Basit öğe kaydını göster

dc.contributor.advisorHürmüz, Pervin
dc.contributor.authorŞahin, Meryem Cansu
dc.date.accessioned2017-02-21T11:44:58Z
dc.date.available2017-02-21T11:44:58Z
dc.date.issued2017-02-20
dc.date.submitted2016-11-06
dc.identifier.citation1) Podgorsak, E.B. (2005). Radiation Oncology Physics: A Handbook for Teachers and Students. Vienna, Austria: IAEA. 2) Luxton G, Zbigniew P, Jozsef G, et al. Stereotactic radiosurgery : principle and comprasion of treatment methods, Neurosurgery. 1993;32:241 3) Sağer Ö., Küçük Hücreli Dişi Akciğer Kanseri Radyoterapisinde Aktif Nefes Kontrolü Sisteminin Tümör Hareketi Ve Fiziksel Akciğer Parametrelerine Etkisinin Değerlendirilmesi. 2010. Gülhane Askeri Tıp Akademisi. s.5 4) American Joint Committee on Cancer (AJCC)A Companion to the Seventh Editions of theAJCC Cancer Staging Manual and Handbook .2012.s.:311-315. 5) Keall, P.J., Mageras, G.S., Balter, J.M., The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 2006; 33:3874-3900. 6) Seppenwoolde, Y., Shirato, H., Kitamura, K., Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat,measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002; 53:822-834. 7) Vedam, S.S., Kini, V.R., Keall, P.J., Ramakrishnan, V., Mostafavi, H.,Mohan,R.,Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys 2003; 30:505-513. 8) George, R., Vedam, S.S., Chung, T.D., Ramakrishnan, V., Keall, P.J.,The application of the sinusoidal model to lung cancer patient respiratory motion. Med Phys 2005; 32:2850-2861. 9) Barnes, E.A., Murray, B.R., Robinson, D.M., Underwood, L.J.,Hanson, J., Roa, W.H., Dosimetric evaluation of lung tumorimmobilization using breath hold at deep inspiration. Int J RadiatOncol Biol Phys 2001; 50:1091-1098. 10) Chen, Q.S., Weinhous, M.S., Deibel, F.C., Ciezki, J.P., Macklis, R.M., fluoroscopic study of tumor motion due to breathing: facilitating precise radiation therapy for lung cancer patients. Med Phys 2001; 28:1850- 1856. 11) Ekberg, L., Holmberg, O., Wittgren, L., Bjelkengren, G., Landberg, T.,What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer Radiother Oncol 1998; 48:71-77. 12) Engelsman, M., Damen, E.M., De Jaeger, K., van Ingen, K.M.,Mijnheer, B.J., The effect of breathing and set-up errors on the cumulative dose to a lung tumor. Radiother Oncol 2001; 60:95-105. 13) Erridge, S.C., Seppenwoolde, Y., Muller, S.H., Portal imaging toassess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer. RadiotherOncol 2003; 66:75-85. 70 14) Ross, C.S., Hussey, D.H., Pennington, E.C., Stanford, W.,Doornbos, J.F., Analysis of movement of intrathoracic neoplasmsusing ultrafast computerized tomography. Int J Radiat Oncol BiolPhys 1990; 18:671-677. 15) Grills, I.S., Yan, D., Martinez, A.A., Vicini, F.A., Wong, J.W., Kestin,L.L., Potential for reduced toxicity and dose escalation in thetreatment of inoperable non-small-cell lung cancer: a comparison ofintensity-modulated radiation therapy (IMRT), 3D conformalradiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys2003; 57:875-890. 16) Hanley, J., Debois, M.M., Mah, D., Deep inspiration breath-holdtechnique for lung tumors: the potential value of targetimmobilization and reduced lung density in dose escalation. Int JRadiat Oncol Biol Phys 1999; 45:603-611. 17) Murphy, M.J., Martin, D., Whyte, R., Hai, J., Ozhasoglu, C., Le,Q.T., The effectiveness of breath-holding to stabilize lung andpancreas tumors during radiosurgery. Int J Radiat Oncol Biol Phys2002; 53:475-482. 18) Plathow, C., Ley, S., Fink, C., Analysis of intrathoracic tumormobility during whole breathing cycle by dynamic MRI. Int J Radiat Oncol Biol Phys 2004; 59:952-959. 19) Seppenwoolde, Y., Shirato, H., Kitamura, K., Precise and realtimemeasurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol BiolPhys 2002; 53:822-834. 20) Shimizu, S., Shirato, H., Ogura, S., Detection of lung tumor movement in realtime tumor-tracking radiotherapy. Int J RadiatOncol Biol Phys 2001; 51:304- 310. 21) Sixel, K.E., Ruschin, M., Tirona, R., Cheung, P.C., Digitalfluoroscopy to quantify lung tumor motion: potential for patientspecific planning target volumes. Int J Radiat Oncol Biol Phys 2003;57:717-723. 22) Stevens, C.W., Munden, R.F., Forster, K.M., Respiratory drivenlung tumor motion is independent of tumor size, tumor location, andpulmonary function. Int J Radiat Oncol Biol Phys 2001; 51:62-68. 23) Neicu, T., Berbeco, R., Wolfgang, J., Jiang, S.B., Synchronizedmoving aperture radiation therapy (SMART): improvement ofbreathing pattern reproducibility using respiratory coaching. PhysMed Biol 2006; 51:617-636. 24) Kini, V.R., Vedam, S.S., Keall, P.J., Patil, S., Chen, C., Mohan, R.,Patient training in respiratory-gated radiotherapy. Med Dosim 2003;28:7-11. 25) Davies, S.C., Hill, A.L., Holmes, R.B., Halliwell, M., Jackson, P.C., Ultrasound quantitation of respiratory organ motion in the upper abdomen. Br J Radiol 1994; 67:1096-1102. 71 26) Berbeco, R.I., Nishioka, S., Shirato, H., Chen, G.T., Jiang, S.B., Residual motion of lung tumours in gated radiotherapy with external respiratory surrogates. Phys Med Biol 2005; 50:3655-3667. 27) “Lax, I., Blomgren, H., Naslund, I., Svanstrom, R., Stereotacticradiotherapy of malignancies in the abdomen. Methodologicalaspects. Acta Oncol 1994; 33:677-683. 28) McGarry, R.C., Papiez, L., Williams, M., Whitford, T., Timmerman,R.D., Stereotactic body radiation therapy of early stage non smallcelllung carcinoma: phase I study. Int J Radiat Oncol Biol Phys2005; 63:1010-1015. 29) Mah, D., Hanley, J., Rosenzweig, K.E., Technical aspects of the deep inspiration breath hold technique in the treatment of thoracic cancer. Int J. Radiat Oncol Biol. Phys 2000; 48:1175-1185. 30) Rosenzweig, K.E., Hanley, J., Mah, D., The deep inspiration breathhold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2000; 48:81-87. 31) Kim, D.J., Murray, B.R., Halperin, R., Roa, W.H., Held-breath self gating technique for radiotherapy of non-small-cell lung cancer: a feasibility study. Int J Radiat Oncol Biol Phys 2001; 49:43-49. 32) Remouchamps V.M., Letts N., Vicini F.A., Initial clinical experience with moderate deep inspiration breath hold using anactive breathing control device in the treatment of patients with leftsidedbreast cancer using external beam radiation therapy. Int JRadiat Oncol Biol Phys 2003; 56:704- 715. 33) Stromberg, J.S.,Sharpe, M.B., Kim, L.H., Active breathing control(ABC) for Hodgkin's disease: reduction in normal tissue irradiation with deep inspiration and implications for treatment. Int J RadiatOncol Biol Phys 2000; 48:797-806. 34) Wong, J.W., Sharpe, M.B., Jaffray, D.A., The use of active breathing control (ABC) to reduce margin for breathing motion. Int JRadiat Oncol Biol Phys 1999; 44:911-919. 35) CK-028096A-TRK. CyberKnife® Tedavi Uygulama Klavuzu. 2009 Accuray. 500022. 36) Harold C. Urschel, Jr. (Editor-in-Chief) John J. Kresl · James D. Luketich Lech Papiez Robert D. Timmerman (Co-Editors) Raymond A. Schulz (Contributing Editor) Treating Tumors that Move with Respiration 37) Polymer Gel Dosimetry for Radiation Therapy. Senthil Kumar Dhiviyaraj Kalaiselven, James Jebaseelan Samuel Emmanvel Rajan. 38) Baldock C, Burford RP, Billingham NC, Wagner GS, Patval S, Badawi R, et al. Experimental procedure for the manufacture and calibration of 72 Polyacrylamide gel (PAG) for magnetic resonance imaging (MRI) radiation dosimetry. Phys Med Biol 1998; 43:695-702 39) Gore J. C., Kang Y. S., Schulz R. J. (1984). Measurement of radiation dose distribution by nuclear magnetic resonance (NMR) imaging. Phys. Med Biol. 29, 1189-1197 40) Spinks J W T and Woods R J 1964 An Introduction to Radiation Chemistry (New York: Wiley). 41) C. Baldock, Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K. B. McAuley, M. Oldham, L. J. Schreiner. Polymer gel dosimetry. Physıcs In Medıcıne And Bıology. Phys. Med. Biol. 55 (2010) R1–R63. doi:10.1088/0031-9155/55/5/R01 42) Swallow A. J., Radiation Chemistry: An Introduction. London: Longman. Published by Prentice Hall Press, 1973 ISBN10: 058246286X / ISBN13: 9780582462861. 43) Maryanski, M.J., et al., NMR relaxation enhancement in gels polymerized and cross linked by ionizing radiation: A new approach to 3D dosimetry by MRI. Magn. Reson. Imaging 1993. 11(2): p. 253-258. 44) Shadi Khoei. Quantıtatıve ultrasound computed tomography ımagıng of pagat radıatıon dosımetry gel. October, 2013. 45) Fong P.M., Keil D.C., Does M.D. and Gore J.C. (2001). Polymer gels for magnetic resonance imaging of radiation dose distribution at normal room atmosphere.Phys. Med. Biol 46, 3105-3113. 46) Baldock C. (2004). Historical overview of gel dosimetry. Third International Conference on Radiotherapy Gel Dosimetry. Journal of Physics: Conference Series 3, 1–3. 47) Baldock C., (2006). Historical overview of the development of gel dosimetry: A personal perspective, 4th International Conference on Radiotherapy Gel Dosimetry Journal of Physics: Conference Series 56, 14–22 48) Maryanski MJ, Gore JC, Schulz RJ. Three dimensional detection, dosimetry and imaging ofan energy field by formation of a polymer in a gel. US Patent #5 321 357, 1994. 49) Maryanski MJ, Schulz RJ, Ibbott GS, Gatenby JC, Xie J, Horton D, et al. Magnetic resonanceimaging of radiation dose distributions using a polymergel dosimeter. Phys MedBiol 1994; 39:1437-55. 50) Maryanski MJ, Audet C, Gore JC. Dose response of a BANG polymer gel: temperaturedependence. Med Phys 1995; 22:951. 51) Maryanski MJ, Audet C, Gore JC. Effects of cross-linking and temperature on the doseresponse of a BANG polymer gel dosimeter. Phys Med Biol 1997; 42:303-11. 52) Vachier MC, Rutledge DN. Influence of temperature, pH, water content, gel strength andtheir interactions on NMR relaxation of gelatins analysis of the calculatedrelaxation times. J Magn Reson Analysis 1996;2:311-20. 53) Audet C, Maryanski MJ, Gore JC. Dose response of the BANG polymer gel dosimeter:dependence on composition. Med Phys 1995; 22:951. 54) Baldock C, Burford RP, Billingham NC, Cohen D, Keevin SF. Polymer gel composition inMRI dosimetry. Med Phys 1996; 23:1070. 55) Maryanski MJ, Audet C, Gore JC. Dose response of the BANG polymer gel: effects of crosslinkingdensity. Med Phys 1995; 22:950. 56) Farajollahi AR, Bonnett DE, Aukett RJ, Radcliffe AJ. The advantages and limitationsofpolymer gel dosimetry in brachytherapy. J Int Fed Med Biol Eng 1997;35:1012. 57) Zebrowska G, Husson F, Lewa CJ, de Certaintes JD. MRI of radiation dose distribution in anew tissue equivalent gel dosimeter (PIRA). In: Proc Soc Magn Reson 3rd ScientificMeeting; 1995 August; Nice, France. California, USA: Society for MagneticResonance in Medicine: 1102. 58) Kennan RP, Richardson KA, Zhong J, Maryanski MJ, Gore JC. The effects of cross-linkdensity and chemical exchange on magnetization transfer in Polyacrylamide gels. JMagn Reson 1996; 110:267-77. 59) Gochberg DF, Kennan RP, Maryanski MJ, Gore JC. The role of specific side groups and pHin magnetization transfer in polymers. J Magn Reson 1998; 131:191-8. 60) Sittig M. Handbook of toxic and hazardous chemicals and carcinogens (2nd edn). NewJersey, USA: Noyes Publications, 1985:41 61) De Deene, Y., et al., Validation of MR-based polymer gel dosimetry as a preclinical three-dimensional verification tool in conformal radiotherapy. Magnetic Resonance in Medicine, 2000. 43(1): p. 116-125. 62) Mcjury.M, M.O., V P Cosgrove, PS Murphy, S Doran, M O Leach, S Webb, Radiation dosimetry using polymer gels: methods and applications. The British Journal of Radiology, 2000. 73: p. 919-929. 63) Ibbott G. S. et al., Three dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of bang 135 polymer gel dosimeters. Int. J. Radiat. Oncol. Biol. Phys. 1997. 38(5): p. 1097- 1103 64) Deene Y.D., Fundamentals of MRI measurements for gel dosimetry. Journal of Physics: Conference Series, 2004. 3(1): p. 87-114 65) Oldham, M., et al., An investigation into the dosimetry of a nine-field tomotherapy irradiation using BANG-gel dosimetry. Phys. Med. Biol, 1998. 43: p. 1113-1132. 66) De Deene, Y., et al., Artefacts in multi-echo T 2 imaging for high-precision gel dosimetry: I. Analysis and compensation of eddy currents. Phys. Med. Biol., 2000a. 45(7): p. 1807-1823. 67) De Deene, Y. and C. De Wagter, Artefacts in multi-echo T2 imaging for highprecision gel dosimetry: III. Effects of temperature drift during scanning. Phys Med Biol, 2001. 46(10): p. 2697-711. 68) Karadag, N. (2005). İki Farklı Enerjide Kodak-EDR2 ve X-Omat V2 Filmlerinin Karakteristik Özelliklerinin İncelenmesi, Yüksek lisans tezi,Hacettepe Üniversitesi, Ankara. 69) European Society for Therapeutic Radiology and Oncology (ESTRO) (2006).Methods for in vivo dosimetry in external radiotherapy. Van Dam, J., Marinello,G. Booklet no:1. Second Edition. Belgium. 37-51. 70) Karaçam, S. (2007). Yüksek Doz Hızlı (HDR) Brakiterapi UygulamalarınınKalite Kontrolünde Gafkromik Film Kullanımının Arastırılması, Doktora tezi,İstanbul Üniversitesi, İstanbul. 71) American Association of Physicists in Medicine (AAPM) (1998), Radiochromicfilm dosimetry: Recommendations of AAPM Radiation Therapy CommitteeTask Group 55. Med. Phys. 25, 2093-2115, USA. 72) Khan, F.M. (2003). The Physics of Radiation Therapy. Third Edition. Baltimore:Lippincott Williams and Wilkins. 73) Sankar, A., Komanduri, M., Nehru, R., Kurup, G., Muralı, V., Enke C. (2006). Comparison of Kodak EDR2 and Gafchromic EBT film forintensity modulated radiation therapy dose distribution verification. MedicalDosimetry, 31(4), 273-282. 74) Gafchromic® EBT2 Self-Developing Film For Radiotherapy Dosimetry. (2009). International Specialty Products (ISP) Publishing. 75) Başer T. 2011. Cyberknıfe® Robotik Radyocerrahi Cihazının Tedavi Planlama Sisteminin Dozimetrik Kontrolü. Tamer Başer. Yüksek Lisans Tezi. Hacettepe Üniversitesi. 76)http://www3.gehealthcare.com/en/products/categories/magnetic_resonance_i maging/signa_hdxt_1-5t#tabs/tab860B307EC43941AE818918C20E34D6CD (Erişim tarihi 07 Ocak 2017) 77) http://www.epson.com/cmcupload/0/000/142/237/1000XLInfoSheetR1.pdf (Erişim Tarihi 07 Ocak 2017). 78) http://www.ashland.com/products/filmqa-pro-software (Erişim tarihi 07 Ocak 2017) 79) Kozicki M., Maras P., Karwowski A. C. Software for 3D radiotherapy dosimetry.Validation. Phys. Med. Biol. 59 (2014) 4111–4136. doi:10.1088/0031-9155/59/15/4111 80) Peter M Fong, Derek C Keil, Mark D Does, John C Gore. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys. Med. Biol. 46 (2001) 3105-3113. 81) Humphries M. S., Taylor D. D., Measurement of Synchrony accuracy using an independent tracking system and the Synchrony Quality Assurance tool. therss.org/document/docdownload.aspx?docid=404.5a5e00c0-fb7c- 412bb65d- 816d04d6d7dc.pdf 82) Nioutsikou E., Seppenwoolde Y., Heijmen B. Dosimetric investigation of lung tumor motion compensation with a robotic respiratory tracking system: An experimental study. Med. Phys. 35,1232 (2008); http://dx.doi.org/10.1118/1.2842074 83) Rohini G., Suh Y., Murphy M., Williamson J.. On the accuracy of a moving average algorithm for target tracking during radiation therapy treatment delivery. Med Phys. 2008 Jun;35(6):2356-65. DOI:10.1118/1.2921131 84) Månsson S. , Karlsson A. , Gustavsson H., Christensson J., Bäck S.. Dosimetric verification of breathing adapted radiotherapy using polymer gel. 2006. Journal of Physics: Conference Series 56 300–303. doi:10.1088/1742- 6596/56/1/055 85) Ceberg S., Gagne I., Gustafsson H.RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation. 2010. Physics in Medicine and Biology, Volume 55, Number 17.http://dx.doi.org/10.1088/0031- 9155/55/17/001. 86) OldhamM., Sakhalkar H., GuoP.. An investigation of the accuracy of an IMRT dose distribution using two- and three-dimensional dosimetry techniques. 2008. Med. Phys. 35, 2072; http://dx.doi.org/10.1118/1.2899995tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/3200
dc.description.abstractŞAHİN, M. C. Three Dimensional Performance Analysis Of Cyberknife Synchrony® Respiratory Tracking System Using Polymer Gel Dosimeter. Hacettepe University Institute of Health Sciences, Thesis in Radiotherapy Physics Program, Ankara, 2017. Tumor movement is a challenging issue for the precise delivery of radiation for thoracic tumors. The Synchrony respiratory motion tracking system (RMTS) of Cyberknife® robotic radiosurgery unit synchronizes radiation beam delivery with the respiration induced tumor motion. This study aims to investigate the performance of Synchrony RMTS for different movement widths using polymer gel dosimetry. To the best of our knowledge this is the first study to make the three dimensional performance analysis of Synchrony RMTS. The MultiPlan® treatment planning system (TPS) of Cyberknife® was used to deliver 4 Gy to a tumor of 1X1X1 cm3. BrainLab Gating lung phantom was used to simulate lung movements with three different amplitudes (1 cm, 2 cm and 3 cm). Three fiducials were inserted to the phantom for tracking. Radiochromic film and polymer gel dosimetry were used and measurements were compared with the dose distributions acquired from the TPS. The dose information of irradiated gel were read out using 1.5 T magnetic resonance imaging. The gamma index values were analysed using the Ashland FilmQA Pro 3.0 software for film dosimeters and Polygevero software for gel dosimeters using the 3mm/3% criteria. PolyGevero gamma index value of ≤1 is accepted as a passing criteria according to the literature. The mean 3 mm 3% gamma index values of film dosimetry were 92.6±1.94%, 91.0±4.00%, 90.3±2.04% for tumor motions of 1 cm, 2 cm and 3 cm, respectively (p<0.001). For polymer gel dosimetry, the mean gamma index values calculated over almost three million points were 0.56±0.10, 0.60±0.24 and 0.65±0.30 for tumor motions of 1 cm, 2 cm and 3 cm, respectively (p<0.001). Although the difference was statistically significant for 3 different amplitudes, the performance of the system was within the acceptance limits. Three dimensional performance analysis showed that Cyberknife Synchrony® RMTS is successful in tumor tracking regardless of the amplitude of movement.en
dc.description.sponsorshipBu tez TÜBİTAK ARDEB 3001 projesi ile desteklenmiştir. Proje Kodu:115S446tr_TR
dc.description.tableofcontentsONAY iii YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI iv ETİK BEYAN v TEŞEKKÜR vi ÖZET vii ABSTRACT viii İÇİNDEKİLER ix SİMGELER VE KISALTMALAR xii ŞEKİLLER DİZİNİ xiii TABLOLAR DİZİNİ xiv 1. GİRİŞ 1 2. GENEL BİLGİLER 2 2.1. Akciğer Kanserinde Tümör Hareketi 2 2.1.1. Görüntü Elde Edilmesindeki Sınırlamalar 3 2.1.2. Tedavi Planlama Sınırlamaları 3 2.1.3. Radyasyon Verilmesiyle İlgili Sınırlamalar 4 2.2. Radyoterapide Solunuma Bağlı Hareket İçin Kullanılan Yöntemler 4 2.2.1. Hareketi Kapsayan Yöntemler 5 2.2.2. Solunum Ayarlı Yöntemler 5 2.2.3. Abdominal Kompresyon “Forced Shallow Breathing” Yöntemi 6 2.2.4. Solunumla Senkronize “Real-Time Tumor Tracking” Yöntemi 6 2.2.5. Nefes Tutma Teknikleri 7 2.3. Stereotaktik Radyoterapi 9 2.4. Stereotaktik Radyoterapi Uygulamalarında Kullanılan Cihazlar 9 2.5. CyberKnife Robotik Radyocerrahi Ünitesi 11 2.6. Cyberknife Sistemi ve İzleme Algoritmaları 12 2.6.1. Akciğer Optimize Tedavisi 12 2.6.2. Synchrony Solunum Takip Algoritması 13 2.7. Jel Dozimetri 17 2.7.1. Fricke Jel Dozimetri 19 2.7.2. Polimer Jel Dozimetri 20 2.7.3. Jel Dozimetrinin Özellikleri 25 2.7.4. Jel Dozimetrinin Görüntülenme Yöntemleri 28 2.8. Film Dozimetri 29 2.8.1. Radyokromik Film Dozimetre 30 3. GEREÇ VE YÖNTEM 32 3.1. Accuray Marka CyberKnife® Robotik Radyocerrahi Sistemi 32 3.2. MultiPlan® Tedavi Planlama Sistemi 33 3.3. GE Healthcare Signa Hdxt 1.5 T Manyetik Rezonans Görüntüleme 34 3.4. Epson Marka 10000 XL Tarayıcı 35 3.5. MATLAB 7.10 Programı 35 3.6. Ashland FilmQA Pro 3.0 Yazılımı 35 3.7. PolyGeVero®Yazılımı 36 3.8. Brainlab Respiratory Gating Fantomu 38 3.9.Tedavi Planının Hazırlanması 39 3.10. Polimer Jel Dozimetrinin Hazırlanması 41 3.11. Parafin Wax’ın Hazırlanması 42 3.12. Gafkromik Film Dozimetre İçin Kalibrasyon Eğrisinin Oluşturulması 43 3.13. Polimer Jel Dozimetre İçin Kalibrasyon Eğrisinin Oluşturulması 45 4. BULGULAR 46 4.1. Gafkromik Film Bulguları 46 4.2. Polimer Jel Dozimetre Bulguları 51 4.2.1. Jel Dozimetre MR Görüntüleri 51 4.2.2. Bir cm Genlik ile Hareket Eden Tümör İçin Elde Edilen Polimer Jel Dozimetre Bulguları 52 4.2.3. İki cm Genlik ile Hareket Eden Tümör İçin Elde Edilen Polimer Jel Dozimetre Bulguları 56 4.2.4. Üç cm Genlik ile Hareket Eden Tümör İçin Elde Edilen Polimer Jel Dozimetre Bulguları 58 5. TARTIŞMA 62 6. SONUÇ VE ÖNERİLER 67 7. KAYNAKLAR 69 8. EKLER 76 EK - 1 Polimer Jel Dozimetrenin Hazırlanması 76 EK - 2 Parafin Wax’ın Hazırlanması 77 ÖZGEÇMİŞtr_TR
dc.language.isoturtr_TR
dc.publisherKanser Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectCyberknifetr_TR
dc.subjectSynchrony®
dc.subjectSolunum Takip Sistemi
dc.subjectPolimer Jel Dozimetre
dc.subjectGafkromik Film Dozimetre
dc.subjectPolyGeVero
dc.titleCyberknife Synchrony® Solunum Takip Sisteminin Polimer Jel Dozimetre ile Üç Boyutlu Performans Analizitr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetŞAHİN, M.C. Cyberknife Synchrony® Solunum Takip Sisteminin Polimer Jel Dozimetre İle Üç Boyutlu Performans Analizi. Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü Radyoterapi Fiziği Programı Yüksek Lisans Tezi, Ankara, 2017. Tümör hareketi, torasik tümörlere radyasyon verilmesinde zorlayıcı bir konudur. CyberKnife robotik radyocerrahi ünitesinin Synchrony solunum takip sistemi, solunum ile radyasyon verilmesini senkronize ederek tümör hareketinin etkisini azaltmaktadır. Bu çalışmanın amacı, üç boyutlu polimer jel dozimetre kullanarak, farklı genliklerde hareket eden tümörler için Synchrony solunum takip sisteminin performansının araştırılmasıdır. Bilgilerimize göre bu çalışma, Synchrony solunum takip sisteminin üç boyutlu performans analizini yapan ilk çalışmadır. Boyutu 1x1x1 cm3 olan tümöre MultiPlan tedavi planlama sisteminde (TPS) fraksiyon dozu 4 Gy olacak şekilde tedavi planı hazırlanmıştır. BrainLab gating fantomu kullanılarak üç farklı genlik için tümör hereketi simüle edilmiştir. Takip için üç adet fidüsiyel fantom üzerine uygun pozisyonlarda yerleştirilmiştir. Rayokromik film dozimetre ve polimer jel dozimetre kullanılarak ölçümler alınmış ve bu sonuçlar MultiPlan TPS’nin doz dağılımı verileriyle karşılaştırılmıştır. Işınlanan jel dozimetrelerin doz bilgisini elde etmek için gerekli olan görüntüler 1,5 T manyetik rezonans görüntüleme cihazı ile elde edilmiştir. Radyokromik film dozimetrelerin analizi için Ashland FilmQA Pro 3.0 yazılımı kullanılmıştır. Polimer jel dozimetrelerin analizi için Gamma indeks kriteri 3 mm % 3 olarak belirlenmiş ve PolyGeVero yazılımı kullanılmıştır. Literatürde PolyGeVero ile yapılan çalışmalara göre Gamma indeks değerinin ≤1 olması geçer kriter olarak kabul edilmektedir. Radyokromik film dozimetre için 3 mm % 3 kriteri ile yapılan Gamma indeks değerleri, 1 cm, 2 cm ve 3 cm tümör hareketi için sırasıyla 92.6±1.94%, 91.0±4.00%, 90.3±2.04% olarak bulunmuştur (p<0.001). Polimer jel dozimetre için ortalama Gamma indeks değerleri yaklaşık üç milyon nokta kullanılarak hesaplanmıştır. Polimer jel dozimetre Gamma indeks değerleri 1 cm, 2 cm ve 3 cm tümör hareketi için sırasıyla 0.56±0.10, 0.60±0.24 ve 0.65±0.30 olarak bulunmuştur (p<0.001). Fark, üç ayrı hareket genliği için anlamlı olmasına rağmen, sistemin performansı kabul limitleri içindedir. Polimer jel dozimetre ile üç boyutlu performans analizi, CyberKnife Synchrony solunum takip sisteminin hareket genliğinden bağımsız olarak başarıyla tümör takibi yaptığını göstermiştir.tr_TR
dc.contributor.departmentRadyasyon Onkolojisitr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster