Basit öğe kaydını göster

dc.contributor.advisorUzun, Ömrüm
dc.contributor.authorGürsoy, Gamze
dc.date.accessioned2021-08-25T07:55:39Z
dc.date.issued2021
dc.date.submitted2021
dc.identifier.citation1. https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf. 2. Mathai AS, Phillips A, Kaur P, Isaac R. Incidence and attributable costs of ventilator-associated pneumonia (VAP) in a tertiary-level intensive care unit (ICU) in northern India. J Infect Public Health. 2015;8(2):127-35. 3. Gulen TA, Guner R, Celikbilek N, Keske S, Tasyaran M. Clinical importance and cost of bacteremia caused by nosocomial multi drug resistant acinetobacter baumannii. Int J Infect Dis. 2015;38:32-5. 4. Machado FR, Salomão R, Rigato O, Ferreira EM, Schettino G, Mohovic T, et al. Late recognition and illness severity are determinants of early death in severe septic patients. Clinics (Sao Paulo). 2013;68(5):586-91. 5. Cheng AC, Buising KL. Delayed administration of antibiotics and mortality in patients with community-acquired pneumonia. Ann Emerg Med. 2009;53(5):618-24. 6. Patel D, Lawson W, Guglielmo BJ. Antimicrobial stewardship programs: interventions and associated outcomes. Expert Rev Anti Infect Ther. 2008;6(2):209-22. 7. MacDougall C, Polk RE. Antimicrobial stewardship programs in health care systems. Clin Microbiol Rev. 2005;18(4):638-56. 8. Ten great public health achievements--United States, 1900-1999. MMWR Morb Mortal Wkly Rep. 1999;48(12):241-3. 9. Conly J, Johnston B. Where are all the new antibiotics? The new antibiotic paradox. Can J Infect Dis Med Microbiol. 2005;16(3):159-60. 10. Doron S, Davidson LE. Antimicrobial stewardship. Mayo Clin Proc. 2011;86(11):1113-23. 11. https://www.merckmanuals.com/home/infections/antibiotics/overview-of-antibiotics. 12. National Nosocomial Infections Surveillance (NNIS) System Report, Data Summary from January 1990-May 1999, issued June 1999. A report from the NNIS System. Am J Infect Control. 1999;27(6):520-32. 13. Tenover FC, Hughes JM. The challenges of emerging infectious diseases. Development and spread of multiply-resistant bacterial pathogens. Jama. 1996;275(4):300-4. 14. Cunha CB, Opal SM. Antibiotic Stewardship: Strategies to Minimize Antibiotic Resistance While Maximizing Antibiotic Effectiveness. Med Clin North Am. 2018;102(5):831-43. 15. Martinez JL. General principles of antibiotic resistance in bacteria. Drug Discov Today Technol. 2014;11:33-9. 16. Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol. 2013;303(6-7):287-92. 17. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417-33. 18. Coculescu BI. Antimicrobial resistance induced by genetic changes. J Med Life. 2009;2(2):114-23. 19. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. 20. Nielsen SL. The incidence and prognosis of patients with bacteremia. Dan Med J. 2015;62(7). 21. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary management. 2015;40(4):277-83. 22. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645-58. 23. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus. 2017;9(6):e1403-e. 24. Nseir S, Di Pompeo C, Diarra M, Brisson H, Tissier S, Boulo M, et al. Relationship between immunosuppression and intensive care unit-acquired multidrug-resistant bacteria: a case-control study. Crit Care Med. 2007;35(5):1318-23. 25. Geroulanos S, Douka ET. Historical perspective of the word "sepsis". Intensive Care Med. 2006;32(12):2077. 26. Vincent JL, Abraham E. The last 100 years of sepsis. Am J Respir Crit Care Med. 2006;173(3):256-63. 27. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012;10(6):701-6. 28. Jones AE, Puskarich MA. Sepsis-induced tissue hypoperfusion. Crit Care Nurs Clin North Am. 2011;23(1):115-25. 29. Gyawali B, Ramakrishna K, Dhamoon AS. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019;7:2050312119835043-. 30. Marshall JC, Dellinger RP, Levy M. The Surviving Sepsis Campaign: a history and a perspective. Surg Infect (Larchmt). 2010;11(3):275-81. 31. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45(3):486-552. 32. Vincent J-L, Jones G, David S, Olariu E, Cadwell KK. Frequency and mortality of septic shock in Europe and North America: a systematic review and meta-analysis. Critical care (London, England). 2019;23(1):196-. 33. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580-637. 34. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388-416. 35. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165(7):867-903. 36. Rosenthal VD, Maki DG, Jamulitrat S, Medeiros EA, Todi SK, Gomez DY, et al. International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003-2008, issued June 2009. Am J Infect Control. 2010;38(2):95-104.e2. 37. Seligman R, Ramos-Lima LF, Oliveira Vdo A, Sanvicente C, Sartori J, Pacheco EF. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia. J Bras Pneumol. 2013;39(3):339-48. 38. Park DR. The microbiology of ventilator-associated pneumonia. Respir Care. 2005;50(6):742-63; discussion 63-5. 39. Trouillet JL, Chastre J, Vuagnat A, Joly-Guillou ML, Combaux D, Dombret MC, et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med. 1998;157(2):531-9. 40. Lacherade JC, De Jonghe B, Guezennec P, Debbat K, Hayon J, Monsel A, et al. Intermittent subglottic secretion drainage and ventilator-associated pneumonia: a multicenter trial. Am J Respir Crit Care Med. 2010;182(7):910-7. 41. Phillips-Houlbracq M, Ricard JD, Foucrier A, Yoder-Himes D, Gaudry S, Bex J, et al. Pathophysiology of Escherichia coli pneumonia: Respective contribution of pathogenicity islands to virulence. Int J Med Microbiol. 2018;308(2):290-6. 42. Wu D, Wu C, Zhang S, Zhong Y. Risk Factors of Ventilator-Associated Pneumonia in Critically III Patients. Front Pharmacol. 2019;10:482-. 43. Kohbodi GA, Rajasurya V, Noor A. Ventilator-associated Pneumonia. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC.; 2020. 44. Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, et al. Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142(1):30-9. 45. Udy AA, Lipman J, Jarrett P, Klein K, Wallis SC, Patel K, et al. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care. 2015;19(1):28. 46. Udy AA, Roberts JA, Lipman J. Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med. 2013;39(12):2070-82. 47. Sime FB, Roberts MS, Roberts JA. Optimization of dosing regimens and dosing in special populations. Clin Microbiol Infect. 2015;21(10):886-93. 48. Kollef MH, Bassetti M, Francois B, Burnham J, Dimopoulos G, Garnacho-Montero J, et al. The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship. Intensive Care Med. 2017;43(9):1187-97. 49. Alvarez-Lerma F, Alvarez B, Luque P, Ruiz F, Dominguez-Roldan JM, Quintana E, et al. Empiric broad-spectrum antibiotic therapy of nosocomial pneumonia in the intensive care unit: a prospective observational study. Crit Care. 2006;10(3):R78. 50. Chen H, Fan Z, Guo F, Yang Y, Li J, Zhang J, et al. Tazobactam and piperacillin-induced thrombocytopenia: A case report. Exp Ther Med. 2016;11(4):1223-6. 51. Ordooei Javan A, Shokouhi S, Sahraei Z. A review on colistin nephrotoxicity. Eur J Clin Pharmacol. 2015;71(7):801-10. 52. Shields RK, Anand R, Clarke LG, Paronish JA, Weirich M, Perone H, et al. Defining the incidence and risk factors of colistin-induced acute kidney injury by KDIGO criteria. PLoS One. 2017;12(3):e0173286. 53. Rice LB. Antimicrobial Stewardship and Antimicrobial Resistance. Med Clin North Am. 2018;102(5):805-18. 54. McGowan JE, Jr., Finland M. Usage of antibiotics in a general hospital: effect of requiring justification. J Infect Dis. 1974;130(2):165-8. 55. Dyar OJ, Huttner B, Schouten J, Pulcini C. What is antimicrobial stewardship? Clin Microbiol Infect. 2017;23(11):793-8. 56. Cunha CB. Antimicrobial Stewardship Programs: Principles and Practice. Med Clin North Am. 2018;102(5):797-803. 57. Padiglione AA, Wolfe R, Grabsch EA, Olden D, Pearson S, Franklin C, et al. Risk factors for new detection of vancomycin-resistant enterococci in acute-care hospitals that employ strict infection control procedures. Antimicrob Agents Chemother. 2003;47(8):2492-8. 58. Donskey CJ, Schreiber JR, Jacobs MR, Shekar R, Salata RA, Gordon S, et al. A polyclonal outbreak of predominantly VanB vancomycin-resistant enterococci in northeast Ohio. Northeast Ohio Vancomycin-Resistant Enterococcus Surveillance Program. Clin Infect Dis. 1999;29(3):573-9. 59. Aubert G, Pozzetto B, Dorche G. Emergence of quinolone-imipenem cross-resistance in Pseudomonas aeruginosa after fluoroquinolone therapy. J Antimicrob Chemother. 1992;29(3):307-12. 60. Septimus EJ. Antimicrobial Resistance: An Antimicrobial/Diagnostic Stewardship and Infection Prevention Approach. Med Clin North Am. 2018;102(5):819-29. 61. Cunha CB. An Overview of Antimicrobial Stewardship Programs: Imperatives, Interventions, and Innovations. Med Clin North Am. 2018;102(5):xxi-xxiii. 62. López-González L, Candel FJ, Viñuela-Prieto JM, González-Del Castillo J, García AB, Pena I, et al. Useful independent factors for distinguish infection and colonization in patients with urinary carbapenemase-producing Enterobacteriaceae isolation. Rev Esp Quimioter. 2017;30(6):450-7. 63. Rollason V, Vogt N. Reduction of polypharmacy in the elderly: a systematic review of the role of the pharmacist. Drugs Aging. 2003;20(11):817-32. 64. Schute LL. [Clinical differences between viral and bacterial infections]. Dtsch Med Wochenschr. 2008;133(30):1592; author reply 65. Chia BY, Teo JQ, Lee W, Liew YX, Ee RP, Chlebicki MP, et al. Do antimicrobial stewardship programme interventions reduce the rate of and protect against Clostridium difficile infection? J Glob Antimicrob Resist. 2019;17:312-5. 66. Majumder MAA, Rahman S, Cohall D, Bharatha A, Singh K, Haque M, et al. Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect Drug Resist. 2020;13:4713-38. 67. Trippella G, Galli L, De Martino M, Lisi C, Chiappini E. Procalcitonin performance in detecting serious and invasive bacterial infections in children with fever without apparent source: a systematic review and meta-analysis. Expert Rev Anti Infect Ther. 2017;15(11):1041-57. 68. Herget-Rosenthal S, Marggraf G, Pietruck F, Hüsing J, Strupat M, Philipp T, et al. Procalcitonin for accurate detection of infection in haemodialysis. Nephrol Dial Transplant. 2001;16(5):975-9. 69. Robati Anaraki M, Nouri-Vaskeh M, Abdoli Oskouie S. Effectiveness of procalcitonin-guided antibiotic therapy to shorten treatment duration in critically-ill patients with bloodstream infections: a systematic review and meta-analysis. Infez Med. 2020;28(1):37-46. 70. Póvoa P, Almeida E, Moreira P, Fernandes A, Mealha R, Aragão A, et al. C-reactive protein as an indicator of sepsis. Intensive Care Med. 1998;24(10):1052-6. 71. Cusini A, Rampini SK, Bansal V, Ledergerber B, Kuster SP, Ruef C, et al. Different patterns of inappropriate antimicrobial use in surgical and medical units at a tertiary care hospital in Switzerland: a prevalence survey. plos one. 2010;5(11). 72. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51-77. 73. Bouza E, Muñoz P, Burillo A. Role of the Clinical Microbiology Laboratory in Antimicrobial Stewardship. Med Clin North Am. 2018;102(5):883-98. 74. Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis. Crit Care Med. 2006;34(1):15-21. 75. Gutiérrez F, Masiá M, Mirete C, Soldán B, Rodríguez JC, Padilla S, et al. The influence of age and gender on the population-based incidence of community-acquired pneumonia caused by different microbial pathogens. J Infect. 2006;53(3):166-74. 76. Pietropaoli AP, Glance LG, Oakes D, Fisher SG. Gender differences in mortality in patients with severe sepsis or septic shock. Gend Med. 2010;7(5):422-37. 77. Combes A, Luyt CE, Trouillet JL, Nieszkowska A, Chastre J. Gender impact on the outcomes of critically ill patients with nosocomial infections. Crit Care Med. 2009;37(9):2506-11. 78. Andersson M, Östholm-Balkhed Å, Fredrikson M, Holmbom M, Hällgren A, Berg S, et al. Delay of appropriate antibiotic treatment is associated with high mortality in patients with community-onset sepsis in a Swedish setting. Eur J Clin Microbiol Infect Dis. 2019;38(7):1223-34. 79. Lueangarun S, Leelarasamee A. Impact of inappropriate empiric antimicrobial therapy on mortality of septic patients with bacteremia: a retrospective study. Interdiscip Perspect Infect Dis. 2012;2012:765205-. 80. Cheng MP, Stenstrom R, Paquette K, Stabler SN, Akhter M, Davidson AC, et al. Blood Culture Results Before and After Antimicrobial Administration in Patients With Severe Manifestations of Sepsis: A Diagnostic Study. Ann Intern Med. 2019;171(8):547-54. 81. Scheer CS, Fuchs C, Gründling M, Vollmer M, Bast J, Bohnert JA, et al. Impact of antibiotic administration on blood culture positivity at the beginning of sepsis: a prospective clinical cohort study. Clin Microbiol Infect. 2019;25(3):326-31. 82. Lee A, Mirrett S, Reller LB, Weinstein MP. Detection of bloodstream infections in adults: how many blood cultures are needed? Journal of clinical microbiology. 2007;45(11):3546-8. 83. Zaitsev AA, Sinopalnikov A. [A "difficult" pneumonia: problems of differential diagnosis]. Voen Med Zh. 2015;336(5):21-8. 84. Cunha BA. Nosocomial pneumonia. Diagnostic and therapeutic considerations. Med Clin North Am. 2001;85(1):79-114. 85. Lindsay PJ, Rohailla S, Taggart LR, Lightfoot D, Havey T, Daneman N, et al. Antimicrobial Stewardship and Intensive Care Unit Mortality: A Systematic Review. Clin Infect Dis. 2019;68(5):748-56. 86. Okumura LM, Silva MM, Veroneze I. Effects of a bundled Antimicrobial Stewardship Program on mortality: a cohort study. Braz J Infect Dis. 2015;19(3):246-52.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/25224
dc.description.abstractIn recent years, the rate of antibiotic resistance has increased significantly, whereas fewere number of new antibiotics has been developed. Antibiotic stewardship has become a very popular topic due to higher emergence of resistance in bacteria compared to other pathogens, and a higher incidence of morbidity, mortality and treatment costs in patients with serious infections caused by these pathogens, and who are treated “inappropriately”. This study was conducted in patients hospitalized in the Intensive Care Units of Hacettepe University Adult and Oncology Hospitals who were diagnosed with sepsis / septic shock or ventilator-associated pneumonia (VAP). In this study, the effects of implementation of an antimicrobial stewardship program (ASP) were investigated. Patient data were collected prospectively in two periods when local guidelines for antimicrobial use were developed and their use encouraged (Period 2), and later, when an active auditing procedure was performed on all patients treated for VIP or sepsis/septik shock (Period 3). Data obtained during these two periods were compared to those collected retrospectively. The effects of ASP were evaluated using scoring systems developed at our center for these infections. In the sepsis arm, the rate of calculating the SOFA score (p <0.001), the rate of sending samples for a complete urine test (p = 0.001) and urine culture (p = 0.003), the rate of sampling from all possible foci of infection (p <0.001) increased significantly in Period 3. The rate of taking two sets of blood cultures (p = 0.034) significantly increased in Period 2 and Period 3. The rate of C-reactive protein (CRP) and procalcitonin testing (p <0.001) before administration of antibiotic(s) is the highest in Period 3. Similarly, antibiotics were administered at the appropriate dose (p = 0.004) and with the appropriate duration of infusion (p <0.001) significantly more frequently during the period of active intervention. In the VAP arm, calculation of SOFA at the time of diagnosis was observed only in Period 3 (p = 0.027). A decrease was observed in obtaining respiratory tract samples for culture and Gram staining before antibiotic administration (p = 0.028), and administration of antibiotic(s) in accordance with the local guidelines (p=0.021) in Period 2, but they increased in Period 3. The total scores obtained from the quality scoring systems increased in both sepsis and VAP patientstr_TR
dc.language.isoturtr_TR
dc.publisherSağlık Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectSepsis, pnömoni, AYPtr_TR
dc.subject.lcshTıp uygulamasıtr_TR
dc.titleYoğun Bakım Ünitelerinde Sepsis ve Ventilatör İlişkili Pnömonide Antibiyotik Yönetim Programının Etkileritr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetSon yıllarda, antibiyotik direnç oranında önemli ölçüde arttığı, buna karşılık yeni geliştirilen antibiyotiklerin sayısında ciddi azalma olduğu görülmektedir. Diğer mikroorganizmalara nazaran bakterilerin hızlı direnç kazanması, bu etkenlerle ciddi enfeksiyon gelişen hastalarda “uygunsuz” tedavi sonucu morbiditenin, mortalitenin ve tedavi maliyetinin daha yüksek olması nedeniyle antibiyotik yönetimi son yıllarda oldukça popüler bir konu haline gelmiştir. Bu çalışma, Hacettepe Üniversitesi Erişkin ve Onkoloji Hastaneleri Yoğun Bakım Üniteleri’nde izlenmekte olan, sepsis/septik şok veya ventilatör ilişkili pnömoni (VİP) tanısı almış olan hastalarda yapılmıştır. Çalışmada antimikrobiyal tedavi yönetim uygulamasının etkileri araştırılmıştır. Hasta verileri, sadece yerel kılavuzların geliştirildiği ve uygulanmasının teşvik edildiği (2. dönem) ve her hastanın tedavi planına aktif müdahalenin yapıldığı (3. dönem) iki dönemde prospektif olarak toplanmış, veriler retrospektif hasta verileriyle karşılaştırılmıştır. Antimikrobiyal yönetim ilkelerinin uygulanmasının hasta izlemindeki etkileri, geliştirilen skorlama sistemlerine göre puanlama yapılarak değerlendirilmiştir. Çalışmanın sonucunda sepsis kolunda, SOFA skoru hesaplanma oranı (p<0,001), antibiyotik uygulamadan önce tam idrar tetkiki (p=0,001) ve idrar kültürü alınma oranları (p=0,003) müdahaleli 3. dönemde 1. ve 2. dönemlere göre anlamlı şekilde artmıştır. Tedavi öncesi iki set kan kültürü alınması 2. ve 3. dönemde, 1. döneme göre anlamlı olarak artmıştır (0,034). Antibiyotik öncesi CRP ve prokalsitonin bakılması 3. dönemde en yüksektir (p<0,001). Antibiyotiğin yerel kılavuza uygun doz (p=0,004) ve uygun infüzyon süresinde (p<0,001) verilme oranı yine 3. dönemde en yüksektir. VİP kolunda tanı anında SOFA skoru hesaplanması 3. dönemde sağlanmıştır (p=0,027). Antibiyotik öncesi solunum yolu örneklerinin kültürü ve Gram boyamasının yapılma oranında (p=0,028), antibiyoterapinin kılavuza uygun doz aralığında verilmesinde (p=0,021) 2. dönemde bir düşüş olmuş, 3. dönemde bu rakamlar artmıştır. Kalite skorlamasından alınan toplam puanlar hem sepsis hem de VİP kolunda artmıştır.tr_TR
dc.contributor.departmentİç Hastalıklarıtr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2021-08-25T07:55:39Z
dc.fundingYoktr_TR
dc.subtypemedicineThesistr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess