Basit öğe kaydını göster

dc.contributor.advisorSaka Tanatar, Birsen
dc.contributor.authorSarıbay, Erkan
dc.date.accessioned2023-12-12T11:36:41Z
dc.date.issued2023
dc.date.submitted2023-09-14
dc.identifier.citation[1] Ben A. Munk, Frequency Selective Surfaces: Theory and Design, 2000. [2] Unal, E., Gokcen, A., & Kutlu, Y. (2006). Effective electromagnetic shielding. IEEE Microwave Magazine, 7(4), 48–54. [3] Farooq, U., Iftikhar, A., Shafique, M. F., Khan, M. S., Fida, A., Mughal, M. J., & Anagnostou, D. E. (2021). C-Band and X-Band Switchable Frequency-Selective Surface. Electronics, 10(4), 476. [4] Sen, G., Mandal, T., Majumdar, S., Mahato, S., Mondal, S., & Sarkar, P. P. (2012). Design of a wide band Frequency Selective Surface (FSS) for multiband operation of reflector antenna. 2012 5th International Conference on Computers and Devices for Communication (CODEC), 1–3. [5] Kiani, G. I., & Hussaini, M. A. (2020). Waveguide ASK Modulator Using Switchable FSS. Journal of Infrared, Millimeter, and Terahertz Waves, 41(12), 1478–1487. [6] Tennant, A., & Chambers, B. (2004). Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface. Smart Materials and Structures, 13(1), 122–125. [7] Harnois, M., Himdi, M., Yong, W. Y., Rahim, S. K. A., Tekkouk, K., & Cheval, N. (2020). An Improved Fabrication Technique for the 3-D Frequency Selective Surface based on Water Transfer Printing Technology. Scientific Reports, 10(1), 1714. [8] Mamedes, D. F., Gomes Neto, A., Costa e Silva, J., & Bornemann, J. (2018). Design of reconfigurable frequency‐selective surfaces including the PIN diode threshold region. IET Microwaves, Antennas & Propagation, 12(9), 1483–1486. [9] Kiani, G. I., Esselle, K. P., Weily, A. R., & Ford, K. L. (2007). Active frequency selective surface using PIN diodes. 2007 IEEE Antennas and Propagation Society International Symposium, 4525–4528. [10] Ebrahimi, A., Shen, Z., Withayachumnankul, W., Al-Sarawi, S. F., & Abbott, D. (2016). Varactor-Tunable Second-Order Bandpass Frequency-Selective Surface With Embedded Bias Network. IEEE Transactions on Antennas and Propagation, 64(5), 1672–1680. [11] Ghosh, S., & Srivastava, K. V. (2018). Broadband Polarization-Insensitive Tunable Frequency Selective Surface for Wideband Shielding. IEEE Transactions on Electromagnetic Compatibility, 60(1), 166–172. [12] Anderson, I. (1975). On the Theory of Self-Resonant Grids. Bell System Technical Journal, 54(10), 1725–1731. [13] Lee, C. K., & Langley, R. J. (1985). Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence. IEE Proceedings H Microwaves, Antennas and Propagation, 132(6), 395. [14] Costa, F., Monorchio, A., & Manara, G. (2014). An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurface. The Applied Computational Electromagnetics Society Journal, 29(12), 960–976. [15] Sarabandi, K., & Behdad, N. (2007). A Frequency Selective Surface With Miniaturized Elements. IEEE Transactions on Antennas and Propagation, 55(5), 1239–1245. [16] Shaik, V., & Shambavi, K. (2018). Design of Dodecagon Unit Cell Shape Based Three Layered Frequency Selective Surfaces For X Band Reflection. Progress In Electromagnetics Research M, 75, 103–111. [17] Xu, Y., & He, M. (2019). Design of Multilayer Frequency-Selective Surfaces by Equivalent Circuit Method and Basic Building Blocks. International Journal of Antennas and Propagation, 2019, 1–13. [18] Parker, E. A., & Hamdy, S. M. A. (1981). Rings as elements for frequency selective surfaces. Electronics Letters, 17(17), 612. [19] Hooberman B., Everything you ever wanted to know about Frequency-Selective surface filters but were afraid to ask, 2005. [20] Sung H., Frequency Selective Wallpaper for Mitigating Indoor Wireless Interference, Auckland Üniversitesi, Doktora Tezi, 2006. [21] Hamdy, S. M. A., & Parker, E. A. (1982). Current distribution on the elements of a square loop frequency selective surface. Electronics Letters, 18(14), 624. [22] Döken B., Amaca uygun olarak yansıma ve iletim karakteristikleri değiştirilebilen yapısal yüzey malzemesi, İstanbul Teknik Üniversitesi Bilişim Enstitüsü, Doktora Tezi, 2017. [23] Kihun Chang, Sang il Kwak, & Young Joong Yoon. (2008). Equivalent circuit modeling of active frequency selective surfaces. 2008 IEEE Radio and Wireless Symposium, 663–666. [24] Chang, T. K., Langley, R. J., & Parker, E. (1993). An active square loop frequency selective surface. IEEE Microwave and Guided Wave Letters, 3(10), 387–388. [25] Qi, R., Zhai, H., Yang, D., & Xue, K. (2020). An angular‐stable multi‐layer reconfigurable frequency selective surface based on varactor with wide tuning range. International Journal of RF and Microwave Computer-Aided Engineering, 30(2). [26] Kocakaya, A., Çakır, G., & Çimen, S. (2019). Açı ve polarizasyondan bağımsız ultra geniş bantlı frekans seçici yüzey tasarımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 287–296. [27] SMP1302-079LF Skyworks Diode-PIN|Skyworks,. Available at: https://store.skyworksinc.com/products/detail/smp1302079lf-skyworks-solutions-inc/262130 (Erişim tarihi: 20 Ağustos 2023)tr_TR
dc.identifier.urihttps://hdl.handle.net/11655/34268
dc.description.abstractIn this study, three different design of active frequency selective surface are presented. The first design has a single layer structure on a 1.6 mm thick FR-4 dielectric material. The unit cell consists of circular structure, patch and PIN diodes and is capable of switching between transmit and reflect modes in the 2.1 – 2.2 GHz band. The second design has a double layer structure on 1.6 mm thick FR-4 dielectric material. The unit cell consists of circular structure and PIN diodes and has the ability to operate independently of each other in the 2.3 – 2.9 GHz and 5.4 – 6.2 GHz bands and to switch between transmission and reflection modes in these bands. Both designs showed insensitivity up to different polarization and a certain angle of incidence. The equivalent circuit model method was used in the design process. The first design was manufactured and measured with the aid of a waveguide. In the third design, the effect of different PIN diode configurations on the radiation reflected or transmitted by the frequency selective surface was examined.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectAktif frekans seçici yüzeytr_TR
dc.subjectPIN diyottr_TR
dc.subjectEşdeğer devre modelitr_TR
dc.subjectİletimtr_TR
dc.subjectYansıtmatr_TR
dc.subjectFrekans kontrolütr_TR
dc.subject.lcshElektrik-Elektronik mühendisliğitr_TR
dc.titleAktif Frekans Seçici Yüzey Tasarımıtr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetBu çalışmada üç farklı aktif frekans seçici yüzey tasarımı sunulmuştur. İlk tasarım 1.6 mm kalınlığında FR-4 dielektrik malzeme üzerinde tek katmanlı yapıya sahiptir. Birim hücre dairesel yapı, yama ve PIN diyotlardan oluşur ve 2.1 – 2.2 GHz bandında iletim ve yansıtma modları arasında geçiş yapabilme yeteneğine sahiptir. İkinci tasarım 1.6 mm kalınlığında FR-4 malzeme üzerinde çift katmanlı yapıya sahiptir. Birim hücre dairesel yapı ve PIN diyotlardan oluşur ve 2.3 – 2.9 GHz ve 5.4 – 6.2 GHz bantlarında birbirinden bağımsız olarak çalışabilme ve bu bantlarda iletim ve yansıtma modları arasında geçiş yapabilme yeteneğine sahiptir. Her iki tasarımda farklı polarizasyona ve belirli bir geliş açısına kadar kararlılık göstermiştir. Tasarım sürecinde eşdeğer devre modeli yönteminden faydalanılmıştır. İlk tasarım üretilmiş ve dalga kılavuzu yardımıyla ölçülmüştür. Üçüncü tasarımda, farklı PIN diyot konfigürasyonlarının frekans seçici yüzeyin yansıttığı veya ilettiği ışımaya olan etkisi incelenmiştir.tr_TR
dc.contributor.departmentElektrik –Elektronik Mühendisliğitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2023-12-12T11:36:41Z
dc.fundingYoktr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster