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Automatic image processing and object extraction from airborne data have become an 

important topic of research in the field of photogrammetry and remote sensing. The aerial 

laser scanning system, also known as LiDAR, has become the dominant technology for 

acquiring 3D spatial data from the earth surface with high speed and density. LiDAR‘s 

output is an unclassified and unstructured point cloud dataset. Thus, the main process to be 

performed on this dataset is to classify it into distinct classes. Then, the classified LiDAR 

data can be used as input to create 3D city models. This data has a number of unique 

properties that play a fundamental part in their classification process. The main properties 

include the geometric properties that are obtained through the processes carried out on 3D 

positions of the points in the cloud. Among these processes is the plane extraction, which 

is carried out through the most commonly used methods of RANSAC (Random Sample 

Consensus), Region growing, and Hough Transform.  
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In this study, the RANSAC algorithm was used to extract planes from building rooftops. 

The aim is to apply RANSAC on LiDAR point cloud data to extract planes from rooftops. 

The first and most important step in the extraction process of the planes from rooftops is to 

identify and distinguish buildings from the other features, such as terrain and vegetation. 

The second step is to apply the RANSAC algorithm on the point cloud data of the 

individual buildings. Based on the geometric position and the points‘ distance to the plane, 

the least squares method is used to cross the best plane through the candidate points that 

form the plane.  

The experiments were carried out on the selected study areas located in the city of 

Bergama, Turkey using LiDAR point cloud data collected by the Reigl airborne scanner. 

The results show that RANSAC‘s performance is quite good for buildings which have 

complex roofs and also it has the ability to extract small planes in high density point 

clouds. Furthermore, the best extracted planes are properly adjusted to the raw point cloud 

data sets. 
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ÖZET 

 

 

 

RANSAC Algoritması Kullanılarak LIDAR Verisinden 

Otomatik Çatı Düzlemi Çıkarılması 
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Tez Danışmanı: Prof. Dr. Mustafa TÜRKER 
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Hava verilerinden otomatik görüntü iĢleme ve nesne çıkarımı fotogrametri ve uzaktan 

algılama alanlarında önemli bir araĢtırma konusu haline gelmiĢtir. LiDAR olarak da bilinen 

hava lazer tarama sistemi, yer yüzeyinden yüksek hız ve yoğunlukta 3D uzamsal verilerin 

elde edilmesinde kullanılan en temel teknolojidir. LiDAR‘ın çıktıları, sınıflandırılmamıĢ ve 

yapılandırılmamıĢ nokta bulutudur. Dolayısıyla, bu veriler üzerinde gerçekleĢtirilecek 

temel iĢlem, onları ayrı kategoriler halinde sınıflandırmaktır. Sonra, sınıflandırılan LiDAR 

verileri 3B Ģehir modellerini oluĢturmada giridi verisi olarak kullanılabilir. Bu veriler, 

sınıflandırma sürecinde kilit rol oynayan benzersiz özelliklere sahiptir. En temel 

özellikleri, bulut noktalarının 3D konumlarında gerçekleĢtirilen süreçler yoluyla elde 

edilen geometrik özellikleridir. RANSAC (Random Sample Consensus – Rastgele 

Örnekleme Konsensüsü), bölge büyütme ve Hough dönüĢümü gibi çeĢitli yöntemler 

yoluyla yürütülen düzlemsel çıkarım, bu süreçler arasında yer almaktadır. 
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Bu çalıĢmada, bina çatılarından düzlem çıkarmada hızlı ve etkili bir algoritma olan 

RANSAC kullanılmıĢtır. ÇalıĢmanın amacı, bina çatılarından düzlem çıkarmada 

RANSAC‘ı, LiDAR nokta bulut verisi üzerinde uygulamaktır. ġehir modellerinin önemli 

bileĢenlerinden olan bina çatılarının çıkarımının ilk ve en önemli adımı, binaları arazi ve 

bitki örtüsü gibi diğer yapılardan ayırıp tespit etmektir. Ġkinci adım, RANSAC 

algoritmasını tekil bina nokta bulutu verisine uygulamaktır. Geometrik konuma ve 

noktaların düzleme olan mesafelerine dayalı olarak, en küçük kareler yöntemi kullanılarak, 

düzlemi oluĢturan aday noktalar yoluyla en iyi düzlem oluĢturulur.  

Türkiye‘nin Bergama kentinden seçilen çalıĢma alanlarında Reigl tarayıcı ile toplanan 

LiDAR nokta bulut verileri kullanılarak testler gerçekleĢtirilmiĢtir. Elde edilen sonuçlar 

RANSAC‘ın performansının, kompleks çatı yapısına sahip binalarda ve yüksek yoğunluklu 

nokta bulutlarında küçük düzlemleri çıkarma becerisi açısından iyi olduğunu 

göstermektedir. Ayrıca, en iyi çıkarımı yapılan düzlemler, ham nokta bulutu veri setlerine 

doğru Ģekilde uyarlanmıĢtır.  
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1. Introduction 

 

LIDAR (Light Detection and Ranging) congregates laser distance meter, IMU (Inertial 

Measurement Unit), and DGPS (Differential GPS) in a single combined unit [1]. 

Technology provides us with innovative solutions to obtain 3D real-time location data as 

well as novel ways of gaining high definition space-time territorial location data. In 

addition to promptly acquiring altitude information, LIDAR introduces several 

technological innovations in Remote Sensing mapping and other application areas. It bears 

a great potential of contributing to fields such as terrain surveying and mapping, city 

planning, environmental monitoring, oceanology, geology, planet science etc. [1] 

LIDAR incorporates distinct assets. LIDAR has an operating laser pulse sensor and it 

keeps away from the impact of sun's shadow angle by diminishing their effect on obtaining 

information. If LIDAR is contrasted with photogrammetry, it is apparent that LIDAR has 

certain advantages, such as keeping all necessary data (from 3D to 2D), having precise 

altitude detection, and gaining multi-beam echo to obtain high-density data. Also, it makes 

considerable attenuation in ground control survey, aviation routes may immediately adapt, 

enhances the degree of mechanization, and swiftly and serially generate digital elevation 

models (DEM), digital surface models (DSM) and digital Ortho-photo maps (DOM) [1]. 

Two of the crucial functions of most surveying fields are rapidly gaining 3D data and self-

regulating administration of data. Airborne laser scanning systems produce 3D data with 

perfect precision, high speed and density. Therefore, this method is predominantly applied 

in urban areas. There are two consecutive procedures for building up 3D urban models [2]. 

The initial procedure is automatic segmentation of the point cloud into three categories as 

terrain, buildings and vegetation. After the partitioning of the urban cloud, the modelling of 

buıldings may be passed on.  

Two methods, data-driven and model-driven exist in the doctrine in terms of building 

modelling. The model-driven methods basically review a database of basic building 

models to find out the most convenient one [3]. According to [3], there are a number of 

parameters to identify a basic building. Implicit in this assumption is the measurement of 

these parameters prior to building up the 3D model. When it comes to data-driven method, 

it attempts to generate the most accurate and closest multifaceted model by reproducing 

every single section of the buildings point cloud [1]. One of the most important functions 
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in the data-driven methods that generates more comprehensive models is the automatic 

detection of planes. Several techniques, including but not limited to growing, 3D Hough-

transform and RANSAC (Random Sample Consensus), have been suggested to implement 

this process.  

Although being rather straightforward, Region-Growing techniques have issues with 

segmentation and are over-responsive to data noise as well as being time consuming [4]. It 

gets challenging to identify a termination criterion in region-based techniques in the event 

that changes over across regions occurs easily [5].  

The Hough transform technique is used for identifying parameterized objects as well as 

discovering flat and circular shapes in 2D circumstances. In terms of 3D point-cloud plane 

segmentation, each position in Hough space is associated with a plane in the space of the 

entity. The Hough transform technique is very successful in detecting shapes even in bad 

datasets. Nevertheless, this method entails a great deal of memory and CPU allocation [4].  

The RANSAC (Random Sample Consensus) algorithm [6], which is a straightforward and 

robust method, is generally administered for identifying model parameters through data 

which might be distorted by extreme values. RANSAC is a convenient technique to deal 

with problems of robust estimation because it can perform well in the presence of large 

amounts of extreme values [7]. According to Tarsh-Kurdi et al. [2], RANSAC is a more 

powerful technique in comparison to Hough transform. 

 

1.1. Thesis Objectives 

The main objectives of the thesis are as follows: 

 To extract roof planes of complex geometries using the RANSAC algorithm;  

 To extract roof planes of complex buildings with polyhedral roofs by optimizing 

the threshold value of the RANSAC algorithm; 

 To apply the algorithm in the selected test areas in Bergama, Ġzmir using the 

LIDAR point cloud data, 

 To apply the Least Square estimation algorithms to LIDAR point cloud data sets 

  

 

 



3 
 

1.2. Study areas 

1.2.1. The first study area 

The first study area (Figure 1.1) was selected from the residential region of Bergama, 

which is located in the north of the city of Izmir. In Turkey, this is the only place where 

airborne LiDAR point cloud data exist. The LiDAR point cloud data was collected by the 

RIEGL scanner with 18.77 points density per square meter. The center coordinates of this 

study area are as follows: 39° 05' 57'' N and 29° 09' 25'' E. 

 

Figure 1.1. The first study area Google Earth image. 

 

The size of this study area is about 24858 square meters. Additionally, this area contains 

466609 points (Figure 1.2) and regarding the return numbers, they can be categorized as 

given in Table 1. An emitted laser pulse in the LiDAR system can have up to five returns 

based on the features it is reflected. The first return will be denoted as the return number 

one, the second as the return number two, and so on. 

     

Table 1. For the first study area, the number of points according to return numbers. 

 

 Number of Points Return Number 

412512 1
st
    return 

48220 2
nd

   return 

5543 3
rd

    return 

322 4
th

   return 

12 5
th

    return 
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Figure 1.2. The point cloud of the first study area. 

 

The area is an old residential region (Figure 1.3) and situated in the south of Bergama. 

Based on the Google earth pictures, there are 23 buildings with different roofing models in 

this study area.  

 

 

 

 

 

 

 

 

   A                                                                   B  

 

Figure 1.3. Three street level sample pictures regarding the study area taken 

from the Google Earth Images. 

 

 

 

 

 

A 

B 

 

C 
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1.2.2. The second study area 

The second study area (Figure 1.4) was also selected from the residential part of the 

Bergama and is situated in the southwest part of Bergama. The LiDAR data was collected 

using the Reigle scanner. The center coordinates of this test area are as follows:  39° 06' 

28'' N and 27° 09' 55'' E. 

 

Figure 1.4. The location of the second study area on Google Earth Images. 

 

This test area consists of 367512 points (Figure 1.5) with 19.28 point density per square 

meter and regarding the return numbers they can be categorized as shown in Table 2. 

Further, the size of this study are is about 19121 square meter. 

Table 2. For the second study area, the number of points according to return numbers. 

Number of Points Return Number 

319353 1
st
    return 

43920 2
nd

   return 

4038 3
rd

    return 

192 4
th

   return 

9 5
th

    return 
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Figure 1.5. The point cloud of the second study area. 

 

This area consists of 43 buildings with various shapes. Several views taken from Google 

Earth Images are illustrated in Figure.1.6. 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. A, B and C represent three views of the second study area 

taken from Google Earth Images. 

 

 

 

 

 

 

 

 

A 

B C 
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1.3. Thesis Outline 

The remaining part of this thesis is categorized in four sections. Chapter 2 represents the 

review of the methods used for the extraction of roof planes from point cloud data sets 

using the RANSAC algorithm. Chapter 3 refers to the methodology used in the present 

case to extract building roof planes using the RANSAC algorithm. In Chapter 4, the results 

obtained from the experiments carried out on the study areas and discussions regarding the 

implementation of the RANSAC algorithm are given. Finally, in Chapter 5, the 

conclusions of this thesis study are provided. 

1.4. Software  

The software used to conduct this study are as follows: 

 The RANSAC algorithm was implemented through a program written in the 

MATLAB programming environment. 

 The ground filtering and point cloud classification operations were carried out 

using varies functions of the LASTOOLs software. 

 The point cloud data sets were separated to sub-clouds using the Cloud Compare 

software. 
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2. The Literature Review 

 

2.1. Related to RANSAC 

Region growing segmentation algorithms are not always intelligible and are not 

implemented on a regular basis. For that reason, in a study carried out by [2], 3D Hough 

transform and RANSAC algorithm were used to automatically establish 3D roof planes 

from LIDAR point cloud data. Since Hough-transform is very delicate to segmentation 

parameter values, the extended RANSAC algorithm was used to segment the building 

planes. It was observed that the extended approach gives satisfying results for weak point 

density and different levels of building complexity. 

In the work of [8], the boundary of a lake was automatically extracted from LIDAR point 

cloud data. To do that water surface was established using the RANSAC algorithm. It was 

suggested that since lake areas are mostly planar their areas can be easily established using 

the RANSAC algorithm. 

In a study conducted by [9] to establish plain floor surface or details of any building etc., 

best candidates for planes that fix the buildings and land surfaces were determined by 

implementing the RANSAC algorithm, which is a more efficient technique than the other 

methods. The results obtained by the RANSAC algorithm were reported to be satisfactory. 

In a study carried out by [10], the surface of shapes such as a plane, cone, cylinder and ball 

that takes place in 3D topographic LIDAR cluster were automatically established through 

RANSAC algorithm. To test the validity of the process, the manually and automatically 

extracted surfaces were compared. It was concluded that the RANSAC algorithm is very 

efficient in automatically establishing the surfaces from 3D topographic LIDAR point 

cluster data. It was suggested that the RANSAC algorithm can be successfully used in 

establishing planes of the objects that contain plane surfaces. 
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2.2. Related to LIDAR point cloud segmentation and classification 

In a study carried out by[11], segmentation problems, such as losing data during the 

transformation of irregular point clouds into other models were resolved and the high 

computational cost was reduced by optimization. 

In the work of [12] , the planes were extracted by means of segmentation over the point 

cloud dataset. It was stated that the method can simultaneously extract multiple roof planes 

and the spatial relationship between data points is intended. 

In the work of [13], building regions were determined automatically. Then, curvature-

based segmentation technique was used to establish the roof planes. To construct many-

sided structural models, the shapes of boundaries of roof planes were determined by 

grouping the roof planes. In addition, in order to enhance the reconstructed models' 

geometric quality, they examined the subject of integrating air images for the 

reconstruction process. 

In the work of [14], a new approach that involves roof segmentation and roof model 

reconstruction process were developed to establish roof planes from LiDAR point cloud 

data. As segmentation is effective in establishing the geometric structure of roofs, 

reconstruction was observed to be better in determining the contiguity and integrity of the 

roofs. The multiphase level set method was tested on two laser data sets. The study 

concludes that, if sufficient amount of points do not exist to represent roof structures, 

segmentation will not express the objects adequately. The study further mentions that the 

suggested approach can be tested using the data of different roof structures and 

complicated buildings. 

In a study carried out by [15], 3D roof models were constructed using the LIDAR data 

only. Based on the results achieved it was suggested that higher quality results can be 

obtained by incorporating 3D lines established through using the images. 

2.3. Related to ground filtering 

The study conducted by [16]  presents algorithms for the ground filtering to generate 

ground surface, the classification of the non-ground points, and the generation of DEMs. 

This study also identifies the ground points from the point cloud data using the Minimum 

Description Length criterion parameter, which is declared to be an important parameter to 

identify ground points. The advantages of the algorithms presented in their work were that, 
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(i) the ground surface was created from the connected points in a TIN, (ii) the points of  

low ground surface were always contained and (iii) the original data points were used in 

the creation of the surface. 

In a study conducted by [17], several analyses were carried out by defining three search 

windows at small, medium, and large scales over the threshold elevation difference to filter 

terrain points. This method is said to be robust to different problems such as resolution of 

data, objects complexity and diversity slopes. 
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3. Methodology 

 

The goal of this research study was to extract roof planes from LiDAR point cloud data. 

The steps followed in the methodology are shown in a flowchart in Figure 3.1. The raw 

LiDAR point cloud data to be processed is available in .Laz or .txt format. First, the ground 

points are identified and separated from the point cloud data. Then, the remaining non-

ground points are classified into buildings and tall trees. Next, the building class that 

includes integrated information about all buildings is extracted through a classification 

process. Since the building information is required separately the building class is divided 

into sub-building cloud points therefore.  

The MATLAB scripts code reads the data points separately, one-by-one. The roof planes 

are extracted from the point cloud as follows: Three random points are chosen to form an 

imaginary plane to which the distances from all points are computed. By comparing the 

distances with the specified threshold, the points closer than the threshold to the imaginary 

plane are found and saved. The best estimation for the plane with the highest number of 

points is approximated and these points are extracted from the raw dataset. The process is 

repeated until less than three points remain in the data set and the roof planes are saved 

with the building number as the final result. 
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Figure 3.1. The flowchart of the proposed plane extraction method. 
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3.1. The Ground filtering principle 

 

Detecting the ground points is the first step in this study. To extract objects and render a 

Digital Elevation Model (DEM), the LIDAR data points are classified into two classes. 

The first class consists of the ground points, which are extracted from point cloud data and 

are categorized as ground. Then, the remaining points are categorized as vegetation and 

building.   

A surface is generated below to the randomly distributed laser points using the triangulated 

irregular network (TIN) processing. Statistics characterizing the distance to the TIN facets 

are computed for all data points [16]. Based on the computed statistics, seed points are 

chosen, such as the red points shown in the example in Figures 3.2 and 3.3. 

 

 

 

Figure 3.2. The seed points. 

 

 

Figure 3.3. A TIN surface generated over the seed points. 
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In the next stage, new points join the terrain class and the surface, based on the selected 

threshold values, is iteratively densified. There are two threshold parameters to be used for 

this densification process: (i) angle to the nodes, and (ii) distance to the TIN faces [16] 

(Figure 3.4). At the end, the final TIN that represents the ground is achieved (Figure 3.5). 

 

Figure 3.4.           , are the angles between the nodes of the triangle and the point being 

considered and            are TIN nodes. 

 

Figure 3.5. The TIN surface that represents ground. 

 

 

P 
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In this study, the ground filtering process was carried out using the LasGround function of 

the LasTools Software [18]. Completely, the LasGround function consists of four 

important parameters that control the filtering results [19]. 

 The first and important parameter is the step size. This parameter is defined 

according to the region type and the object dimensions in the area to be filtered. 

The default step size is 5 meters which is most suitable for mountains and forest 

areas. For urban areas or flat terrains, this value is increased to 10 meters. In the 

present case, after several trials it was explored that the value of 25 meters gives 

excellent results for urban areas and warehouses. Therefore, in this study, the step 

size parameter value was taken as 25 meters. 

 The second parameter is the spike value. This parameter has two sub-parameters 

that are up-spike and down-spike. In the coarsest TIN, these parameters remove the 

points that stay above and below the defined threshold values.    

 The third parameter is the Maximum offset. This parameter defines an offset 

distance from the ground surface over which the points are not included. 

 The fourth parameter is the Standard Deviation. This parameter defines the 

maximum standard deviation in centimeter for the planar patches. 

All of these parameters can be set manually. However, they can also be predefined using 

the default strategies defined as follow: 

 Forest or hills 

 Town or flats 

 City or warehouses 

 Metropolis 

Parameters for these strategies are set based on the practices carried out for various land 

cover types. Furthermore, there are five standards describing the violence of the terrain that 

might be used irrespective of the strategy. These five standards are defined as two groups. 

The first group simplifies the search and is suitable for the flat terrains ( 'Coarse' or 'Extra 

coarse'  ), while the second group amplifies the search for initial ground points and is used 

for the very inclined hills ('Fine', 'Extra fine' or 'Ultra fine').  
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Therefore, for the test areas, after selecting the required suitable parameter values for the 

LasGround function, the ground points were detected from the point cloud.  

3.2. Ground filtering and classifying non-ground points 

In this step, first the ground points are eliminated from the point cloud data sets using the 

Las2Las function with the ‗Dropping with classification number‘ option [20]. Then, the 

non-ground points are classified into different classes using the LasClassify function. 

In general, categorizing non-ground points into different classes that include vegetation 

(tall trees) or buildings is quite challenging. To classify non-ground point cloud, LIDAR 

data rely on a geometrical parameter that allows one to measure the roughness of planar 

and ruggedness objects, including buildings and trees. Moreover, the planarity of the 

neighboring points (  ) around a point,    can be estimated using the principle components 

analysis (PCA) based on surface points with covariance matrix [21]. A positive, semi-

definite covariance matrix is computed as follows [22]: 

  ∑      ̅ 
         ̅                                                                                         (1) 

Where,   denotes the mean of   (cloud points). The PCA of matrix   generates real 

eigenvalues          with the corresponding Eigen vectors     ,    and    on an 

orthogonal basis of   . The eigenvalue    evaluates the variance of    in    direction, and 

   approximates the surface normal of   . A constant surface changes of the k-nearest 

neighbors in point cloud data sets is given by [22]: 

  
  

        
           (2) 

Where,   denotes the planarity and          represent the Eigen values. With a plane 

terrain surface           , the parameter   is close to zero. Therefore, it is necessary 

to select a suitable threshold (T) to extract the planar and rugged surfaces accurately. For 

example, points where   > T can be identified as trees. The threshold is a function of 

surface roughness and noise in the data and changes for different sets of data. 
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Although the threshold value is proven to work for extracting buildings, it may fail to 

identify pruned trees in urban areas. For example, trimming the trees near overhead power 

lines changes the shape of their canopies and consequently, their roughness. That is 

contingent upon LIDAR classification criteria assuming trees as rugged surfaces. 

Furthermore, large trees with small surface roughness may be identified as buildings. 

The LasClassify function classifies buildings and tall trees into the las/laz file [23]. This 

requires ground points and the elevation of each point from the ground, calculated in 

LasHeight. The function attempts to identify the neighboring points at 2 meter above the 

ground. By default, planarity and rugged values are 0.1 and 0.4, respectively. Furthermore, 

the elevation threshold can be changed via ground offset. In case of noisy data, identifying 

planar surfaces is difficult; therefore, ‗planarity’ is changed according to the regional 

conditions to extract better results.  

Moreover, a low point density leads to inaccurate results and LasClassify to fail. In other 

words, the minimum number of pulses required to identify a building roof is 2 per square 

meter. That is, if pulses per square meter are less than 2, the search window value, which is 

2 m by default, is increased to 4 m [23]. 

The function is run after selecting the best parameters. With this operation, the points that 

belong to buildings are classified as building class and are given the class number of 6 

based on the default values of the LasTools software.  

3.3. Extracting the building class 

The Las2Las function reads and writes LIDAR data in Laz, Las, and ACSII formats to 

filter, project, transform, thin, etc. on point cloud data [20]. One of the most used option in 

this study is filter. The filter option includes two types of flags. These flags are defined 

based on the classification number, return number, and point cloud features and the data set 

is classified based on these flags. For example, keeping or dropping the building points 

using the ‗keep/drop with the classification number‘ flags. Some of the other examples for 

the Keep/drop flags are as follow;  

 The points that are inside a defined rectangle,  

 The Points which are between determined height, 

 The points that are a certain return, and 

 The points that scale angle has above certain threshold or between some intensity. 
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As a result, in this study, the points that belong to building class were separated from the 

previously classified non-ground points by using the ‗Keep with classification number‘ 

option. To do that the default class numbers of the LasClassify Function of the LasTools 

software were used (Table 3). 

Table 3. The ASPRS Standard LIDAR Point Classes that are used in LasClassify [24]. 

Class Type 
Class 

No. 
Class Type 

Class 

No. 

Never Classified 0 Water 9 

Unclassified 1 Rail 10 

Ground 2 Road Surface 11 

Low Vegetation 3 Overlap 12 

Medium Vegetation 4 Wire Guard 13 

Height Vegetation 5 Wire Conductor 14 

Building 6 Tower 15 

Noise 7 Wire Connector 16 

Key point 8 Bridge deck 17 
 

 

3.4. Identifying the individual buildings 

Next, the integrated point cloud dataset corresponding to buildings are separated to 

individual building‘s points by the ‗Label connected component‘ function of the Cloud 

Compare software. In this tool, there are two parameters [25]. Of these parameters, the first 

and important one is the Octree level.  

Octree is a regular and recursive subdivision in three dimensional space. The cubical box 

that belongs to points set is divided into 8 similar cubes. This operation is recursively 

performed for each cube. The process stops when no points are in the cube or predefined 

threshold level is reached. Such a structure gives, the capability to quickly determine what 

points is in a determined cube and in its surrounding cubes. Hence, the nearest neighbors 

derivation and equivalent processes become very fast [26]. 
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It is possible to assort selected point cloud by the Octree which consists of many groups of 

points adequately distant from the others. This common algorithm is normally utilized in 

2D binary but has been extended to 3D binary grid. The function exports one entity for 

each sub cloud of points that belong to building. The higher level of Octree will produce 

smaller distance threshold, subsequently more subgroups will be extracted. More memory 

is needed for the larger octree levels. Therefore, the octree level is a sensitive parameter 

and is difficult to adjust priori, regardless of the experience. Hence, it is necessary to reach 

an approach by trial and error. 

 

Figure 3.6. The octree subdivision principle [26]. 

 

The second important parameter is the minimum number of points for each component. If 

the number of points in a portion of the defined value is lower than defined value, they are 

extracted as a separate building. Moreover, the minimum number of points is determined 

according to the density of the points and the dimensions of the smallest building. 

Further, the Random Colors option describes the cloud compare to provide random colors 

to each new cloud. At the end, the point cloud data sets that belong to individual buildings 

are extracted and saved separately with different colors [25].  
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Figure 3.7. The separated building‘s points with different colors. 

 

3.5. The RANSAC Algorithm 

In this section, the RANSAC algorithms was applied on building point cloud data, one 

building at a time, to extract the roof planes. Ficher and Bolles [6] introduced the 

RANSAC algorithm, which is a general robust approach in order to estimate model 

parameters. To achieve an initial solution, instead of utilizing a number of data and then try 

to remove invalid points, RANSAC applies the smallest possible data set, such as the point 

cloud of a building, and from this data set, the possible large planes are crossed. The steps 

for the extraction of the roof planes using the RANSAC algorithm are as follows [27]: 

 It randomly selects planar surfaces   from the LIDAR data points   and maintains 

a number of points where the Euclidean distance from the plane is less than the 

critical distance    . 

 The Least Square Estimation of the final plane (        ) is performed along the set 

of supporters maximum cardinal (   ). 

 The set    is eliminated from the initial point cloud S. 

 The algorithm operates as long as            , where card(S) is the set S 

cardinal. 
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Theoretically, the assured best plane is drawn at each repetition, every triplets of S should 

be tried. Therefore,     can be defined as (Eq. 3) [27]: 

  
         

              
          (3) 

Where, S refers to data points. 

Furthermore, the detection of the planes can be highly time consuming. Mostly, it is not 

feasible to apply all possible draws. In other words, the probability of drawing   a correct 

plane   (which is three points without outlier), considering all points are inlier (   for 3 

points), the probability   can be maximized. A relationship between  ,   and   can be 

computed using Eq. 4 [27] as follows: 

                
         

          
        (4) 

Therefore, the number of draws   might be directly calculated from   and  . If   is 

constant as 0.99,   has to be estimated with a former knowledge. The general idea of this 

approach is to enhance the efficiency of performance of a classical RANSAC approach 

with the focus on the drawing of triplets over previously separated point cloud data. In this 

study, the directions of the extracted major planes correspond to roof planes orientations. 

The RANSAC algorithms are given below. 
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Begin 

Repeat 

 # Select the sets of the supports 

 While     do 

  Randomly select a plane    (3 points) 

  # Selecting points within a critical distance of the plane 

     {                 } 

  ++   

 # Select the set of the highest cardinal 

    
 

  
                     

 #Estimation of the final plane over all planes 

                ∑                
 

 #Removing previous supports from the main point cloud 

        

Until             

 End 

 

Figure 3.8. Classical RANSAC for detecting roof facets. 

 

In order to implement the algorithm, a code was written in MATLAB programming 

environment. In this algorithm, the distance threshold is an important and sensitive 

parameter and directly effects the results. The working mechanism of the RANSAC 

algorithm is illustrated in Figure 3.9. In Figure 3.9 (A), the threshold value is very low. In 

this case, a new parallel plane can be formed with the assumption plane, In Figure 3.9(B), 

the threshold value is defined very high, in this situation. The normal vector of the 

extracted plane is not due to the normal vector of the building roof in the same direction 
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because it approximates a wide range of points to the plane, and finally in Figure 3.9(C), 

the distance threshold between points and the plane is determined according to the 

structure of the building roof and density of the points. In this study, the threshold value is 

determined based on the method of trial and error. 

 

  

 

                                                                               

  

  

 

          

 

 

 

 

 

 

 

Figure 3.9. The working mechanism of the RANSAC algorithm. The distance threshold 

from the assumption plane in a test point cloud data. 

For a building, the RANSAC MATLAB script performs the following steps to extract 

planes of the building. 

 

 

 

 

 

 

 

A 

B 

C 
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3.5.1. Plane equation 

  

First, three random points are selected from the point cloud data set and a plane crosses 

from these points. The properties of the extracted plane such as normal vector and distance 

to the origin of the coordinate system are also computed. This operation is carried out N 

times for the point cloud that belong to a building being considered. The iteration number 

is computed using the equation given in Eq. 4  

The Cartesian equation of a plane which crosses through three non-collinear points- 

                                        , is shown as follows [28]; 

 

                                 (5) 

Where, (     ) are the normal vector  ⃗⃗  elements and   denotes the distance to origin of 

the coordinate system. Three points            can label two distinct vectors     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    

and      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . As the two vectors is on the plane, their cross product can be used as the normal 

to the plane 

3.5.2. Distance from a point to a plane 

 

After computing the plane elements, the shortest distance from each point to the detected 

plane are calculated. For a point               that is out of the plane         

       , the shortest distance D from    to plane   (Figure 3.10) is computed as 

follows [29]: 

  
|             |

√        
 .             (6) 

The point,    lies in the defined plane,   if and only if D = 0. If  √            

which means that     and   are normalized and then the equation becomes 

  |             |.          (7) 
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Figure 3.10. The shortest distance   from point p (        ) to plane           

Next, the computed distances are compared based on the previously defined threshold 

value. Then, the points whose distances are below the threshold value are selected as the 

inlier points. This operation is carried out N times. Finally, the plane which includes the 

most inlier points and its number of inlier points are extracted as the candidate points to 

implement the Least Square estimation algorithms. 

3.5.3. Least Square Estimation  

After extracting the inliers points that belong to a roof plane, the next processing step is to 

approximate the best fitting plane. This is carried out using the least square estimation, 

which is a method for estimating the parameters by minimizing the squared discrepancies 

between the points that belong to the plane. The objective is to adjust the parameters of a 

model function to achieve the best fit for the point cloud data set. In this study, the data set 

consists of n points with x, y, z coordinates, (             , where,    and    are 

independent variables and     is a dependent variable the value of which is computed from 

the raw point cloud.  

First, the mean values   ̅  ̅ and  ̅ are computed from the   ,    and    coordinates of the 

points that belong to plane. Next, the variance-covariance matrix    is compute for each 

data point using Eq. 8 [22]. 

  (           )              ̅  ̅  ̅  ̅       

   
 

 
∑      ̅      ̅   

                                                           (8) 

    [

                                 
                                 
                                 

]  [

         
         

         

]    (9) 
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Where,    is a data point with   ,       coordinates,  ̅ (   ̅̅ ̅   ̅  ̅) is the mean vector of all 

points, and k is the number of data points.  

Next, the eigenvector is computed. To do that a total variance-covariance matrix,   ̅ is 

computed by summing up the previously calculated variance-covariance matrices.  

  ̅   ∑   
 
                      (10) 

  ̅  [

   ̅̅ ̅̅    ̅̅ ̅̅    ̅̅ ̅̅

   ̅̅ ̅̅    ̅̅ ̅̅̅    ̅̅ ̅̅

   ̅̅ ̅̅    ̅̅ ̅̅    ̅̅ ̅̅
]                 (11) 

Then, the eigenvector matrix is computed from the calculated total variance-

covariance matrix. The first column of this eigenvector matrix represents the normal of the 

plane which best approximates the data points. The number   is an eigenvalue of   ̅ if and 

only if   ̅     is singular [30]. 

 

       ̅                         (12)   

The Eigen values          are computed of solve equation (12).Also an Eigen vector, is 

extracted of solve the    ̅           for each            . 

 

Figure 3.11. Point cloud in two different coordinate systems. 

As shown in Figure 3.11,    ⃗⃗⃗⃗        ⃗⃗         ,   ⃗⃗⃗⃗          ⃗⃗⃗⃗      , and o denotes the 

origin of the Cartesian coordinate system, and d is the distance between the origin of the 

Cartesian coordinate system and origin  ̅ of the rotated coordinate system   ’ ’ ’. 
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Next, the distance d from,  ̅ (   ̅̅ ̅   ̅  ̅) to the origin of the coordinate system is computed 

using the inner multiplication of the normal vector  ⃗⃗  and  ̅. Then, the x and y coordinates 

are kept constant and the z coordinates are calculated from the plane equation (Eq. 14). 

   ⃗⃗   ̅      [   ]  [
 ̅
 ̅
 ̅

]                (13) 

Thus, according to the plane equation (Eq. 5) the new Z values can be calculated as [29]: 

   
              

 
                 (14) 

After computed the new Z values for the point cloud data sets, the best plane coordinates 

are extracted as (           ). 
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4. Results and Analysis 

 

4.1. The result of the first study area 

4.1.1. Detection of the Ground Points 

 

The first step in the extraction of building plane is the detection of the ground points. The 

detection of ground points was carried out using the LasGround function of the LasTools 

LiDAR data processing software. As described inspection 3.1, the detection of the ground 

points depends on several parameters that are determined by default based on the 

characteristics of the study area and its topography.  

The selected first study area is a small part of the city of Bergama and with smooth 

terrain. The LasGround function produces better results in the towns with smaller building 

dimensions rather than their step size. Due to the existence of large size of buildings in this 

area, the value of the step size parameter has been changed. Besed on this knowledge, the 

Town and Flat options of LasGround were selected for the detection of ground points. 

Furthermore, the height of every single point was calculated from the ground with the 

Compute Z flag or LasHeight function [19]. The extracted ground points in this study area 

are illustrated in Figure 4.1. 

 

   

  Figure 4.1. The filtered ground points of the first study area. 
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4.1.2 Ground filtering and classifying the non-ground points 

 

The cloud points were divided into two groups, which are (i) ground and (ii) non-ground 

after identifying them.  Based on the LasTools software [18], the first group (ground) was 

labeled as class 2, while the second group (non-ground) was classified as buildings, tall 

trees etc. The filtering of the points can be carried out with ‗filter with drop classification 

number‘ flag in Las2Las script [20]. Therefore, with the use of this function, the ground 

points were filtered and extracted from the dataset as shown in Figure 4.2.  

 

  

Figure 4.2. The separated non-ground points. 

 

Next, the non-ground points were classified as buildings and tall trees. As mentioned in 

section 3.1, the classification of non-ground points (carried out using the LasClassify 

function of LasTools) depends on the below given several important parameters [23]: 

1) The parameter ‗search area size‘ detects neighboring points that are located at the 

minimum defined from the ground. If the density of the points is less than two 

pulses per square meter, the default value of this parameter is increased to 4 meters. 

Since in the first study area the density of the points is more than two pulses per 

square meter, the value for this parameter was not changed. 

2) The second parameter is ‗planarity‘. This parameter computes standard deviation 

for the point cloud data sets in order to extract the roughness of the surface. For this 

study area, the value for this parameter was increased due to terrain characteristics 

and the point density.  Moreover, good results were achieved for the planer surfaces 

when the parameter value for the planarity was selected as 0.2. 
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3)  The third parameter is ‗forest ruggedness‘. The value for this parameter varies with 

the amount of vegetation and tall trees. Due to low density and low number of trees 

present in this study area, the value for this parameter was not modified in order to 

detect and classify the plants that fall in this area.  

4) Accurate determination of the value for the parameter ‗ground offset‘ reduces the 

duration of the classification and increases the classification accuracy. Based on the 

calculations in LasHeight function, the roof of buildings in this study area is higher 

than the pre-defined value for this parameter. Therefore, to achieve satisfactory 

results, the value of this parameter was chosen close to the heights of the buildings. 

Therefore, after conducting several trials, the most appropriate classification parameter 

values for the first study area were determined as given in Table 4. 

Table 4. The parameter values used for the trials conducted. The parameter values of the 

3rd trial have been defined to provide the optimum value set. 

TRIAL 1 2 3 4 5 

SEARCH AREA SIZE (M) 1.5 2 2 3 2 

BUILDING PLANARITY 0.1 0.1 0.2 0.1 0.3 

FOREST RUGGEDNESS 0.4 0.2 0.4 0.6 0.4 

GROUND OFFSET (M) 2 2 3 2 1 

  

 

After determining the best parameter values for the LasClassify function, the non-ground 

points were classified as shown in Figure 4.3. Next, the building class was separated from 

the classified non-ground points. The separated final building class is shown in Figure 

4.4. 
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Figure 4.3. The non-ground points classified as high vegetation and buildings. 

 

 

    Figure 4.4. The points classified as buildings only. 

 

4.1.3 Identifying the individual buildings 

 

In the extracted building class dataset, the buildings are not separate and all are stored as 

integrated. However, to extract roof planes of the buildings the building point cloud dataset 

should be processed one building at a time in order to effectively apply the RANSAC 

algorithm. To do that the point cloud that belongs to each building was separated from the 

building point cloud dataset. This was performed using the Cloud Compare software.  To 

do that, the ‗Label connected component‘ option of the Cloud Compare software was used 

[25]. This option has two parameters that are the ‗octree level‘ and the ‗minimum points 

per component‘.  
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 The parameter ‗Octree Level‘ defines the minimal threshold between the compact sub-

clouds. In the Cloud Compare software, based on the point density and sample size, the 

first level of this parameter was calculated. The variation of the Octree level has a direct 

relationship with the number of identified sub-clouds [25]. In other words, the number of 

the extracted sub-clouds is increased if the value of the octree level increases. In this study 

area, the point density is 18.77 points per square meter and also the sample size is 

computed automatically. Based on this knowledge therefore, the eight octree level was 

found to be the most suitable level for the extraction of individual buildings in this study 

area (Figure 4. 6). Also the first and fourth octree levels were calculated for the illustrative 

purpose Figure 4. 5 

  

Figure 4.5. A, the first octree level (cell size=71.7365), B, The fourth (4
th

) octree level 

(cell size=8.96706). 

 

B  

Figure 4.6. The eighth (8
th

) Octree level (cell size=0.560441). 

 

The minimum number of points per component is denoted by the ‗Min. points per 

components‘ parameter. If this value is lower than the defined threshold, which is 

previously computed based on the dimensions of the buildings that fall in the study 

A B 
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area, the sub-cloud points cannot be detected as separate buildings. For example, if the 

minimum dimensions of the buildings to be separated are 2 m x 3 m then, the number 

of points to be extracted for each building would be about 100 (18.77 points x 3 m x 2 

m).Therefore, for this study area, the minimum number of points for each component 

was selected to be 100. And, the extracted individual buildings were saved separately 

with the use of this parameter value, as shown in Figure 4.7.  

 

 

Figure 4.7. The separated buildings that were stored individually. 

 

4.1.4. The extraction of the roof planes using the RANSAC algorithm 

 

The point cloud dataset that belongs to each individual building was imported to the 

developed MATLAB script for the RANSAC algorithm. There are three important 

parameters for the RANSAC algorithm written in the MATLAB script, that are the 

threshold, probability of drawing the correct plane, and the probability of choosing an 

inlier [27]. 

 The first parameter is ‗Threshold‘, which refers to Euclidean distance from each 

point to the plane. The point density is the most important factor for defining the 

value for this parameter. For this study area, the RANSAC algorithm was run using 

two threshold values of 10 cm and 20 cm.  
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Figure 4.8. The comparison of the raw data and RANSAC results obtained using two     

different threshold values (10 cm and 20 cm) for building # 3. 
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RANSAC would be applied as the best approximation on the points that they have the 

same normal vector in the defined threshold tolerance.  As for the shape of the buildings 

and different planes intersection with the increasing the value of threshold, the probability 

of applying approximation for points that in the same direction is high. The extracted roof 

planes of building #3 using the threshold values of 10 cm and 20 cm are shown in Figure 

4.8. As seen in the figure, the threshold value of 20 cm extracts the planes incorrectly due 

to high approximation of the tolerance. In other words, if a high threshold values is used 

the number of inliers and the distribution area increase causing therefore the wrong plane 

cross.   

The threshold value to be selected depends on several factors, including the roof materials, 

chimneys and the other objects that are located on the roofs as well as the edges of the 

buildings as shown in Figure 4.9.  

 

  

              Figure 4.9.  Different objects on the roofs 

 

 The second parameter is the probability of drawing the correct plane which is 

denoted by ‗t‘. For this study area, the value for this parameter was selected as 

0.99.[27] 

 The third parameter is the probability of choosing an inlier. This parameter is 

represented by ‗w‘. The time for plane extraction from the point clouds depends on 

this parameter. The value for this parameter was obtained based on the trial and 

error method. For this study area, the value for this parameter was chosen as 0.3. 

As shown in the below given Figure 4.10, due to the solar panels and chimneys on the 

roofs of the buildings, the threshold value of 20 cm produced better results than the 

threshold value of 10 cm. 
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Figure 4.10. Comparison of the raw data and RANSAC results obtained using two 

different threshold values (10 cm and 20 cm) for building #20. 
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Therefore, the RANSAC algorithm was applied on the point cloud dataset of each of the 

separated buildings and, for each building point cloud dataset, the planes were extracted. 

The top and side views of the extracted planes of all buildings (#1–#23) are show in Figure 

4.11. 
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Figure 4.11. The RANSAC results. 
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According to the raw data and the results achieved using the RANSAC algorithm, there are 

several effective issues with regard to the analysis of 23 individual buildings in this study 

area.  

A chimney is evident in Figure 4.12.A, which is associated with building #4. On the other 

hand, in Figure 4.12.C, the same chimney is represented as an empty region (i.e. a gap) in 

the results of the extracted plane using the RANSAC algorithm. The results show that 

depending on their dimensions the chimneys on building roofs are detected as either empty 

regions or a plane. 

   

(A) Google Earth‘s Picture (B) RANSAC Result (C) Chimney gap 

 

Figure 4.12. The Google Earth‘s picture and RANSAC results for building #4. 

 
 

Similar to chimneys, solar panels also affect the results. Figure 4.13.C shows the plane of a 

solar panel (Figure 4.13.A and B) extracted by the RANSAC algorithm. Such objects, if 

located at the same level as the building edge and/or other objects that are present on the 

roof, may affect the RANSAC results and trick the algorithm into detecting unnecessary 

planes along inappropriate directions. 

   

(A) Google Earth‘s Picture (B)  RANSAC Result (C) Solar panel region 

 

Figure 4.13. The Google Earth‘s picture and RANSAC results for building #20 

 

Solar panel 
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Trees and tall plants are also among the main factors that affect the plane extraction 

process. Some trees are at the same height as buildings and therefore they effect the 

classification of non-ground points. This means that the buildings may be classified as 

trees and trees may be classified as buildings. This problem causes either to have an empty 

region or the formation of irregular shapes in the extracted planes. For building #8, the 

effect of trees located close to the building in roof extraction process is illustrated in Figure 

4.14. 

   

(A) Google Earth‘s Picture (B) RANSAC Result (C) Tree gap region 

 

Figure 4.14. The Google Earth‘s picture and RANSAC results for building #8 

 

The extracted building roofs were classified into different types. The RANSAC results 

obtained in this study area indicate that the buildings are not of gable type as they are 

composed of three planes. If the inner angle between the adjacent two planes is large then 

it may be difficult for the algorithms to extract these planes as separate. However, the 

developed script correctly extracts the planes in such conditions. As an example, the 

correctly extracted planes of building #23 are shown in Figure 4.15.C.   

   

(A) Google Earth‘s Picture (B) Original data (C) RANSAC Result 

 

Figure 4.15. The Google Earth‘s picture and RANSAC results for building #23. 
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4.2. Second study area 

4.2.1. Detection of the ground points 

 

Similar to first study area the first step of data processing was to extract ground points 

from the point cloud dataset. For this process, several parameters were used. According to 

topography and the density of high vegetation in this study area, the ground extraction 

parameters of the LasGround function were changed. Furthermore, in the predefined 

parameters for ground extraction, the ‗nature‘ flag was selected. The obtained result is 

shown in Figure 4.16.  

 

Figure 4.16. The ground points of the second study area. 

 

4.2.2. Ground points filtering and non-ground points classifying 

 

After detecting the ground points, they were separated from the point cloud dataset and 

then the non- ground points were classified into two distinct classes that are buildings and 

tall trees. As shown in Figure 4.17 the non-ground points, before classification, were stored 

as one class. Next, the classification process of the non-ground points was carried out. 

 

Figure 4.17. The non-ground points of the second study area. 
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There are four factors in classifying the non-ground points into two classes [19]; 

1) The search area size depends on the density of points. Due to the, point density 

in this test area (19.22 points per square meter), the dimensions of search area 

window was not changed; 

2) From the geometric point of view, the point cloud is divided into planer and 

non - planer classes according to the value of the standard deviation and 

predefined threshold value. As to this classification, the buildings are in the 

first class and the tall trees are in the second class. In some wrong cases, the 

trees due to smooth cutting can be identified as building. Accurate 

determination of these parameters in the point cloud classification is 

important. In this test area the value for this parameter was selected as 0.1; 

3) The third parameter in the classification is ‗ruggedness vegetation‘ parameter. 

Tall trees and plants are identified with this parameter. There are many tall 

trees the building level in this test area. Therefore, to get the best results, the 

value of this parameter was increased to 0.8; 

4) The buildings average height in the second test area based on the LasHeight 

calculation, is closer to the default value of this parameter. Therefore, the 

'ground offset ' remained unchanged. 

In this study, the classification parameter values were defined by trial and error and are 

shown in Table 5. The parameter values for trial 4 was found to be the best and used for 

the following processing operations. 

Table 5. The classification parameters defined 

TRIAL 1 2 3 4 5 

SEARCH AREA SIZE (M) 5.5 2 2 2 2 

BUILDING PLANARITY 0.1 0.3 1.5 0.1 0.5 

FOREST RUGGEDNESS 1.4 1.4 1.2 1.0 1.3 

GROUND OFFSET (M) 2 2 2 2 3 

  

Next, by using the best parameter values set and the classification function, the non-ground 

points were classified as shown in Figure 4.18. 
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    Figure 4.18. The non-ground classified points. 

   

After classifying the non-ground points, the point cloud that belongs to building class was 

separated and saved as a different class as shown in Figure 4.19. 

 

 

  Figure 4.19. The classified building points. 

 

4.2.3. Identifying the individual buildings 

 

The previously extracted point cloud data set that belongs to building class was saved as 

one file. However, the developed RANSAC MATLAB script requires that the point cloud 

that belongs to building class should be processed one building at a time. Therefore, to 

separate the point clouds of individual buildings the ‗Label connected component‘ function 

of the Cloud Compare software was used [25]. There are two important parameters for 

building separation in the Cloud Compare software. 
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1) The first parameter is ‗Octree Level‘. The shortest distance between the sub-clouds 

depends on the density of the points. Similarly, the grid size and the number of sub-

clouds change with the increase of the octree level. As shown in Figures 4.20 and 

4.21, the value of the first level of the octree parameter and the grid size, based on 

the point cloud statistics, were automatically computed in the Cloud Compare 

software. 

  

Figure 4.20. A, The first octree level (cell size=75.9458), B, 5
th

 octree level (cell 

size=4.74661). 

 

 

Figure 4.21. A, Second test area 9
th

 octree level (cell size=0.296663). 

 

 

2) The ‗Minimum points per component‘ is the second parameter. For this study area, 

the octree level based on the minimum dimensions of the buildings present in this 

region was computed as 9. Fits it, the cell size was computed automatically in the CC 

software (Figure 4.22). 
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Figure 4.22. The separated buildings that were stored individually. 

 

4.2.4. The extraction of the roof planes using RANSAC 

 

In this step, the RANSAC algorithm was used to extract roof planes of the buildings. There 

are three important parameters in the developed RANSAC MATLAB script. The first 

parameter is the Euclidian distance threshold. The point cloud data set for this study area 

has been collected using the same scanner as the first study area. However, there are 

different roof types in this study area. Therefore, this caused the value of threshold to be 

increased until that supported the roof roughness. For this study area, the value of distance 

threshold was selected as 15 centimeters. The second parameter is ‗t‘, which refers to 

probability of the drawing the correct plane in the RANSAC algorithms. This parameter 

was also used in Eq. 4.  For the extraction of the number of the iterations, the default value 

of 0.99 was used for this parameter [27]. Finally, the third parameters is ‗w‘, which 

denotes to probability of being the inlier points in the RANSAC algorithms. The value of 

this parameter was defined based on the trial and error method. For this study area, the 

value of this parameter was selected as 0.3. Furthermore, this parameter also depends on 

the duration of the RANSAC calculation.  

After selecting the suitable parameters, the RANSAC algorithms was applied on the point 

clouds of individual buildings to extract the planes. The side view and the top view of the 

extracted building planes are shown in Figure 4.23. 
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Figure 4.23. The side view and top view of the building planes extracted through the 

RANSAC algorithm. 
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Several important factors affect the results achieved for this study area. 

 An example of a roof of a building with the chimney is shown in Figure 4.24. As 

can be seen in the figure, the chimney was also extracted. Therefore, objects such 

as the chimney on the roofs generate gaps on the planes. 

 

 

 

 

 

 

 

 

 

 

Figure 4.24. The illustration of the planes extracted for Building #1. 

 

 In some cases, the RANSAC algorithm extracts a plane parallel to the main roof 

plane due to roof materials used in the buildings as shown in Figure 4.25. This 

problems usually occur for the galvanized roofs with a sinusoidal model. Since 

some of the buildings in the Bergama region have galvanized roofs with sinusoidal 

patterns of long amplitudes, in some of the results, an extra plane parallel to the 

main plane was extracted. On the other hand, since only a limited number of 

buildings are of this type and a single threshold should be applied to all buildings, 

the threshold was not significantly modified to match the few aforementioned 

buildings. 
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Figure 4.25. A, building (Building #10) with the extracted parallel planes 

(the plane of white data points and the plane of red data points). 

 

 Similar to first study area, the building roofs in this study region also include solar 

panels that affect the results (Fig. 4.10). As can be seen in Figure 4.26, the gap 

inside the plane of yellow color data points shows that the solar panel on the roof 

was not detected as a plane. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26. The planes extracted from Building #19. The gap within 

inside the plane of yellow color data points show the location 

of a solar panel which was not extracted as a roof plane. 
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 In this study area, the building roofs are very diverse and have up to 4 roof planes, 

as shown in Figure 4.27. B.  Moreover, some building roofs contain dorms, 

receivers etc. If the sizes of the planes of these objects are smaller than the 

predefined threshold value then, these planes are not extracted and therefore gaps 

occur in the point cloud of the corresponding positions. As shown in Figure 4.27. 

A, the planes of the dorm of building #28 were not extracted causing a gap in 

RANSAC results.  

 

           

  

  

 

 

Figure 4.27. A. the building #28 with small window. 

 

                           

 

 

 

 

 

Figure 4.27. B, the building # 14 with four facets type. 

 

 Dense vegetation and tall trees that exist in this study area were taken into 

consideration when performing the classification of the non-ground points. In this 

study area, the buildings are located on slopes, enabling tall trees to cover the roofs 

of some of the buildings. As it was mentioned previously in the first test area, the 

overlapping of trees and building roofs leads to incorrect classification, which in 

turn causes problems in the extraction of the planes. Figure 4.28 shows examples 

for the overlapping of trees and building roofs, where the plane associated with the 

building roof is incorrectly and irregularly extracted. 

 

A 

B 

C 
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Figure 4.28. Buildings #22, #28, and #7 with the neighboring tall trees that 

partially occlude the roofs. 
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5. Conclusions and Recommendations 

 

5.1. Conclusions 

In this study, building roof planes were automatically extracted from airborne LiDAR 

point cloud data using the RANSAC algorithm, which is known to be one of the most 

powerful plane extraction algorithms available. To do that a script was developed in the 

MATLAB programming environment. As the inputs, the algorithm receives a distance 

threshold between the points, the number of iterations, and dimensions of the smallest 

plane to be extracted from the point cloud being processed. The raw LiDAR data is 

initially pre-processed. The pre-processing includes ground filtering, classify the non-

ground points and separet the building class to individual data sets. The final plane is 

obtained by applying the least square estimation method on candidate points that form a 

plane in the RANSAC algorithm. For the experiments, two study sites with different 

characteristics were selected from the city of Bergama.  The LiDAR point cloud data sets 

used were collected through the Riegl scanner. The results achieved for both study areas 

are quite promissing. Most of the roof planes were correctly extracted using the proposed 

method. The conclusions reached during this research study are as follows: 

The conclusions reached from the processings of the point cloud data sets in the first study 

area are as follows: 

 It was concluded that the plane extraction process is affected by the large-sized 

diverse objects such as solar panels, chimney, and satellite dishes that are present 

on rooftops. For instance, a solar panel can be identified as a plane if located at the 

same level as one of the planes on the roof. Moreover, the panel can be extracted as 

a void if it has a smaller size. 

 The number of extracted planes is dependent on the distance threshold between the 

planes and the points. In this study, two thresholds values of 10 cm and 20 cm were 

tested. When a larger threshold value is used, the intersection angle between two 

planes becomes large and therefore, two planes are wrongly extracted as one single 

plane. It should be noted that a single threshold value of 10 cm was used in this 

study for the processing of point cloud data sets for all buildings. However, it was 

found that using a single threshold value for all buildings does not always produce 

satisfactory results.  For example, in the case of the procesing of the point cloud 
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data for Building #20 in the first study area, the use of 20-cm threshold value 

produced better results than that of the results achieved using the 10-cm threshold 

value. This was due to the type of the roof material used for Building #20.    

 For the gable roofs, if a large distance threshold between the plane and data points 

is selected then, at the intersection of the neighboring planes, the plane identified 

for a roof surface may incorrectly include points from the intersecting other plane. 

Therefore, this problem can be solved by properly selecting the distance threshold 

limit.  

The conclusions reached from the processings of the point cloud data sets in the second 

study area are as follows: 

 It was found that due to roof materials of some of the buildings a false plane was 

extracted parallel to the main one. However, in the study areas used the number of 

buildings with such rooftops were limited, and therefore the use of single threshod 

value of 10 cm for all buildings did not be quite affect the results in the present 

case.  

 It was found that the results are affected by tall trees that partially occlude the roofs 

of the buildings that are in particular located on slopes. It was observed that parts of 

the tall trees neigboring to buildings were identified as the extension of the roof 

planes or as voids on the roofs. However, this problem can be some how solved by 

excluding all points that belong to trees by means of an appropriate classification of 

the non-ground points. In the plane extraction stage, a parameter value regarding 

the minimum number of points that a plane must contain is needed to be defined to 

avoid the extraction of small planes. It should be noted that this parameter value 

must be defined based on the density of the point could dataset as the the point 

density affects the results.  

 It was found that those buildings that share a single roof generate a single plane and 

this matter affects the results. The separation of the roof planes in such conditions 

can be dane either using additional data sets, such as high resolution imagery or by 

visiting the site. 

 The developed script in the MATLAB programming environment for the extraction 

of the roof planes from a point cloud dataset that belongs to a building is quite 

effcient. For example, it takes about 161 seconds for the extraction of the planes 

from the point cloud data set of building #01 which consists of 1994 points. The 
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processing times compued for several buildings using a computer with the 

specifications ―Intel(R) Xenon(R) CPU E5-1620 V2 3.70 GHz, RAM: 32 GB‖ are 

given in Table 6. 

Table 6. The processing time for RANSAC results. 

 

 

 

 

 

 

 

 By assessing the extracted results and visually comparing them with both 

theoriginal point cloud data and the Google Earth imagery it can be concluded that, 

to a great extent, a close aggreement is evident between the extracted planes and 

the original roof planes. Thus, this indicates that the approach used in this study is 

quite robust in the extraction of building roof planes from airborne LiDAR data. 

For buildings #1 and #8, the comparison of the raw data and the extracted planes 

are shown in Figure 5.1.The information about the extracted planes such as the 

area, perimeter, normal of the plane, etc would be quite useful for the generatiion of 

3D building models. 

 Based on the results achieved in this study, the extracted planes is useful for setting 

roof solar system on rooftop of the building. 

 

 

 

 

Building 
Study 

area 

Number of 

planes 

Distance 

treshold (cm) 

Processing 

time (s) 

#01 1 1994 10  161.3005 

#16 1 3435 10 322.312 

#38 2 5051 10 354.653 

#30 2 4063 15 293.218 

#02 2 2162 15 212.466 

#17 1 2391 15 284.308 
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Figure 5.1. The comparison of the raw data (A) and RANSAC result (B) for buildings #1 

and #8 

 

 

 

 

 

C 

 

B 

   

A 

 

    

  

C 

 

D 

 

A B 

 



66 
 

5.2. Recommendations 

Based on the results obtained and the observations made in this study, the followings are 

recommended for future studies: 

1. In this research study, the developed RANSAC approch was tested on the point 

cloud data sets one building at a time. It is recommended that the efficiency of the 

approch can be increased by processing all the buildings at the same time. 

2. The RANSAC algorithm selects three random points to cross the plane iteratively. 

It is recommended that an approach is developed that selects the points intuitively 

according the data features. 

3. It is recommended the approach used in this study should be used in disaster 

monitoring and in damage detection.  
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