• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fen Fakültesi
  • İstatistik Bölümü
  • İstatistik Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Fen Fakültesi
  • İstatistik Bölümü
  • İstatistik Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tıp Bilişiminde Veri Madenciliği Yöntemleri Kullanılarak Hastalıkların Tahmin Edilmesitıp Bilişiminde Veri Madenciliği Yöntemleri Kullanılarak Hastalıkların Tahmin Edilmesi

View/Open
10374411-dönüştürüldü.pdf (1.551Mb)
Date
2020
Author
Sıtkı, Yasemin Hande
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
Nowadays, Data Mining is an increasingly important tool, especially in the administration of healthcare enterprises and in determining health-related policies, as it provides support for the decision-making processes of businesses by revealing information hidden from large dimensional data. Moreover, scientific publications have been made in the field of health in recent years to diagnose diseases using data mining algorithms. In this thesis, most frequently used data mining classification methods were examined, and a study was conducted to diagnose 18 different diseaes in the urology branch using the data collected from the patients who applied to the urology branch of four different public hospitals. For this purpose, classification algorithms Random Forest, Random Tree, Multilayer Perception, IBk, Kstar one of the sample based algorithms, Simple Logistic and Naive Bayes from statistical algorithms and ZeroR from rule learning algorithms were used, and the correct classification rates of the created models, namely how correctly they diagnosed the diseases, were examined. Among these algorithms Random Forest, Simple Logistic and Multilayer Perception algorithms have been found to be more successful in diagnosis than others. In future studies, an application can be developed for the diagnosis of diseases related to urology branch or diseases seen other branches by using the algorithms mentioned here. Thus, it may be possible to give healthcare professionals an idea in the diagnosis and to reduce their workload, to find the diseases in advance with early diagnosis and to shorten the treatment period.
URI
http://hdl.handle.net/11655/23292
xmlui.mirage2.itemSummaryView.Collections
  • İstatistik Bölümü Tez Koleksiyonu [91]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV