• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial Intelligence Based Flexible Preamble Allocation for Radio Access Network Slicing in 5G Networks

View/Open
Yüksek Lisans Tez Dosyası (9.894Mb)
Date
2021
Author
Gedikli, Ahmet Melih
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
One of the most difficult challenges in Radio Access Network (RAN) slicing occurs in the connection establishment phase where multiple devices use a common Random Access Channel (RACH) to gain access to the network. It is now very well known that RACH congestion is a serious issue in case of sporadic arrival of machine-to-machine (M2M) nodes and may result in significant delay for all nodes. Hence, RACH resources are also needed to be allocated to different services to enable RAN slicing so that the resources can be dynamically allocated. In the RACH procedure, the nodes transmit a selected preamble from a predefined set of preambles. If multiple nodes transmit the same preamble at the same RACH opportunity, a collision occurs at the eNodeB. In order to isolate one service class from others during this phase, one approach is to allocate different preamble subsets to different service classes. Static allocation of those subsets, however, may result in inefficiencies when the traffic generated by each service changes significantly over time. Hence, dynamic allocation is more suitable to be able to keep the delay and collision probabilities around the desired levels. This work proposes adaptive preamble subset allocation methods using Deep Reinforcement Learning (DRL) and Genetic Algorithm (GA). The proposed methods can distribute preambles among different service classes according to their priority and the traffic in the network, providing a virtual isolation of service classes. The results indicate that the proposed mechanisms can quickly adapt the preamble allocation according to the changing traffic demands of service classes.
URI
http://hdl.handle.net/11655/25513
xmlui.mirage2.itemSummaryView.Collections
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [177]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV