• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning Visual Saliency For Static And Dynamic Scenes

View/Open
LEARNING VISUAL SALIENCY FOR STATIC AND DYNAMIC SCENES (29.11Mb)
Date
2018-09-26
Author
Kavak , Yasin
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
The ultimate aim in visual saliency estimation is to mimic human visual system in predicting image regions which grab our attention. In the literature, many different features and models have been proposed, but still one of the key questions is how different features contribute to saliency. In this study, we try to get a better understanding of the integration of visual features to build more effective saliency models. Towards this goal, we investigated several machine learning techniques and analyze their saliency estimation performance in static and dynamic scenes. First, multiple kernel learning is employed in static saliency estimation, which provides an intermediate level fusion of features. Second, a thorough analysis is carried out for saliency estimation in dynamic scenes. Lastly, we proposed a fully unsupervised adaptive feature integration scheme for dynamic saliency estimation, which gives superior results compared to the approaches that use fixed set of parameters in fusion stage. Since the existing methods in the literature are far behind in accomplishing human level saliency estimation, we believe that our approaches provide new insights in this challenging problem.
URI
http://hdl.handle.net/11655/4033
xmlui.mirage2.itemSummaryView.Collections
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [162]
xmlui.dri2xhtml.METS-1.0.item-citation
Hacettepe Üniversitesi Fen Bilimleri Enstitüsü tez yazım klavuzu atıf formatı
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV