• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Ana Sayfa
  • İktisadi ve İdari Bilimler Fakültesi
  • İşletme Bölümü
  • İşletme Bölümü Tez Koleksiyonu
  • Öğe Göster
  •   Ana Sayfa
  • İktisadi ve İdari Bilimler Fakültesi
  • İşletme Bölümü
  • İşletme Bölümü Tez Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Atölye Tipi Üretim İçin Makine Öğrenmesi Yöntemleri İle Üretim Saati Tahmini: Havacılık Ve Savunma Sanayii Uygulaması

Göster/Aç
Doktora Tezi Baris Özkaya-imzasız.pdf (2.710Mb)
Tarih
2021
Yazar
Özkaya, Barış
Ambargo Süresi
Acik erisim
Üst veri
Tüm öğe kaydını göster
Özet
Especially for the aerospace production companies, besides making accurate cost estimations in the bidding process, it is also important to make cost estimations fast enough. This is important for the companies to maintain their competitiveness and sustainability. In such an environment, companies should choose the best of their cost estimating methodologies they are capable of regarding to the constraints of the proposal and the company. In this dissertation, some research questions arise about the ability of the company for making cost estimations accurate and fast enough. To find the answers for these research questions, a real data set belonging to an aerospace company is used in the models. Three different cost estimating approaches are built according to their level of detail. Artificial neural networks, random forest and linear regression methods are used in each approach and their estimating performances are compared to each other. Since each three cost estimating approaches are different in level of detail, time needed for making the estimation and the accuracy of each approach is also different from each other. Findings of this dissertation is aimed to help the decision maker to choose the right estimating approach and the right estimating method subject to the related constraints. Also, the impact of the data transformation of the manufacturing hours according to the learning curve on the model performance is investigated in this dissertation.
Bağlantı
http://hdl.handle.net/11655/25052
Koleksiyonlar
  • İşletme Bölümü Tez Koleksiyonu [235]
Künye
ÖZKAYA, Barış. Atölye Tipi Üretim İçin Makine Öğrenmesi Yöntemleri İle Üretim Saati Tahmini: Havacılık Ve Savunma Sanayii Uygulaması, Doktora Tezi, Ankara, 2021.
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
İletişim | Geri Bildirim



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

Hakkımızda
Açık Erişim PolitikasıVeri Giriş RehberleriÜyeliklerİletişim

livechat

sherpa/romeo

Göz at

Tüm Açık ArşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreDile GöreErişim Şekline GöreDizinleme Kaynağına GöreFonlayan Kuruma GöreAlt Türe GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreDile GöreErişim Şekline GöreDizinleme Kaynağına GöreFonlayan Kuruma GöreAlt Türe Göre

Hesabım

GirişKayıt

İstatistikler

Kullanım İstatistiklerini Göster

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV