Basit öğe kaydını göster

dc.contributor.advisorAlp, Alpaslan
dc.contributor.authorAkdoğan Kıttana, Fatma Nur
dc.date.accessioned2020-05-07T13:15:18Z
dc.date.issued2020
dc.date.submitted2020-04-22
dc.identifier.citationCenter for Disease Control and Prevention, Tuberculosis Data and Statistics 2017 [Available from: https://www.cdc.gov/tb/statistics/default.htm, erişim tarihi : 02.08.2019. 2. World Health Organization, Global Tuberculosis Report, WHO/CDS/TB/2018.20, ISBN 978-92-4-156564-6. 2018. 3. Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(5):2979-81. 4. T.C. Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü Tüberküloz Dairesi Başkanlığı, Türkiye’de Verem Savaşı 2018 Raporu, Sağlık Bakanlığı Yayın No: 1109. Ankara; 2018. 5. T.C. Sağlık Bakanlığı, Tüberküloz Tanı ve Tedavi Rehberi, 2. Baskı. Ankara, Artı6 Medya Tanıtım Matbaa Ltd. Şti.2019. 6. Stop TB Partnership Working Group On New TB Drugs, 2019 Global New TB Drug Pipeline [07.08.2019]. Available from: https://www.newtbdrugs.org/pipeline/clinical. 7. Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S. New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob Agents Chemother. 2012;56(5):2326-34. 8. Yang JS, Kim KJ, Choi H, Lee SH. Delamanid, Bedaquiline, and Linezolid Minimum Inhibitory Concentration Distributions and Resistance-related Gene Mutations in Multidrug-resistant and Extensively Drug-resistant Tuberculosis in Korea. Ann Lab Med. 2018;38(6):563-8. 9. Keller PM, Homke R, Ritter C, Valsesia G, Bloemberg GV, Bottger EC. Determination of MIC distribution and epidemiological cutoff values for bedaquiline and delamanid in Mycobacterium tuberculosis using the MGIT 960 system equipped with TB eXiST. Antimicrob Agents Chemother. 2015;59(7):4352-5. 10. European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables For Interpretation Of MICs And Zone Diameters Version 9.0, valid from 2019-01-01. 2019. 11. Meehan CJ, Goig GA, Kohl TA, Verboven L, Dippenaar A, Ezewudo M, et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol. 2019. 12. Gygli SM, Keller PM, Ballif M, Blochliger N, Homke R, Reinhard M, et al. Whole-Genome Sequencing for Drug Resistance Profile Prediction in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019;63(4). 13. Akdoğan FN. Mycobacterium tuberculosis Klinik İzolatlarında İlaç Direncinin Multipleks Real-Time PCR Yöntemiyle Saptanması. Ankara: Hacettepe Üniversitesi, Sağlık Bilimleri Enstitüsü; 2013. 14. Barberis I, Bragazzi NL, Galluzzo L, Martini M. The History Of Tuberculosis: From The First Historical Records To The Isolation Of Koch’s Bacillus. J Prev Med Hyg. 2017; 58:E9-E12. 15. Daniel TM. Captain of Death: The story of tuberculosis. Rochester, N.Y.: University of Rochester Press; 1997. 16. Martini M, Besozzi G, Barberis I. The Never-Ending Story Of The Fight Against Tuberculosis: From Koch’s Bacillus To Global Control Programs. J Prev Med Hyg. 2018;59: E241-E247. 17. Arica V, Arica SG, Silfeler I, Ozer C. Application And Interpretation Of Tuberculin Skin Test. The Journal of Kartal Training and Research Hospital. 2013;24(3):201-7. 18. Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E, et al. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med. 2018;379(17):1621-34. 19. Birinci Basamak Sağlık Çalışanları İçin Aşı Rehberi, Türk Tabipleri Birliği Yayınları, ISBN 978-605-9665-28-5 Ankara; 2018. 20. 3rd CEB. Lessons from Seven Decades of Antituberculosis Drug Discovery. Curr Top Med Chem. 2011;11(10): 1216–1225. 21. Riedel S, Hobden JA, Miller S, Morse SA, Mietzner TA, Detrick B, et al. Jawetz Melnick and Adelbergs Medical Microbiology 28th ed: McGraw-Hill Education; 2019. 22. Sastry AS, Bhat S. Essentials of Medical Microbiology: Jaypee Brothers, Medical Publishers Pvt. Limited; 2018. 23. Murray P. R, Rosenthal KS, Pfaller MA. Medical Microbiology 7th Ed.,. ABD: Mosby Elsevier. 2013. 24. Levinson WE. Review of Medical Microbiology and Immunology 14E: McGraw Hill Professional; 2016. 25. Procop G, Church D, Hall D, Janda W, Koneman E, Schreckenberger P. Color Atlas and Textbook of Diagnostic Microbiology. Philadelphia: Lippincott Williams and Wilkins; 2017. 26. Stinson KW, Eisenach K, Kayes S, Matsumoto M, Siddiqi S, Nakashima S, et al. A publication of the Global Laboratory Initiative a Working Group of the Stop TB Partnership, Mycobacteriology Laboratory Manual. 2014. 27. Riedel S, Morse SA, Mietzner T, Miller S. Jawetz Melnick and Adelbergs Medical Microbiology 28 E: McGraw-Hill Education; 2019. 28. Elliott T, Casey A, Lambert P, Sandoe J. Medical microbiology and infection: lecture notes: Wiley-Blackwell; 2011. 29. Gillespie S, Bamford K. Medical microbiology and infection at a glance: John Wiley & Sons; 2012. 30. Namouchi A, Cimino M, Favre-Rochex S, Charles P, Gicquel B. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery. BMC Genomics. 2017;18(1):530. 31. Cole S, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537. 32. World Health Organization The Use of Next-Generation Sequencing Technologies for The Detection of Mutations Associated with Drug Resistance in Mycobacterium tuberculosis Complex: Technical Guide, Geneva. 2018. 33. Bentley SD, Comas I, Bryant JM, Walker D, Smith NH, Harris SR, et al. The genome of Mycobacterium africanum West African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis complex. PLoS Negl Trop Dis. 2012;6(2):e1552. 34. Brynildsrud OB, Pepperell CS, Suffys P, Grandjean L, Monteserin J, Debech N, et al. Global expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. Science Advances. 2018;4(10):eaat5869. 35. Yaman M. Tüberküloz patogenezi. İÜ Cerrahpaşa Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri Erişkin ve Çocukta Tüberküloz Sempozyumu, İstanbul. 1999:15-20. 36. T.C. Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, Türkiye'de Verem Savaşı 2018 Raporu, Sağlık Bakanlığı Yayın No: 1109, Ankara. 2018. 37. Alp A. Tüberkülozun laboratuvar tanısında güncel durum. Hacet Tıp Derg. 2011;42:28-33. 38. Trébucq A. Revisiting sputum smear microscopy. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease. 2004;8(7):805. 39. Uzun M. Örneklerin işlenmesi ve kültür yöntemleri. 21 Yüzyılda Tüberküloz Sempozyumu ve II Tüberküloz Laboratuvar Tanı Yöntemleri Kursu; Samsun 2003. 40. Siddiqi S, Rüsch-Gerdes S. MGIT Procedure Manual for BACTEC MGIT 960 TB System. Find Diagnostic. 2006. 41. Özbey N, Akçalı A, Tatman Otkun M. Çanakkale Onsekiz Mart Üniversitesi sağlık uygulama ve araştırma merkezi 2009-2011 yılı tüberküloz laboratuvar verilerinin değerlendirilmesi. Turk Hij Biyol Derg. 2012;69(3):149-54. 42. Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention clinical practice guidelines: diagnosis of tuberculosis in adults and children. Clinical Infectious Diseases. 2017;64(2):e1-e33. 43. Igarashi Y, Chikamatsu K, Aono A, Yi L, Yamada H, Takaki A, et al. Laboratory evaluation of the Anyplex II MTB/MDR and MTB/XDR tests based on multiplex real-time PCR and melting-temperature analysis to identify Mycobacterium tuberculosis and drug resistance. Diagn Microbiol Infect Dis. 2017;89(4):276-81. 44. Ruiz P, Causse M, Vaquero M, Gutierrez JB, Casal M. Evaluation of a new automated Abbott RealTime MTB RIF/INH assay for qualitative detection of rifampicin/isoniazid resistance in pulmonary and extra-pulmonary clinical samples of Mycobacterium tuberculosis. Infect Drug Resist. 2017;10:463-7. 45. Yağmur G, Albayrak N, Daş T, Yıldırım M, Özgün A, Büyük Y. Comparison of Two Different Real-Time PCR Systems in Postmortem Diagnosis of Tuberculosis in Paraffin-Embedded Tissues. Mikrobiyol Bul. 2014;48(4): 577-584. 46. World Health Organization, Technical Report on Critical Concentrations For Drug Susceptibility Testing Of Medicines Used In The Treatment Of Drug-Resistant Tuberculosis, WHO/CDS/TB/2018.5. 2018. 47. Rao P, Chawla K, Shenoy VP, Mukhopadhyay C. Role of real-time PCR for detection of tuberculosis and drug resistance directly from clinical samples. Indian J Tuberc. 2016;63(3):149-53. 48. Deggim-Messmer V, Bloemberg GV, Ritter C, Voit A, Homke R, Keller PM, et al. Diagnostic Molecular Mycobacteriology in Regions With Low Tuberculosis Endemicity: Combining Real-time PCR Assays for Detection of Multiple Mycobacterial Pathogens With Line Probe Assays for Identification of Resistance Mutations. EBioMedicine. 2016;9:228-37. 49. Molina-Moya B, Lacoma A, Prat C, Pimkina E, Diaz J, Garcia-Sierra N, et al. Diagnostic accuracy study of multiplex PCR for detecting tuberculosis drug resistance. J Infect. 2015;71(2):220-30. 50. World Health Organization. Policy update. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Geneva, Switzerland. 2013. 51. Theron G, Peter J, Meldau R, Khalfey H, Gina P, Matinyena B, et al. Accuracy and impact of Xpert MTB/RIF for the diagnosis of smear-negative or sputum-scarce tuberculosis using bronchoalveolar lavage fluid. Thorax. 2013;68(11):1043-51. 52. Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, ZiaZarifi AH, et al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest. 2009;136(2):420-5. 53. Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C. Totally drug-resistant tuberculosis in India. Clinical Infectious Diseases. 2012;54(4):579-81. 54. World Health Organization. Drug-resistant TB: Totally drug-resistant TB FAQ: Totally drug-resistant TB, Is the term “totally drug resistant” clearly defined? Is it recognised by the WHO? 2020 [Available from: https://www.who.int/tb/areas-of-work/drug-resistant-tb/totally-drug-resistant-tb-faq/en/. 55. Gupta-Wright A, Tomlinson GS, Rangaka MX, Fletcher HA. World TB Day 2018: The Challenge of Drug Resistant Tuberculosis. F1000Res. 2018;7:217. 56. Zumla AI, Gillespie SH, Hoelscher M, Philips PPJ, Cole ST, Abubakar I, et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. The Lancet Infectious Diseases. 2014;14(4):327-40. 57. Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S. New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob Agents and Chemother. 2012;56(5):2326-34. 58. Andries K, Villellas C, Coeck N, Thys K, Gevers T, Vranckx L, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PloS one. 2014;9(7). 59. Evranos Aksöz B. New drug candidates in tuberculosis treatment. Turkish Bulletin of Hygiene and Experimental Biology. 2014;71(4):207-20. 60. SIRTURO (bedaquiline) tablets label. Washington, DC: Food and Drug Administration. 2012. 61. Köser CU, Javid B, Liddell K, Ellington MJ, Feuerriegel S, Niemann S, et al. Drug-resistance mechanisms and tuberculosis drugs. The Lancet. 2015;385(9965):305-7. 62. Somoskovi A, Bruderer V, Hömke R, Bloemberg GV, Böttger EC. A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment. European Respiratory Journal. 2015;45(2):554-7. 63. Liu Y, Matsumoto M, Ishida H, Ohguro K, Yoshitake M, Gupta R, et al. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis (Edinb). 2018;111:20-30. 64. Xavier AS, Lakshmanan M. Delamanid: A new armor in combating drug-resistant tuberculosis. Journal of Pharmacology & Pharmacotherapeutics. 2014;5(3):222. 65. Fujiwara M, Kawasaki M, Hariguchi N, Liu Y, Matsumoto M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb). 2018;108:186-94. 66. Tiberi S, Munoz-Torrico M, Duarte R, Dalcolmo M, D'Ambrosio L, Migliori GB. New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology. 2018;24(2):86-98. 67. World Health Organization, Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. 2018. 68. Böttger E. The ins and outs of Mycobacterium tuberculosis drug susceptibility testing. Clinical Microbiology and Infection. 2011;17(8):1128-34. 69. Clinical Laboratory Standards Institute Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; approved standard M24–A2. 2011. 70. Bergmann JS, Fish G, Woods GL. Evaluation of the BBL MGIT (Mycobacterial growth indicator tube) AST SIRE system for antimycobacterial susceptibility testing of Mycobacterium tuberculosis to 4 primary antituberculous drugs. Archives of Pathology & Laboratory Medicine. 2000;124(1):82-6. 71. Springer B, Lucke K, Calligaris-Maibach R, Ritter C, Böttger EC. Quantitative drug susceptibility testing of Mycobacterium tuberculosis by use of MGIT 960 and EpiCenter instrumentation. Journal of Clinical Microbiology. 2009;47(6):1773-80. 72. BD EpiCenter TB/eXİST (Extended Individual Susceptibility Testing) Manual, FIND, ABD. 73. Luo T, Jiang L, Sun W, Fu G, Mei J, Gao Q. Multiplex real-time PCR melting curve assay to detect drug-resistant mutations of Mycobacterium tuberculosis. Journal of Clinical Microbiology. 2011;49(9):3132-8. 74. Collantes J, Solari FB, Rigouts L. Rapid Detection of Mycobacterium tuberculosis Strains Resistant to Isoniazid and/or Rifampicin: Standardization of Multiplex Polymerase Chain Reaction Analysis. Am J Trop Med Hyg. 2016;95(6):1257-64. 75. Peng J, Yu X, Cui Z, Xue W, Luo Z, Wen Z, et al. Multi-Fluorescence Real-Time PCR Assay for Detection of RIF and INH Resistance of M. tuberculosis. Front Microbiol. 2016;7:618. 76. Sahebi L, Ansarin K, Monfaredan A, Farajnia S, Nili S, Khalili M. Rapid Detection of Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Using Real-Time PCR. Jundishapur J Microbiol. 2016;9(10):e29147. 77. Sharma K, Sharma M, Singh S, Modi M, Sharma A, Ray P, et al. Real-time PCR followed by high-resolution melting curve analysis: A rapid and pragmatic approach for screening of multidrug-resistant extrapulmonary tuberculosis. Tuberculosis (Edinb). 2017;106:56-61. 78. Torrea G, Coeck N, Desmaretz C, Van De Parre T, Van Poucke T, Lounis N, et al. Bedaquiline susceptibility testing of Mycobacterium tuberculosis in an automated liquid culture system. Journal of Antimicrobial Chemotherapy. 2015;70(8):2300-5. 79. Yang JS, Kim KJ, Choi H, Lee SH. Delamanid, bedaquiline, and linezolid minimum inhibitory concentration distributions and resistance-related gene mutations in multidrug-resistant and extensively drug-resistant tuberculosis in Korea. Annals of laboratory medicine. 2018;38(6):563-8. 80. Van Soolingen D, Hermans P, De Haas P, Soll D, Van Embden J. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. Journal of Clinical Microbiology. 1991;29(11):2578-86. 81. Larsen MH, Biermann K, Tandberg S, Hsu T, Jacobs Jr WR. Genetic manipulation of Mycobacterium tuberculosis. Current Protocols in Microbiology. 2007;6(1):10A. 2.1-A. 2.21. 82. Keshavjee S, Farmer PE. Tuberculosis, drug resistance, and the history of modern medicine. New England Journal of Medicine. 2012;367(10):931-6. 83. Berry KM, Rodriguez CA, Berhanu RH, Ismail N, Mvusi L, Long L, et al. Treatment outcomes among children, adolescents, and adults on treatment for tuberculosis in two metropolitan municipalities in Gauteng Province, South Africa. BMC Public Health. 2019;19(1):973. 84. Kumar V, Singh S, Singh D, Datta S, Kumar S, Singh SB, et al. Current Trends in Mycobacterium tuberculosis Pathogenesis and Drug Resistance. Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery: Springer; 2020. p. 301-22. 85. MacNeil A. Global Epidemiology of Tuberculosis and Progress Toward Meeting Global Targets—Worldwide, 2018. MMWR Morbidity and Mortality Weekly Report. 2020;69. 86. World Health Organization. Tuberculosis and gender. 2020. 87. World Health Organization Regional Office for Europe; European Centre for Disease Prevention and Control. Tuberculosis surveillance and monitoring in Europe 2019. 88. Lee J, Armstrong DT, Ssengooba W, Park J-a, Yu Y, Mumbowa F, et al. Sensititre MYCOTB MIC plate for testing Mycobacterium tuberculosis susceptibility to first-and second-line drugs. Antimicrobial Agents and Chemotherapy. 2014;58(1):11-8. 89. López-Roa P, Ruiz-Serrano M, Alcalá L, Raez NG-E, de Viedma DG, Bouza E. Susceptibility testing to second-line drugs and ethambutol by GenoType MTBDRsl and Bactec MGIT 960 comparing with agar proportion method. Tuberculosis. 2012;92(5):417-21. 90. Demers A-M, Venter A, Friedrich SO, Rojas-Ponce G, Mapamba D, Jugheli L, et al. Direct susceptibility testing of Mycobacterium tuberculosis for pyrazinamide by use of the bactec MGIT 960 system. Journal of Clinical Microbiology. 2016;54(5):1276-81. 91. Glasauer S, Altmann D, Hauer B, Brodhun B, Haas W, Perumal N. First-line tuberculosis drug resistance patterns and associated risk factors in Germany, 2008-2017. PLoS One. 2019;14(6):e0217597. 92. Kendall EA, Cohen T, Mitnick CD, Dowdy DW. Second line drug susceptibility testing to inform the treatment of rifampin-resistant tuberculosis: a quantitative perspective. Int J Infect Dis. 2017;56:185-9. 93. Zhao P, Fang F, Yu Q, Guo J, Zhang J-h, Qu J, et al. Evaluation of BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to first-line drugs in China. PloS one. 2014;9(9). 94. Sharma M, Thibert L, Chedore P, Shandro C, Jamieson F, Tyrrell G, et al. Canadian multicenter laboratory study for standardized second-line antimicrobial susceptibility testing of Mycobacterium tuberculosis. Journal of Clinical Microbiology. 2011;49(12):4112-6. 95. Rodrigues C, Jani J, Shenai S, Thakkar P, Siddiqi S, Mehta A. Drug susceptibility testing of Mycobacterium tuberculosis against second-line drugs using the Bactec MGIT 960 System. The International Journal of Tuberculosis and Lung Disease. 2008;12(12):1449-55. 96. Tekin K, Albay A, Simsek H, Sig AK, Guney M. Evaluation of the BACTEC MGIT 960 SL DST Kit and the GenoType MTBDRsl Test for Detecting Extensively Drug-resistant Tuberculosis Cases. The Eurasian Journal of Medicine. 2017;49(3):183. 97. EUCAST reference protocol for MIC determination of anti-tuberculosis agents against isolates of the Mycobacterium tuberculosis complex in Middlebrook 7H9 broth Version 6.1. 4th of July, 2019. Available from http://www.eucast.org/mycobacteria/methods_in_mycobacteria/. 98. Santos NCdS, Scodro RBdL, Leal DC, do Prado SM, Micheletti DF, Sampiron EG, et al. Determination of minimum bactericidal concentration, in single or combination drugs, against Mycobacterium tuberculosis. Future Microbiology. 2020;15(2):107-14. 99. Zhao L-l, Xia Q, Lin N, Liu B, Zhao X-q, Liu Z, et al. Evaluation of BACTEC MGIT 960 system for the second-line drugs susceptibility testing of Mycobacterium tuberculosis in China. Journal of Microbiological Methods. 2012;91(1):212-4. 100. Kim H, Seo M, Park YK, Yoo J-I, Lee YS, Chung GT, et al. Evaluation of MGIT 960 system for the second-line drugs susceptibility testing of Mycobacterium tuberculosis. Tuberculosis Research and Treatment. 2013. 101. Gallo JF, Pinhata JMW, Saraceni CP, de Oliveira RS. Evaluation of the BACTEC MGIT 960 system and the resazurin microtiter assay for susceptibility testing of Mycobacterium tuberculosis to second-line drugs. Journal of Microbiological Methods. 2017;139:168-71. 102. Ignatyeva O, Kontsevaya I, Kovalyov A, Balabanova Y, Nikolayevskyy V, Toit K, et al. Detection of resistance to second-line antituberculosis drugs by use of the genotype MTBDRsl assay: a multicenter evaluation and feasibility study. Journal of Clinical Microbiology. 2012;50(5):1593-7. 103. Heysell SK, Pholwat S, Mpagama SG, Pazia SJ, Kumburu H, Ndusilo N, et al. Sensititre MycoTB plate compared to Bactec MGIT 960 for first-and second-line antituberculosis drug susceptibility testing in Tanzania: a call to operationalize MICs. Antimicrobial Agents and Chemotherapy. 2015;59(11):7104-8. 104. Torrea G, Ng KC, Van Deun A, André E, Kaisergruber J, Ssengooba W, et al. Variable ability of rapid tests to detect Mycobacterium tuberculosis rpoB mutations conferring phenotypically occult rifampicin resistance. Scientific Reports. 2019;9(1):1-9. 105. Jaglal P, Pillay M, Mlisana K. Resazurin microtitre plate assay and Sensititre® MycoTB for detection of Mycobacterium tuberculosis resistance in a high tuberculosis resistance setting. African Journal of Laboratory Medicine. 2019;8(1):9. 106. Battista Migliori G, Tiberi S, Zumla A, Petersen E, Muhwa Chakaya J, Wejse C, et al. MDR/XDR-TB management of patients and contacts: challenges facing the new decade. The 2020 Clinical Update by the Global Tuberculosis Network. 2020. 107. Ryan NJ, Lo JH. Delamanid: first global approval. Drugs. 2014;74(9):1041-5. 108. Kaniga K, Aono A, Borroni E, Cirillo DM, Desmaretz C, Hasan R, et al. Validation of Bedaquiline Phenotypic Drug Susceptibility Testing Methods and Breakpoints: a Multilaboratory, Multicountry Study. Journal of Clinical Microbiology. 2020;58(4). 109. Sng LH, Peh JWL, Kee MTL, Ya'akob NBM, Ong RT, Wong CW, et al. Clofazimine drug susceptibility testing for Mycobacterium tuberculosis: the case of using the right diluent. Pathology. 2018;50(5):549-53. 110. Salfinger M, Migliori GB. Bedaquiline: 10 years later, the drug susceptibility testing protocol is still pending. Eur Respiratory Soc; 2015. 111. Ismail NA, Omar SV, Joseph L, Govender N, Blows L, Ismail F, et al. Defining bedaquiline susceptibility, resistance, cross-resistance and associated genetic determinants: a retrospective cohort study. EBioMedicine. 2018;28:136-42. 112. Sivaramakrishnan G, Subramanyam B, Kumar MP, Golla R, Tripathy SP, Mondal R. Validation of bedaquiline drug-susceptibility testing by BACTEC MGIT 960 system for Mycobacterium tuberculosis. International Journal of Mycobacteriology. 2019;8(4):329. 113. Hoffmann H, Kohl TA, Hofmann-Thiel S, Merker M, Beckert P, Jaton K, et al. Delamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral Beijing genotype causing extensively drug-resistant tuberculosis in a Tibetan refugee. American Journal of Respiratory and Critical Care Medicine. 2016;193(3):337-40. 114. Andres S, Merker M, Heyckendorf J, Kalsdorf B, Rumetshofer R, Indra A, et al. Bedaquiline-resistant Tuberculosis: Dark Clouds on the Horizon. American Journal of Respiratory and Critical Care Medicine. 2020(ja). 115. Peretokina IV, Krylova LY, Antonova OV, Kholina MS, Kulagina EV, Nosova EY, et al. Reduced susceptibility and resistance to bedaquiline in clinical M. tuberculosis isolates. Journal of Infection. 2020. 116. Schön T, Miotto P, Köser CU, Viveiros M, Böttger E, Cambau E. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clinical Microbiology and Infection. 2017;23(3):154-60. 117. Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S, Andersson DI. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrobial Agents and Chemotherapy. 2010;54(3):1022-8. 118. Lohrasbi V, Talebi M, Bialvaei AZ, Fattorini L, Drancourt M, Heidary M, et al. Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance. Tuberculosis (Edinb). 2018;109:17-27. 119. Iacobino A, Fattorini L, Giannoni F. Drug-Resistant Tuberculosis 2020: Where We Stand. Applied Sciences. 2020;10(6):2153. 120. Chopra K, Singh S. Newer Diagnostic tests for tuberculosis, their utility and their limitations. Current Medicine Research and Practice. 2020. 121. Yazisiz H, Hircin Cenger D, Uçarman N, Altin S. The molecular patterns of resistance to anti-tuberculosis drugs: an analysis from Istanbul, Turkey. Journal of Chemotherapy. 2020:1-9. 122. Chawla K, Martinez E, Kumar A, Shenoy VP, Sintchenko V. Whole-genome sequencing reveals genetic signature of bedaquiline resistance in a clinical isolate of Mycobacterium tuberculosis. J Glob Antimicrob Resist. 2018;15:103-4. 123. Faksri K, Tan JH, Disratthakit A, Xia E, Prammananan T, Suriyaphol P, et al. Whole-Genome Sequencing Analysis of Serially Isolated Multi-Drug and Extensively Drug Resistant Mycobacterium tuberculosis from Thai Patients. PLoS One. 2016;11(8):e0160992. 124. Nimmo C, Shaw LP, Doyle R, Williams R, Brien K, Burgess C, et al. Whole genome sequencing Mycobacterium tuberculosis directly from sputum identifies more genetic diversity than sequencing from culture. BMC Genomics. 2019;20(1):389. 125. Kardan-Yamchi J, Kazemian H, Battaglia S, Abtahi H, Foroushani AR, Hamzelou G, et al. Whole Genome Sequencing Results Associated with Minimum Inhibitory Concentrations of 14 Anti-Tuberculosis Drugs among Rifampicin-Resistant Isolates of Mycobacterium tuberculosis from Iran. Journal of Clinical Medicine. 2020;9(2):465. 126. Lee W, Chang C, Lin W, Wu M, Jou R. Assessment of whole-genome sequencing for predicting Mycobacterium tuberculosis drugs resistance. Journal of Infection and Public Health. 2020;13(2):361. 127. Nieto Ramirez LM, Quintero Vargas K, Diaz G. Whole Genome Sequencing for the Analysis of Drug Resistant Strains of Mycobacterium tuberculosis: A Systematic Review for Bedaquiline and Delamanid. Antibiotics. 2020;9(3):133. 128. Advani J, Verma R, Chatterjee O, Pachouri PK, Upadhyay P, Singh R, et al. Whole Genome Sequencing of Mycobacterium tuberculosis Clinical Isolates From India Reveals Genetic Heterogeneity and Region-Specific Variations That Might Affect Drug Susceptibility. Front Microbiol. 2019;10:309. 129. Enkirch T, Werngren J, Groenheit R, Alm E, Advani R, Karlberg M, et al. Systematic review of whole genome sequencing data to predict phenotypic drug resistance and susceptibility in Swedish Mycobacterium tuberculosis isolates 2016-2018. Antimicrobial Agents and Chemotherapy. 2020. 130. Maladan Y, Krismawati H, Oktavian A, Lestari C, editors. Improving Multidrug-Resistance Tuberculosis Papua’s Management Using Whole Genome Sequencing. 4th International Symposium on Health Research (ISHR 2019); 2020: Atlantis Press. 131. Faksri K, Tan J, Chaiprasert A, Teo Y, Ong R. Bioinformatics tools and databases for whole genome sequence analysis of Mycobacterium tuberculosis. Infection, Genetics and Evolution. 2016;45:359-68. 132. McNerney R, Zignol M, Clark TG. Use of whole genome sequencing in surveillance of drug resistant tuberculosis. Expert Rev Anti Infect Ther. 2018;16(5):433-42. 133. Ellington M, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clinical Microbiology and Infection. 2017;23(1):2-22. 134. Soundararajan L, Kambli P, Priyadarshini S, Let B, Murugan S, Iravatham C, et al. Whole genome enrichment approach for rapid detection of Mycobacterium tuberculosis and drug resistance-associated mutations from direct sputum sequencing. Tuberculosis. 2020;121:101915. 135. Auer C, Mazitov R, Makhmudov A, Pirmahmadzoda B, Skrahina A, Dobre A, et al. Factors contributing to drug-resistant tuberculosis treatment outcome in five countries in the Eastern Europe and Central Asia region. Monaldi Archives for Chest Disease. 2020;90(1). 136. Ramakrishna V, Singh P, Prakash S, A J. Second Line Injectable Drug Resistance and Associated Genetic Mutations in Newly Diagnosed Cases of Multidrug-Resistant Tuberculosis. Microbial Drug Resistance. 2020. 137. Katale BZ, Mbelele PM, Lema NA, Campino S, Mshana SE, Rweyemamu MM, et al. Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania. BMC Genomics. 2020;21(1):1-15.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/22304
dc.descriptionDoktora öğrencisi TÜBİTAK 2214A-Yurt Dışı Doktora Sırası Araştırma Programı kapsamında 4 ay süre ile İsviçre Zürih Üniversitesi’nde desteklenmiştir (Proje Kodu: 1059B141600355). Araştırma, Hacettepe Üniversitesi BAP. Kapsamlı Araştırma Projesiyle desteklenmiştir (Proje Kodu: TSA-2019-18169).tr_TR
dc.description.abstractThe purpose of this study is to detect the minimum inhibitory concentration (MIC) values of these novel drugs against to 101 resistant-M.tuberculosis clinical isolates with MGIT 960 automatized liquid culture system integrated with TB/eXİST research software as phenotypically and detection of drug resistance related mutations on bacteria genome by Sanger DNA sequencing or whole genome sequencing (WGS) as genotypically. Thirty one strains were isolated in University of Zurich, Switzerland and 70 strains were isolated in Turkey. Cross resistance between bedaquiline and clofazimin was also investigated in Swiss isolates. According to phenotypic MGIT 960 system bedaquiline, delamanid and clofazimin MIC ranges were found as <0.2 µg/ml to ≥4.0 µg/ml (mean MIC=0.92 µg/ml), ≤0.01 µg/ml to ≥3.2 µg/ml (mean MIC=0.18 µg/ml) and ≤0.5 µg/ml to ≥2.0 µg/ml (mean MIC=1.11 µg/ml), respectively. Phenotypical susceptibility test results reveal that bedaquiline MIC values of Swiss isolates were found higher than those of Turkish isolates while delamanid MIC values of isolates from Turkey were found higher than those of Swiss isolates. According to World Health Organization Critical Drug Concentration Report, mean MIC values of all of the strains were classified as sensitive to bedaquiline while they were classified as resistant to delamanid and clofazimin. Some isolates had both bedaquiline and clofazimin high MIC values but we couldn’t detect any cross resistance related mutations in genome of these bacterial strains. Further studies are required to clarify new mutations related to resistance. In this study, we also tried to optimize the WGS protocol in order to detect all drug resistance profile in the genome of bacteria. The protocol could detect the resistance related variations in the genome of 25 strains. In conclusion, this study provides a preliminary AST results of M.tuberculosis strains isolated from Turkish patients for novel drugs which will be available in Turkey soon. Research software integrated MGIT 960 testing and optimized WGS protocol will be used for determination of individualised therapy of MDR-TB patients.tr_TR
dc.language.isoturtr_TR
dc.publisherSağlık Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectMycobacterium tuberculosistr_TR
dc.subjectilaç direncitr_TR
dc.subjectbedaquilinetr_TR
dc.subjectdelamanidtr_TR
dc.subjectklofazimintr_TR
dc.subjectMGIT 960tr_TR
dc.subjectSanger dizilemetr_TR
dc.subjecttüm genom dizilemetr_TR
dc.subject.lcshMikrobiyolojitr_TR
dc.titleMycobacterium Tuberculosis Klinik İzolatlarında Yeni Antitüberküloz İlaçlar Olan Bedaquiline ve Delamanid'in MİK Değerlerinin ve Dirence Neden Olan Mutasyonların Saptanmasıtr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetBu çalışmanın amacı, dirençli tüberküloz hastalarından izole edilen 101 M. tuberculosis klinik izolatının bedaquiline ve delamanid minimal inhibitör konsantrasyon (MİK) değerlerinin fenotipik olarak MGIT-960 otomatize sıvı kültür sisteminde bir araştırma yazılımı olan TB/eXİST ile saptanması ve dirence neden olan mutasyonların Sanger dizileme ve tüm genom analizi (WGS) yöntemleriyle genotipik olarak araştırılmasıdır. Suşların 31’i İsviçre Zürih Üniversitesi’nde, 70’i ise Türkiye’deki hastalardan izole edilmiştir. İsviçre suşlarında bedaquiline ve klofazimin arasında çapraz direnç varlığı da araştırılmıştır. Fenotipik duyarlılık sonuçlarına göre İsviçre ve Türkiye suşlarının bedaquiline, delamanid ve yalnızca İsviçre suşlarının klofazimin MİK dağılımları ve ortalama MİK değerleri sırasıyla <0,2 µg/ml ile ≥4,0 µg/ml arasında (ortalama MİK=0,92 µg/ml), ≤0,01 µg/ml ile ≥3,2 µg/ml arasında (ortalama MİK=0,18 µg/ml) ve ≤0,5 µg/ml ile ≥2,0 µg/ml arasında (ortalama MİK=1,11 µg/ml) saptanmıştır. İsviçre suşlarının bedaquiline MİK değerleri, Türkiye suşlarına göre daha yüksek bulunurken, Türkiye suşlarının delamanid MİK değerleri İsviçre suşlarına göre daha yüksek bulunmuştur. Dünya Sağlık Örgütü’nün Kritik İlaç Kosantrasyonları Raporu’na göre çalışmamızdaki tüm suşlar ortalama MİK değerlerine göre bedaquiline duyarlı bulunurken, delamanid ve klofazimine dirençli bulunmuştur. Bedaquiline ve klofazimin MİK değerleri yüksek suşlarda çapraz dirençten sorumlu olan mutasyon, Sanger dizileme ile saptanamamıştır, dirence neden olan yeni mutasyonun saptanması için ileri çalışmalar yapılması gerekmektedir. Bakteri genomunda bulunan ve tüm ilaçlara karşı gelişen direnç profillerini saptamak amacıyla bir WGS protokolü optimizasyon çalışması yapılmıştır. 25 suşun genomunda bulunan dirençle ilişkili varyantlar saptanabilmiştir. Sonuç olarak, bu çalışmada ÇİD-TB tedavisinde yakın zamanda ülkemizde de kullanıma girmesi beklenen yeni ilaçlar için Türkiye M. tuberculosis suşlarının ön duyarlılık verisi elde edilmiştir. MGIT-960 sistemiyle entegre edilen araştırma yazılımı ve optimize edilmiş WGS protokolünün ÇİD-TB hastalarının kişiselleştirilmiş tedavilerinin belirlenebilmesinde kullanılabileceği düşünülmektedir.tr_TR
dc.contributor.departmentTıbbi Mikrobiyolojitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2020-05-07T13:15:18Z
dc.fundingTÜBİTAKtr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster