Show simple item record

dc.contributor.advisorErtuğrul, Aygün
dc.contributor.authorKaraçam Doğan, Melike
dc.date.accessioned2022-01-05T11:26:07Z
dc.date.issued2020-09
dc.date.submitted2020-09-08
dc.identifier.citation1. Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 2001;41:237-260. 2. Kaster TS, de Jesus D, Radhu N, Farzan F, Blumberger DM, Rajji TK, Fitzgerald PB, Daskalakis ZJ. Clozapine potentiation of GABA mediated cortical inhibition in treatment resistant schizophrenia. Schizophr Res 2015;165:157-162. 3. Blum BP, Mann JJ. The GABAergic system in schizophrenia. Int J Neuropsychopharmacol 2002;5:159-179. 4. Roberts E. Prospects for research on schizophrenia. An hypotheses suggesting that there is a defect in the GABA system in schizophrenia. Neurosci Res Program Bull 1972;10:468-482. 5. H. DTJ. Modern Psychiatric Treatment. Vol 2. Oxford: Blackwell, 1971. 6. Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1988;1:179-186. 7. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB, Jr., Charney DS. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994;51:199-214. 8. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991;148:1301-1308. 9. Benes FM. Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 2000;31:251-269. 10. O'Connor WT, O'Shea SD. Clozapine and GABA transmission in schizophrenia disease models: establishing principles to guide treatments. Pharmacol Ther 2015;150:47-80. 11. Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 2015;15:146-167. 12. Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 2012;35:57-67. 13. Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 2009;459:663-667. 14. Selten M, van Bokhoven H, Nadif Kasri N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Res 2018;7:23. 15. Gordon E, Williams L, Haig AR, Wright J, Meares RA. 16. Baldeweg T, Spence S, Hirsch SR, Gruzelier J. Gamma-band electroencephalographic oscillations in a patient with somatic hallucinations. Lancet. Vol 352. England, 1998:620-621. 17. de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A. GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies. Front Psychiatry 2017;8:118. 18. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jr., Jones EG. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995;52:258-266. 19. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000;57:1061-1069. 20. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000;28:53-67. 21. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 2000;57:237-245. 22. Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF. Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 2004;9:609-620, 544. 23. Dracheva S, Elhakem SL, McGurk SR, Davis KL, Haroutunian V. GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia. J Neurosci Res 2004;76:581-592. 24. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 2001;98:4746-4751. 25. Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 2005;102:2152-2157. 26. Benes FM, Todtenkopf MS, Logiotatos P, Williams M. Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain. J Chem Neuroanat 2000;20:259-269. 27. Woo TU, Walsh JP, Benes FM. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 2004;61:649-657. 28. Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry 2008;165:479-489. 29. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A 1998;95:15718-15723. 30. Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res 2005;72:109-122. 31. Thompson M, Weickert CS, Wyatt E, Webster MJ. Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. J Psychiatr Res 2009;43:970-977. 32. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003;23:6315-6326. 33. Pierri JN, Chaudry AS, Woo TU, Lewis DA. Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 1999;156:1709-1719. 34. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC. Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience 1999;93:441-448. 35. Konopaske GT, Sweet RA, Wu Q, Sampson A, Lewis DA. Regional specificity of chandelier neuron axon terminal alterations in schizophrenia. Neuroscience 2006;138:189-196. 36. Goei VL, Choi J, Ahn J, Bowlus CL, Raha-Chowdhury R, Gruen JR. Human gamma-aminobutyric acid B receptor gene: complementary DNA cloning, expression, chromosomal location, and genomic organization. Biol Psychiatry 1998;44:659-666. 37. Zhao X, Qin S, Shi Y, Zhang A, Zhang J, Bian L, Wan C, Feng G, Gu N, Zhang G, He G, He L. Systematic study of association of four GABAergic genes: glutamic acid decarboxylase 1 gene, glutamic acid decarboxylase 2 gene, GABA(B) receptor 1 gene and GABA(A) receptor subunit beta2 gene, with schizophrenia using a universal DNA microarray. Schizophr Res 2007;93:374-384. 38. Monkul ES, Yildiz A, J CS. [Magnetic resonance spectroscopy (MRS) applications in bipolar disorder]. Turk Psikiyatri Derg 2004;15:138-147. 39. Goto N, Yoshimura R, Kakeda S, Moriya J, Hori H, Hayashi K, Ikenouchi-Sugita A, Nakano-Umene W, Katsuki A, Nishimura J, Korogi Y, Nakamura J. No alterations of brain GABA after 6 months of treatment with atypical antipsychotic drugs in early-stage first-episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:1480-1483. 40. Kelemen O, Kiss I, Benedek G, Kéri S. Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: the potential impact of GABA concentration in the visual cortex. Prog Neuropsychopharmacol Biol Psychiatry 2013;47:13-19. 41. Marsman A, Mandl RC, Klomp DW, Bohlken MM, Boer VO, Andreychenko A, Cahn W, Kahn RS, Luijten PR, Hulshoff Pol HE. GABA and glutamate in schizophrenia: a 7 T ¹H-MRS study. Neuroimage Clin 2014;6:398-407. 42. Rowland LM, Kontson K, West J, Edden RA, Zhu H, Wijtenburg SA, Holcomb HH, Barker PB. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia. Schizophr Bull 2013;39:1096-1104. 43. Rowland LM, Krause BW, Wijtenburg SA, McMahon RP, Chiappelli J, Nugent KL, Nisonger SJ, Korenic SA, Kochunov P, Hong LE. Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study. Mol Psychiatry 2016;21:198-204. 44. Wang J, Tang Y, Zhang T, Cui H, Xu L, Zeng B, Li Y, Li G, Li C, Liu H, Lu Z, Zhang J. Reduced γ-Aminobutyric Acid and Glutamate+Glutamine Levels in Drug-Naïve Patients with First-Episode Schizophrenia but Not in Those at Ultrahigh Risk. Neural Plast 2016;2016:3915703. 45. Yoon JH, Maddock RJ, Rokem A, Silver MA, Minzenberg MJ, Ragland JD, Carter CS. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 2010;30:3777-3781. 46. Kegeles LS, Mao X, Stanford AD, Girgis R, Ojeil N, Xu X, Gil R, Slifstein M, Abi-Dargham A, Lisanby SH, Shungu DC. Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2012;69:449-459. 47. Tayoshi S, Nakataki M, Sumitani S, Taniguchi K, Shibuya-Tayoshi S, Numata S, Iga J, Ueno S, Harada M, Ohmori T. GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 2010;117:83-91. 48. Ongür D, Prescot AP, McCarthy J, Cohen BM, Renshaw PF. Elevated gamma-aminobutyric acid levels in chronic schizophrenia. Biol Psychiatry 2010;68:667-670. 49. Schür RR, Draisma LW, Wijnen JP, Boks MP, Koevoets MG, Joëls M, Klomp DW, Kahn RS, Vinkers CH. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies. Hum Brain Mapp 2016;37:3337-3352. 50. Taylor SF, Tso IF. GABA abnormalities in schizophrenia: a methodological review of in vivo studies. Schizophr Res 2015;167:84-90. 51. Marenco S, Geramita M, van der Veen JW, Barnett AS, Kolachana B, Shen J, Weinberger DR, Law AJ. Genetic association of ErbB4 and human cortical GABA levels in vivo. J Neurosci 2011;31:11628-11632. 52. Marenco S, Savostyanova AA, van der Veen JW, Geramita M, Stern A, Barnett AS, Kolachana B, Radulescu E, Zhang F, Callicott JH, Straub RE, Shen J, Weinberger DR. Genetic modulation of GABA levels in the anterior cingulate cortex by GAD1 and COMT. Neuropsychopharmacology 2010;35:1708-1717. 53. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009;120:2008-2039. 54. Rosso C, Lamy JC. Does Resting Motor Threshold Predict Motor Hand Recovery After Stroke? Front Neurol 2018;9:1020. 55. Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 2007;68:484-488. 56. McCormick DA. GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 1989;62:1018-1027. 57. Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 2000;111:794-799. 58. Di Lazzaro V, Pilato F, Dileone M, Ranieri F, Ricci V, Profice P, Bria P, Tonali PA, Ziemann U. GABAA receptor subtype specific enhancement of inhibition in human motor cortex. J Physiol 2006;575:721-726. 59. Di Lazzaro V, Pilato F, Dileone M, Profice P, Ranieri F, Ricci V, Bria P, Tonali PA, Ziemann U. Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: a TMS study. Clin Neurophysiol 2007;118:2207-2214. 60. Hasan A, Wobrock T, Grefkes C, Labusga M, Levold K, Schneider-Axmann T, Falkai P, Müller H, Klosterkötter J, Bechdolf A. Deficient inhibitory cortical networks in antipsychotic-naive subjects at risk of developing first-episode psychosis and first-episode schizophrenia patients: a cross-sectional study. Biol Psychiatry 2012;72:744-751. 61. Wobrock T, Schneider M, Kadovic D, Schneider-Axmann T, Ecker UK, Retz W, Rosler M, Falkai P. Reduced cortical inhibition in first-episode schizophrenia. Schizophr Res 2008;105:252-261. 62. Fitzgerald PB, Brown TL, Daskalakis ZJ, Kulkarni J. A transcranial magnetic stimulation study of inhibitory deficits in the motor cortex in patients with schizophrenia. Psychiatry Res 2002;114:11-22. 63. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Moller B, Fountain SI, Chen R. Increased cortical inhibition in persons with schizophrenia treated with clozapine. J Psychopharmacol 2008;22:203-209. 64. Eichhammer P, Wiegand R, Kharraz A, Langguth B, Binder H, Hajak G. Cortical excitability in neuroleptic-naive first-episode schizophrenic patients. Schizophr Res 2004;67:253-259. 65. Schecklmann M, Weidler C, Eichhammer P, Hajak G, Langguth B. Increased short-interval intracortical inhibition in un-medicated patients with schizophrenia. Brain Stimul 2018;11:1080-1082. 66. Yildiz MI, Temucin C, Ertugrul A. [The Relationship of the Change in Symptoms and Cognitive Functions With the Change in Cortical Inhibition Parameters Measured by Transcranial Magnetic Stimulation: An Eight-Week Follow-Up Study]. Turk Psikiyatri Derg 2015;26:161-171. 67. Strube W, Wobrock T, Bunse T, Palm U, Padberg F, Malchow B, Falkai P, Hasan A. Impairments in motor-cortical inhibitory networks across recent-onset and chronic schizophrenia: a cross-sectional TMS Study. Behav Brain Res 2014;264:17-25. 68. Fitzgerald PB, Brown TL, Marston NA, Oxley T, De Castella A, Daskalakis ZJ, Kulkarni J. Reduced plastic brain responses in schizophrenia: a transcranial magnetic stimulation study. Schizophr Res 2004;71:17-26. 69. Radhu N, de Jesus DR, Ravindran LN, Zanjani A, Fitzgerald PB, Daskalakis ZJ. A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clin Neurophysiol 2013;124:1309-1320. 70. Kaskie RE, Ferrarelli F. Investigating the neurobiology of schizophrenia and other major psychiatric disorders with Transcranial Magnetic Stimulation. Schizophr Res 2018;192:30-38. 71. Tani M, Akashi N, Hori K, Konishi K, Kitajima Y, Tomioka H, Inamoto A, Hirata A, Tomita A, Koganemaru T, Takahashi A, Hachisu M. Anticholinergic Activity and Schizophrenia. Neurodegener Dis 2015;15:168-174. 72. Tandon R, Shipley JE, Greden JF, Mann NA, Eisner WH, Goodson JA. Muscarinic cholinergic hyperactivity in schizophrenia. Relationship to positive and negative symptoms. Schizophr Res 1991;4:23-30. 73. Maixner S, Tandon R, Eiser A, Taylor S, DeQuardo JR, Shipley J. Effects of antipsychotic treatment on polysomnographic measures in schizophrenia: a replication and extension. Am J Psychiatry 1998;155:1600-1602. 74. O'Keane V, Abel K, Murray RM. Growth hormone responses to pyridostigmine in schizophrenia: evidence for cholinergic dysfunction. Biol Psychiatry 1994;36:582-588. 75. Dean B, Crook JM, Opeskin K, Hill C, Keks N, Copolov DL. The density of muscarinic M1 receptors is decreased in the caudate-putamen of subjects with schizophrenia. Mol Psychiatry 1996;1:54-58. 76. Crook JM, Dean B, Pavey G, Copolov D. The binding of [3H]AF-DX 384 is reduced in the caudate-putamen of subjects with schizophrenia. Life Sci 1999;64:1761-1771. 77. Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B. Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann's areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry 2001;158:918-925. 78. Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E. Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 2002;7:1083-1091. 79. Mancama D, Arranz MJ, Landau S, Kerwin R. Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003;119b:2-6. 80. Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B. Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 2000;48:381-388. 81. Zavitsanou K, Katsifis A, Mattner F, Huang XF. Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 2004;29:619-625. 82. Deng C, Huang XF. Decreased density of muscarinic receptors in the superior temporal gyrusin schizophrenia. J Neurosci Res 2005;81:883-890. 83. Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 2007;12:232-246. 84. Raedler TJ, Knable MB, Jones DW, Urbina RA, Gorey JG, Lee KS, Egan MF, Coppola R, Weinberger DR. In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 2003;160:118-127. 85. Raedler TJ, Knable MB, Jones DW, Urbina RA, Egan MF, Weinberger DR. Central muscarinic acetylcholine receptor availability in patients treated with clozapine. Neuropsychopharmacology 2003;28:1531-1537. 86. Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC. Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 2000;135:455-461. 87. Noda Y, Barr MS, Zomorrodi R, Cash RFH, Rajji TK, Farzan F, Chen R, George TP, Daskalakis ZJ, Blumberger DM. Reduced Short-Latency Afferent Inhibition in Prefrontal but not Motor Cortex and Its Association With Executive Function in Schizophrenia: A Combined TMS-EEG Study. Schizophr Bull 2018;44:193-202. 88. Akdede BB. Şizofreni ve Bilişsel İşlev. Şizofreni ve Diğer Psikotik Bozukluklar Temel Kitap. 89. Brothers L. The neural basis of primate social communication. 90. Brüne M, Abdel-Hamid M, Lehmkämper C, Sonntag C. Mental state attribution, neurocognitive functioning, and psychopathology: what predicts poor social competence in schizophrenia best? Schizophr Res 2007;92:151-159. 91. Brunet E, Sarfati Y, Hardy-Baylé MC. Reasoning about physical causality and other's intentions in schizophrenia. Cogn Neuropsychiatry 2003;8:129-139. 92. Sarfati Y, Hardy-Baylé MC, Besche C, Widlöcher D. Attribution of intentions to others in people with schizophrenia: a non-verbal exploration with comic strips. Schizophr Res 1997;25:199-209. 93. Bertrand MC, Sutton H, Achim AM, Malla AK, Lepage M. Social cognitive impairments in first episode psychosis. Schizophr Res 2007;95:124-133. 94. Bora E, Gökçen S, Veznedaroglu B. Empathic abilities in people with schizophrenia. Psychiatry Res 2008;160:23-29. 95. Kelemen O, Erdélyi R, Pataki I, Benedek G, Janka Z, Kéri S. Theory of mind and motion perception in schizophrenia. Neuropsychology 2005;19:494-500. 96. Martino DJ, Bucay D, Butman JT, Allegri RF. Neuropsychological frontal impairments and negative symptoms in schizophrenia. Psychiatry Res 2007;152:121-128. 97. Zhu CY, Lee TM, Li XS, Jing SC, Wang YG, Wang K. Impairments of social cues recognition and social functioning in Chinese people with schizophrenia. Psychiatry Clin Neurosci 2007;61:149-158. 98. Green MF, Bearden CE, Cannon TD, Fiske AP, Hellemann GS, Horan WP, Kee K, Kern RS, Lee J, Sergi MJ, Subotnik KL, Sugar CA, Ventura J, Yee CM, Nuechterlein KH. Social cognition in schizophrenia, Part 1: performance across phase of illness. Schizophr Bull 2012;38:854-864. 99. Chung YS, Kang DH, Shin NY, Yoo SY, Kwon JS. Deficit of theory of mind in individuals at ultra-high-risk for schizophrenia. Schizophr Res 2008;99:111-118. 100. E. B. Dementia Praecox oder Gruppe der Schizophrenien. Leipzig, Germany: Deuticke, 1911. 101. Kraepelin E. Dementia Praecox and Paraphrenia. 1919. 102. Kircher T, Bröhl H, Meier F, Engelen J. Formal thought disorders: from phenomenology to neurobiology. Lancet Psychiatry 2018;5:515-526. 103. Marengo JT, Harrow M. Longitudinal courses of thought disorder in schizophrenia and schizoaffective disorder. Schizophr Bull 1997;23:273-285. 104. Harvey PD, Docherty NM, Serper MR, Rasmussen M. Cognitive deficits and thought disorder: II. An 8-month followup study. Schizophr Bull 1990;16:147-156. 105. Bora E, Yalincetin B, Akdede BB, Alptekin K. Neurocognitive and linguistic correlates of positive and negative formal thought disorder: A meta-analysis. Schizophr Res 2019;209:2-11. 106. Kerns JG, Berenbaum H. Cognitive impairments associated with formal thought disorder in people with schizophrenia. J Abnorm Psychol 2002;111:211-224. 107. Mutlu E, Abaoglu H, Bariskin E, Gurel SC, Ertugrul A, Yazici MK, Aki E, Yagcioglu AEA. The cognitive aspect of formal thought disorder and its relationship with global social functioning and the quality of life in schizophrenia. Soc Psychiatry Psychiatr Epidemiol 2021. 108. Takahashi S, Ukai S, Kose A, Hashimoto T, Iwatani J, Okumura M, Tsuji T, Shinosaki K. Reduction of cortical GABAergic inhibition correlates with working memory impairment in recent onset schizophrenia. Schizophr Res 2013;146:238-243. 109. Bridgman AC, Barr MS, Goodman MS, Chen R, Rajji TK, Daskalakis ZJ, George TP. Deficits in GABAA receptor function and working memory in non-smokers with schizophrenia. Schizophr Res 2016;171:125-130. 110. Mehta UM, Thirthalli J, Basavaraju R, Gangadhar BN. Association of intracortical inhibition with social cognition deficits in schizophrenia: Findings from a transcranial magnetic stimulation study. Schizophr Res 2014;158:146-150. 111. Kirihara K, Araki T, Kasai K, Maeda K, Hata A, Uetsuki M, Yamasue H, Rogers MA, Kato N, Iwanami A. Confirmation of a relationship between reduced auditory P300 amplitude and thought disorder in schizophrenia. Schizophr Res 2005;80:197-201. 112. Anıl Yağcıoğlu E. GŞC. Şizofrenide Tedaviye Direnç. Şizofreni ve Diğer Psikotik Bozukluklar Temel Kitap. 113. Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988;45:789-796. 114. Buchanan R.W. KJ, Kelly D.L. , Noel J. M. , Boggs D.L. , Fischer B. A. , Himelhoch S., Fang B., Peterson E., Aquino P. R., Keller W. The 2009 Schizophrenia PORT Psychopharmacological Treatment Recommendations and Summary Statements. Schizophrenia Bulletin 2010;36:71-93. 115. Buchanan RW. Clozapine: efficacy and safety. Schizophr Bull 1995;21:579-591. 116. The American Psychiatric Association Practice Guideline For The Treatment Of Patients With Schizophrenia, Third Edition. 2020. 117. M. SS. Antipsychotic agents. Stahl's Essential Psychopharmacology: Cambridge University Press, April 1, 2013. 118. Li Z, Huang M, Ichikawa J, Dai J, Meltzer HY. N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M1 muscarinic receptors. Neuropsychopharmacology 2005;30:1986-1995. 119. Meltzer HY. The role of serotonin in schizophrenia and the place of serotonin-dopamine antagonist antipsychotics. J Clin Psychopharmacol 1995;15:2S-3S. 120. Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: A new hypothesis. Am J Psychiatry 2001;158:360-369. 121. Khokhar JY, Henricks AM, Sullivan EDK, Green AI. Unique Effects of Clozapine: A Pharmacological Perspective. Adv Pharmacol 2018;82:137-162. 122. Wu Y, Blichowski M, Daskalakis ZJ, Wu Z, Liu CC, Cortez MA, Snead OC, 3rd. Evidence that clozapine directly interacts on the GABAB receptor. Neuroreport 2011;22:637-641. 123. Micoulaud-Franchi JA, Aramaki M, Geoffroy PA, Richieri R, Cermolacce M, Faget C, Ystad S, Kronland-Martinet R, Lancon C, Vion-Dury J. Effects of clozapine on perceptual abnormalities and sensory gating: a preliminary cross-sectional study in schizophrenia. J Clin Psychopharmacol 2015;35:184-187. 124. Nucifora FC, Jr., Mihaljevic M, Lee BJ, Sawa A. Clozapine as a Model for Antipsychotic Development. Neurotherapeutics 2017;14:750-761. 125. Nair PC, McKinnon RA, Miners JO, Bastiampillai T. Binding of clozapine to the GABAB receptor: clinical and structural insights. Mol Psychiatry 2020;25:1910-1919. 126. Meltzer HY, McGurk SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 1999;25:233-255. 127. Woodward ND, Purdon SE, Meltzer HY, Zald DH. A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int J Neuropsychopharmacol 2005;8:457-472. 128. Baldez DP, Biazus TB, Rabelo-da-Ponte FD, Nogaro GP, Martins DS, Kunz M, Czepielewski LS. The effect of antipsychotics on the cognitive performance of individuals with psychotic disorders: Network meta-analyses of randomized controlled trials. Neurosci Biobehav Rev 2021;126:265-275. 129. Purdon SE, Woodward ND, Mintz A, LaBelle A. Procedural learning improvements after six weeks of clozapine treatment. Schizophr Res 2002;53:165-166. 130. Mutlu E, Yazici MK, Bariskin E, Ertugrul A, Gurel SC, Gurkan S, Goka E, Yagcioglu AEA. Examination of formal thought disorder and its clinical correlates with the Turkish Version of the Thought and Language Disorder Scale (TALD-TR) in schizophrenia. Compr Psychiatry 2019;93:7-13. 131. Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S. Effect of antipsychotics on cortical inhibition using transcranial magnetic stimulation. Psychopharmacology (Berl) 2003;170:255-262. 132. Ahlgren-Rimpilainen A, Lauerma H, Kahkonen S, Rimpilainen I. Disrupted central inhibition after transcranial magnetic stimulation of motor cortex in schizophrenia with long-term antipsychotic treatment. ISRN Psychiatry 2013;2013:876171. 133. Frank E, Landgrebe M, Poeppl TB, Schecklmann M, Kreuzer PM, Prasser J, Rupprecht R, Eichhammer P, Hajak G, Langguth B. Antipsychotic treatment with quetiapine increases the cortical silent period. Schizophr Res 2014;156:128-132. 134. Ustohal L, Mayerova M, Hublova V, Prikrylova Kucerova H, Ceskova E, Kasparek T. Risperidone increases the cortical silent period in drug-naive patients with first-episode schizophrenia: A transcranial magnetic stimulation study. J Psychopharmacol 2017;31:500-504. 135. Liu SK, Fitzgerald PB, Daigle M, Chen R, Daskalakis ZJ. The relationship between cortical inhibition, antipsychotic treatment, and the symptoms of schizophrenia. Biol Psychiatry 2009;65:503-509. 136. Michael B. First RLS, Miriam Gibbon, Janet B. W. Williams. Structured Clinical Interview for DSM-IV Axis I Disorders SCID-I: Clinician Version, Administration Booklet. American Psychiatric Press, 1997. 137. Çorapçıoğlu A AÖ, Yıldız M. DSM IV Eksen 1 bozuklukları (SCID-1) için yapılandırılmış klinik görüşme, klinik versiyon. Hekimler Yayın Birliği, 1999. 138. Ulug BE, A & Gogus, A & Kabakci, E. . Reliability and Validity of the Turkish Version of the World Health Organisation Disability Assessment Schedule-II (WHO-DAS-II) in Schizophrenia. Turk Psikiyatr Derg 2001;12:121-130. 139. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987;13:261-276. 140. Kostakoğlu AE, Batur, S., Tiryaki, A., Göğüş, A. . Pozitif ve Negatif Sendrom Ölçeğinin (PANSS) Türkçe uyarlamasının geçerlilik ve güvenilirliği. Türk Psikoloji Dergisi 1999;14:23-32. 141. Kircher T, Krug A, Stratmann M, Ghazi S, Schales C, Frauenheim M, Turner L, Fahrmann P, Hornig T, Katzev M, Grosvald M, Muller-Isberner R, Nagels A. A rating scale for the assessment of objective and subjective formal Thought and Language Disorder (TALD). Schizophr Res 2014;160:216-221. 142. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9:97-113. 143. D. W. Wechsler Adult Intelligence Scale--Fourth Edition (WAIS-IV). 2008. 144. M.D. L. Neuropsychological assessment. Oxford University Press, New York 1995. 145. P.; Demir B. Yaş, Cinsiyet ve Eğitim Düzeyinin Fonemik ve Semantik Sözel Akıcılık Testi Puanları Üzerinde Etkisi. Turk Psikiyatri Derg 2021. 146. Bingöl A EG, Haktanır I. Türk toplumunda sözel akıcılık becerisi; bir standardizasyon çalışması. 15.Ulusal Nöroloji Kongresi; Adana 1994. 147. Stroop JR. Studies of interference in serial verbal reactions. Journal of Experimental Psychology 1935;18:643-662. 148. Sirel KARAKAŞ EE, Şebnem Soysal, Tacettin ULUSOY, İnanç Yüceyurt ULUSOY, Serkan ALKAN. Stroop Test TBAG Form: Standardisation for Turkish Culture, Reliability and Validity. J Clin Psy 1999;2:75-88. 149. Rey A. L’examin clinique en psychologie. Paris, France: Presses Universitaires de France., 1958. 150. Genç Açıkgöz D KS. AVLT’nin Türk diline uyarlanmasına ilişkin bir çalışma. IX. Ulusal Psikoloji Kongresi; İstanbul 1996. 151. Cangoz B, Karakoc E, Selekler K. Trail Making Test: normative data for Turkish elderly population by age, sex and education. J Neurol Sci 2009;283:73-78. 152. Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I. The "Reading the Mind in the Eyes" Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry 2001;42:241-251. 153. Yildirim EA, Kasar M, Guduk M, Ates E, Kucukparlak I, Ozalmete EO. Investigation of the reliability of the "reading the mind in the eyes test" in a Turkish population. Turk Psikiyatri Derg 2011;22:177-186. 154. Siskind D, McCartney L, Goldschlager R, Kisely S. Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. Br J Psychiatry 2016;209:385-392. 155. de Boer JN, Voppel AE, Brederoo SG, Wijnen FNK, Sommer IEC. Language disturbances in schizophrenia: the relation with antipsychotic medication. NPJ Schizophr 2020;6:24. 156. Agrawal R RB. Effectiveness Study of Typical and Atypical Antipsychotics on Patients with Schizophrenia using WHO Disability Assessment Schedule (WHODAS 2.0). Biomed Pharmacol J 2021;14. 157. Ertugrul A, Ulug B. The influence of neurocognitive deficits and symptoms on disability in schizophrenia. Acta Psychiatr Scand 2002;105:196-201. 158. Gurcan G, Hun Senol S, Anil Yagcioglu AE, Karahan S, Ertugrul A. Common Side Effects and Metabolic Syndrome due to Clozapine: Relationship with the Clinical Variables and Disability. Turk Psikiyatri Derg 2021;32:87-99. 159. A PR, C C, S B, B P, A K, K SJ. Clinical Predictors of Response to Clozapine in Patients with Treatment Resistant Schizophrenia. Psychopharmacol Bull 2011;44:51-65. 160. Wobrock T, Schneider-Axmann T, Retz W, Rosler M, Kadovic D, Falkai P, Schneider M. Motor circuit abnormalities in first-episode schizophrenia assessed with transcranial magnetic stimulation. Pharmacopsychiatry 2009;42:194-201. 161. Abarbanel JM, Lemberg T, Yaroslavski U, Grisaru N, Belmaker RH. Electrophysiological responses to transcranial magnetic stimulation in depression and schizophrenia. Biol Psychiatry 1996;40:148-150. 162. Miyazawa A, Kanahara N, Nakata Y, Kodama S, Kimura H, Kimura A, Oda Y, Watanabe H, Iyo M. Clozapine Prolongs Cortical Silent Period in Patients with Treatment-Resistant Schizophrenia. Psychopharmacol Bull 2021;51:20-30. 163. Freedman R, Adams CE, Adler LE, Bickford PC, Gault J, Harris JG, Nagamoto HT, Olincy A, Ross RG, Stevens KE, Waldo M, Leonard S. Inhibitory neurophysiological deficit as a phenotype for genetic investigation of schizophrenia. Am J Med Genet 2000;97:58-64. 164. Becker J, Gomes I, Ghisolfi ES, Schuch A, Ramos FL, Ehlers JA, Nora DB, Lara DR, da Costa JC. Clozapine, but not typical antipsychotics, correct P50 suppression deficit in patients with schizophrenia. Clin Neurophysiol 2004;115:396-401. 165. Noda Y, Barr MS, Zomorrodi R, Cash RFH, Farzan F, Rajji TK, Chen R, Daskalakis ZJ, Blumberger DM. Evaluation of short interval cortical inhibition and intracortical facilitation from the dorsolateral prefrontal cortex in patients with schizophrenia. Sci Rep 2017;7:17106. 166. Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci U S A 2003;100:13674-13679. 167. Schwieler L, Linderholm KR, Nilsson-Todd LK, Erhardt S, Engberg G. Clozapine interacts with the glycine site of the NMDA receptor: electrophysiological studies of dopamine neurons in the rat ventral tegmental area. Life Sci 2008;83:170-175. 168. Cucurachi L, Immovilli P, Granella F, Pavesi G, Cattaneo L. Short-latency afferent inhibition predicts verbal memory performance in patients with multiple sclerosis. J Neurol 2008;255:1949-1956. 169. Noda Y, Zomorrodi R, Backhouse F, Cash RFH, Barr MS, Rajji TK, Chen R, Daskalakis ZJ, Blumberger DM. Reduced Prefrontal Short-Latency Afferent Inhibition in Older Adults and Its Relation to Executive Function: A TMS-EEG Study. Front Aging Neurosci 2017;9:119.  tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/25741
dc.description.abstractKaraçam Doğan Melike. Effects of clozapine on cortical inhibition. Hacettepe University Faculty of Medicine, Department of Psychiatry, Dissertation Thesis, Ankara, 2021. Preclinical and clinical studies reported cortical inhibition deficits in schizophrenia. Transcranial magnetic stimulation (TMS) is a commonly used noninvasive measurement method. There are few studies evaluating the effects of antipsychotics on cortical inhibition. The purpose of this study is to investigate the effects of 90-120 days of clozapine treatment on TMS parameters and and to compare them with healthy controls. Ten patients who were planned to initiate clozapine by their doctors were included in the study, and the follow-up of eight patients completed. Eight healthy controls matched with patients for age and sex were also included. Patients were assessed with Positive and Negative Syndrome Scale (PANSS), Thought and Language Disorder Scale (TALD), and World Health Organization Disability Assessment Scale-II (WHODAS-II) and cognitive tests; also resting motor threshold (RMT), cortical silent period (CSP), short interval intracortical inhibition (SICI), intracortical facilitation (ICF) and short latency afferent inhibition (SAI) were measured by TMS at the beginning and end of the treatment. TMS parameters were measured in the controls. At the beginning, there was a difference between the patients and controls in RMT, ICF and SAI, but at the end, only ICF was different. CSP was found to be prolonged compared to baseline. Stroop-2 and RAVLT-5 scores were lower, Stroop-4 scores were higher. No correlation was found between the change in CSP and the change in cognitive tests. Prolongation of CSP shows that clozapine is associated with an increase in cortical inhibition. This is the first study to investigate the effect of clozapine on SAI. It is also the first follow-up study to compare the effect of clozapine on cortical inhibition parameters with its effect on cognitive tests. We believe that our findings will contribute to the literature on the pathophysiology and treatment of schizophrenia, and further follow-up studies with larger sample sizes are required.tr_TR
dc.language.isoturtr_TR
dc.publisherTıp Fakültesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectklozapintr_TR
dc.subjectşizofrenitr_TR
dc.subjecttranskraniyel manyetik uyarımtr_TR
dc.subject.lcshPsikiyatritr_TR
dc.titleKLOZAPİNİN KORTİKAL İNHİBİSYON ÜZERİNE ETKİLERİtr_TR
dc.typeinfo:eu-repo/semantics/articletr_TR
dc.description.ozetKaraçam Doğan Melike. Klozapinin Kortikal İnhibisyon Üzerine Etkileri. Hacettepe Üniversitesi Tıp Fakültesi, Psikiyatri Anabilim Dalı Uzmanlık Tezi. Ankara, 2021. Şizofrenide kortikal inhibisyon eksiklikleri alanyazında preklinik ve klinik araştırmalarla gösterilmiştir. Transkraniyel manyetik uyarım sık kullanılan, girişimsel olmayan bir ölçüm yöntemidir. Antipsikotiklerin kortikal inhibisyon üzerine etkilerini değerlendiren az sayıda çalışma vardır. Bu araştırmada 90-120 günlük klozapin tedavisinin TMU bulguları üzerine etkisi ve bulguların sağlıklı kontroller ile kıyaslanması amaçlanmıştır. Araştırmaya takip eden doktorları tarafından klozapin başlanması planlanan 10 hasta dahil edilmiş, 8 hastanın izlemi tamamlanmıştır. Hastalarla yaş ve cinsiyet bakımından eşleştirilmiş 8 sağlıklı kontrol de çalışmaya dahil edilmiştir. Hastalara tedavi başında ve sonunda Pozitif ve Negatif Belirtiler Ölçeği (PANSS), Düşünce ve Dil Bozuklukları Ölçeği (TALD), Dünya Sağlık Örgütü Yetiyitimi Değerlendirme Çizelgesi (WHODAS-II) verilmiş, bilişsel testler uygulanmış ve istirahat motor eşik (İME), kortikal sessiz süre (KSS), kısa aralıklı intrakortikal inhibisyon (KAİKİ), intrakortikal güçlenme (İKG) ve kısa latanslı afferent inhibisyon (KAİ) TMU aracılığıyla ölçülmüştür. Kontrollerde de TMU ölçümü yapılmıştır. Tedavi başında hastalar ve kontroller arasında İME, İKG ve KAİ parametrelerinde, izlem sonunda yalnızca İKG’de anlamlı fark olduğu gösterilmiştir. İzlem sonunda hastalarda KSS’de uzama, bilişsel testlerden Stroop-2 ve RİSÖT-5 performanslarında bozulma, Stroop-4 performansında düzelme gözlenmiştir. KSS’deki değişim klozapinin kortikal inhibisyonu artırdığı şeklinde yorumlanmış olup, bu değişim ile bilişsel testlerdeki değişim arasında ilişki bulunmamıştır. Bu araştırma klozapinin KAİ üzerine etkisini araştıran, ayrıca klozapinin kortikal inhibisyon parametrelerine etkisini bilişsel testlere etkisiyle karşılaştıran ilk izlem çalışmasıdır. Araştırma bulgularının şizofreni patofizyolojisi ve tedavisi konusunda alanyazına olumlu katkıları olacağı ve daha geniş örneklemli izlem çalışmaları ile tekrarlanmasının faydalı olacağı düşünülmektedir.tr_TR
dc.contributor.departmentRuh Sağlığı ve Hastalıklarıtr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2022-01-05T11:26:07Z
dc.fundingDiğertr_TR
dc.subtypemedicineThesistr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record