

A METHOD FOR SELECTING REGRESSION TEST

CASES BASED ON SOFTWARE CHANGES AND

SOFTWARE FAULTS

REGRESYON TESTLERİNİN SEÇİMİ İÇİN YAZILIM

DEĞİŞİKLİKLERİNE VE YAZILIM HATALARINA DAYALI

BİR YÖNTEM

UĞUR YILMAZ

Assist. Prof. Dr. AYÇA TARHAN

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

2019

i

ABSTRACT

A METHOD FOR SELECTING REGRESSION TEST CASES

BASED ON SOFTWARE CHANGES AND SOFTWARE FAULTS

UĞUR YILMAZ

Master of Science, Computer Engineering Department

Supervisor: Assist. Prof. Dr. Ayça TARHAN

January 2019, 79 pages

Regression testing is the type of testing in which a modified software is validated

to ensure its functionality is not broken. With the increase of modern, agile and

large size software systems, regression test selection needs to be efficient,

effective and practical to coexist within the software development cycle. To this

need, a modern hybrid technique for regression test selection is proposed in this

thesis. A detailed literature analysis and a conceptual model are presented in

order to better visualize and identify the target concepts of the field. We introduce

a technique operating on different granularity levels using difference based

techniques of files for both class files and third-party text files. Our technique uses

lexical comparison methods for readable files and checksum comparison for any

binary files with file or method level granularity. A tunable similarity threshold is

offered to users to be used in fulfilling different performance needs. Any available

test or fault history data is also used to increase the effectiveness of the proposed

technique. We provide an extensive evaluation study in the form of embedded,

multiple case study of the proposed technique with other state-of-the-art

techniques with respect to performance and cost-efficiency using different open

source projects. The results showed that the proposed approach is effective as

ii

other state-of-the-art techniques and selects fewer tests while keeping the fault

detection rate at a high level.

Keywords: regression test selection, regression testing, dynamic analysis, text

difference based regression testing, conceptual model

iii

ÖZET

REGRESYON TESTLERİNİN SEÇİMİ İÇİN YAZILIM

DEĞİŞİKLİKLERİNE VE YAZILIM HATALARINA DAYALI BİR

YÖNTEM

UĞUR YILMAZ

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Dr. Öğr. Üyesi Ayça TARHAN

Ocak 2019, 79 sayfa

Regresyon testi, değiştirilmiş bir yazılımda tüm parçaların işlevlerinin doğru

çalıştığını güvence etmek için gerçekleştirilen bir test türüdür. Artan modern,

çevik ve büyük kapsamlı yazılım sistemleri ile birlikte yazılım geliştirme

döngüsünün bir parçası olabilmek için regresyon test seçiminin de etkili, hızlı,

verimli ve pratik olması gerekmektedir. Bu amaç doğrultusunda bu tez

kapsamında modern hibrit bir regresyon test seçim yöntemi önerilmiştir.

Regresyon test alanının etkin kavramlarını tanımlamak ve görsel olarak daha iyi

anlamak için ayrıntılı bir literatür taraması ile birlikte bir konsept modeli

sunulmuştur. Hem sınıf hem de üçüncü-parti metin dosyaları için fark tabanlı

teknikler kullanarak farklı detay katmanlarında çalışabilen bir teknik anlatılmıştır.

Önerilen teknik okunabilir dosyalar için sözcük tabanlı karşılaştırma metotları

kullanırken, herhangi bir ikili dosyalar için de sağlama toplamı yöntemlerini dosya

veya metot detay seviyelerinde kullanmaktadır. Kullanıcıların farklı performans

isterlerini karşılamak amacıyla ayarlanabilir bir benzerlik eşiği sunulmuştur.

Ayrıca, önerilen tekniğin verimini artırmak için varsa test ve hata verileri de

kullanılmıştır. Önerilen teknik ve diğer modern, gelişmiş teknikler, açık kaynak

iv

kodlu projeler kullanılarak gömülü, çoklu bir durum çalışması şeklinde geniş çaplı

bir değerlendirmeye tabii tutulmuştur. Sonuçlar önerilen tekniğin, diğer teknikler

kadar etkili olduğunu ve hata tespit oranını yüksek seviyede tutarken daha az test

seçtiğini göstermiştir.

Anahtar Kelimeler: regresyon test seçimi, regresyon testi, dinamik analiz, metin

farkı tabanlı regresyon testi, konsept model

v

ACKNOWLEDGEMENT

I would first like to express my sincere gratitude to my advisor, Assist. Prof. Dr.

Ayça TARHAN, for her continuous support throughout my study and for giving

me the honor of working with her. The door to her office was always open

whenever I ran into a trouble spot or had a question. She consistently steered me

in the right direction with her wisdom and experience. Without her valuable

insights, it was impossible to perform this work.

In addition, I would like to thank my cats, Şalgam and Ecevit, for being there with

me on countless sleepless nights and their never-ending spiritual support.

Last but not least, I must express my very profound gratitude to my patient wife,

Emine ÇALIŞKAN YILMAZ, for providing me with unfailing support and

continuous encouragement throughout my study and always being there for me

in my time of need even though it meant sacrificing her own priorities.

vi

TABLE OF CONTENTS

ABSTRACT ... i

ÖZET .. iii

ACKNOWLEDGEMENT ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... ix

LIST OF TABLES ... x

1. INTRODUCTION .. 1

2. BACKGROUND .. 4

2.1. Basic Concepts ... 4

2.2. Regression Testing Strategies .. 7

2.3. Regression Test Selection ... 9

 Slicing Approach ... 11

 Data-Flow Approach ... 11

 Firewall Approach ... 12

 Difference Based Approaches .. 13

2.3.4.1. Code Based Modification Approaches 13

2.3.4.2. Text Based Modification Approaches 14

 Cluster Based Approaches ... 14

 Model Based Approaches ... 14

 Graph Walk Approaches ... 17

 Learning Based Approaches ... 19

 Fault Based Approaches ... 21

 Hybrid Approaches .. 21

vii

3. CONCEPTUAL MODEL ... 22

3.1. Research Method .. 22

3.2. Conceptual Model ... 25

3.3. State-of-the-Art Summary ... 30

4. PROPOSED TECHNIQUE ... 34

4.1. The Goal of the Thesis .. 34

4.2. Proposed Technique ... 35

5. CASE STUDY .. 42

5.1. Objective ... 43

5.2. Design ... 43

5.3. Results .. 47

 RQ1: How does the proposed approach compare with state-of-the-

art approaches in terms of performance with respect to time, selected tests

and fault detection capabilities? .. 47

5.3.1.1. Time ... 47

5.3.1.2. Selected Test Ratio .. 52

5.3.1.3. Fault Detection Rate .. 53

5.3.1.4. Detailed Time Analysis .. 56

 RQ2: How does the proposed approach compare with state-of-the-

art approaches in terms of cost-efficiency? ... 58

5.4. Threats to Validity ... 59

 Construct Validity .. 59

 Internal Validity ... 59

 External Validity .. 60

 Reliability .. 60

6. CONCLUSION ... 62

REFERENCES .. 64

viii

APPENDICES .. 75

Appendix 1 - Intermediate Conceptual Model Figures 75

Appendix 2 - Papers driven from thesis .. 79

ix

LIST OF FIGURES

Figure 2.1. Regression Testing Overview .. 8

Figure 2.2. An Example of a Firewall Approach ... 13

Figure 2.3. An Example of Use Case Diagram [51] .. 15

Figure 2.4. Clustering Approach Overview used in the Kandil et al. [54] study 16

Figure 2.5. Overview of Model Based Approach used in the SeTGAM tool [53]

 ... 16

Figure 2.6. Control flow graph example [55] .. 18

Figure 2.7. Java Interclass Graph Example [3] .. 19

Figure 2.8. Genetic Algorithm based Regression Testing Example 20

Figure 3.1. Grounded theory research process and three level of data abstraction.

 ... 24

Figure 3.2. The Conceptual Model ... 27

Figure 4.1. Flow model of the proposed technique .. 36

Figure 4.2. Weighted matrix key, flakiness vs faultiness 39

Figure 4.3. Average test selection and fault detection rate calculated for different

threshold values computed for each program. ... 41

Figure 5.1. Overview of case study design approaches 42

Figure 5.2. Overview of automated evaluation steps of subjects and techniques

 ... 46

Figure 5.3. Offline time comparison of case study with respect to retest-all 50

Figure 5.4. Online time comparison of case study with respect to retest-all 50

Figure 5.5 Test execution time results with respect to the retest-all approach . 57

Figure 5.6 Test execution time and test selection ratio for our approach 58

Figure A.6.1. The Conceptual Model .. 76

Figure A.6.2. Conceptual model representing only code-based approaches ... 77

Figure A.6.3. Conceptual model representing only non-code based approaches

 ... 78

x

LIST OF TABLES

Table 2.1. Corrective Regression vs Progressive Regression Testing 4

Table 2.2. A summary of Test Case Types [24] .. 5

Table 2.3. A summary of Regression Test Selection Approaches 10

Table 3.1. A summary of the state-of-the-art techniques 31

Table 5.1. Statistics of open source projects used in the study 44

Table 5.2. Techniques used in the case study .. 45

Table 5.3. Experimental results of the case study .. 49

Table 5.4. Analysis, Selection and Total time results of proposed approach 52

Table 5.5. Selected test ratio with percentages with respect to retest-all 53

Table 5.6. Fault detection rate results .. 55

Table 5.7 Number of selected test results .. 56

1

1. INTRODUCTION

Modern software projects are developed in a fast pace to ensure the demands of

the customers are met [1]. To illustrate developers working at Google make

16,000 changes on average daily and automated systems make another 24,000

changes to the different software systems [2]. Developers need to perform the

given tasks in a timely concise manner and they need to do so in such a way that

software quality should not be compromised. To keep up with the rapid

development cycle without breaking any existing functionality and ensuring newly

added functions operate as expected, software projects are tested rigorously [3].

The testing process takes as much as two-thirds of the overall software

development life cycle [4]. One type of the tests carried out is regression testing

which is performed to give confidence that no defects are present in modified

software and no existing functionality is affected by the changes [5]. With many

changes introduced to the system, to be able to perform regression testing in a

short time is an essential need for many projects. It is estimated that 80% of

software testing activities consist of regression testing [6]. In order to manage the

size, cost, coverage, and fault rate of the regression test cases, one of the three

following method is selected for regression testing: (1) Test Suite Minimization

(Reduction), (2) Regression Test Selection, and (3) Test Case Prioritization.

Regression test selection techniques select a subset of tests that ensures the

affected parts from changes are working as expected. Using only a part of the all

tests can reduce different costs of the testing while giving confidence [3].

However, many regression test selection techniques are tailored for only specific

circumstances, making them unusable in a generic manner [6], [7]. In addition,

many techniques are only applicable and tested in academic area making them

difficult to use in industry and open-source projects where time and/or workload

is scarce [6]. This calls for cost and resource aware, easy to implement/maintain

solution that incorporates an efficient and effective technique. In this thesis, we

introduce a novel and cost-efficient regression testing technique which satisfy

several industry and open-source projects’ needs. We achieve this by thoroughly

analyzing state-of-the-art regression testing techniques, identifying their

application areas and their drawbacks and finally constructing a technique to

2

include a variety of parameters to provide an effective way of regression testing

technique.

Although many Regression Test Selection (RTS) techniques are presented in the

literature, the adoption rate in the industry and open-source community remains

low [3], [6], [8]–[11]. In order to overcome this problem, we suggest a cost-

efficient, fast and easily maintainable RTS technique based on work carried out

in several other prominent techniques [3], [9], [12]–[18]. In this thesis, we aim to

better understand the difficulties in RTS space, classify the techniques used in

the field to propose a technique to overcome the obstacles put forward. We

suggest a RTS technique based on code changes, test history and external

dependencies which we derived from a conceptual framework developed using

grounded theory methodology [19], [20]. Furthermore, the experimental results of

the proposed technique with other prominent techniques which approach the

problem from different viewpoints in the field are presented as a case study so

that a base for evaluation of our proposal could be enabled.

More specifically, the contributions of the thesis can be summarized as follows:

(i) We propose an RTS technique based on code changes, test history and

external dependencies with a effective and efficient approach in terms of time

and fault detection. (ii) A conceptual framework for RTS techniques is presented

to better illustrate the state of the RTS space. (iii) An extensive evaluation of the

proposed technique with other state-of-the-art RTS techniques are given as a

case study and the results are discussed throughout the thesis.

The thesis is organized as follows: In Chapter 2, we provide the background

information for terminology of regression testing. The basic concepts of

regression testing strategies and different classifications of the RTS techniques

are also discussed in this chapter. In Chapter 3, we introduce the conceptual

model and discuss the various aspects of the model. In Chapter 4, the proposed

technique is presented. The motivation for the thesis is also given in this chapter.

In Chapter 5, a case study is presented to evaluate the effectiveness of the

proposed technique with state-of-the-art RTS techniques. The result of the study

3

is discussed with the advantages and disadvantages of the proposed technique.

Threats to validity of the thesis and concluding remarks are made in Chapter 6.

4

2. BACKGROUND

2.1. Basic Concepts

Regression testing is defined by IEEE [21]:

“Selective retesting of a system or component to verify that modifications have

not caused unintended effects and that the system or components still complies

with its specified requirement.”

Regression testing covers a variety of changes not limited to code changes such

as requirement changes, configuration changes and database/third party

changes [22], [23].

From the viewpoint of what changed, regression testing can be classified as (i)

progressive regression testing, in which modified changes results in creation of

new test cases, such as requirement change, code structural changes, adding

new features, behavioral changes etc., and (ii) corrective regression testing, in

which modified changes such as bug fixing, refactoring, etc. does not affect

previous test cases so that they can be selected and reused for the modified

program [6]. The differences of corrective and progressive regression testing are

summarized in the Table 2.1.

Table 2.1. Corrective Regression vs Progressive Regression Testing

Corrective Regression Testing Progressive Regression Testing

Software requirement is not changed Software requirement is changed

Minor modifications (Statement level) Major modifications (Module level)

During Development After Release, Between Releases

Many tests are reusable Many tests are obsolete

Executed irregularly Executed regularly

In regression testing, test cases can be classified as reusable, retestable, and

obsolete [24]. Reusable test cases inspect the unchanged parts of the program.

They may not be used in the current regression testing but they can be used in

later revisions of the program. Retestable test cases test changed parts of the

5

program. These tests are to be selected when testing the modified version of the

program. Obsolete test cases are redundant test cases to the modified version of

the program. These test should not be selected for regression testing [25]. The

summarized information about test case types is given Table 2.2 [24].

Table 2.2. A summary of Test Case Types [24]

Test Case Specification Target Construct Test Type

Reusable unchanged unchanged Structural,

specification

Retestable unchanged changed Structural,

specification

Obsolete unchanged changed Structural

changed Unchanged/changed Specification

For evaluation purposes of regression testing, Rothermel and Harrold [5]

developed a framework in which many fundamental definitions used by other

studies is structured [1], [3], [6], [8]–[11], [25]–[28]. There are four main properties

to consider when evaluating a regression testing technique [5]:

Inclusiveness. Inclusiveness measures the capability of selecting modification-

revealing tests. Defining n as total number of modification revealing tests, and if

m tests are selected, then inclusiveness is calculated as ((m/n)*100).

Safety. Safety of a technique is the capability of the technique’s selection of all

modification related tests. A safe technique guarantees all of the faults due to

modifications will be found because the modification-revealing tests are proven

to be a superset of fault-revealing tests [5], [29]. Therefore, if inclusiveness is

%100, then the technique is called safe.

Precision. Precision defines the ratio of selected modification revealing tests to

total modification revealing tests. Higher precision results in less time since only

the modification revealing tests are selected [5]. It is defined as:

6

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Efficiency. Efficiency is considered in terms of time and space requirements of

the technique. If a technique requires less time or reveals more faults in the same

time than other techniques, the technique is accepted as more efficient [5].

Generality. Generality defines applicability of the technique to a different

selection of programs [5].

Based on these four properties several other metrics are also proposed and used

widely. Mostly used metrics are as follows:

Recall. Recall is the percentage of the selected failed tests from all failed tests

[6]. It is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

F-Measure. F-Measure is a widely used metric in statistics. It combines precision

and recall and measures the fault detection capability and cost reduction [6]. It is

defined as:

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

FDR. Fault Detection Rate measures the ratio of detected faults [30]. In order to

calculate this, all tests need to be run and if the technique is safe this becomes

%100.

APFD. Average Percentage of Faults Detected is a value between 0-100 and

calculates average percentage of faults which only occurred a later version of the

project [6], [30]. There are various versions of APFD, such as APFDc which is

cost-cognizant, and NAPFD, which normalizes the APFD between versions [3],

[6], [30].

7

End-to-end Test Time: Mostly used in comparison studies, this metric measures

the total time including any preparation and execution of test case [14], [31], [32].

Total Selected Test Percentage: This metric measures the selected number of

tests from all test cases. It does not include modification-awareness or fail-status

of the test case and therefore easy to calculate and widely used in comparison

studies [12], [33], [34].

Regression testing techniques are classified as fine and coarse granularity at

which level selected technique operates. The fine level granularity is generally

more precise but takes more time due to more extensive analysis of the program.

In this thesis, we use fine level granularity to refer anything below class level

analysis like code block, method, statement, line level inspection of the modified

program. While coarse level granularity is generally less precise but have smaller

overhead and hence results in less end-to-end test time. In this thesis, we use

coarse level granularity to refer anything above class level analysis like class, file,

and configuration files level inspection of the modified program. There is a quid

pro quo involving accuracy and time to consider when choosing the granularity

level of the regression testing strategy [35].

2.2. Regression Testing Strategies

The simplest way of regression testing is, retest all approach which runs all of the

test cases. However, as software size increases this approach becomes

expensive in terms of time and workload [25]. For example, Google’s test

automation system runs 150 million tests daily and the result of tests are delivered

to developers in 45 minutes’ averages. Furthermore, the system observed delays

up to 9 hours which could result in catastrophic failures in the shipped products

[36].

A better approach to regression testing is the random testing. Test cases are

selected at random and executed. This approach is suited if any other technique

is not applicable and the time is running short since with random testing many

important bugs could make their way to production.

8

Figure 2.1. Regression Testing Overview

In order to increase the effectiveness of regression testing, four main problems

are presented as summarized in Figure 2.1:

Test Case Minimization. Given a test suite, 𝑇, a set of test requirements

{𝑟1, 𝑟2, , 𝑟𝑛}, that must be satisfied and subsets of 𝑇, 𝑇1, 𝑇2 , , 𝑇𝑛, one of each

is linked with requirements such that any of the test cases 𝑡𝑗 which is a part of 𝑇𝑖

can be used to achieve requirement 𝑟𝑖. Then the problem becomes finding a

set, 𝑇′, of test cases from 𝑇 that satisfies all 𝑟𝑖s [7], [25]. Test Case Minimization

(TCM) aims to decrease the site of regression test suite by eliminating redundant

test cases while achieving maximum requirement coverage with minimum set [3].

It is also known as Test Case Reduction (TCR), Regression Test Reduction

(RTR) and Regression Test Minimization (RTM) [37].

Regression Test Selection. Given the program, P, the modified version of the

program, 𝑃′, and a test suite, 𝑇. Then the problem becomes finding a subset of

𝑇, 𝑇′, which tests modified program 𝑃′ [7]. Regression Test Selection (RTS)

focuses on the changed parts of the program and tries to find the optimal

9

combination of test cases to ensure modified parts and affected parts are

functioning as expected. It is also known as Test Case Selection (TCS).

Test Case Prioritization. Given a test suite, 𝑇, the set of ordered tests, 𝑃𝑇, and

a function from 𝑃𝑇 to real numbers, 𝑓: 𝑃𝑇 → 𝑅. Then the problem becomes

finding 𝑇’ ∈ 𝑃𝑇 such that (∀𝑇’’)(𝑇’’ ∈ 𝑃𝑇)(𝑇’’ ! = 𝑇’)[𝑓(𝑇’) ≥ 𝑓(𝑇’’)] [7]. Test

Case Prioritization (TCP) aims to order the test cases with respect to a fitness

function so that the ordered test cases yield the best results according the

predefined criteria such as time, cost, fault detection rate. By this way, the

important bugs could be discovered early for lengthy projects [3]. It is also known

as Regression Test Prioritization (RTP).

There are other approaches that combine one or more techniques presented

above. For example, Gupta [38] uses RTS and TCP to test highest priority

requirements.

Test Case Optimization. Test Case Optimization combines one or more

techniques above with each other or with a different testing field. For example, a

hybrid approach is proposed by first applying RTS to the all test cases and

applying TCP to selected test cases in order to maximize the APFD, hence,

reducing the time to gather important defect information [39]. Another example

would be combining test case selection techniques to determine the change

impacts and then using test case generation for producing test cases [40].

Since TCM is not modification-aware and TCP is inherently fails to find all the

bugs, both The TSM and TCP are out of context of this thesis.

2.3. Regression Test Selection

Regression test selection is NP-hard since it can be reduced to well-known Set

Covering Problem [41]. Following the Rothermel’s formula of the regression

testing [5], there are many different solutions proposed in the literature [7]. In this

section, we will explain basic approaches used in various RTS techniques so as

to build a better foundation of understanding for the rest of the thesis. Note that

10

there are many approaches not mentioned in here that are chosen to specific

programs like database regression testing, business specific programs, and etc.

The aim of this section is to lay the groundwork for the readers to better

understand and comprehend the rest of the thesis so problem-specific

approaches are omitted. A summary is given in the Table 2.3 with key points,

main advantages, disadvantages and safety for each approach.

Table 2.3. A summary of Regression Test Selection Approaches

Name Key Points Advantages Disadvantages Safety

Slicing

Based on
dependency
graphs and

slicing criteria

Different range of
analysis. i.e.

intramodule or
intermodule level

modifications

Imprecise,
computationally

expensive
Unsafe

Data-Flow
Based on data

coverage criteria

Different range of
analysis. i.e.

intramodule or
intermodule level

modifications

Lack of analysis of
non-data-flow

changes
Unsafe

Firewall

Based on
interactions/depe

ndencies of
modules

Different range of
analysis

depending on
firewall definition

Lack of analysis
where changes
propagate from

outside of firewall,
imprecise

Unsafe

Difference
Based on
code/text

differences

Easy to implement
and fast

depending on
program size

Imprecise,
computationally

expensive
depending on
program size

Safe

Cluster

Based on
grouping similar
test case or code

modifications

Variety of grouping
methods, fast

Imprecise Safe

Model

Based on a
representation of

program. i.e.
UML, BPEL,

class diagram,
use cases, etc.

No need for source
code, integration

testing.
Used as a part of

another
framework, faster
than code level

approaches

Imprecise, need
consistent model

updates/generation
Unsafe

Graph

Based on
flow/control/depe
ndency graphs of

program

Precise, adaptive
granularity level,

fast for procedural
and small
programs

Computationally
expensive, memory
inefficient for large

programs

Safe

11

Learning

Based in
machine learning
algorithms such

as genetic
algorithms

Multi objective
Imprecise, slow
depending on

approach

Safe/unsafe
depending

on approach

Fault
Based on fault
data, test case

history, logs

Combination fault
data with other

approaches

Imprecise
depending of lack of

fault data, time
consuming

depending of the
granularity

Safe

Hybrid

Based on
combination of

different
approaches

Combination of
strengths of

different
approaches,

Different range of
analysis

time-consuming
than other methods

Safe/unsafe
depending

on approach

 Slicing Approach

Program Slicing is an analysis technique mainly used in debugging. First slicing

criteria is defined as a pair <p, V> where p is the program and V is the program

variables. Then for every possible input the program is analyzed and the

statements affected with respect to the slicing criteria is collected, thus enabling

the test cases that produces different outputs for modified program [3]. There are

many levels of slicing, ranging from object slicing in object oriented programs to

statement level slicing in procedural languages [42]. Slicing is also used to derive

flow/dependency graphs when the source code is not available [43], [44].

Slicing techniques are precise as they only select test cases with different outputs

but since they omit the changes caused by statement deletions, they are unsafe

[3], [7], [43].

 Data-Flow Approach

Data-flow analysis uses definition-use pairs that are either modified, added, or

deleted in changed program and selects test cases accordingly [3], [7]. The

processing of the whole program is costly and doing this process over and over

again introduces extra overhead. To overcome this problem, incremental data-

flow analysis is used in the literature [43]. In incremental analysis, after a change

is processed, appropriate test case is selected and it is updated in the dataflow

information. Then, the steps are repeated for all changes [3].This approach is

12

also combined with slicing techniques and other regression testing techniques to

further decrease the cost of analysis [43], [45].

Major downside of the data-flow techniques is the lack of analysis about non-

data-flow changes. If the program is changed in such a way that no variable

(definition-use pair) is used, calling an argumentless method or changing

configuration, the approach fails to detect the related test cases. Consequently,

these approaches are unsafe.

However, it is reported that data-flow based techniques suits spreadsheet based

programs particularly well since there is no change occurring without dataflow

information [7].

 Firewall Approach

In firewall approach, the aim is to draw a firewall around the units of the system

as to determine which parts of the program are affected and need retesting. The

modules interacting in the firewall are selected in regression testing. Leung and

White [27] proposed mainly three categories for the firewall approach: (i) No

Change: module has not been modified, 𝑁𝑜𝐶ℎ(). (ii). Only Code Change: module

has the same specifications but code has been modified, 𝐶𝑜𝑑𝑒𝐶ℎ(). (iii) Spec

Change: module has changed specifications, 𝑆𝑝𝑒𝑐𝐶ℎ(). Using these definitions,

a basic firewall can be described as follows: let A and B be the two modules of a

software that have interaction with each other. There are nine possible

configurations between A and B. If none of the modules are modified, 𝑁𝑜𝐶ℎ(𝐴) ∩

 𝑁𝑜𝐶ℎ(𝐵), then no tests are selected. If both A and B is modified either by code

or by specification change, 𝑆𝑝𝑒𝑐𝐶ℎ(𝐴) ∪ 𝑆𝑝𝑒𝑐𝐶ℎ(𝐵), 𝐶𝑜𝑑𝑒𝐶ℎ(𝐴) ∪ 𝐶𝑜𝑑𝑒𝐶ℎ(𝐵),

𝐶𝑜𝑑𝑒𝐶ℎ(𝐴) ∪ 𝑆𝑝𝑒𝑐𝐶ℎ(𝐵), 𝑆𝑝𝑒𝑐𝐶ℎ(𝐴) ∪ 𝑆𝑝𝑒𝑐𝐶ℎ(𝐵), then each modules’ tests

and any test which tests the interaction between A and B is selected. Then, only

four configurations remain in which a changed module calls the unchanged

module and the so called firewall line is drawn at this boundary [7]. The granularity

of the technique differs as where the firewall is drawn. Figure 2.2 shows another

example of firewall approach. In the figure, solid lines show related classes and

boxes show test cases related to the classes. The firewall calculated for class D

13

is shown by dashed line. Only TC1 and TC2 are affected by changes made to

the D class since they are related to the classes within the firewall [46].

Figure 2.2. An Example of a Firewall Approach

The firewall approach does not select test cases where changes are propagated

from outside of firewall. Since any non-modification-traversing tests could be

omitted, the firewall approach is not safe.

 Difference Based Approaches

2.3.4.1. Code Based Modification Approaches

Modification based techniques rely on analyzing source code to a selected

granularity to identify the modified code entity. After selecting the granularity level,

a test coverage matrix is constructed by monitoring the execution of test cases.

After determining the modified code entity, associated test cases are selected

using the test coverage matrix [3], [7]. Many different approaches are proposed

using modification analysis directly or indirectly since the approach is safe [8],

[11], [35]. Because it selects all the test cases relating to any modified code entity

[3], [7].

14

2.3.4.2. Text Based Modification Approaches

Text based approaches are regarding the source code as plain text and

comparing the original and modified program code after some preprocessing

such as deleting comments, whitespaces etc. to reduce the risk of false positives

[47]. These approaches are also safe like code based modification approaches

since they operate similarly.

Although these approaches are fast in terms of time but they are imprecise since

differentiation only base upon basic syntax and disregards any language/program

specific structures [3].

 Cluster Based Approaches

Cluster based approaches tries to group either similar program modifications or

similar test cases. After initial analysis of the program clusters are defined and

compared to the modified program’s clusters. Then, changed clusters are

selected for testing [3], [7]. Determining what entities will be in clusters defines

the structure of the method, clusters can be code blocks[48], test cases [49][50],

and etc. Cluster based approaches uses traditional methods like control flow

graphs [3] or more recent methods such as k-means machine learning algorithm

[50].

Cluster based approaches are deemed safe since they select all modified code

blocks/test cases [7]. However, based on the size of the clusters they can also

be imprecise and can select redundant test cases.

 Model Based Approaches

Model abstraction of a system is a widely used technique in the industry and

highly used in software development [11], [51]. Model based approaches relies

on program representation in a standard notation like UML diagrams and BPEL

models [37], [31]. They use class-sequence diagrams, use cases, user stories,

state machine models, flowcharts to analyze and determine which test cases to

select [3], [6]–[8], [35], [37], [51]. Traditionally they use models of the original

15

program and the modified program and a mapping of test cases to models to

identify modified parts and select appropriate test cases, and in recent years

several genetic algorithms are also used in conjunction with model based

approaches [6], [48]. An example use case diagram is given in the Figure 2.3

[52].

Figure 2.3. An Example of Use Case Diagram [51]

Model based approaches are mainly preferred when source code is not

accessible or regression testing is done at the integration test level [53]. They are

also used as inputs of the proposed regression test selection technique to

generalize to more applicable areas [52], [54]. For example, Kandil et al. uses

user stories for their clustering based approaches as shown in the Figure 2.4 [55].

They are also used as a part of a bigger framework including regression test

selection. This approach is highly selected within a bigger framework to support

regression test selection. An example is shown in the Figure 2.5 representing

how SeTGaM [54] tool uses two models to generate tests and classify regression

test cases with respect to modified version using impact analysis.

16

Figure 2.4. Clustering Approach Overview used in the Kandil et al. [54] study

Figure 2.5. Overview of Model Based Approach used in the SeTGAM tool [53]

17

Model based approaches are preferable since they operate at a higher

abstraction level and generally easy to generalize and faster than code level

approaches [3]. They also include non-code artifacts like configurations,

traceability information in the model and are able to select test cases affecting

non code modules of the system [6]. However, as a drawback of operating at a

higher level, model based approaches are also imprecise and can be safe or

unsafe depending on the technique details. Moreover, the models are always

needed to be up to date for technique to effectively function and when model to

be used is generated from the code, it can introduce overhead processing to the

overall time [3], [6], [11].

 Graph Walk Approaches

Graph walk approaches are the first widely adopted approaches used in the

literature [3], [29]. Graph walk approaches are also used with other approaches

such as slicing, model based and data flow approaches [3], [56], [57]. This

approach is also adopted to various languages such as C++, Java and AspectJ

[58], [59], [60]. There are several aspects of the software like dependency

relation, data flow, control flow, module dependency etc. could be represented.

As a result, there are multiple types of graphs generated with this approach [6].

Control flow graph (CFG) is a directed graph where granularity level corresponds

to nodes and the relationship between entities is represented as edges. The

graph is generated as the program executes normally. While test cases are

executing, nodes are also associated with the test cases. Then when the modified

program is analyzed, changes in the nodes are detected and corresponding test

cases are executed [29]. An example of a CFG is shown in the Figure 2.6.

18

Figure 2.6. Control flow graph example [55]

Control dependency graphs (CDG) and data dependency graphs (DDG) are

constructed the same way as above differing only what to trace when identifying

nodes and edges. Higher level graphs are also proposed such as program

dependency graphs, system dependence graphs, file dependency graphs each

only differing what to analyze. There are also user story graphs generated

approaches using user interaction graphs, i.e. tracing the user action on a website

[61].

In different languages, different iterations of graphs are computed and used

accordingly. In Java language, Java Interclass Graph (JIG) is highly used to

include java properties to traditional CFGs [58]. An example JIG operation on

method calls is shown in the Figure 2.7 [3].

19

Figure 2.7. Java Interclass Graph Example [3]

Graph based approaches are safe since they guarantee to include modification

revealing test cases. Depending on the granularity of the approach, they can be

more precise than other approaches. However, since the comparison of the

whole graphs of two versions of the program is computed it can be a costly

operation with increasing size of the program [62].

 Learning Based Approaches

With the advancements made in the recent years in the fields of machine learning

and artificial intelligence, there are some approaches applying methodologies

from respected fields [6]. Genetic algorithms and fuzzy logic based approaches

are successfully applied as to select test cases [63], [64].

Genetic algorithms operate following the nature’s example of evolving. It consists

of mainly five steps: (i) initial population, (ii) fitness function, (iii) selection, (iv)

crossover, and (v) mutation. In initial population, pseudo chromosomes are

computed using test cases in a stream representation. Then, a fitness function is

defined to evolve the process to the desired goal. An example fitness function

20

would be similarity function of test cases and modified code blocks [37]. In

selection phase, using a fitness function highest valued (fittest) chromosomes are

selected for next generation. In next phase, pairs of chromosomes are crossed

with a crossover point and a probability. Resultants are then mutated with a

mutation probability to diversify the population. In RTS, a chromosome is

combinations of test cases, representing a candidate set as explained in the

Figure 2.8.

Figure 2.8. Genetic Algorithm based Regression Testing Example

Learning based approaches are also used to develop multi objective regression

test selection techniques [48], [65].

21

 Fault Based Approaches

Another approach is using fault data available in the software history to assist in

regression test selection process. Build metadata, test case history, modification

logs, bug reports are used with other regression test selection approaches in

order to improve fault detection capabilities of the proposed technique. They are

used as an input to graph walking, difference computing, learning and hybrid

approaches and sometimes used for fault prevention mechanisms to determine

the possibly faulty locations and generate test cases for future software [66], [11].

 Hybrid Approaches

Hybrid approaches combine two or more RTS approaches and selects the

appropriate approach after an initial analysis of the modified program [11], [17].

22

3. CONCEPTUAL MODEL

In order to better visualize and explore the studied areas in regression testing

space and to identify the target concepts to include in our proposal, a conceptual

model is constructed.

3.1. Research Method

The motivation for creating a conceptual model is to create visual representation

of the current state of the regression test selection field. There are several

secondary studies such as SLRs, Surveys, etc. carried out in recent years about

RTS techniques [1], [3], [6], [8], [9], [11], [25], [28]. Unfortunately, these studies

focus on papers and their individual contributions to the field, thus failing to

provide an overall picture of the techniques, approaches used in the field in spite

of classifying and emphasizing on current trends and future directions. To this

end, the grounded theory research method is selected because it is suitable for

creating a general understanding of a field [20]. Grounded theory is described as

“a general methodology of analysis linked with data collection that uses a

systematically applied set of methods to generate an inductive theory about a

substantive area” [67]. Grounded theory consists of three main stages: (i) coding,

(ii) memoing and theorizing, and (iii) integrating, refining and writing up the theory

[67]. In grounded theory according to Glaser’s method [68] which we have

selected to follow, it is advised to start the investigation without defining a

research problem. The aim of developing a conceptual model is detecting

patterns and categories to emerge in a flexible way which grounded theory is

suitable for [20].

In the first stage of the grounded theory method, coding, first an open coding is

performed to identify core category and concepts for the research to focus on and

secondly a selective coding is performed to refine the core category. Then in

memoing stage, identified concepts and notes for each concept are compared

with each other to shape the core category. At the last stage, all of the findings

are integrated and linked together with a comparative method and a theory is

formed [67]. There are three terms used in grounded theory: code, concept and

23

category [68]. Code is the fundamental observation taken from the statements,

concept is the group of codes and category is the group of concepts [20]. An

example of the three level of data abstraction is shown in the Figure 3.1.

Although grounded theory is mostly used with data in the form of questionnaire,

interview or observations and codes are deduced from line by line statements.

We have used written articles as our data and we have assigned codes to the

regression testing approaches, inputs, outputs and artifacts. Then we determined

the concepts from codes as a higher grouping element and finally we decided on

the categories. Grounded theory dictates that after the coding stage, a core

category must be selected and the research should continue accordingly [68].

However, since we are only interested in the core categories emerging from the

process for our conceptual model, we did not proceed with the rest of grounded

theory methodology. Our process is illustrated in the Figure 3.1. After finalizing

all of the categories, related categories are mapped according to emerging

patterns in the conceptual model.

24

Figure 3.1. Grounded theory research process and three level of data abstraction.

25

3.2. Conceptual Model

First, data is collected from Google Scholar, IEEEXplore and Scopus databases

with the following search string:

"regression" AND ("test" OR "testing") AND ("technique" OR "techniques" OR

"method" OR "validation" OR "incremental" OR "select" OR "selection" OR

"selective" OR "software")

Second, articles returned from search string are analyzed and any article (i) not

related to regression test selection field, or (ii) not contributing a method/

framework/technique or an empirical evaluation/comparison study is excluded.

Then articles mentioned in second degree studies such as SLRs, surveys, SMs

are extracted via snowballing technique and processed by the exclusion criteria

defined above.

Third, coding process is performed following the grounded theory principles.

Each article is evaluated at least once since we had no preconceived codes at

the start and could not risk missing any relevant data point. Coding is performed

following comparative methods to eliminate any terminology differences between

articles, i.e. relevant papers are grouped together and coded again to identify and

extract exact terminologies which might have been used differently by authors

[20]. Resulting conceptual model and intermediate models are given in the

Appendix section. Furthermore, an initial abstract version of the conceptual

model to visualize the relationships between different blocks is presented Figure

3.2.

RTS Techniques mainly differ depending on whether the technique is code based

or not. Further classification of non-code techniques are also available such as

requirement based, data based, bug based in the literature but the techniques

used in sub-classifications does not differ from each other so we concluded with

three main classifications [37], [51]. Furthermore, dynamic and static approaches

could be differentiated but we decided not to do so because the underlying

approaches are the same and only difference would be the performance,

especially regarding time and cost.

26

The main approaches used in RTS techniques are explained in section 2.3 of the

thesis. To select an RTS technique, the application domain, software artifact and

granularity level need to be considered. For example, if the software artifact size

is small such as web or GUI applications, fine granularity level approaches like

graph walk, firewall or data-flow could be selected for an efficient technique. On

the other hand, if the technique needs to be adopted to a wide range of systems,

technique having high generality, then choosing fine granularity level approaches

could result in spending more time on analysis of the test suite than actually

executing the test cases. In such case, the technique is highly likely to be dropped

from usage.

Most studies uses evaluation metrics that are suited for their respected

techniques [6], [7]. It is observed that many safe RTS techniques do not compute

metrics such as precision, recall, or inclusiveness [8], [25], [37]. Fault related

techniques -whether it uses fault data, the technique is part of a fault detection

technique, or technique is a hybrid approach designed to increase early detection

of faults- focuses on fault related metrics such as APFD, FDR [1], [6], [11], [26].

Furthermore, if the software artifact has a large size then time related metrics are

preferred since time is an important aspect in large software systems [69].

The relationship between granularity level and software artifact can be thought of

as having an inverse relation. If the software size gets bigger, time and cost of

regression testing become more important so that the technique may sacrifice

granularity level to operate faster. If the software size is smaller, the technique

may perform deep analysis to refine selected test cases. Likewise, if the language

of the software is procedural then the analysis of the source code requires less

computing time, thus more precise approaches can be selected [14], [18], [22],

[37], [70].

27

Figure 3.2. The Conceptual Model

Graph based approaches are the earliest techniques presented in the regression

test selection field. Rothermel et al. [29] first presented graph walk algorithms

28

using dependency graphs for procedural languages. Then the approach is

extended to use control flow graphs rather than dependency graphs to perform

more efficiently [59]. Graph walked approaches are also extended to include

object oriented languages [58], [59]. Orso [71] developed DejaVoo tool using safe

graph based comparison approach. Then, some model based techniques are

also represented as graphs to include other parameters such as traceability

information [72]. While El-Hamid [73] used method level granularity to construct

CFGs, Willmor [22] used database queries and Huang et. al. [74] used config files

as nodes in CFG. CFGs are adopted to include various artifacts as input to better

select test cases such as false test cases [75], third party libraries [76], hash code

representations [61]. This article supports that graph based approaches are used

widely for various projects in literature as also shown in conceptual model. Graph

based approach is the only approach observed to have adopted to all granularity

levels for a wide range of software projects.

Slicing approach is mostly used in combination with graph based approaches

[42]–[44]. Slicing is mostly used with procedural languages since there is no

object-oriented structure so it is more efficient to analyze the software. Firewall

approach is also another approach that is adopted to different languages and

different application domains [1], [27], [46]. It is observed that both slicing and

firewall approach are used successfully with class or method level granularities

with different software languages and applications.

With the increase of distributed systems and data focused applications, the

regression test selection techniques have also shown a change in direction

considering used approaches and inputs/outputs of the techniques [9], [11].

Cluster based approaches in cooperation with learning based algorithms such as

genetic algorithms [77]–[79] and artificial intelligence approaches [15], [18], [50],

[55], [80], [65] shown effective performances with different levels of granularities

for different sized projects. But they are mostly used in desktop, GUI and

embedded applications. In database applications, model based and data flow

based approaches are used extensively with a similarity function or coverage

criteria to determine the test cases [22], [81]–[83].

29

As software complexity is increasing, the analysis of the source code and RTS

techniques becomes a time consuming task without decreasing in importance to

the quality of the system [84], [36]. Since any fault that made its way to a

production environment could result in devastating consequences, many RTS

techniques incorporating other sources than code have been developed. Ruth

[61] proposed a privacy aware, CFG based web framework for RTS. Change

impact analysis and fault detection based RTS techniques with the inclusion of

historical data are proposed in recent years to eliminate the risk of high weighted

faults not being detected while increasing the APFD score of the systems [85]–

[92], [93]. These systems are mostly used with static methods on fine granularity

level for modern applications with different sizes. Another solution to this problem

is model based regression test selection techniques. Model based regression test

selection techniques are used extensively where source code is not available or

the analysis of the source code is not feasible [6]. They are used with dependency

graphs, configuration differences and requirement analysis in a variety of

application domains with a fine granularity [40], [52], [64], [80], [94]–[101], [23].

The availability of the source code or the changes of non-code parts of the

program also impacts the selected technique since the approach used would be

different. For example, if fault history and traceability of the software is available,

a learning based approach could be applied with high fault detection rate.

However, if a model based approach is selected with no model available then

computing the model from source code would introduce unwanted overhead to

the end-to-end test time while resulting in lower precision. To overcome such

problems, hybrid approaches are presented in recent years. Hybrid approaches

tries to achieve a balance between granularity level and performance of the

technique [17], [38], [39], [45], [74].

Granularity level measures how precise the selected technique will be and if the

granularity level is finer, then more overhead analysis would be computed

resulting in more time spent on overall [24]. But if the software size is small, then

the overhead time could be neglected, and hence both precise and efficient

technique could be selected. So it is an important aspect to identify the software

artifact for which the technique will be adapted [6], [26], [102], [103].

30

Application domain and software artifact language type greatly reduce the

available RTS approaches. For example, many embedded applications are

developed with procedural languages, in which object-oriented approaches like

model based or object dependency graph based are not available, and need to

be tested rigorously if they are safety-critical systems. There are only a few

approaches available for embedded applications like slicing or firewall to increase

the precision while keeping the performance at acceptable levels. Another

example would be many database applications are programmed by sheet based

languages which greatly reduces the available approaches.

Evaluation metrics for the approaches depends on the inner characteristics of the

RTS technique. To illustrate, if the technique is safe then there is no need to

calculate precision and inclusiveness. Type of the software is another important

factor in deciding the evaluation metrics to be computed. For example, an object-

oriented web application working with a high number of users could prioritize f-

measure and weighted fault detection rate since any high weighted fault impact

could result in revenue loss of the system.

3.3. State-of-the-Art Summary

The conceptual model shows that traditional approaches are dominant in the RTS

field and widely adapted to different problem spaces. On the other hand, recent

studies show that new techniques adopt more coarse granularity level

dependency [69], difference [15], coverage [104], fault [85] and learning based

approaches [13], [93]. It is deduced the reason for this shift is pointed to agile

development and comparison studies of traditional approaches with emerging

techniques. Agile development has been widely accepted and become the

number one development practice across software practitioners [105]. In agile

development, software is shipped frequently and most of the build and test

process of software is automated and controlled by a CI/CD platform [105]. To be

able to keep up with the fast pace of the software life cycle, any RTS technique

also should be fast enough. This is only achieved by coarse granularity level

approaches such as difference based and learning based approaches. Moreover,

the studies carried out in recent years showed that coarse granularity level (class

31

level) approaches are outperforming fine granularity level (method level)

approaches in real life projects [62], [1]. In this section, techniques used for

comparison with other techniques, techniques that have high citation impacts,

techniques developed in recent years and used in real life projects are discussed

as state-of-the-art techniques. A summary of the techniques with key

implementation points, advantages and disadvantages of each technique is given

in the Table 3.1

Table 3.1. A summary of the state-of-the-art techniques

Ekstazi [14] is a dynamic file level dependency analysis approach that gained

popularity in recent years because it is light-weight and efficient. Ekstazi

calculates checksums for each file depending on a test case and stores them for

further use. It does not differentiate between class files or configuration files. On

later versions of the software, if the checksum of a file is not changed then

matched test case is not selected for regression testing. It is easy to include in

the build process since it supports tools like Maven, junit out of the box and starts

to work automatically without human intervention.

32

SPIRITuS [15], SimPle Information Retrieval regression Test Selection

technique, is difference and learning based approach with coverage information

using lexical modifications to detect changed methods in order to select test

cases. It is easy to adopt to other programming languages, tunable and fast. After

constructing a test case coverage matrix on method level, it uses vector space

model by textually analyzing the methods. Then it uses the coverage matrix and

vector space model to perform a method similarity computation and selects test

cases corresponding to changed methods. It is a fine granularity level, safe

approach.

HyRTS [17], is a hybrid approach which operates at multiple granularities to better

select test cases. HyRTS performs file level dependency analysis like Ekstazi

and an additional method level analysis. Then it overlaps the results of two

process to determine which test cases to execute. It is easy to include in projects

since it supports build/test tools like Maven, junit. Because it includes method

level analysis, it outperforms Ekstazi in precision but test time depends on the

software tested. The authors also propose variants changing granularity level for

performance gain.

REKS [13] and RIT [91] are both recently published techniques that are refactor

aware techniques. They try to skip test cases that are selected due to behavior-

preserving changes made to the code. RIT uses abstract syntax trees to identify

the refactoring changes and then uses data flow and change impact analysis

approaches to select test cases. RIT computes refactorings by its own approach

whereas REKS relies refactoring engines of IDEs to inform itself about changes

and updates the dependencies to skip the related test. RIT focuses on identifying

refactoring based faults by informing the developer about the changes. On the

other hand, REKS is built on top of Ekstazi and modifies Ekstazi dependency files

to skip the tests.

STARTS [12], is static RTS technique that uses type dependence graphs to

calculate checksums of the files each test case depends on like Ekstazi. Since

this technique is statically applied, it is more imprecise and unsafe compared to

33

dynamic techniques. STARTS perform similar to Ekstazi and easily pluggable to

build environment.

Hafez [16] proposed caching potential fault revealing files and using this

information when dynamically selecting test cases. Oliveria et. al. [90] uses

machine learning algorithms to predict whether a commit affects the performance

regression tests. Kandil et. al. [55] proposes cluster based approach for

regression test selection after test case prioritization phase. Aman et. al. [93] uses

natural language processing for topic extraction from test cases and then

recommends an order to regression test selection process to increase

performance.

34

4. PROPOSED TECHNIQUE

4.1. The Goal of the Thesis

The traditional models are used extensively in early years of RTS field and the

techniques put forth by Rothermel [29], Leung [27] and Orso [71] are adopted to

different problem spaces with high precision since the approaches are safe [7],

[17], [22], [29], [31], [42], [43], [57]–[60], [73]–[76], [87], [96], [106]–[111]. But the

overhead computing time of these techniques, emerging new software

engineering practices like machine learning and artificial intelligence approaches

and data oriented software caused a shift in the approaches used in regression

test selection process [6], [9], [11], [37].

During the grounded theory process, it is observed that most of the techniques

presented by the academia is not available to download [102], [112]. Because of

this, there are only a few of easily maintainable/user friendly RTS techniques

used widely in open-source communities, such as Ekstazi [14], HyRTS [17] and

Starts [12]. Although these techniques are efficient, have low precision but high

end-to-end test time since they use coarse granularity level approaches and not

safe, they are accepted in large open source projects since they are easily to

download/use and have little overhead in preparation. To improve the adoption

rate of RTS techniques on open-source and private projects without sacrificing

precision, a fine level granularity, fast, efficient with lower overhead analysis

technique is needed.

The conceptual model and state of the art techniques revealed that although

there are many traditional and effective techniques such as based on graph walk,

slicing and model approaches, these techniques fail to work adequately with

modern large, multi-language and multi-domain software systems [6], [11], [37].

To address the issue, more modern approaches are proposed in recent years

like clustering, machine learning and hybrid techniques. In addition, while the

inclusiveness and precision of a technique is important for modern systems cost

metrics such as time, fault detection and computation power are more preferable

from an industry point of view [113]. Furthermore, we observed even though,

35

learning and hybrid based techniques are used in recent years, the area of fault

related approaches using state of the art different based approaches is not

explored fully [1]. As to comply with the standards of the modern software, a

technique which uses all of the information (test history, fault logs, configuration

files) is needed.

To fulfill the goals explained above, a regression test selection technique using a

hybrid approach using code modifications with test/fault history and external

dependency analysis is proposed in this thesis. We chose to develop a hybrid

approach with approaches already addressing different problems encountered in

the field as a result of conceptual model because we aim use the advantages of

each technique in their proven area and with the combined strength of the hybrid

approach, it is also possible to carry out a comprehensive case study comparing

state-of-the-art techniques.

4.2. Proposed Technique

The proposed approach is inspired from the techniques mentioned in Ekstazi [14],

SPIRITuS [15] and HyRTS [17]. The process of the proposed technique is given

in the Figure 4.1. The technique is a hybrid approach which uses text similarity of

files for any third-party text files, checksum comparison for any third-party binary

files and file/method level checksum with lexical comparison for source files. It

also identifies any non-deterministic and high priority test cases using test/fault

history. Although there are earlier studies using text based difference

approaches, there is no file level text similarity approach presented [47]. The

SPIRITuS uses text similarity based on method level analysis [15].

36

Figure 4.1. Flow model of the proposed technique

Analysis phase could either be online or offline since it does not affect test case

selection. In analysis phase, preliminary analysis of the source code and 3rd party

files are processed and indexed to be used in execution phase. In execution

phase, weighted dependency/coverage matrix is calculated, changed parts of the

program are detected via similarity comparator and appropriate test cases are

selected.

Text Processor. Text processor uses natural language processing methods

based on vector space model (VSM).

Firstly, each class file, third-party file is extracted and converted to documents. In

the JVM languages used in this study, this is done by observing the classpath

and *.class files. Third-party files are left untouched since they are regarded not

as source codes and treated accordingly.

37

Secondly, data preprocessing and tokenization is applied to each document such

as cleaning (deleting whitespace, redundant characters). For data preprocessing,

all the code comments, whitespaces, redundant characters are removed.

Different rulesets are applied to source code fields to gain better performance.

However, only basic cleaning could be applied in favor of being language neutral.

For example, map.get(key); is tokenized into: {“map”, ”.”, ”get”, “(“, “key”, “)”, “;”}

for java language. Any other language specific tokenization could be performed

for better results in different languages. Since tokenization module could be

replaced with other methods, any third-party library could also be used to

automate the process and reducing the development time.

Finally, using vector space model (VSM) approach the document is indexed via

Apache Lucene1. In VSM, the documents are represented as vectors.

𝑑𝑗 = (𝑤1,𝑗, 𝑤2,𝑗, … , 𝑤𝑖,𝑗)

Each dimension consists of a term which can be words, keywords, or phases.

Several approaches are proposed how to calculate term weights. We are using

tf-idf weights which uses following formula. Note that that in Apache Lucene the

calculations are automated.

𝑤𝑡,𝑑 = 𝑡𝑓𝑡,𝑑 ∗ 𝑙𝑜𝑔
|𝐷|

|{𝑑′ ∈ 𝐷 | 𝑡 ∈ 𝑑′}|

Where tf is the term frequency if term t in document d as in the following formula:

𝑇𝐹(𝑡, 𝑑) =
𝑡

𝑑

The logarithmic expression is the inverse document frequency in which D

represents total number of documents and dividend part represents the number

of documents containing term t [114] as presented in the below formula:

𝐼𝐷𝐹(𝑡, 𝐷) = 𝑙𝑜𝑔
|𝐷|

|𝑑 ∈ 𝐷 : 𝑡 ∈ 𝐷|

1 https://lucene.apache.org

38

We have decided to use VSM for text processing since it is a proven, effective

method used in regression testing [15].

Binary Processor. Any file that is not text based is fed to binary processor. Binary

processor calculates fast checksums of each file and stores the result in a file.

Since binary files could be large files and we treat any file outside of the project

files such as third-party libraries, it is efficient to only use checksums. Moreover,

if any binary file is changed/updated it could easily be identified with checksum

values.

Test Processor. Test cases and test/fault history is used to derive a weighted

dependency matrix. In this thesis we define test case in a test class level since

many test methods could depend on other tests in the same class or they could

be parameterized with more recent test frameworks for ease of use [14], [1], [17].

The weights are calculated as optional since the history may not be always

available. The tool aims to use its execution results to incrementally build history.

The test cases are first weighted by the user with the flakiness and fault tolerance

of the tests in range of 0-1. Then file dependencies are extracted by executing

test cases and recording the used files in specific test cases and associated

weights. If no test/fault history is available then all the weights are set to 1. Then

coverage matrix is obtained with test cases vs files and weight values. In test

selection, if two test cases are affected by the same file, the more weighted test

case is selected to ensure cost-efficiency.

If there are flaky tests [104] discovered in the test history, relevant test cases are

given lower weights since they are not to be trusted. A flaky test is a test that can

fail or pass given same configurations. Flaky tests could occur from unknown

data dependencies, concurrencies, non-deterministic behaviors etc. Similarly, if

a test is shown as a fault producing test then the weight of the test is increased

since it should be prioritized. The weight association is used when there are

multiple test cases fulfilling the selection criteria to select the more promising test

cases. In order to ensure an objective weight is assigned to the specific test case,

we have developed and weight assessment matrix as shown in Figure 4.2.

39

Figure 4.2. Weighted matrix key, flakiness vs faultiness

Similarity Comparison. If binary files are to be used, then the checksum of the

original and modified program is compared and if there are any changes then

changed file and thus related test cases are selected. On the other hand,

similarity between two text based files, documents, is calculated using Jaccard

40

or Cosine similarity index. The Jaccard similarity is defined as number of shared

terms over the number of all unique terms in both documents [115].

𝐽𝑤(𝑑1, 𝑑2) =
∑ 𝑚𝑖𝑛(𝑑1, 𝑑2)𝑖

∑ 𝑚𝑎𝑥(𝑑1, 𝑑2)𝑖

The cosine similarity is defined as cosine of the degree of two vectors [115]:

𝑐𝑜𝑠(𝑑1, 𝑑2) =
𝑑1 ∙ 𝑑2

|𝑑1| ∗ |𝑑2|
=

∑ (𝑑1 ∗ 𝑑2)𝑖

√∑ 𝑑1
2

𝑖 ∗ √∑ 𝑑2
2

𝑖

First the original and modified program is processed according to the text

processor and vector form of each file is obtained. Then similarity comparison is

performed according the above formulas and similarity index is calculated. After

calculating the similarity, it is compared to a threshold in test case selection.

Test Case Selection. After setting a similarity threshold between 0 and 1, any test

case whose similarity value is smaller than the threshold is selected for execution

according to the formula where 𝑡𝑐 is test case:

𝑇𝐶𝑆(𝑡𝑐) = {
𝐷𝑜𝑛′𝑡 𝑝𝑖𝑐𝑘, 𝑠𝑖𝑚𝑆𝑐𝑜𝑟𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑃𝑖𝑐𝑘, 𝑠𝑖𝑚𝑆𝑐𝑜𝑟𝑒 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

If the threshold is 1, then the approach becomes a safe RTS technique since it

will automatically select all the test cases. The threshold could be well-tuned for

different projects to obtain better performance.

In this thesis, we set the threshold to 0.975 to gain comparable performance with

other state-of-the-art techniques on average [15]. We have selected the threshold

value after experimenting with different threshold values ranging between 0.95-

1.00 for each case study program and calculating the best threshold value which

has highest fault detection rate and lowest test selection ratio as illustrated in the

Figure 4.3.

41

Figure 4.3. Average test selection and fault detection rate calculated for different

threshold values computed for each program.

The analysis phase is the most time-consuming of the approach but since the

analysis is required for the previous versions of the software, it can be computed

as offline.

The technique is developed as a junit extension for the Java language so that it

is easy to adopt to existing projects. It can also detect projects controlled in

version control, namely git, and process previous versions for building historical

data.

42

5. CASE STUDY

The proposed technique is evaluated with the other state-of-the-art approaches

detailed in section 3.3. Case study is selected as an evaluation method. Case

studies are performed to research a contemporary phenomenon [116]. We

followed the Yin’s [117] case study definitions with the help of Runeson’s [118]

guidelines. Since multiple units are analyzed in our evaluation, embedded case

study is carried out. Since we will focus on different cases, the case study is

selected as embedded, multiple case study. Case study design approaches are

summarized in the Figure 5.1.

Figure 5.1. Overview of case study design approaches

43

5.1. Objective

The purpose of the case study is to compare performance, usability and

effectiveness of the techniques. To this end, following research questions (RQ)

are formed:

RQ1: How does the proposed approach compare with state-of-the-art

approaches in terms of performance with respect to time, selected tests and fault

detection capabilities? This question aims to detail a comparison of the

performances between different techniques in terms of total test time, selected

test ratio and fault detection rate.

RQ2: How does the proposed approach compare with state-of-the-art

approaches in terms of cost-efficiency? This question aims to study the proposed

approach’s efficiency whether it is beneficial to use or not depending on different

cost criteria.

5.2. Design

The evaluation study was designed as an embedded, multiple case study. The

techniques are applied to large open source projects shown in the Table 5.1.

Many traditional techniques use programs provided by Software Infrastructure

Repository (SIR) programs [8], [9]. Although SIR programs are stored with real

fault information, many of the programs are only representative of small samples

and therefore do not reflect real life world cases [37]. Instead, the real-life projects

from GitHub repository is used in this thesis. The projects are taken from other

studies of state-of-the-art techniques in literature in order to verify the replication

[12], [15], [1]. We have chosen 21 Maven projects since most of the state-of-the-

art techniques have support for Maven projects. We have chosen projects with

long running tests since they are more likely to benefit from RTS. We have only

included revisions in which the programs are compiled and all of tests are run

successfully (i.e. mvn test command is executed without failure). Finally, any

revision in which one of the techniques failed to operate are also excluded. This

resulted in: on average 32.3 kLOCs, 44.8 revisions with 74,790 tests, and 175.8

seconds; in total 677.4 kLOCs with 1,570,600 tests which run in 3691 seconds.

44

Table 5.1. Statistics of open source projects used in the study

Program # of

Version

kLOC # of

Tests

(k)

Test

Time

(s)

1 headius/invokebinder 66 2.0 2.2 3.91

2 google/compile-testing 30 3.0 7.6 8.51

3 apache/commons-cli 50 5.9 23.0 8.74

4 logstash/logstash-logback-

encoder

43 3.2 18.7 7.82

5 apache/commons-dbutils 33 5.4 23.2 9.43

6 apache/commons-validator 19 11.9 61.0 11.04

7 apache/commons-fileupload 54 4.3 12.0 11.04

8 apache/commons-codec 63 17.0 47.5 14.95

9 srt/asterisk-java 59 34.5 38.1 14.03

10 apache/commons-compress 12 32.5 89.4 21.62

11 apache/commons-email 23 6.5 17.0 28.29

12 apache/commons-lang 61 69.0 133.8 49.68

13 apache/commons-collections 66 54.3 149.6 45.77

14 apache/commons-imaging 87 37.1 58.9 66.47

15 apache/commons-math 57 185.4 450.2 251.39

16 addthis/stream-lib 5 8.3 24.0 241.04

17 apache/commons-io 49 27.7 93.9 210.22

18 brettwooldridge/hikaricp 49 9.4 21.0 184.46

19 opentripplanner/opentripplanner 20 79.3 135.8 639.17

20 apache/commons-pool 51 12.8 19.5 677.58

21 jankotek/mapdb 57 67.9 144.2 1186.57

After the selection of the programs and revisions, we applied each RTS technique

to each revision of programs and gathered related metrics. The overall process

of evaluation steps is shown in Figure 5.2. The process is automated and the

results are generated for each technique with detailed metric results. The flaky

tests and fault history are manually extracted since the project repositories did

45

not have the information. Mutation testing is used to inject faults to the versions

so as to gather fault related metrics [119].

We have used state-of-the-art techniques summarized in the Table 5.2 for our

evaluation purposes. Retest-all is selected as a base version to clearly observe

the RTS gains. We used HyRTS base variant and we used the same similarity

threshold for both SPIRITuS and our approach not to compromise the replicability

of the study with SPIRITuS study results [15].

Table 5.2. Techniques used in the case study

Technique Description

Retest-all Base

Ekstazi -

STARTS -

HyRTS Base Variant

SPIRITuS Threshold is set to 0.975

Our approach Threshold is set to 0.975

46

Figure 5.2. Overview of automated evaluation steps of subjects and techniques

The experiments are run on a computer with 4 GHz Intel i5-4670K with 16 GB of

RAM, running Windows 10 with Java 8 64 bit JDK.

The following metrics are computed during experiments:

 End-to-end runtime of tests, both offline and online parts of the techniques

 Percentage of tests selected

 FDR, Fault Detection Rate

47

5.3. Results

 RQ1: How does the proposed approach compare with state-of-the-
art approaches in terms of performance with respect to time,
selected tests and fault detection capabilities?

5.3.1.1. Time

The Table 5.3 summarizes the end-to-end runtime of tests results. The programs

are listed in the ascending order of the test execution time regarding retest-all

approach. Note that, online measurement of Ekstazi, STARTS and HyRTS

represents the end-to-end time calculated with analysis, execution and collection

phases of the techniques. Whereas offline measurement of the respected

techniques is calculated with analysis and execution, leaving out the collection

phase. Analysis phase conforms to selecting test cases, execution phase

represents the execution of the running of the selected tests and collection phase

includes building or updating of the coverage/dependency matrix while executing

test cases in the current version. On the other hand, SPIRITuS and our approach

works differently. In the offline phase, text parsing/data preparation processing

are done. In the online phase, in addition to offline phase, selecting test cases

and building or updating coverage matrix steps are carried out.

By looking at the end-to-end time in offline mode, the overall fastest technique is

HyRTS which is computing checksums of differences based multiple granularity

level approach. Other approaches using checksum are also faster compared to

our approach. Our approach is on average 23% slower than checksum based

approaches as expected since there is more computational work done in our

approach. When compared to SPIRITuS, it is 11% faster as it calculates changes

in file level, which means there is less overhead.

By looking at the end-to-end time in online mode, the overall fastest technique is

Ekstazi which is computing checksums and building coverage matrix on class

level. It is faster than HyRTS since HyRTS needs to analyze methods for building

dependency matrix. Our approach is on average 27% slower than checksum

based approaches as expected since the overhead calculations from offline

mode is also reflected in this mode. When compared to SPIRITuS, it is 7% faster

48

as it calculates changes in file level but it also uses extra parameters when

calculating coverage matrix such as test history.

The slowness of the proposed approach is explained by the offline phase being

responsible for almost %99 of the total time. The analysis phase could be

improved via testing other NLP methods instead of VSM - more basic methods

could be fast and effective at the same time - since the analysis phase is only

needed if a new modified version is available. Analysis part could be integrated

to version control systems to automate the process and reduce the perceived

time. On the contrast, this approach is not applicable to other state-of-the-art

techniques since there is only small overhead of online processing. This

phenomenon is better shown in the Table 5.3. The programs are listed in

ascending order with respect to the retest-all time. The gray areas on the table

represents the time that took longer than retest-all approach. To illustrate, all of

the techniques took longer times for Apache Commons CLI project than retest-

all approach.

49

Table 5.3. Experimental results of the case study

50

Figure 5.3. Offline time comparison of case study with respect to retest-all

Figure 5.4. Online time comparison of case study with respect to retest-all

When compared with respect to the retest-all approach it is observed that some

of the techniques takes longer times than testing all of the test cases. Further

51

investigation reveals that when the test execution times are low it is not feasible

to use any RTS technique since it hurts the performance. It is advised that when

the running times of tests are relatively low, 10-20 sec, instead of using an RTS

technique, all test cases should run. Although in general it can be said that when

the software size is relatively low it is preferable not to use any RTS technique,

we could not detect a pattern with size of the programs in lines of code so that

after certain threshold it is beneficial to perform regression testing. In our

experiment we observed that while some programs such as #11, #16, #18 is fairly

low on size compared to other subjects have reduced time results using RTS

techniques, the programs such as #4 did not benefit from using RTS techniques

at all. Similar conclusions are also deducted from online time analysis. However,

note that in online analysis our technique also includes test execution times like

other techniques and still manages to perform reasonably well in spite of having

a much larger offline overhead performance as shown in Figure 5.3 and Figure

5.4.

52

Table 5.4. Analysis, Selection and Total time results of proposed approach

Table 5.4 shows the analysis and selection phase time results of our approach.

In analysis phase, the operations described in section 4.2 analysis phase and

initial computation of coverage matrix (first coverage matrix building) are carried

out and time measurements are taken. In selection phase, all the operations in

section 4.2 execution phase except computation of coverage matrix is timed. This

is to show that if the analysis phase and computations of coverage matrix could

be performed in the background, the test selection is fairly fast compared to other

techniques. %99 of the cost of our technique comes from the analysis phase.

5.3.1.2. Selected Test Ratio

The percentage of the selected tests are shown in the Table 5.5. The figure is

given as tests selected with respect to retest-all approach for ease of

understanding. STARTS, static approach, selects most test cases on average,

53

while HyRTS outperforms coarse granularity approaches like Ekstazi. SPIRITuS

selects almost twice less tests then HyRTS since it follows a more granular

approach. Our approach performs closely to SPIRITuS but selects 2% less tests

than SPIRITuS compared to retest all approach. This is expected since our

approach is finer granularity approach than other techniques.

Table 5.5. Selected test ratio with percentages with respect to retest-all

5.3.1.3. Fault Detection Rate

Another set of experiments are performed on the mutated versions of the

programs. Mutations are performed with PIT tool [119] and the coverage of the

mutations are given in the Table 5.6. PIT tool is used with default mutation

operators listed as;

 Conditionals Boundary: Relational operators are replaced with each

other such as <, <=, >, >=.

 Increments: Any increment is replaced with decrements and vice versa

such as ++, --.

 Invert Negatives: Integer and floating point numbers are inverted such as

variable with (-)variable.

54

 Math: Binary arithmetic operations are replaced with another operation

such as +, -, *, /, %, &, |, ^, <<, >>, >>>.

 Negate Conditionals: All conditionals are replaced with other conditionals

such as ==, !=, <=, >=, <, >.

 Return Values: The return types of the functions are replaced with its

counterparts such as boolean true with false.

 Void Method Call: void return typed function calls are removed.

To conduct a more controlled comparison of the techniques, fault mutation is

selected instead of using actual faults reported in the studies. It is shown that

mutation faults could be used to assess software systems instead if real faults

[120]. We have chosen a random number of mutations between 0-20 to be able

to reflect the real world situations [30], [121]. We generated 20 faulty versions of

each program and if the program has less than 20 versions we used all versions

to generate its faulty counterpart. Before applying each technique, it is checked

and guaranteed that all the mutations could be killed with the test cases, meaning

no mutation that could escape the retest-all approach is selected. Note that, any

safe RTS technique will have %100 FDR since it is supposed to capture all the

modification revealing test cases by definition.

The safety of an RTS technique is measured by its inclusiveness, meaning if the

technique is able to detect all modification revealing test cases, then it is deemed

as a safe RTS technique. Most of the traditional techniques are safe since they

are focused on modifications on the program. However, any exclusion of third-

party changes could result in an unsafe technique as observed in some of the

method level static analysis approaches [12]. When the techniques used in the

case study, following results are acquired:

Ekstazi and HyRTS are safe since both of the techniques evaluate dynamic

dependencies at different granularity levels, thus ensuring any modification will

be detected. Nevertheless, the safe techniques are also evaluated in this section.

STARTS is an unsafe technique since it analyses the program statically, which

can neglect any runtime modifications made to the program.

55

SPIRITuS and our approach follow a flexible approach in order to be cost-efficient

in terms of time and fault detection capabilities. By increasing the similarity

threshold, both of the techniques could be made safer. If the threshold is equal

to 1, then all of the modifications would be captured by definition and both of the

techniques can be considered safe. If the threshold is lowered then there is a risk

some fault revealing test cases could be neglected, thus making the techniques

unsafe. By analyzing FDR, we aim to show that inherently unsafe techniques

could be used for cost-efficient reasons.

Table 5.6. Fault detection rate results

We prove that using our approach is highly safe only failing in two of the

programs. We have improved the SPIRITuS safeness because our approach

uses class/file level analysis instead of method level analysis and therefore is

more robust. Method level granularity analysis could be affected from exclusion

of the third-party libraries, whereas class level granularity approaches are

immune proven in Legunsen’s study [1].

56

5.3.1.4. Detailed Time Analysis

We observed that our technique performs poorly on timewise whereas it has a

lower selected test ratio and maintains a comparative fault detection rate. Since

our technique is also finding the same faults with other techniques on such a

small number of tests, we decided to further investigate the selected tests for

different approaches. To this end, we analyzed some of the programs in detail,

namely: #15 (apache/commons-math) and #11 (apache/commons-email). We

compared our technique with the HyRTS technique for ten consecutive revisions

(excluding initial run since all test are executed on initial run) of the programs.

Program #15 has the highest number of tests and smallest test selection ratio

difference whereas program #11 has highest test selection ratio difference. Note

that, FDR is 100% for both programs for all revisions with each technique.

First, we have look at whether the selected test cases with our approach is a

subset of the selected test cases by other approaches. If this were to be the case,

it could be deduced that although the analysis part takes longer, the test

execution part is always takes smaller time in our technique compared to others.

We have observed this to be the case for most of the revisions but we have also

encountered 3% difference between selected test cases on average as shown in

Table 5.7. By only our approach represents the tests selected by our approach

and not selected by HyRTS. By our approach and HyRTS represents tests that

are common in both techniques. HyRTS represents all tests selected by HyRTS.

Table 5.7 Number of selected test results

Tests selected by our technique are not a subset of tests selected by other

techniques. However, providing the test execution time comparison of each

technique we observed that test execution times are in parallel with selected test

57

ratio as shown in Figure 5.5. We have compared 10 consecutive revisions of each

program with each technique and analyzed only the test execution times with

respect to retest-all approach.

Figure 5.5 Test execution time results with respect to the retest-all approach

Compared to the selected test ratio, the test execution time is observed to be

following in a parallel line closely for each technique. Test execution time and

selected test ratio is given in Figure 5.6. By the observation of the results, it is

safe to assume that selected test ratio and test execution times are closely

related; ergo, it can be inferred that our technique is effective in test execution

time since it has the lowest selected test ratio. Furthermore, considering the

analysis phase could be computed offline, the test execution time results could

be deciding factor when choosing an RTS technique if the tests are executed on

a shared or resource limited machine.

58

Figure 5.6 Test execution time and test selection ratio for our approach

 RQ2: How does the proposed approach compare with state-of-the-
art approaches in terms of cost-efficiency?

By combining the results we acquired in the RQ1, we can deduce the following:

 Timewise our approach has a much higher overhead than state-of-the-art

approaches. Our technique performs 23% poorer than its counterparts.

This makes our approach not feasible if the time is of the essence by

focusing purely on time analysis.

 Our approach selects less tests than other state of the art techniques. Our

technique performs almost three times better than Ekstazi and almost two

times better than HyRTS approach in terms of selected test ratio.

Moreover, by tuning the similarity threshold the ratio of test selection can

be adjusted. For example, if the computing power is an important aspect

of regression testing, user could sacrifice fault detection capabilities in

favor of selecting smaller number of test cases. We observed that the

threshold of 0.975 is adequate for most cases based on the threshold

analysis [15].

59

 We have observed that by choosing much less tests the same fault

detection rate of safe methods could be achieved. This is achieved since

our approach is finer granularity level than other approaches.

The cost of the regression test selection could be defined as multifold as studies

with multiple objectives show [48], [65], [79], [108], [122]–[125]. Time, selected

test number, computation power are the main costs considered in most studies

but the cost could be different from project to project even in the same company.

Therefore, we proposed a tunable regression test selection that answers to the

needs of the user. If time is determining factor, the approach could be adopted to

perform faster by changing similarity approaches. Or if the execution of tests is

computationally expensive, fewer tests could be selected at the expense of fault

detection. By this reasoning, we consider the proposed technique as cost-

efficient once the required adjustments are made.

5.4. Threats to Validity

In this section, the validity of the thesis is discussed in terms of construct, internal

and external validities and reliability [117].

 Construct Validity

The construct validity is related to measurement instruments not being capturing

the correct concepts [117]. In our thesis, the measurements of the metrics in

evaluation can be considered as a threat to the construct validity. To alleviate this

thread, the measurements of the related metrics are calculated with respect to

the retest-all approach so as to define a common ground for comparison.

Furthermore, the used metrics that are widely accepted in literature and adopted

to several studies as discussed in section 2.1.

 Internal Validity

The internal validity is related to inner instruments used in study that can affect

author’s judgement [117]. This can apply to the thesis in the following ways:

 Case Study: The approaches we have used in the case study are well

documented and partially available online. If the technique/tool is

60

available, we have used the technique and the tools as instructed by the

authors of respective studies. However, it is still possible these tools

contain bugs.

 Proposed Approach: Our own developed technique is another threat to the

internal validity of the study. This study is part of a thesis and the technique

is developed and implemented by the sole author. It is possible for the

approach to contain bugs that affect performance of the technique.

Moreover, although state-of-the-art and widely accepted frameworks/tools

are used in implementation of the technique, it is possible writer’s

knowledge of the software ecosystem and personal tendencies could

introduce threats to the approach.

 Conceptual Model: The grounded theory is used to alleviate any threats

manifesting in the construction of the conceptual model. Additionally, the

proposed technique is only shaped and begin implementation phase after

the conceptual model is analyzed to disregard any misdirection that could

occur.

 External Validity

The external validity is related to conditions that limit the researchers’

generalization capabilities [117]. To eliminate any external threats, the units of

analysis used in the case study is strictly limited to other projects used in the RTS

field and publicly available. The revisions of the projects are carefully selected

following the processes of other techniques closely [15], [69], [102], [1]. In order

to eliminate data bias that could occur, we used different versions of the programs

from other studies. However, the units of analysis are fairly large and modern

projects. As a result, the threat of generalizing the proposed approach to smaller

projects persists in the study.

 Reliability

Reliability requires that the study can be repeated with the same steps by other

researchers. To counteract this, all of the steps of the case study is properly

defined with assisting figures in section 5.2. In addition, there should be more

61

empirical studies conducted in various projects such as having size ranging from

small to large and in different programming languages.

62

6. CONCLUSION

Regression testing is an essential part of the modern software cycle. In order to

keep up with the fast pace of development without breaking any changes made

to the software, regression testing must be performed in a timely and cost-

efficient manner. In this thesis, to study the area of regression test selection, we

first constructed a conceptual model, bridging the gap between traditional and

modern approaches and to visually understand and identify the parts of the field

that could be improved.

The detailed analysis of the conceptual model revealed that there are many

scenario specific solutions to the regression test selection but the techniques are

not adequate for large, complex and multi-lingual software projects. Thus, a fast,

efficient, language-independent, easy to use and manageable technique is

needed for the high adoption rate in the industry. To this end, an adjustable,

hybrid regression test selection technique is presented for teams working with

large, complex software systems that are under continuous integration and

deployment cycles. The proposed technique aims to improve different goals in

different times such as computation power, time and fault detection rate and also

working with various different software modules written in different languages.

The proposed technique uses vector space models to lexically compare different

class and configuration-like files at a coarse granularity while using binary

checksum comparison for any third-party dependencies. This approach envisions

the needs of a modern software project which is version controlled, uses different

programming languages and developed in an agile framework. The proposed

approach answers these demands by being language independent, easy-to-use

and able to work in the background without interfering with the development

process.

In order to compare the proposed technique with state-of-the-art techniques, an

embedded, multiple case study is performed. The techniques are evaluated in

terms of performance with respect to time, selected tests and fault detection

capabilities and in terms of cost-efficiency. Time results showed that although by

63

end-to-end time our technique performs poorer than some of the other

techniques, the test execution is faster in our approach. Hence, the slowness of

our approach is caused by the analysis phase which can be fastened with

background analysis, different processing techniques and adjusting to threshold

for various time needs. The proposed technique is superior in terms of selected

test ratio, meaning it selects much fewer tests compared to other state-of-the-art

techniques while maintaining a relatively safe fault detection rate. Moreover, the

fault detection rate is highly safe, 99.75%, and it can be higher or lower by

adjusting the threshold value. The proposed approach is suited to comply with

different cost definitions, such as time, computation power, selected test number

via a tunable threshold parameter. This results in a cost-efficient approach. After

a comprehensive multiple case study, the results showed that the proposed

approach is effective as other state-of-the-art techniques and selects fewer tests

while keeping the fault detection rate at a high level.

As future work, the proposed technique is expected to be integrated with highly

used different tools such as integrated development environments (IDEs), junit

test framework, dependency management systems and continuous integration

servers in favor of the increase of usability and maintainability. Moreover, text

processing part could be tested with emerging natural language processing

techniques so the time performance of the analysis part could be improved.

64

REFERENCES

[1] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An

extensive study of static regression test selection in modern software

evolution,” Proc. 2016 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng.

- FSE 2016, pp. 583–594, 2016.

[2] R. Potvin and J. Levenberg, “Why Google stores billions of lines of code in

a single repository,” Commun. ACM, vol. 59, no. 7, pp. 78–87, Jun. 2016.

[3] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran, “Regression test

selection techniques: A survey,” Inform., vol. 35, no. 3, pp. 289–321, 2011.

[4] R. S. Pressman, Software Engineering A Practitioner’s Approach. New

York: McGraw Hill, 2002.

[5] G. Rothermel and M. J. Harrold, “A framework for evaluating regression

test selection techniques,” Proc. 16th Int. Conf. Softw. Eng., pp. 201–210,

1994.

[6] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective

Regression Test Case Selection: A Systematic Literature Review,” ACM

Comput. Surv., vol. 50, no. 2, pp. 1–32, 2017.

[7] S. Yoo and M. Harman, “Regression Testing Minimisation, Selection and

Prioritisation : A Survey,” Test. Verif. Reliab, vol. 00, pp. 1–7, 2007.

[8] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on

regression test selection techniques,” Inf. Softw. Technol., vol. 52, no. 1,

pp. 14–30, Jan. 2010.

[9] A. Orso and G. Rothermel, “Software testing: a research travelogue (2000–

2014),” in Proceedings of the on Future of Software Engineering - FOSE

2014, 2014, pp. 117–132.

[10] A. Shi et al., “Comparing and combining test-suite reduction and regression

test selection,” Proc. 2015 10th Jt. Meet. Found. Softw. Eng., pp. 237–247,

2015.

[11] R. H. Rosero, O. S. Gómez, and G. Rodríguez, “15 Years of Software

Regression Testing Techniques — A Survey,” Int. J. Softw. Eng. Knowl.

Eng., vol. 26, no. 05, pp. 675–689, 2016.

65

[12] O. Legunsen, A. Shi, and D. Marinov, “STARTS: STAtic regression test

selection,” ASE 2017 - Proc. 32nd IEEE/ACM Int. Conf. Autom. Softw.

Eng., no. iv, pp. 949–954, 2017.

[13] K. Wang et al., “Towards Refactoring-Aware Regression Test Selection,”

p. 12, 2018.

[14] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight Test

Selection,” Proc. - Int. Conf. Softw. Eng., vol. 2, pp. 713–716, 2015.

[15] S. Romano, G. Scanniello, G. Antoniol, and A. Marchetto, “SPIRITuS: a

SimPle Information Retrieval regressIon Test Selection approach,” Inf.

Softw. Technol., vol. 99, pp. 62–80, Jul. 2018.

[16] S. Hafez, M. Elnainay, M. Abougabal, and S. Elshehaby, “Potential-fault

cache-based regression test selection,” Proc. IEEE/ACS Int. Conf. Comput.

Syst. Appl. AICCSA, 2017.

[17] L. Zhang, “Hybrid Regression Test Selection,” pp. 199–209, 2018.

[18] Y. Pang, X. Xue, and A. S. Namin, “Identifying effective test cases through

K-means clustering for enhancing regression testing,” Proc. - 2013 12th Int.

Conf. Mach. Learn. Appl. ICMLA 2013, vol. 2, pp. 78–83, 2013.

[19] D. Walker and F. Myrick, “Grounded theory: An exploration of process and

procedure,” Qual. Health Res., 2006.

[20] V. Stray, D. I. K. Sjøberg, and T. Dybå, “The daily stand-up meeting: A

grounded theory study,” J. Syst. Softw., vol. 114, pp. 101–124, 2016.

[21] IEEE, “IEEE Standard Glossary of Software Terminology.” p. 84, 1990.

[22] D. Willmor, S. M. Embury, S. E. -, 2005. ICSM’05. Proceedings of The, and

U. 2005, “A safe regression test selection technique for database-driven

applications,” in ieeexplore.ieee.org, 2005, vol. 2005, pp. 421–432.

[23] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso, “Regression

testing in the presence of non-code changes,” Proc. - 4th IEEE Int. Conf.

Softw. Testing, Verif. Validation, ICST 2011, pp. 21–30, 2011.

[24] H. K. N. Leung, “Insights into Regression Testing,” Proc. Int. Conf. Softw.

Maint., pp. 60–69, 1989.

[25] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, “An

empirical study of regression test selection techniques,” ACM Trans. Softw.

Eng. Methodol., vol. 10, no. 2, pp. 184–208, 2001.

[26] L. Chen and L. Zhang, “Speeding up Mutation Testing via Regression Test

66

Selection : An Extensive Study,” Proc. - 2018 IEEE 11th Int. Conf. Softw.

Testing, Verif. Validation, ICST 2018, pp. 58–69, 2018.

[27] H. K. N. Leung and L. White, “A study of integration testing and software

regression at the integration level,” Proc. Conf. Softw. Maint. 1990, pp.

290–301, 1990.

[28] H. Do and G. Rothermel, “An Empirical Study of Regression Testing

Techniques Incorporating Context and Lifetime Factors and Improved

Cost-Benefit Models,” Sigsoft’06/Fse-, pp. 141–151, 2006.

[29] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selection

technique,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 2, pp. 173–210,

1997.

[30] S. Mirarab, S. Akhlaghi, and L. Tahvildari, “Size-constrained regression test

case selection using multicriteria optimization,” IEEE Trans. Softw. Eng.,

vol. 38, no. 4, pp. 936–956, 2012.

[31] R. C. Ruth M., “A privacy-aware, end-to-end, CFG-based regression test

selection framework for web services using only local information,” 4th Int.

Conf. Appl. Digit. Inf. Web Technol. ICADIWT 2011, pp. 13–18, 2011.

[32] S. Huang, J. Zhu, and Y. Ni, “ORTS: a tool for optimized regression testing

selection,” Proc. 24th ACM SIGPLAN Conf. companion Object oriented

Program. Syst. Lang. Appl., pp. 803–804, 2009.

[33] W. Jin, A. Orso, and T. Xie, “Automated behavioral regression testing,”

ICST 2010 - 3rd Int. Conf. Softw. Testing, Verif. Valid., pp. 137–146, 2010.

[34] W. Fu, H. Yu, G. Fan, X. Ji, and X. Pei, “A Regression Test Case

Prioritization Algorithm Based on Program Changes and Method Invocation

Relationship,” Proc. - Asia-Pacific Softw. Eng. Conf. APSEC, vol. 2017–

Decem, pp. 169–178, 2018.

[35] P. Dhareula and A. Ganpati, “Prevalent Criteria’s in Regression Test Case

Selection Techniques: An Exploratory Study,” 2015.

[36] A. Memon and Z. Gao, “Taming Google-Scale Continuous Testing,” in

Proceedings of the 39th International Conference on Software Engineering:

Software Engineering in Practice Track, 2017.

[37] H. Do, “Recent Advances in Regression Testing Techniques,” Adv.

Comput., vol. 103, pp. 53–77, Jan. 2016.

[38] V. Gupta and D. S. Chauhan, “Hybrid regression testing technique: A multi

67

layered approach,” Proc. - 2011 Annu. IEEE India Conf. Eng. Sustain.

Solut. INDICON-2011, 2011.

[39] A. S. A. Ansari, K. K. Devadkar, and P. Gharpure, “Optimization of test

suite-test case in regression test,” 2013 IEEE Int. Conf. Comput. Intell.

Comput. Res. IEEE ICCIC 2013, pp. 3–6, 2013.

[40] N. Ye, X. Chen, P. Jiang, W. Ding, and X. Li, “Automatic regression test

selection based on activity diagrams,” 2011 5th Int. Conf. Secur. Softw.

Integr. Reliab. Improv. - Companion, SSIRI-C 2011, pp. 166–171, 2011.

[41] H. Ural and H. Yenigün, “Regression test suite selection using dependence

analysis,” J. Softw. Evol. Process, vol. 25, no. 12, pp. 689–709, 2013.

[42] C. Tao, B. Li, X. Sun, and C. Zhang, “An Approach to Regression Test

Selection Based on Hierarchical Slicing Technique,” in 2010 IEEE 34th

Annual Computer Software and Applications Conference Workshops,

2010, pp. 347–352.

[43] R. Gupta, M. J. Harrold, and M. L. Soffa, “An approach to regression testing

using slicing,” Softw. Maintenance, 1992. Proceerdings., Conf., no.

November, pp. 299–308, 1992.

[44] Vedpal and N. Chauhan, “Regression test selection for object oriented

systems using OPDG and slicing technique,” 2015 2nd Int. Conf. Comput.

Sustain. Glob. Dev., pp. 1372–1378, 2015.

[45] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A study of effective

regression testing in practice,” Proc. Eighth Int. Symp. Softw. Reliab. Eng.,

pp. 264–274, 1997.

[46] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima, “Class firewall, test

order, and regression testing of COMPONENT IDENTIFICATION

METHODS APPLYING METHOD CAL....,” no. October, 1995.

[47] F. I. Vokolos and P. G. Frankl, “Pythia: A regression test selection tool

based on textual differencing,” Reliab. Qual. Saf. Software-Intensive Syst.,

pp. 3–21, 1997.

[48] V. Garousi, R. Özkan, and A. Betin-Can, “Multi-objective regression test

selection in practice: An empirical study in the defense software industry,”

Inf. Softw. Technol., no. June, pp. 0–1, 2018.

[49] B. Guo, M. Subramaniam, and H. F. Guo, “An approach to regression test

selection of adaptive EFSM tests,” Proc. - 5th Int. Conf. Theor. Asp. Softw.

68

Eng. TASE 2011, pp. 217–220, 2011.

[50] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using semi-supervised

clustering to improve regression test selection techniques,” 2011 Fourth

IEEE Int. Conf. Softw. Testing, Verif. Valid., pp. 1–10, 2011.

[51] L. Yu, C. Liu, and Y. Zhang, “A multidimensional classification of safe

regression test selection techniques,” 2012 Int. Conf. Syst. Informatics,

ICSAI 2012, no. Icsai, pp. 2516–2520, 2012.

[52] L. C. Briand, Y. Labiche, and S. He, “Automating regression test selection

based on UML designs,” Inf. Softw. Technol., vol. 51, no. 1, pp. 16–30,

2009.

[53] A. Andrews, S. Elakeili, and A. Alhaddad, “Selective Regression Testing of

Safety-Critical Systems: A Black Box Approach,” Proc. - 2015 IEEE Int.

Conf. Softw. Qual. Reliab. Secur. QRS-C 2015, pp. 22–31, 2015.

[54] E. Fourneret, J. Cantenot, F. Bouquet, B. Legeard, and J. Botella,

“SeTGaM: Generalized technique for regression testing based on

UML/OCL models,” Proc. - 8th Int. Conf. Softw. Secur. Reliab. SERE 2014,

pp. 147–156, 2014.

[55] P. Kandil, S. Moussa, and N. Badr, “Cluster-based test cases prioritization

and selection technique for agile regression testing,” J. Softw. Evol.

Process, vol. 29, no. 6, pp. 1–19, 2017.

[56] M. J. Harrold, A. Orso, and M. Lou Soffa, “Using Component Metadata to

Support the Regression Testing of Component-Based Software

Component Metadata for Regression Test,” Proc. IEEE Int. Conf. Softw.

Maint. (ICSM 2001); Florence; Italy; 7 Novemb. 2001 through 9 Novemb.

2001; Code 60554, 2001.

[57] M. Skoglund and P. Runeson, “A case study of the class firewall regression

test selection technique on a large scale distributed software system,”

IEEE/ACM Int. Symp. Empir. Softw. Eng. Meas. - ESEM, vol. 00, no. c, pp.

72–81, 2005.

[58] M. J. Harrold et al., “Regression test selection for Java software,” ACM

SIGPLAN Not., vol. 36, pp. 312–326, 2001.

[59] G. Rothermel, M. J. Harrold, and J. Dedhia, “Regression test selection for

C++ software,” Softw. Test. Verif. Reliab., vol. 10, no. 2, pp. 77–109, 2000.

[60] G. Xu and A. Rountev, “Regression test selection for AspectJ software,”

69

Proc. - Int. Conf. Softw. Eng., pp. 65–74, 2007.

[61] M. Ruth et al., “A Safe Regression Test Selection Technique for Web

Services,” in Proceedings of the 31st Annual International Computer

Software and Applications Conference - Volume 02, 2007, pp. 0–5.

[62] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test selection

with dynamic file dependencies,” Proc. 2015 Int. Symp. Softw. Test. Anal.

- ISSTA 2015, vol. 520, pp. 211–222, 2015.

[63] C. Sharma, S. Sabharwal, and R. Sibal, “A Survey on Software Testing

Techniques using Genetic Algorithm,” Int. J. Comput. Sci. Issues, vol. 10,

no. 1, pp. 381–393, 2013.

[64] M. Al-Refai, “Improving model-based regression test selection,” CEUR

Workshop Proc., vol. 2019, pp. 507–510, 2017.

[65] L. S. De Souza and R. B. C. Prudˆ, “Multi-Objective Test Case Selection :

A study of the influence of the Catfish effect on PSO based strategies,” An.

do XV Work. Testes e Tolerância a Falhas -WTF 2014, pp. 3–58, 2014.

[66] D. Rai and K. Tyagi, “Estimating the Regression Test Case Selection

Probability using Fuzzy Rules,” pp. 603–611, 2013.

[67] B. Glaser, “Basics of grounded theory analysis: Emergence vs forcing,”

1992.

[68] B. Glaser, “Getting out of the data: Grounded theory conceptualization,”

2011.

[69] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression Test Selection

Across JVM Boundaries,” Proc. 2017 11th Jt. Meet. Found. Softw. Eng. -

ESEC/FSE 2017, pp. 809–820, 2017.

[70] Sujata and G. N. Purohit, “A schema support for selection of test case

prioritization techniques,” Int. Conf. Adv. Comput. Commun. Technol.

ACCT, vol. 2015–April, pp. 547–551, 2015.

[71] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large

software systems,” ACM SIGSOFT Softw. Eng. Notes, vol. 29, no. 6, p.

241, 2004.

[72] M. Al-Refai, “MaRTS : A Model-Based Regression Test Selection

Approach,” 2017.

[73] W. El-hamid and S. El-etriby, “Regression test selection technique for multi-

programming language,” INFOS2010 2010 7th Int. Conf. Informatics Syst.,

70

2010.

[74] S. Huang, Z. J. Li, J. Zhu, Y. Xiao, and W. Wang, “A novel approach to

regression test selection for J2EE applications,” IEEE Int. Conf. Softw.

Maintenance, ICSM, no. 61003001, pp. 13–22, 2011.

[75] B. Srisura and A. Lawanna, “False test case selection: Improvement of

regression testing approach,” 2016 13th Int. Conf. Electr. Eng. Comput.

Telecommun. Inf. Technol., pp. 1–6, 2016.

[76] M. E. Ruth et al., “Towards Automatic Regression Test Selection for Web

Services,” Proc. 31st Annu. Int. Comput. Softw. Appl. Conf. - Vol. 02, vol.

2, p. 1265, 2007.

[77] M. Huang, S. Technology, S. Guo, X. Liang, S. Technology, and X. Jiao,

“Research on Regression Test Case Selection Based on Improved Genetic

Algorithm,” pp. 256–259, 2013.

[78] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A differencing algorithm

for object-oriented programs,” Proc. - 19th Int. Conf. Autom. Softw. Eng.

ASE 2004, pp. 2–13, 2004.

[79] A. Panichella, R. Oliveto, M. Di Penta, and A. De Lucia, “Improving multi-

objective test case selection by injecting diversity in genetic algorithms,”

IEEE Trans. Softw. Eng., vol. 41, no. 4, pp. 358–383, 2015.

[80] M. Al-refai, W. Cazzola, and S. Ghosh, “A Fuzzy Logic Based Approach for

Model-based Regression Test Selection,” 2017.

[81] M. Kim et al., “Efficient regression testing of ontology-driven systems,”

Proc. 2012 Int. Symp. Softw. Test. Anal. - ISSTA 2012, p. 320, 2012.

[82] R. H. Rosero, O. S. Gomez, and G. Rodriguez, “An Approach for

Regression Testing of Database Applications in Incremental Development

Settings,” in 2017 6th International Conference on Software Process

Improvement (CIMPS), 2017.

[83] E. Rogstad, L. Briand, and R. Torkar, “Test case selection for black-box

regression testing of database applications,” Inf. Softw. Technol., vol. 55,

no. 10, pp. 1781–1795, 2013.

[84] M. Khattar, Y. Lamba, and A. Sureka, “SARATHI : Characterization Study

on Regression Bugs and Identification of Regression Bug Inducing

Changes : A Case-Study on Google Chromium Project Categories and

Subject Descriptors,” Proc. 8th India Softw. Eng. Conf. XXX - ISEC ’15, pp.

71

50–59, 2015.

[85] L. Zhang, M. Kim, and S. Khurshid, “FaultTracer: A Change Impact and

Regression Fault Analysis Tool for Evolving Java Programs,” Proc. ACM

SIGSOFT 20th Int. Symp. Found. Softw. Eng., p. 40:1-40:4, 2012.

[86] B. G. Ryder and F. Tip, “Change Impact Analysis for Object-Oriented

Programs,” ACM SIGPLAN-SIGSOFT Work. Progr. Anal. Softw. tools Eng.,

pp. 46–53, 2001.

[87] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A Tool for

Change Impact Analysis of Java Programs,” Proceeding OOPSLA ’04

Proc. 19th Annu. ACM SIGPLAN Conf. Object-oriented Program. Syst.

Lang. Appl., vol. 39, no. 10, pp. 432–448, 2004.

[88] S. Ni and Y. Liu, “A progressive refinement approach for JAVA regression

test selection,” 2009 WRI World Congr. Softw. Eng. WCSE 2009, vol. 4,

no. 60773105, pp. 170–174, 2009.

[89] A. Larprattanakul and T. Suwannasart, “An Approach for Regression Test

Case Selection Using Object Dependency Graph,” 2013 5th Int. Conf.

Intell. Netw. Collab. Syst., pp. 617–621, 2013.

[90] A. B. De Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth, and P. F.

Sweeney, “Perphecy: Performance Regression Test Selection Made

Simple but Effective,” Proc. - 10th IEEE Int. Conf. Softw. Testing, Verif.

Validation, ICST 2017, pp. 103–113, 2017.

[91] Z. Chen, H. F. Guo, and M. Song, “Improving regression test efficiency with

an awareness of refactoring changes,” Inf. Softw. Technol., vol. 103, no.

July, pp. 174–187, 2018.

[92] Q. D. Soetens, S. Demeyer, and A. Zaidman, “Change-based test selection

in the presence of developer tests,” Proc. Eur. Conf. Softw. Maint.

Reengineering, CSMR, pp. 101–110, 2013.

[93] H. Aman, T. Nakano, H. Ogasawara, and M. Kawahara, “A Topic Model

and Test History-Based Test Case Recommendation Method for

Regression Testing,” 2018 IEEE Int. Conf. Softw. Testing, Verif. Valid.

Work., pp. 392–397, 2018.

[94] M. Al-Refai, S. Ghosh, and W. Cazzola, “Model-Based Regression Test

Selection for Validating Runtime Adaptation of Software Systems,” Proc. -

2016 IEEE Int. Conf. Softw. Testing, Verif. Validation, ICST 2016, no. 3,

72

288–298, 2016.

[95] Y. Chen, R. R. L. R. R. L. Probert, and D. P. D. Sims, “Specification-based

regression test selection with risk analysis,” Proc. 2002 Conf. …, p. 1, 2002.

[96] Q. Farooq, M. Z. Z. Iqbal, Z. I. Malik, and A. Nadeem, “An approach for

selective state machine based regression testing,” Proc. 3rd Int. Work. Adv.

Model. Test. - A-MOST ’07, no. July, pp. 44–52, 2007.

[97] F. Ahmad and Z. H. Qaisar, “Scenario based functional regression testing

using Petri net models,” 2013 12th Int. Conf. Mach. Learn. Appl. ICMLA

2013, vol. 2, pp. 572–577, 2013.

[98] Q.-U.-A. Farooq, S. Lehnert, and M. Riebisch, “Analyzing model

dependencies for rule-based regression test selection,” Model. 2014, vol.

P225, pp. 305–320, 2014.

[99] R. K. Bhatia, S. Dahiya, and D. Rattan, “Regression test selection using

class, sequence and activity diagrams,” IET Softw., vol. 10, no. 3, pp. 72–

80, 2016.

[100] L. Naslavsky, H. Ziv, and D. J. Richardson, “MbSRT2: Model-based

selective regression testing with traceability,” ICST 2010 - 3rd Int. Conf.

Softw. Testing, Verif. Valid., pp. 89–98, 2010.

[101] Janhavi and A. Singh, “Efficient regression test selection and

recommendation approach for component based software,” Proc. 2014 Int.

Conf. Adv. Comput. Commun. Informatics, ICACCI 2014, pp. 1547–1553,

2014.

[102] Q. Luo, K. Moran, L. Zhang, and D. Poshyvanyk, “How Do Static and

Dynamic Test Case Prioritization Techniques Perform on Modern Software

Systems? An Extensive Study on GitHub Projects,” IEEE Trans. Softw.

Eng., vol. X, no. X, pp. 559–570, 2018.

[103] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, and R. Tumeng, “Test case

prioritization approaches in regression testing: A systematic literature

review,” Inf. Softw. Technol., vol. 93, pp. 74–93, 2018.

[104] A. Gambi, J. Bell, and A. Zeller, “Practical Test Dependency Detection,”

Proc. - 2018 IEEE 11th Int. Conf. Softw. Testing, Verif. Validation, ICST

2018, pp. 1–11, 2018.

[105] “Stack Overflow Developer Survey 2018.” [Online]. Available:

https://insights.stackoverflow.com/survey/2018/. [Accessed: 02-Jan-2019].

73

[106] B. Guo, M. Subramaniam, and P. Chundi, “Analysis of test clusters for

regression testing,” Proc. - IEEE 5th Int. Conf. Softw. Testing, Verif.

Validation, ICST 2012, p. 736, 2012.

[107] C. Science and S. Marcos, “Redroid : A Regression Test Selection

Approach for Android Applications,” 2016.

[108] V. Channakeshava, S. Lakshmanan, A. Panigrahi, and V. Shanbhag,

“ChiARTS - Safe subset-regression test selection for C#,” 4th IASTED Int.

Conf. Adv. Comput. Sci. Technol. ACST 2008, no. December, pp. 37–42,

2008.

[109] N. Chouhan, M. Dutta, and M. Singh, “A Code Analysis Base Regression

Test Selection Technique for D Programming Language,” 2014 Int. Conf.

Comput. Intell. Commun. Networks, pp. 1106–1112, 2014.

[110] P. R. Srivastava, K. A. V, S. R. V, and R. G, “Regression Testing

Techniques for Agent Oriented Software,” 2008 Int. Conf. Inf. Technol., pp.

221–225, 2008.

[111] S. Akimoto, R. Yaegashi, and T. Takagi, “Test Case Selection Technique

for Regression Testing Using Differential Control Flow Graphs,” pp. 1–3,

2015.

[112] Z. Tóth, P. Gyimesi, and R. Ferenc, “A public bug database of GitHub

projects and its application in bug prediction,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol.

9789, pp. 625–638, 2016.

[113] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving

regression testing in continuous integration development environments,”

Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng. - FSE 2014, pp.

235–245, 2014.

[114] G. Salton, A. Wong, C. Y.-C. of the ACM, and undefined 1975, “A vector

space model for automatic indexing,” dl.acm.org.

[115] Wael H. Gomaa and Aly A. Fahmy, “A Survey of Text Similarity

Approaches,” Int. J. Comput. Appl., vol. 68, no. 13, pp. 13–18, 2013.

[116] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in

Software Engineering. 2012.

[117] R. K. Yin, Case Study Research. Design and Methods., vol. 5, no. 5. 2009.

[118] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

74

study research in software engineering,” Empir. Softw. Eng., vol. 14, no. 2,

pp. 131–164, 2009.

[119] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “PIT:

a practical mutation testing tool for Java (demo),” Proc. 25th Int. Symp.

Softw. Test. Anal. - ISSTA 2016, pp. 449–452, 2016.

[120] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate

tool for testing experiments?,” Proc. 27th Int. Conf. Softw. Eng. - ICSE ’05,

p. 402, 2005.

[121] J. Weston, S. Chopra, and A. Bordes, “Memory Networks,” pp. 1–15, 2014.

[122] M. Harman, “Making the case for MORTO: Multi objective regression test

optimization,” Proc. - 4th IEEE Int. Conf. Softw. Testing, Verif. Valid. Work.

ICSTW 2011, no. March 2011, pp. 111–114, 2011.

[123] A. Choudhary, A. P. Agrawal, and A. Kaur, “An Effective Approach for

Regression Test Case Selection using Pareto based Multi-Objective

Harmony Search,” in 1th International Workshop on Search-Based

Software Testing, 2018, pp. 1–8.

[124] D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, “CBGA-ES: A Cluster-

Based Genetic Algorithm with Elitist Selection for Supporting Multi-

Objective Test Optimization,” Proc. - 10th IEEE Int. Conf. Softw. Testing,

Verif. Validation, ICST 2017, pp. 367–378, 2017.

[125] Q. Gu, B. Tang, and D. Chen, “Optimal regression testing based on

selective coverage of test requirements,” Proc. - Int. Symp. Parallel Distrib.

Process. with Appl. ISPA 2010, pp. 419–426, 2010.

75

APPENDICES

Appendix 1 - Intermediate Conceptual Model Figures

In Figure A.6.1, the full conceptual model is presented. In order to make

conceptual model easier to read, color codes and line styles are used extensively.

Hybrid approaches are linked with green lines between approaches to identify

which approaches are used. However, the figure can be difficult to read. To

alleviate any misconceptions about the model, two simplified versions are also

presented with only code based approaches, and with only non-code based

approaches in Figure A.6.2 and Figure A.6.3 respectively. The links of evaluation

metrics are not drawn to reduce the complexity of the conceptual model.

76

Figure A.6.1. The Conceptual Model

77

Figure A.6.2. Conceptual model representing only code-based approaches

78

Figure A.6.3. Conceptual model representing only non-code based approaches

79

Appendix 2 - Papers driven from thesis

U. Yilmaz and A. Tarhan, “A Case Study to Compare Regression Test Selection

Techniques on Open-Source Software Projects,” in Proceedings of the 12th

Turkish National Software Engineering Symposium, 2018.

CURRICULUM VITAE

Name Surname : Uğur YILMAZ

Place of Birth : Ankara

Date of Birth : 28/04/1991

Marital Status : Married

Correspondence Address : Çiğdem Mah. 1570. Cd. 8B/42 Çankaya/Ankara

Phone : 0505 112 5794

E-mail Address : uguryilmaz@aselsan.com.tr

EDUCATIONAL BACKGROUND

Bachelor’s Degree :

Middle East Technical University, Ankara, Turkey 2009 – 2014

 B. Sc. in Electrical and Electronics Engineering CGPA: 3.25 / 4.00

Master’s Degree :

Hacettepe University, Ankara, Turkey, 2015 – 2019

 M. Sc. in Computer Engineering CGPA: 3.58 / 4.00

WORK EXPERIENCE

Aselsan Inc., Ankara, Turkey 2014 – Present

Software Engineer in Test

Aselsan Inc., Ankara, Turkey 2013 – 2013

Intern

Karel Electronics Inc., Ankara, Turkey 2012 – 2012

 Intern

PUBLICATIONS

V. Garousi, M. Felderer, Ç. M. Karapıçak, and U. Yılmaz, ʺWhat we know about

testing embedded softwareʺ, IEEE Software, 2018.

U. Yilmaz and A. Tarhan, “A Case Study to Compare Regression Test Selection

Techniques on Open-Source Software Projects,” in Proceedings of the 12th

Turkish National Software Engineering Symposium, 2018.

mailto:uguryilmaz@aselsan.com.tr

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION
	2. BACKGROUND
	1.
	2.
	2.1. Basic Concepts
	2.2. Regression Testing Strategies
	2.3. Regression Test Selection
	2.3.1. Slicing Approach
	2.3.2. Data-Flow Approach
	2.3.3. Firewall Approach
	2.3.4. Difference Based Approaches
	2.3.4.1. Code Based Modification Approaches
	2.3.4.2. Text Based Modification Approaches

	2.3.5. Cluster Based Approaches
	2.3.6. Model Based Approaches
	2.3.7. Graph Walk Approaches
	2.3.8. Learning Based Approaches
	2.3.9. Fault Based Approaches
	2.3.10. Hybrid Approaches

	3. CONCEPTUAL MODEL
	3.
	3.1. Research Method
	3.2. Conceptual Model
	3.3. State-of-the-Art Summary

	4. PROPOSED TECHNIQUE
	4.
	4.1. The Goal of the Thesis
	4.2. Proposed Technique

	5. CASE STUDY
	5.
	5.1. Objective
	5.2. Design
	5.3. Results
	5.3.1. RQ1: How does the proposed approach compare with state-of-the-art approaches in terms of performance with respect to time, selected tests and fault detection capabilities?
	5.3.1.1. Time
	5.3.1.2. Selected Test Ratio
	5.3.1.3. Fault Detection Rate
	5.3.1.4. Detailed Time Analysis

	5.3.2. RQ2: How does the proposed approach compare with state-of-the-art approaches in terms of cost-efficiency?

	5.4. Threats to Validity
	5.4.1. Construct Validity
	5.4.2. Internal Validity
	5.4.3. External Validity
	5.4.4. Reliability

	6. CONCLUSION
	6.

	REFERENCES
	7.
	7.

	APPENDICES
	Appendix 1 - Intermediate Conceptual Model Figures
	Appendix 2 - Papers driven from thesis

