures on Contact Geometry, In Topology and Geometry of Manifolds, Athens, 81–107, 2001. Proceedings of Symposia in Pure Mathematics 71. Providence, RI: American Mathematical Society, 2003. [12] Etnyre J. B., Legendrian and transversal knots, Handbook of knot theory, 2005. 51 [13] McDuff D., Salamon D., Introduction to Symplectic Topology, Oxford University Press, 1995. [14] Rolfsen D., Knots and Links, Mathematics Lecture Series 7, Publish or Perish Inc, 1976. [15] Adams C. C, The Knot Book: an elementary introduction to the mathematical theory of knots, 2004. [16] Ozbagci B., Stipsicz A. I., Surgery on contact 3-manifolds and Stein surfaces, Bolyai Society Mathematical Studies, 2004. [17] Giroux E., Convexité en topologie de contact, Comment. Math. Helv. 66, no. 4, 637–677, 1991. [18] Honda K., On the classification of tight contact structures I, Geom. Topol. 4, 309–368, 2000. [19] Saveliev N., Lectures on the topology of 3-manifolds: an introduction to the Casson Invariant, Berlin; Newyork: De Gruyter, 1999. [20] Kirby R. C., The topology of 4-manifolds, Springer Lecture Notes 1374, Springer- Verlag 1989. [21] Gompf R. E., Stipsicz A. I.,4-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Math. Society, Providence 1999. [22] Lickorish R., A representation of orientable combinatorial 3-manifolds, Ann. of Math. 76 , 531–540, 1962. [23] Wallace A. H, Modifications and cobounding manifolds, Canad. J. Math. 12, 503– 528, 1960. [24] Ding F., Geiges H., A Legendrian surgery presentation of contact 3-manifolds, Math. Proc. Cambridge Philos. Soc. 136, 583–598, 2001. [25] Ding F., Geiges H., Stipsicz A., Surgery diagrams for contact 3-manifolds, Turkish J. Math. 28, 41–74, 2004. 52 [26] Gompf R. E., Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 , 619–693, 1998. [27] Ding F., Geiges H., Symplectic fillability of tight contact structures on torus bundles, Algebr. Geom. Topol. 1, 153–172, 2001. [28] Dymara K. 2001, Legendrian knots in overtwisted contact structures on S3. Ann. Global Anal. Geom., 19(3):293–305. [29] Dymara K., Legendrian knots in overtwisted contact structures, www.arxiv.org/abs/math.GT/0410122. [30] J. B. Etnyre, On Contact Surgery, Proc. of the AMS, 136, no. 9, 3355–3362, 2008. [31] Lisca P., Ozsváth P., Stipsicz A. I. , ve Szabó Z., Heegaard Floer invariants of Legendrian knots in contact three-manifolds, J. Eur. Math. Soc. 11, no. 6, 1307– 1363. 2009. [32] Plamenevskaya O., On Legendrian surgeries between lens spaces, J. Symplectic Geom. 10, 165–181, 2012.
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV