• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Ana Sayfa
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • Öğe Göster
  •   Ana Sayfa
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised Video Summarization With Independently Recurrent Neural Networks And Multiple Rewards

Göster/Aç
Tez Dosyası (14.28Mb)
Tarih
2019
Yazar
Yalınız , Gökhan
Ambargo Süresi
Acik erisim
Üst veri
Tüm öğe kaydını göster
Özet
Video summarization, one of the interesting research areas that has significant acceleration in recent years, is producing shorter and concise videos that represent the content of long videos as diversely as possible. It is observed that sigmoid and hyperbolic activation functions used in long short-term memory (LSTM) and gated recurrent unit (GRU) models used in recent studies on video summarization task, may cause gradient decay over layers. Moreover, interpreting and developing network models are hard because of entanglement of neurons on recurrent neural network (RNN). Besides that, to create good video summary from long videos, a model needs to retain temporal coherence. Irrelevant jumps within key segments can confuse a viewer. Therefore, a model should compose video summary uniformly. To solve these issues, in this study, a method that uses deep reinforcement learning together with independently recurrent neural networks (IndRNN) is proposed for unsupervised video summarization. In this method, Leaky Rectified Linear Unit (Leaky ReLU) is used as an activation function to deal with decaying gradient and dying neuron problems. The model, which does not rely on any labels or user interaction, is designed with a reward function that jointly accounts for uniformity, diversity and representativeness of generated summaries. In this way, the model can create summaries as uniform as possible, has more layers and can be trained with more steps without having any problem related to gradients. Based on the experiments conducted on two benchmark datasets, it is observed that, compared to the state-of-the-art methods on video summarization task, better results are obtained.
Bağlantı
http://hdl.handle.net/11655/11953
Koleksiyonlar
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [162]
Künye
Yaliniz, G. (2019). Unsupervised Video Summarization with Independently Recurrent Neural Networks and Multiple Rewards (Master's thesis), Hacettepe University, Ankara, TURKEY.
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
İletişim | Geri Bildirim



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

Hakkımızda
Açık Erişim PolitikasıVeri Giriş RehberleriÜyeliklerİletişim

livechat

sherpa/romeo

Göz at

Tüm Açık ArşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreDile GöreErişim Şekline GöreDizinleme Kaynağına GöreFonlayan Kuruma GöreAlt Türe GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreDile GöreErişim Şekline GöreDizinleme Kaynağına GöreFonlayan Kuruma GöreAlt Türe Göre

Hesabım

GirişKayıt

İstatistikler

Kullanım İstatistiklerini Göster

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV