

IMPLEMENTATION AND WEB-BASED VISUALIZATION

OF 3D CITY MODELS

3 BOYUTLU ŞEHİR MODELİ OLUŞTURMA VE WEB

TABANLI GÖRSELLEŞTİRME

MEHMET BÜYÜKDEMİRCİOĞLU

Assoc.Prof.Dr. SULTAN KOCAMAN

Supervisor

Submitted to Graduate School of Science and

Engineering of Hacettepe University

As a Partial Fulfillment to the Requirements

For the Award of the Degree Master of Science

in Geomatics Engineering

May 2018

i

ABSTRACT

IMPLEMENTATION AND WEB-BASED VISUALIZATION OF

 3D CITY MODELS

Mehmet BÜYÜKDEMİRCİOĞLU

Master of Science, Department of Geomatics Engineering

Supervisor: Assoc.Prof.Dr.Sultan KOCAMAN

May 2018 , 79 pages

3D city models have become crucial for a better city management, and can be used for

various purposes such as disaster management, navigation, solar potential computation and

planning simulations.3D city models are not only visual models, and thematic queries and

analyzes can be performed with the help of semantic data.They can be produced using

different data sources and methods.

In this thesis, basemaps and large-format aerial images, which are produced in accordance

with the regulations of large-scale map production in Turkey (called BOHYY) have been

used to develop a workflow for semi-automatic 3D city model generation. The aim of this

study is to generate a 3D city model from existing aerial photogrammetric datasets without

any additional data acquisition or costly manual processing. During the prodution, open-

source software or other tools with free educational/research licences is preferred.

As a result, a 3D city model has been generated with semi-automatic methods at LoD2 of

CityGML using the data of study area near Çesme / Izmir. The generated model is

automatically textured and visualized on the web along with the attribute information and

digital terrain model. The model is published on the web at www.cesme3d.com. The

problems encountered throughout the study and approaches to solve them are presented here.

KEYWORDS: 3D City Model, Visualisation, DSM, DTM

http://www.cesme3d.com/

ii

ÖZET

3 BOYUTLU ŞEHİR MODELİ OLUŞTURMA VE WEB

TABANLI GÖRSELLEŞTİRME

Mehmet BÜYÜKDEMİRCİOĞLU

Yüksek Lisans, Geomatik Mühendisliği Bölümü

Tez Danışmanı: Doç.Dr.Sultan KOCAMAN

Mayıs 2018 , 79 Sayfa

3 boyutlu şehir modelleri günümüzde şehirlerin etkili yönetimi için artık bir zorunluluk

haline gelmiştir ve afet yönetimi, navigasyon, güneş potansiyeli ve planlama simülasyonları

gibi farklı amaçlarla kullanılabilmektedir. Bu modeller sadece görsel bir model olmanın

dışında, sahip oldukları semantik bilgiler yardımıyla tematik sorgular ve analizler

yapılmasına imkan vermektedir. Şehir modelleri üretimi farklı veri kaynaklarından farklı

yöntemler kullanılarak yapılabilmektedir.Bu çalışmada BÖHYY (Büyük Ölçekli Harita

Yapım Yönetmeliği) göre Türkiye’de üretilmekte olan fotogrametrik halihazır harita verileri

ve stereo hava fotoğrafları kullanılarak bir yarı-otomatik 3 boyutlu şehir modeli üretimi için

iş akış şeması geliştirilmiştir. Çalışmanın amacı fotogrametrik yöntemlerle üretilmiş olan

verilere ek yapmadan şehir modeli üretmektir. Üretim esnasında olabildiğince açık kaynak

kodlu veya eğitim/araştırma lisansı ücretsiz olan yazılımlar tercih edilmiştir.

Yöntemin uygulaması için Çeşme / İzmir bölgesine ait geniş formatlı dijital hava kamerası

görüntüleri ve bu projeden üretilmiş halihazır harita verileri yardımıyla 3 boyutlu şehir

modeli üretimi LoD2 seviyesinde yarı-otomatik olarak gerçekleştirilmiştir. Üretilen model

otomatik olarak fotograflardan giydirilmiş, öznitelik bilgileri ve sayısal arazi modeli ile

birlikte web üzerinde görselleştirilmiştir.Web üzerinde görselleştirilen model

www.cesme3d.com adresinde Internet üzerinden yayına açılmıştır. Çalışmada boyunca

karşılaşılan sorunlar not edilerek bu sorunların çözümüne dair yaklaşımlar belirtilmiştir.

Anahtar Sözcükler: 3 boyutlu şehir modeli, görselleştirme, sayısal yüzey/arazi modeli

http://www.cesme3d.com/

iii

ACKNOWLEDGEMENTS

First and foremost, i would like to thank Dr.Sultan Kocaman for supervising my thesis and

advising me to work on 3D city models topic.This thesis would not be completed without

her valuable guidance and continous support. Besides being expert in Geomatics, she is a

great leader and inspiring person.

I also would like to thank Dr.Ümit Işıkdağ for being co-supervisor for this thesis, giving

valuable feedbacks about my work and being my co-examiner.He is a true expert in GIS,

working with him was both instructive and enjoyable.

Another big thanks goes to Alpaslan Tütüneken from UVM Systems Turkey for sharing his

experience and knowledge in 3D city models. His continous contributions and support led

thesis work to another stage.

I wish to thank my long-time friend Gökhan for encouraging me whenever i needed, also

thanks to my classmates and close friends Murat, Gizem and Ilyas for their friendship and

support.

Finally, i would like to thank my family for their endless support and encouragement.

iv

TABLE OF CONTENTS

Page

ABSTRACT ... i

ÖZET ... ii

ACKNOWLEDGMENTS ... iii

TABLE OF CONTENTS .. iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

SYMBOLS AND ABBREVIATIONS .. x

1. INTRODUCTION ... 1

1.1. Motivation ... 2

 1.2. Objectives and Research Questions .. 3

 1.3. Thesis Structure .. 4

2. THEORETICAL BACKGROUND .. 5

 2.1. 3D City Models ... 5

 2.2. CityGML ... 8

 2.2.1. Levels of Detail in CityGML ... 8

 2.2.2. Semantics in CityGML .. 11

2.2.3. Terrain Intersection Curve ... 12

 2.3. 3D City Model Reconstruction ... 13

 2.3.1. Model-driven Methods .. 15

 2.3.2. Data-driven Methods ... 16

 2.4. Digital Surface Model Generation .. 19

2.5. The Role of Automatic Texturing in 3D City Modeling 21

2.6.Visualization of 3D City Models ... 23

3. MATERIALS AND METHODS ... 24

 3.1. Study Area and Dataset .. 24

 3.2. Hardware and Software .. 26

 3.3. Model Generation Workflow .. 27

4. IMPLEMENTATION OF 3D CITY MODEL ... 28

 4.1. Photogrammetric Triangulation .. 28

 4.2. Building Footprint and Attribute Generation from Basemaps 29

 4.3. Digital Terrain Model Generation .. 32

v

 4.4. Digital Surface Model Generation .. 35

 4.5. Automated Building Reconstruction of the 3D City Model 38

5. AUTOMATIC TEXTURING BUILDINGS ... 45

 5.1. CityGRID Texturizer .. 45

 5.2. Image Acquisition and Radiometric Pre-processing .. 46

 5.3. Image Rectification ... 47

 5.4. Database Creation and Data Import .. 48

 5.5. Texture Mapping Process ... 49

6. WEB–BASED VISUALIZATION .. 54

 6.1. CesiumJS Virtual Globe ... 54

6.2. KML/COLLADA/glTF .. 56

 6.3. Cesium 3D Tiles .. 61

 6.4. Terrain Visualization with Cesium ... 67

7. VISUALIZATION BASED ON UNITY GAME ENGINE ... 74

8. CONCLUSIONS AND FUTURE WORK ... 77

REFERENCES ... 80

APPENDIX .. 87

CURRICULUM VITAE ... 102

vi

LIST OF TABLES

Page

Table 2.1 Accuracy requirements of different LODs by OGC ... 11

Table 3.1 Hardware specifications of the portable personal computer used in the study .. 27

Table 3.2 List of the software used in the study .. 27

Table 4.1 Photogrammetric block properties and triangulation results 29

Table 4.2 Automatic reconstruction accuracy of 1000 buildings generated by

BuildingReconstruction 2018 software evaluated by visual checks. 45

vii

LIST OF FIGURES

Page

Figure 1.1 Konya 3D city model project .. 1

Figure 2.1 Different use cases of 3D city models used in various application fields 7

Figure 2.2 Levels of Detail in CityGML .. 8

Figure 2.3 LoD0 building and UML diagram ... 9

Figure 2.4 LoD1 to LoD4 .. 9

Figure 2.5 An improved LoD specification for CityGML. .. 10

Figure 2.6 Examples of representations of ground surfaces ... 12

Figure 2.7 Example of the Terrain Intersection Curve represented as a black line 13

Figure 2.8 Reconstruction method given by Yi et al. .. 14

Figure 2.9 BuildingReconstruction 2018 software roof library.. 15

Figure 2.10 Segmented roofs: Aerial photo, point cloud sorted by height and point cloud

segmented .. 17

Figure 2.11 Different image acquisition methods and angles for texturing city models 21

Figure 2.12 Assignment of linear features between image and 3D model 22

Figure 2.13 Vienna virtual city model based on Unity game engine 23

Figure 3.1 Overall view of the study area from Google Earth ... 24

Figure 3.2 Level of detail in one image and the ground signalization of one GCP 25

Figure 3.3 Aerial photogrammetric image block and the ground control point distribution

over the study area in Çeşme , İzmir ... 25

Figure 3.4 The overallworkflow of the methodology ... 27

Figure 4.1 Manual feature extraction from stereo aerial images .. 29

Figure 4.2 FME workbench for generating attributes and converting DGN file into

Shapefile .. 30

Figure 4.3 A part of basemap with all CAD layers and the building footprints extracted

from it .. 32

Figure 4.4 Attribute table of the generated building footprints .. 32

Figure 4.5 General view of the manually extracted elevation data and close view 33

Figure 4.6 FME workbench for raster DTM generation... 34

Figure 4.7 DTM with null values and null values fixed ... 34

Figure 4.8 Photogrammetric blocks generated for the area .. 35

Figure 4.9 Generated Tie points and dense point cloud ... 36

Figure 4.10 An overview and a close view of the generated DSM 37

viii

Figure 4.11 BuildingReconstruction 2018 software workflow .. 38

Figure 4.12 BuildingReconstruction 2018 project configuration wizard 39

Figure 4.13 BuildingReconstruction graphical user interface .. 40

Figure 4.14 25cm resolution DSM and 1m resolution DTM input for

BuildingReconstruction software .. 41

Figure 4.15 Automatically generated buildings with BuildingReconstruction 2018

software ... 42

Figure 4.16 Automatically generated roof geometries overlayed on the orthophoto with 10

cm resolution ... 43

Figure 5.1 CityGRID Texturizer automatic texturing workflow .. 45

Figure 5.2 Raw aerial image and pre-processed image of Çeşme 46

Figure 5.3 Image orientation checking with CityGRID software for automatic texturing . 48

Figure 5.4 Importing aerial images and building models to database 49

Figure 5.5 Automatic texturing properties ... 50

Figure 5.6 Textured CityGML export properties ... 53

Figure 5.7 Exported CityGML buildings with textures .. 53

Figure 6.1 CesiumJS user interface .. 54

Figure 6.2 Workflow for visualizing with 3DCityDB software ... 56

Figure 6.3 Adding ITRF96 coordinate system to PostGIS ... 57

Figure 6.4 Database connection with 3DCityDB ... 58

Figure 6.5 Bounding box of the imported CityGML object ... 58

Figure 6.6 3DCityDB Spreadsheet generator ... 59

Figure 6.7 Attribute table of the selected buildings in the 3DCityDB 59

Figure 6.8 Different visualization forms of models from LoD0 to Textured LoD2 on

Google Earth .. 60

Figure 6.9 Textured LoD2 buildings and attributes visualizing on 3DCityDB Web map

client .. 61

Figure 6.10 An overview of the 3D Tiling pipeline by Cesium.com 62

Figure 6.11 Textured CityGML converted to 3D Tiles format and visualized on CesiumJS

 ... 63

Figure 6.12 Showing selected untextured LoD2 buildings to attribute table on the

customized web interface .. 64

Figure 6.13 Çeşme city model colored grouped by their latitude using 3D Tiles styling .. 65

Figure 6.14. Textured mesh visualization on Cesium Web Globe 65

ix

Figure 6.15 Point cloud visualization on Cesium Web Globe ... 66

Figure 6.16 The Heightmap 1.0 format represents terrain with regular grid tiles 69

Figure 6.17 Irregular triangle meshes as Quantized-mesh 1.0 format 69

Figure 6.18 Cesium Terrain Builder command list .. 70

Figure 6.19 layer.json file with all metadata information that describes the tileset 71

Figure 6.20 A view of generated 1m resolution DTM on Cesium 72

Figure 6.21. Buildings hanging in the air without terrain and buildings clamped to the

terrain ... 73

Figure 6.22 Wireframe view of the terrain in Heightmap format and Quantized-mesh

format .. 73

Figure 6.23 CityGRID Builder control center .. 74

Figure 6.24 A scene from Unity Game Engine visualization generated with CityGRID

Builder ... 76

Figure 6.25 Trees over the roofs of the buildings ... 78

Figure 6.26 An example of unclosed building footprint .. 78

Figure A.1 Camera locations and image overlaps of block 1 ... 87

Figure A.2 Camera locations and image overlaps of block 2 ... 87

Figure A.3 Camera locations and image overlaps of block 3 ... 88

Figure A.4 Camera locations and image overlaps of block 4 ... 88

Figure A.5 Camera locations and image overlaps of block 5 ... 89

Figure A.6 Camera locations and image overlaps of block 6 ... 89

Figure A.7 Camera locations and image overlaps of block 7 ... 90

x

SYMBOLS AND ABBREVIATIONS

CAD Computer Aided Design

DEM Digital Elevation Model

DTM Digital Terrain Model

DSM Digital Surface Model

FME Feature Manipulation Engine

FPS Frame Per Second

GIS Geographical Information System

GNSS Global Navigation Satellite System

GUI Graphical User Interface

GPU Graphics Processing Unit

GSD Ground Sampling Distance

HTML HyperText Markup Language

INS Inertial Navigation System

ITRF International Terrestrial Reference Frame

IMU Inertial Measurement Unit

LiDAR Light Detection and Ranging

LOD Level of Detail

OGC Open Geospatial Consortium

RANSAC Random Sample Consensus

SQL Structured Query Language

TIC Terrain Intersection Curve

TIN Triangular Irregular Network

UAV Unmanned Air Vehicle

UML Unified Modeling Language

XML Extensible Markup Language

1

1. INTRODUCTION

According to United Nations World Urbanization Prospects [1], more than half of the

of the world’s population (54%) are currently living in cities, and this number will be 66%

in 2050. For efficient management of large cities and urban population, new technologies

must be developed so that higher living standards can be obtained.

In parallel to the fast growth of technology, 3D modeling and visualization have become

popular in many engineering fields, especially in Geomatics Engineering. Nowadays, 3D

city models are being produced and developed by many countries worldwide and it is a

trending topic also in Turkey. With the help of such models, simulation and visualization

tasks can be done in many application fields such as navigation, city planning, and disaster

management [2]. Berlin [3], Vienna [4] and Konya [5] 3D city models can be shown as

examples of pioneer models. A part of Konya 3D City Model is provided in Figure 1.1

Figure 1.1 Konya 3D city model project

As a base, a city model involves a 3D description of buildings, and manual mensuration

those, especially in large cities, requires a great deal of time, money and labor.

Photogrammetric approaches are widely used for 3D extraction of surfaces and features, and

it is one of the most preferred technologies in data production for 3D city models [6]. With

the help of photogrammetric methods, feature geometries and digital elevation models

(DEM) can be extracted automatically from stereo images [7]. Semi-automatic

reconstruction of buildings can be done by combining DSMs (Digital Surface Models) with

the cadastral footprints so that manual production time and labor can be reduced. Such DSMs

are mostly obtained by stereo and/or multi-image matching approaches and by using aerial

LiDAR sensors. So far it is not possible to reconstruct building geometries fully

automatically with high accuracy and level of detail (i.e. resolution). Fully-automatic 3D

2

city model generation is still an active agenda which attracts the attention of many

researchers. There are several research studies on automation of the production and

reliability improvements [8].

1.1 Motivation

In Turkey, use of aerial photogrammetry for map production is a lasting tradition,

and aerial LiDAR sensors are not commonly used for point cloud acquisition as it is an

expensive method with high initial costs [9]. In addition, although LiDAR sensors can

provide highly accurate and dense elevation data, the spectral and radiometric resolutions of

the intensity images are quite low in comparison to large format aerial cameras, thus not

suitable for feature extraction for basemap production purposes. Stereo data acquisition with

large format aerial cameras is still the most suitable approach for 3D city model generation,

as point clouds and other types of information can be extracted from those with sufficient

density, accuracy, and resolution (level of detail, feature types, etc.). It is possible to produce

a point cloud with 100 points per square meter density from stereo aerial images with a

resolution of 10 cm (image matching per pixel). Such a point cloud is denser than most

LiDAR datasets in practical projects.

The production of different basemaps (small and large scale) and high-resolution

orthophotos has been carried out by several Turkish government agencies, e.g. General

Command of Mapping, General Directorate of Land Registry and Cadastre, etc., for many

years with aerial photogrammetric methods. These maps have been produced on the basis of

Turkish Large Scale Map Production Regulations, which defines the standards on the

processing methods and accuracy requirements for different measurement and data

acquisition techniques especially for large scale (e.g. 1:500, 1:1000) basemap generation.

The basemaps include most objects that are visible in aerial photographs, such as buildings,

roads, electricity poles etc. In addition, information and features that represent the

characteristics of topography, such as the contour lines, break lines, etc. are manually

measured by photogrammetry operators in stereo mode. The topographical information is

used for computation of grid DEMs with a coarse grid interval, i.e. 5 m, which are mainly

needed for orthophoto production.

3

A true ortophoto production project has been carried out in 2015 for urban areas in

Turkey by the Ministry of Environment and Urbanisation. Within this project, vertical aerial

images with 8 cm GSD (ground sampling distance) have been acquired and true orthophotos

with 10cm spatial resolution have been produced. A major advantage of using true-

orthophotos for building reconstruction is fast manual extraction of building footprints

without the need for stereo vision.

Considering the amount of collected and produced data for over decades with aerial

photogrammetric methods in Turkey, the possibility of using these datasets for automatic or

semi-automatic 3D city model generation without additional data acquisition cost is

discussed in this study. A new approach is proposed for this purpose and applied using the

data of photogrammetric flight mission carried out over Çeşme town near Izmir in 2016. In

addition, 3D city model visualization methods, integration with the geographical information

systems (GIS) and potential 3D queries have been investigated. The approach has been

validation using reference data, and the problems encountered during the processing and the

potential improvements to the approach have been investigated. Adequacy of the dataset and

outputs have also been analyzed and the results are presented here. The study is intended to

be one of the pioneers for 3D city model production in Turkey and show basic guidelines for

such projects in the future.

1.2 Objectives and Research Questions

The aim of this thesis is to propose a workflow for automatic building reconstruction

method for 3D city models and their visualization using existing data obtained from aerial

photogrammetric flight missions in Turkey without any additional cost or data acquisition.

The following questions have been answered during this study:

 Is it possible to produce a city model automatically or semi-automatically with the

use of vertical aerial imagery and basemaps produced from these imagery?

 What would be the best level of detail for such a city model obtained from these

datasets and also the most suitable format to store and represent the models?

 What is the accuracy of fully-automatically generated building geometries?

 What would be the quality of automatic texturing of buildings using aerial vertical

aerial images?

4

 Is it possible to generate DTMs with high density and quality using the elevation data

(e.g. elevation points, contour lines, etc.) that exist in the basemaps?

 What is the most appropriate interface, method and format for high-performance and

high-quality visualization of the 3D models on the web?

 What kind of 3D queries and cartographic styling can be done on the web interface?

 Can 3D city models be explored with Virtual Reality with high fidelity?

In order to answer these questions, existing literature on 3D city modeling has been

analyzed and a workflow has been developed considering existing methods and available

datasets. The results of this workflow is analyzed and presented here.

1.3 Thesis Structure

The structure of this thesis is as follows:

Chapter 2 – A literature review on the 3D city model production methods and existing

applications is provided in this Chapter.

Chapter 3 – A description of the application dataset and a general overview on the

processing workflow is given here.

Chapter 4 – This Chapter involves data preprocessing steps, automatic building

reconstruction methodology and an assessment on the accuracy of the reconstructed

buildings.

Chapter 5 – Automatically texturing potential of produced building models from nadir

aerial images is investigated and the results are discussed here.

Chapter 6 – This Chapter covers the web-based visualization of 3D city models and the

DTMs on a globe together with 3D queries.

Chapter 7 – Investigations on the visualization and exploration of 3D city models in

the Unity game engine using Virtual Reality are given in this Chapter.

Chapter 8 – The last Chapter describes the problems encountered during this study,

discusses the findings, proposes future work on potential improvements to the system and

gives further recommendations to those who intend to build such models.

5

2. THEORETICAL BACKGROUND

2.1 3D City Models

A 3D city model is a digital representation of the building and objects in the urban area,

as well as the terrain model and represents urban geographically referenced spatial data [10].

3D city models usually consist of digital terrain models (DTMs), building models, street-

space models and green space models [11]. They can be used to perform simulations in

different scenarios in virtual environments [12]. In parallel with the technological

developments of the day, the traditional concepts of mapping and geospatial data has

changed interactively, and new functions and applications for the field of geovisualization

have been developed. Although the visualization of virtual city models is a preliminary plan,

it is now used for many different purposes and is becoming more and more valuable every

day. New technologies help users to over-come certain limitations of traditional 2D maps

and explore 3D world [13]. Because of technological improvements and advances in

computer hardware and software, 3D city models also become a visualization tool for

communicating 3D knowledge to users. 3D city models equipped with interactivity and

visual dynamics are becoming a reliable tool for information research and analysis.

3D city models should reflect the mutual relations between city objects and their

complexities due to different purposes. [10]. Geometric, topological and semantic accuracy

have an important role in the determination of the 3D city model quality [14]. In addition to

building geometry, these 3D city models include different types of information such as plant

height, road height, land use, and land use information. It is important to store information

about these models together in the database and to make it easier to use and work with these

models. Creating building geometry along with the appearance of the other objects with their

necessary complexity is required to create more realistic 3D city models. However, it may

be desirable to add semantic data to make these models understandable by computers.

Semantic information of the city objects can be added semi-automatically [15]. The model

will allow new species inquiries to be made with modeled semantic and topological aspects.

Some of them are examples of thematic queries, analysis tasks and spatial data mining with

the aid of semantics [11].

3D city models with semantic information require extra work compared to conventional

city models [2]. They also require much more storage compared to 2D spatial data [16].For

this reasons, it should be kept in mind that it is sensible to create these models if, in economic

6

terms, customers can obtain something new from these products if the same data can be used

in multiple applications by different customers. Today, three-dimensional representations of

geographical information provide users more flexible and precise mathematical models,

useful tools and user interfaces for geographical tools [17]. 3D city modeling is a rising

research topic in different application areas. 3D city models are used in different areas such

as computer graphics and architecture, engineering, construction and facility management

[12].

3D city models are becoming important tools for urban decision-making processes and

information systems, especially planning, simulation, documentation, heritage planning,

mobile networking planning and navigation. The power to support naive geography is used

by the broader public and results in easy-to-understand geospatial presentations. Unlike

traditional methods with highly abstract content such as 2D maps, 3D map elements follow

some natural/naive coding that is readily accessible to human worthy even in map reading.

3D city models also provide necessary information for different types of disaster

management. These models primarily keep the general shapes and structure of a city. In case

the city infrastructure suffers severe damage, it is impossible to calculate the magnitude of

the damage quickly, to guide the assistance, and finally to reconstruct damaged areas. 3D

city models are also suitable for visualizing localization in indoor and outdoor areas [12].

The focus in 3D GIS lies in the management of more comprehensive and exhaustive 3D

models of the construction, management of domains, architectural, engineering, construction

and facility management, wide area and georeferenced 3D models. Computer graphics are

focused on the visualization of 3D models. Utilizations of a 3D city model depend on four

different representation directions, geometry, topology, semantics and graphical

visualization. While topology along with geometry describe the spatial structure of 3D city

models, semantic properties include thematic structures, qualities, and reciprocal

relationships. For the visualization of the model, information is given about graphical

representations such as facade textures, object colors and signatures [18]. Different

disciplines (e.g., architecture, engineering, etc.) emphasize different aspects and only those

aspects are included in the model; For this reason, a model that is considered good for the

identification of certain phenomena may not be suitable for someone else [19]. Biljecki et

al. [20] identify and organize 29 different use cases used in various application fields and

provides examples for each use case (Figure 2.1).

7

Figure 2.1 Different use cases of 3D city models used in various application fields (Biljecki et al. [20])

8

2.2 CityGML

CityGML is an XML-based open-source data format for storing and exchanging 3D city

models [21]. This format is adopted by Open Geospatial Consortium (OGC) as an

international standard format [22]. CityGML has a structure suitable for presenting city

models with semantic data. These semantic features allows users to perform functions that

are not possible without the metadata provided by CityGML. Modules in CityGML reflect

the appearance, spatial and theme characteristics of an object [23]. In addition to the

geometric information of the city model, CityGML contains semantic and thematic

information. These data enable users to make new simulations and queries and analyzes of

3D city models [2].

In CityGML-based city models, buildings are separated by different surfaces due to

logical criteria. For example, a building can be divided into different parts depending on

different roof types [2]. CityGML ensures that features have non-spatial properties. It is also

possible to connect objects to related objects in external clusters such as spatial databases.

Features are arranged in smaller sub-sections called modules such as Building modules or

Plant modules. Modules can be combined to create a new feature called profilers [21].

2.2.1 Levels of Detail in CityGML

 There are five different levels of detail defined in CityGML data schema (Figure 2.2).

As the LoD level gets higher, it has a more detailed architecture with the complexity of the

structures, so different levels of detail can be used for different purposes. CityGML allows

the same objects to be visualized at different levels of detail. Thus, analysis can be done in

different LODs [2].

Figure 2.2 Levels of Detail in CityGML by Biljecki et al. [24]

9

A building in LoD0 is represented by 2.5D polygons either at roof level height or at

ground level height [25]. LoD0, as represented in Figure 2.3, can also be called building

footprints.

Figure 2.3 LoD0 building (left) and UML diagram (right) by Gröger and Plümer [21].

In LoD1, the building is represented as a solid model or a multi-faced block model

without any roof structures (Figure 2.4). The building can be separated into different building

surfaces called "BuildingParts". The geometric and thematic properties of these building

components may differ from each other. Buildings and building parts potentially have the

same spatial and non-spatial characteristics. The attribute values of a segment are valid for

that segment only, whereas the attribute values of a building belong to all segments. If

multiple parts are available, the building geometry should be represented by parts only.

Figure 2.4. LoD1 to LoD4 from left to right by Biljecki et al. [24]

LoD2 adds generalized roof structures to LoD1. In addition, thematic details can be

used to represent the boundary surfaces of a building. The main difference between LOD1

and LOD2 is that the outer walls and roof of a building can be represented by more than one

face and the curved geometry of the building can be represented in the model structure [21].

10

Vertical wall surfaces “WallSurface”, the surfaces that cover the building from the top called

”RoofSurface”, and the horizontal surfaces that bound the bottom of the building from the

floor are represented by “GroundSurfaces” in UML diagram.

LoD3 is generated by expanding LoD2 with openings (windows, doors), detailed

roof structures (roof windows, chimneys, roof tops) and detailed façade constructions. These

objects are represented as details with their own attributes and surface geometry. The roofs

are more detailed, and details such as windows and doors have been added to the walls. [21].

 LoD4 is the highest level of detail and adds interior architecture to the building. At

this level of detail, all interior details such as furniture and rooms are represented with

textures. For partially closed objects such as tunnels, special surfaces must be used to close

the elements. These surfaces do not actually have any contrast and are only considered when

they are needed for calculating the volumes and can be neglected if they are not needed for

visualization purposes.

Each detail level in the CityGML data structure has features that make them unique.

These features may change with the forthcoming CityGML 3.0. At the time of this writing,

CityGML does not support relative 3D point accuracy, but this feature will be added in the

future. Table 2.1 shows the different features that each level of detail have in CityGML. For

example, in LOD2 the positional and height accuracy of points should be 2m or less, and all

objects with a footprint of at least 4m by 4m should be considered in the model. Figure 2.5

shows an improved LoD specification for CityGML proposed by Biljecki et al. [24].

Figure 2.5 An improved LoD specification for CityGML by Biljecki et al. [24]

11

 LOD0 LOD1 LOD2 LOD3 LOD4

Model scale

descriptor

Regional,

landscape
City, region

City, city

districts,

projects

City districts,

architectural

models

(exterior),

landmark

architectural

 models

(interior),

landmark

Class of

accuracy
Lowest Low Middle High Very High

Absolute 3D

point

accuracy for

position and

height

Lower than

LOD1
5m 2m 0.5m 0.2m

Generalization
Maximal

generalization

Object blocks

as

generalized

features;

>6*6m/3m

Object as

generalized

features;

>4*4m/2m

Object as real

features;

>2*2m/1m

Constructive

elements and

openings are

represented

Building

installations
No No Yes

Representative

exterior

features

Real object

form

Roof structure Yes Flat

Differentiated

roof

structures

Real object

form

Real object

form

Roof

overhanging

parts

Yes No Yes, if known Yes Yes

City Furniture No
Important

objects

Prototypes,

generalized

objects

Real object

form

Real object

form

Vegetation

objects
No

Important

objects

Prototypes,

higher than

6m

Prototypes,

higher than

2m

Prototypes,

the real

object

form

Vegetation

areas
no >50*50m >5*5m < LOD2 < LOD2

Table 2.1 Accuracy requirements of different LODs by OGC [22].

2.2.2 Semantics in CityGML

The main feature that distinguishes CityGML from other formats is that it supports

the semantic data as well. Semantics can be added to building model in a semi-automatic

way. Automatically detecting small independent objects such as building windows and

doors is still a challenging issue to work on [15]. World objects at semantics are represented

with buildings, walls, windows, and rooms. These definitions also include attributes,

associations and association hierarchies between the details. Hence, the part-of relationship

12

between details can be achieved only at the semantical level, regardless of the geometry.

However, at the spatial level, geometry objects are assigned to details representing their

geographical location and scope. Thus, the model consists of the semantic and geometric

hierarchies that the conjugate objects. The advantage of this approach is that it can be

arbitrarily navigated between and within both hierarchies to answer thematic and/or

geometric queries or to perform analyses. If both types of hierarchies exist for a given object,

they must be consistent. In other words, they must match and adapt to each other. For

example, if a building's wall at a semantic level has two windows and a door, it is imperative

that the geometry showing the wall contains the geometry parts of both windows and the

door at the same time [22]. CityGML's semantic model includes class definitions for the

most important thematic object types in virtual 3D city models, including buildings, DTM,

water masses, transportation, vegetation, and urban facilities [2].

2.2.3 Terrain Intersection Curve

Building and terrain integration in city models is one of the important issues [26]. This

feature describes one of the usual technical problems that arise when the terrain model is

combined with a 3D object with a different height value. In principle, a 3D object must

conform to the terrain model. However, if the digital terrain model and the 3D object are

created at different levels of detail or by different data providers, a significant problem

arises at their intersection [27]. Terrain Intersection Curve is a CityGML feature that

identifies the intersection of land and structures. This curve refers to the precise location of

the ground where the building touches the building and is represented by a closed ring

surrounding the building. If the land and the building are incompatible, it is possible to

raise the building up or down to make it fit. In Figure 2.7, the TIC indicating the exact

location of the intersection of the building and the land can be seen [21]. Figure 2.6 shows

how TIC should be modeled according to the CityGML standard.

Figure 2.6 Examples of representations of ground surfaces .

13

Figure 2.7 Example of the Terrain Intersection Curve represented as a black line [22].

2.3 3D City Model Reconstruction

3D city models can be generated manually, semi-automatically or fully-automatically.

In manual reconstruction, buildings are usually measured by photogrammetry operators

using stereo photography. In semi-automatic process, some parts of the reconstruction are

done by the users while the software does the rest. In fully-automatic reconstruction,

software does all the job without any manual intervention [28, 29].

3D city model reconstruction can be performed from different data resources such as

LiDAR point clouds [30], airborne images [31, 32], satellite images [33, 34], UAV images

or combination of DSM data with cadastral maps [35]. The building reconstruction mainly

can be done in three process steps: building detection, extraction, and reconstruction [36].

The reconstruction of the buildings is a process for generating a model using features

obtained from building detection and extraction. With the use of photogrammetric methods,

building rooftops can be measured manually from stereo pairs or extracted by edge detection

methods with their radiometric characteristics and or classification methods can be applied.

They can be also extracted from point clouds generated from photogrammetric image

matching methods [37] or LiDAR sensors.

14

The accuracy of 3D city models relies on the resolution and the source data density. In

the photogrammetric procedure, GSD (ground sampling distance) is the most important

factor in reconstructing building geometries and identifying roof structures. Kocaman et al.

[33] extracted 3D city models from DSMs generated from IKONOS (1 m GSD) and

QuickBird (0.7 m GSD) satellite images. They have investigated the precise orientation and

radiometric characteristics of the images. Reconstruction of 3D city model is done by

CyberCity Modeler software. They concluded that building models with the main roof

structure can be successfully extracted by very high-resolution satellite images.

Yi et al. [38] presented a novel method for automated reconstruction of volumetric

design and shapes of the buildings from point clouds acquired with LiDAR. When large-

scale LiDAR data from a group of urban units are considered, they took benefit from the

"divide and conquer" strategy to break down all point clouds into several sub-clusters, each

corresponding to a single building. For each building in the city model, a separate vertical

straight line is produced and the corresponding points are separated into blocks by examining

the distribution of building properties in this straight line. Next, they proposed a novel

algorithm, Spectral Residual Clustering (SRC), to extract the primitive elements within the

contours of blocks from the sectional point set, which is formed by registering the series of

consecutive slicing points. Subsequently, they detect the geometric constraints among

primitive elements through the individual fitting and perform constrained fitting overall

primitive elements to obtain the accurate contour. On this basis, they execute 3D modeling

operations, like extrusion, lofting or sweeping, to generate the 3D models of blocks. The

final accurate 3D models are generated by applying the union Boolean operations over the

block models. Figure 2.8 shows a schematic representation of this workflow.

Figure 2.8 Reconstruction method given by Yi et al. [26], which essentially proceeds as block partition,

contour extraction, and building modeling.

15

The most widely used method for reconstructing 3D cities is combining different data

resources. Haala et al. [39] combined laser altimetry data with multispectral imagery for

building, tree and green area extraction while in obtaining the generation of the building

geometry, LiDAR point cloud and cadastral maps are used. Another combination was

applied by Suveg et al. [29], where aerial images were analyzed with help of large scale 2D

GIS data.

According to Dorninger et al. [40], reconstruction methods of the city models can be

divided into two different categories: model-driven methods and data-driven methods. The

aim of the model-driven method is to match the DSM generated roof geometry with the roof

types that it has in its library [30]. In data-driven methods, the algorithm tries to reconstruct

a complex building with the aid of different complex operations. They try to reconstruct

buildings by using the DSM as main data source and try to analyze it as a whole without

associating it to any set of parameters [41].

2.3.1 Model-driven Methods

Model-driven methods try to match the roof types in its library with the DSM and

reconstruct the building using the best-matched roof type. This means that some preliminary

assumptions made on the roof require that only some predefined parameters be calculated.

[41]. This algorithm proposed the given study shows the best result with low resolution

DSMs or sparse point clouds. This method also guarantees that the reconstructed roof model

is topologically correct, problems may occur if the roof shapes don’t have any match in the

roof library [40]. Huang et al. [42] have listed standard roof shapes such as flat, gabled and

hipped roofs. A sample library is given in Figure 2.9

Figure 2.9 BuildingReconstruction 2018 software roof library

16

 Brenner et al. [43] used building footprints as a limitation for the reconstruct area of

the buildings. It should be noted that, depending on the building and the object to be

modeled, the footprints represent the entire building area, not just the roof area. They

assumed that each building is the result of the combination of different surfaces, and that

each object can be modeled with the help of these surfaces. Building parts have an important

role in modeling buildings with complex geometry. They are disassembled into smaller

objects, then these smaller objects are modeled using primitives [41]. Algorithms in model-

driven methods try to find the areas to compare with models and decide the model that will

be used for each case. The recognition step gives a number of approximate positions for each

approach, then adjusts these approaches to the data. The number of parameters to work

depends on the complexity of the primitives that are used in the transformations in the

matching process [44].

 Huang et al. [45] reconstruct buildings without footprint data. Building footprints are

generated from LiDAR point cloud data. Primitives that matches with the building are

extracted and merged to reconstruct building geometry. Talandier et al. [46] reconstruct

buildings without partitioning building footprints. A uniform eaves elevation is generated

and an inclined angle is retrieved for each edge. If the sloping ceiling segment does not pass

through the footprint edge, a gabled roof is assumed. According to Tarsha-Kurdi et al. [41],

parameters used in model-driven methods can be classified into two types: building footprint

and building space. Building footprint defines the location, alignment and the properties

along with the façade equations. The building space defines the roof plane equations.

The model-driven methods have several advantages over data-driven methods. The

reconstructed model will always be geometrically correct without any gaps, overlapping

segments or visual deformations. As the parameter calculation for models does not require

computational power, the reconstruction speed is faster compared to data-driven methods.

But the main disadvantage of the model-driven methods is the shape of the roof is limited to

a pre-defined library of roof types to compare DSM with it [41].

2.3.2 Data-driven Methods

Data-driven methods do not require any pre-defined roof library. In this approach, the

algorithm reconstructs the buildings directly from given DSMs. Buildings and roof parts are

reconstructed with different algorithms. The main problem with the data-driven method is

17

that they may cause topological or geometrical errors, such as intersecting different segments

with each other without a gap [40]. This method analyzes DSM as a single block without

connecting it with any parameter sets and reconstructs buildings DSM as prime data source.

The biggest advantage of this method is that there are no limitations on the roof shapes like

in the model-driven methods [41]. There are a couple of different approaches for segmenting

a DSM into planar regions [47].

Segmentation can be divided into two sub-methods according to the techniques that they

describe homogenous areas: edge-based and surface based. Edge-based methods relies on

detecting edges and borders, then segment the points inside this area using these detected

shapes. Surface-based methods use local geometry as a sign of similarity for points. Building

geometry is generated from newly merged region, which is done by merging surface

characteristics and points with same spatial characteristics [47].

According to Elberink [48], the workflow for data-driven methods can be expressed in

5 different sections: data acquisition, segmentation, building detection, feature extraction

and 3D reconstruction. The most widely used approaches for data-driven methods are

segmentation, RANSAC, Hough transform, and clustering. Figure 2.10 shows examples to

segmentation results from aerial image datasets.

Figure 2.10 Segmented roofs: Aerial photo (left), point cloud sorted by height (middle) and point cloud

segmented (right) Fan et al. [49]

18

The Random Sample Consensus (RANSAC) approach finds the optimal plane for a

given point cloud. It uses a point in the dataset randomly and repeatedly to determine the

model's parameters. The generated parameters are then tested on the entire dataset. This

process proceeds until the number of points that matches with the parameters reaches the

intended threshold number. If the criterion cannot be met, a new set of parameters are

determined with the new data set. This determination should be done in a recursive fashion,

because only one set of parameters is tested in one round [41, 47].

The Hough transformation algorithm is a method that all patterns passing through each

property point are voted. In this case, the pattern with the highest vote is regarded as the

correct one. This method is sensitive to noise and discontinuities in patterns. These patterns

can be for example straight lines, circles or ellipses [50].

Clustering algorithms can be used to group planes according to their normal vectors and

to find planar segments such as image segmentation algorithms. Liu and Xiong [51] use the

cell average shift by adopting the average shift algorithm. Sampath and Shan [47] perceive

roof sections with fuzzy k. Using a potential-based approach, the number of clusters has

been determined to be improved. A disadvantage of the orientation-based clusters is that

different roof sections with the same orientation cannot be separated. This can be solved in

the next splitting step. Another option is to add the points (x, y, z) to the feature vector. The

disadvantage in this method is that large roof sections can be segmented due to large

differences in the locations of the points. The general advantage of clustering methods is that

each data point can be set simultaneously to the cluster to which it belongs. For this reason,

clustering algorithms can be made parallel, which makes them very efficient.Due to the

increased point density of laser scanners, data-driven methods can be assumed to generate

more accurate and robust models. It shows that the smaller details of this roof can be modeled

and that geometric parts belonging to the building can be produced more accurately [48].

The most important problems of data-driven method are the possibility of producing

deformed models and long reconstruction periods.Tarsha-Kurdi et al. [41] list some causes

of possible deformations by using data-driven methods based on the following:

- Generally, modeling is based on the assumption that a structure consists of planes and

lines. This is usually not true from a mathematical perspective, and for this reason, the

equations for planes are only approximate values.

19

- Errors in point clouds can cause problems. These errors may be due to errors in position

or accuracy. Different artifacts and multi-way reflections are possible sources of error.

- The unevenly distributed point cloud can cause deformations in certain parts of the

building during production.

- There is a direct relationship between the density of the point cloud and the possible

deformations in the modeling phase. A more dense point cloud causes less deformation,

while a less frequent point cloud causes more deformation.

- Interpolation of the point cloud may cause some effects on the model. It may allow the

building façade to be lifted from the center to get a regular spot grid and correct some

mistakes. If the sampling range for grid cells is very different from the point density, or there

is free space in the point cloud, it can cause undesirable effects.

- The noise and small roof details found in the point cloud make the segmentation

process difficult.

2.4 Digital Surface Model Generation

Generation of dense point clouds to model earth surface has become easier with the

development of new sensors and processing methods. There are many methods used in the

production of digital surface models (DSMs) from airborne and satellite platforms [52].

Matching of stereo satellite [53] and aerial imagery, DSM and DTM generation from

airborne LiDAR data [54] are the most commonly used approaches for this purpose. 3D

building reconstruction studies are often performed with LiDAR point clouds due to quick

acquisition of the DSM from the pulse of the light and high positional accuracy [53]. In

addition, algorithms for aerial and satellite image matching have been improved and can

produce better results [29, 33, 34, 54].

According to Şengül [6], there are two basic approaches for obtaining spatial

information about the city. The first one is to take a photo with a digital camera. The

advantage of this approach is that it is a low-cost method compared to other methods. On

the other hand, photographs should be taken from every aspect of the building, but it is

sometimes difficult to take photos due to security and privacy issues [7]. The other

disadvantage of the method is that it takes more time to find the correct model in photo

matching. Users also need to manage a large number of image files as you need to take a

20

few photos with all the heights of each building. Besides, it is difficult to match two images

of the same building from different flight columns due to shadows. The texture of buildings

extracted from the same image is not necessary to correct the color balance of the image, but

it is more costly than taking terrestrial photographs. In addition, it is necessary to adjust the

flight plan and internal and external steering parameters in case of the wind.

The second approach is extracting information from LiDAR point clouds. LiDAR point

clouds are automatically produced with high quality, accuracy, and density.

Photogrammetric point clouds or DSM provide geometric information in contrast to LiDAR

data containing multi-echo beats or density information. Nex et al. [8] claim that image

matching can generate denser point cloud than LiDAR data. The density of the point cloud

produced from optical imagery mainly depends on the ground resolution, the image

matching algorithm, image quality, and the surface characteristics (mainly texture). Under

optimal conditions, matching at pixel interval, i.e. at Ground Sampling Distance level, is

possible and results in 100 points per square meter with a GSD of one centimeter. A typical

LiDAR flight for city modeling applications provide data in the order of 15 – 20 points per

square meter.” Oude Elberink et al. [54] argues that the extraction of a higher number object

points allows the modeling of discontinuities, such as building structures, which allows a

better way for the geometric modeling.

Rothermel et al. [55] generated dense and accurate digital surface model from multi-

view stereo images using the Semi-Global Matching (SGM) [56] method. Then, a fusion

step is performed to merge redundant depth estimations across single stereo models. They

presented an adaptive structure for the SGM method in which matching results of low-

resolution pyramids are used to limit disparity search ranges for high-resolution pyramids.

DSMs, which are generated from stereo aerial imagery using mage matching methods,

can be an alternative for LiDAR point clouds. The main obstacles of DSM generation from

stereo aerial imagery are caused by image radiometric differences, congestion, shadows,

radiometric problems such as blurriness/noise and some missing parts in point clouds due to

acquisition methods [53]. Building geometries can be reconstructed using DSM generated

with image matching from stereo aerial imagery [39]. Some 3D model reconstruction

algorithms can extract the roof geometries. These rods can be seen in aerial images and

satellite imagery.

21

2.5 The Role of Automatic Texturing in 3D City Modeling

One of the main criteria for 3D city model production is to create models that are close

to reality both in geometry and also appearance (visual fidelity). Textures obtained from

optical images are used for providing visually correct models quickly and economically.

There are also cases where untextured building models are in use, however, 3D city models

should be textured where the visualization is your front planer and the user needs to have an

idea of the area at first sight. Regardless the level of detail in their geometries, untextured

3D city models will always be visually incomplete.

With the development of aerial photogrammetric systems equipped with nadir and

oblique camera systems, automatic texturing of 3D city models became quite possible

(Figure 2.11). Nadir cameras are the most ideal for texturing roofs of the buildings whereas

the oblique cameras are better at texturing the building façades. Similarly, for automatic

texturing of 3D city models, the best strategy is to select the rooftop textures from the nadir

images and building façades from the oblique images. The view of the façades can be

obtained clearly with this approach and the spatial resolution would also be higher. One can

get a closer to the street level while looking at the 3D city model. Similar to the nadir image

acquisition, the season and the time of the flight would affect the radiometric quality of the

oblique images.

Figure 2.11 Different image acquisition methods and angles for texturing city models

Frueh et al. [57] have used an approach in their related work which combines 3d city

model obtained from aerial and ground-based laser scans with oblique aerial imagery for

texture mapping. They have proposed methods for texturing an existing 3D city model with

multiple airborne images at oblique angles captured both façades and rooftops.

22

Images have been automatically registered by matching 2D image lines with projections

of 3D lines from the city model. Then, for each model triangle that is modeled, the best

image has been selected, by taking occlusion, image resolution, surface normal orientation,

and consistency with neighboring triangles into account. Finally, the texture patches used in

all images are combined into a single texture atlas for compact presentation and efficient

image creation.

Früh and Zakhor [58] presented a method that merges ground-based and airborne laser

scans and images. Additional terrestrial data used in the method naturally leads to more

detailed models but also increases the size of the datasets considerably. A more efficient

technique to model the façades is to extract textures from terrestrial images and locate them

on the polygonal models. This process is done in a manual fashion, however, texturing of a

single building is a tedious task and can easily take up to several hours. For a large number

of building façades, such an approach is not efficient and usually not applicable.

Kada et al. [59] presented a new approach that automatically extracts façade textures

from terrestrial photographs and maps them to geo-referenced 3D building models (Figure

2.12). They realized texture mapping using a programmable graphics processing unit. In

contrast to the application of standard viewers, this technique allows to model even complex

geometric effects like self-occlusion or lens distortion. This allows for a very fast and

flexible on-the-fly generation of façade texture using real-world imagery.

Figure 2.12 Assignment of linear features between image and 3D model Kada et al [59].

23

2.6 Visualization of 3D City Models

 Nowadays, 3D city models are mostly used for visualization purposes. However,

their applications areas are increasing continuously and they are being employed for various

tasks beyond visualization. Capabilities of 3D city models are improving faster when

compared to 2D models [60]. An example to a virtual city model based on Unity game engine

is given in Figure 2.13. These capabilities can also be improved with different visualization

methods. CityGML is an exchange and definition format, rather than a visualization format.

They can be viewed on CityGML viewers like FME Inspector, but visualizing CityGML

dataset requires some post-processing and conversion to other formats. They can be

visualized on virtual web globes, smartphones or tablets [61] or even in game engines like

Unity for exploring them with Virtual Reality [62]. With the recent technological

developments in computer graphics and web, visualizing geospatial data on web browsers

has become more common. The biggest advantage of using web browsers is that they can be

accessed everywhere without any additional software requirements. The reason for using a

Virtual Globe is to allow the users to visualize and navigate the world in 3D [63].

Figure 2.13 Vienna virtual city model based on Unity game engine – UVM Systems [64]

Some of the visualization cases can be listed as following: e.g. web-based visualization

[65-68], volunteered geographic information [69-71], energy modeling [72, 73],gaming

[74], navigation [75], forest simulation [76], augmented reality [77], real estate [78], crime

mapping [79], flight simulators [80], air quality data [81] and tsunami analysis [82].

24

3. MATERIALS AND METHODS

3.1 Study Area and Dataset

Izmir is the largest metropolitan city in Turkey’s Aegean Region. Çeşme is a coastal

town located 85 km west of Izmir and also very popular holiday resort with several historical

sites. It is believed that Çeşme, which is known as Cyssus in antiquity, is now called

"fountains" from which marines supply water.

The Çeşme Castle is located in the center of the Çeşme town, which was built in 1508.

It was originally a seaside castle, but because of the alluvial deposits, it is currently slightly

inland. A large majority of the structures in the Çeşme area are in Aegean architecture style.

The Aegean architecture includes wood and tile, the exterior surfaces of the structures have

embroidery motifs. Most of the buildings are located on the coastline and are usually at low

altitude. The highest building in Çeşme is a hotel which has a height of approximately 45

meters. An overview of the study area is given in Figure 3.1

Figure 3.1. Overall view of the study area from Google Earth.

The study area covers the whole Çeşme region with a size of 260 km². Within the

project, a total of 4468 aerial photos have been taken in May 2016 with %80 forward overlap

and %60 lateral overlap using UltraCam Falcon large-format digital camera from Vexcel

Imaging [83]. The photos have been taken from an average altitude of 1500 meters from

mean sea level and have an average GSD of 8 cm and a footprint of 140 m x 90 m, forming

a total of 7 sub-blocks of the whole area. Figure 3.2 shows the level of detail in the images

and the ground signalization of one control point, which was established prior to the flight.

25

Figure 3.2 Level of detail in one image (left) and the ground signalization of one GCP (right).

306 Ground Control Points (GCPs) has been established prior to the flight with an

interval of 1.5 km inside of every block. The block configuration is provided in Figure 3.3

Orthometric heights have been measured by leveling method and planimetric coordinates

have been measured using Global Navigation Satellite System (GNSS) devices. The GCPs

have been used in the photogrammetric bundle block adjustment.

Figure 3.3 Aerial photogrammetric image block (left) and the ground control point distribution (right)

over the study area in Çeşme, Izmir.

Manual feature extraction for base map production from stereo aerial images has been

done by photogrammetry operators. Building footprints have been drawn from the outline

of the roofs. Contour lines (1m, 2m, 5m, 10m) and breaklines have been mesured along with

generated photogrammetric height points, which have later been converted to TIN

(triangular irregular network) and used for generating the Digital Terrain Model (DTM).

Lastly, orthophotos with 10 cm pixel size have been generated for the whole project area.

26

3.2 Hardware and Software

A portable personal computer (Dell 7577) has been used to process the data and implement

the model. The hardware specifications is given in Table 3.1 A set of software and tools

has been used for the processing, modeling, and visualization on the web. A complete list

is provided in Table 3.2.

Operating System Windows 10

CPU Intel Core i7-7700HQ @ 2.8GHz

Memory 32 GB DDR4 2400MHz

Storage 256GB SSD + 1 TB HDD

Graphics Card Nvidia GeForce GTX1060 6GB

Table 3.1 Hardware specifications of the portable personal computer used in the study.

Software Package Purpose of Use

3DCityDB Importer / Exporter [84] Converting CityGML to KML/COLLADA/glTF

Adobe Photoshop CC 2017 [85] Radiometric pre-processing of aerial photos

Agisoft Photoscan Pro [86] Point cloud and raster DSM generation

ArcGIS 10.2.2 [87] Data visualization and editing

Bentley Microstation [88] Editing and transforming basemaps

BuildingReconstruction 2018 [89] Reconstructing buildings in CityGML format

CesiumJS 1.45 [90] Visualization and development for web interface

Cesium Terrain Builder [91] Terrain visualization for use in CesiumJS

CityGRID Builder [92] Visualization on Unity game engine for VR

CityGRID Texturizer [93] Automatic texturing buildings from aerial photos

FME 2018.0 [94] Data conversation and manipulation

Google Earth Pro [95] Visualizing 3D city model with KML format

Microsoft Visual Studio 2017 [96] Compiling Cesium Terrain Builder C++ library

PostgreSQL with PostGIS [97] Importing textured CityGML into the database

Sublime Text 3 [98] JavaScript development for CesiumJS

QGIS 3.0.2 [99] Data visualization and editing

Quick Terrain Reader [100] DTM, DSM, and Point cloud visualization

XAMPP [101] Local Apache HTTP serving for the web interface

Table 3.2 List of the software used in the study.

27

3.3 Model Generation Workflow

After the photogrammetric processing, (i.e. GCP signalization on the ground, image

acquisition and triangulation, manual feature extraction for basemap production), the

buildings have been reconstructed automatically using this dataset. All of the features and

building footprints extracted manually in Bentley Microstation [88] have been converted

into ESRI Shapefile with FME software [94]. The DSM is generated with Agisoft Photoscan

Pro [86] with a 30cm resolution for the whole project area. All contour lines, breaklines, and

photogrammetric height points have been manually measured in Bentley Microstation [88]

are triangulated, then converted into single raster digital terrain model with FME software.

The buildings are reconstructed using BuildingReconstruction software from VirtualCity

Systems GmbH [89] and the generated models have been converted into CityGML format

as output. The texturing has been done automatically using the CityGRID Texturizer

software from UVM Systems [64]. At last, the model has been integrated with the DTM and

visualized on the web using open source CesiumJS library [90] and Unity game engine. 3D

spatial queries have been added to the system by modifying the libraries of Cesium. The

overall workflow of the study is provided in Figure 3.4.

Figure 3.4 The overall workflow of the methodology.

28

4. IMPLEMENTATION OF THE 3D CITY MODEL

4.1 Photogrammetric Triangulation

 Exterior orientation parameters have been measured during the photogrammetric

flight mission using GNSS (Global Navigation Satellite System) antenna and INS (Inertial

Navigation System) and used in the photogrammetric triangulation process as weighted

observations. The selection and measurement of the intial tie points in strip and cross-strip

directions have been done manually by operators, and further tie points have been measured

automatically with Intergraph Z / I Automatic Triangulation module. Thus, the degree of

freedom in the bundle block adjustment has been increased. The measured image

coordinates are adjusted by the Intergraph Z / I Automatic Triangulation module with self-

calibration. Blunders have automatically been removed by statistical checks during the

adjustment. Additional parameters have been included to model systematic errors such as

atmospheric refraction, Earth curvature, and and camera distortion parameters during the

adjustment.

 The project area has been splitted into seven sub-blocks for process optimization.

The number of images in each block, the number and properties of the GCPs, size of the

block area and the accuracy measures (sigma naught of the adjustment and the standard

deviations of GCPs in image space) are shown in Table 4.1.

Table 4.1 Photogrammetric block properties and triangulation results

Sub-block

no

No. Of

images

Number and features of GCPs Sigma

Naught

(microns)

GCP image

x

(microns)

GCP image

y

(microns) Full (XYZ)
Planimetric

(XY)
Height (Z)

1 424 34 - - 1.9 1.3 1.0

2 661 51 - 1 1.7 1.1 0.8

3 287 22 - - 1.5 0.9 0.7

4 745 55 3 - 1.6 1.0 0.8

5 751 61 - - 1.8 1.1 0.9

6 807 62 - 1 1.2 1.0 0.8

7 793 61 - 1 1.4 0.8 0.7

29

4.2 Building Footprint and Attribute Generation from Basemaps

Although aerial photographs contain almost all visible information related to the

surface of the project area, they cannot be compared to traditional vector maps before they

are interpreted by humans or computers. Any good map user can hardly understand and

interpret aerial photographs directy and image interpretation for map production is still an

expert task. A vector map is an abstraction of selected details of the scene/project area. Figure

4.1 shows an overlay of an aerial orthoimage and manually extracted features stored as

vectors. A vector map involves points, lines and polygons and stored in files or databases.

In addition, maps contain symbols and text for as further information. Interpretation,

analysis, implementation, and use of vector map information is easier than orthophotos. All

vector detail and attribute information in vector maps are gathered by models from the stereo

analysis so that they are clearer, understandable and interpretable. Interpretation of

orthophoto images, application to the land and identification of the details on it requires

special knowledge, experience, and expertise.

Figure 4.1 Manual feature extraction from stereo aerial images

Terrain elevation information is also produced during the processing of aerial photos,

and contour lines, DTM grid points, break-lines and steep slopes are measured manually and

semi-automatically. Features showing the terrain characteristics, such as creeks, ridges, etc.,

are also collected and stored as vector datasets.

30

As the next step, orthoimage mosaics are produced using the DTM grid points

integrated with the contour lines and terrain characteristic features.

BuildingReconstruction software, which is used for 3D city model generation in this

study, requires building footprints and attributes as input in ESRI Shapefile (.shp) format. In

Turkey, basemaps produced in aerial photogrammetric projects are stored in CAD

(Computer Aided Design) formats as standard and every project generally contains more

than 200 layers. The data and information stored in these layers are usually adequate for

extracting the building footprints and a few types of attributes. The building footprints can

be considered as roof boundaries since it is usually not possible to see the building footprints

on the ground in aerial images. The buildings are collected and stored in different CAD

layers such as residential, commercial, public, school, etc. according to their use types. In

addition to the buildings, other structures such as sundries, lighting poles or roads are also

measured by operators.

In BuildingReconstruction software, it is required to store the building geometries and

attributes in a single ESRI Shapefile. These geometries and attributes will later be converted

into CityGML format while exporting the building geometry after the reconstruction is

completed. The attributes can be used to implement queries on the reconstructed city model.

But Microstation design files are just vector data and don’t have any attribute information.

While converting this data into shapefile, also some attributes about the buildings were

generated using transformers of the FME software (Figure 4.2).

Figure 4.2 FME workbench for generating attributes and converting DGN file into Shapefile.

31

The number of the building floors is located inside the building area and saved as text

in a different layer. The "SpatialFilter" transformer of FME is used to transform these

numbers into attribute information of buildings. The “SpatialFilter” transformer compares

two sets of features to see if their spatial relationships meet the selected test conditions.

Every Candidate feature enters a spatial test that is specified by user. If the feature passes

the given test, they output through "Passed" port while other features outputs through

"Failed" port. A number of floors” attribute given as “Filter”, building footprints given as

“Candidate”, and “Spatial Predicates to Test” value assigned as “Filter is Within Candidate”

to the transformer. So if a number (text) is located inside a polygon, it is assigned as attribute

to that polygon (i.e. building).

The BuildingReconstruction software expects each building to have a unique ID number

in the selected attribute column. While it can be done manually for small areas, it is almost

impossible to assign IDs to thousands of buildings manually. For this reason, the unique ID

is automatically assigned to each building footprint "Counter" transformer of FME. This

transformer generates a unique numeric attribute for the feature. This transformer is useful

for assigning unique, numeric ID number to a set of features. It can also be used to count

number of features or fast attribute generation for given data. The unique ID for each

building is written in the attribute table of the generated shapefile file.

“CenterPointExtractor” transformer calculates the 3D coordinates of the feature's

selected point and gives as an output. This point can be either in the center of the feature's

bounding box, some random place in bounding box or at the center of mass. Using this

transformer, center coordinates of building footprints are extracted and written as three

separate attributes to the shapefile.

“AttributeReprojector” reprojects coordinates stored as attributes from one coordinate

system to another and the X and Y (Easting and Northing) coordinates of the building

footprints have been reprojected to geographical coordinate system on WGS84 datum and

saved as two new attributes named “Latitude” and “Longitude”. These attributes have later

been used in the web interface for displaying the buildings in Google StreetMap.While

producing the basemaps, every type of structure is stored in a different layer with a specific

name. Thus, the layer names from which the buildings collected and converted has been

added as attribute information to that building.

32

As a last step, all building footprints have been converted to ESRI Shapefile format with

8 attributes and become ready to be input to the BuildingReconstruction software. A part of

the project area with all CAD layers and the building footprints extracted thereof are given

in Figure 4.3.

Figure 4.3 A part of the basemap with all CAD layers (left) and the building footprints exracted from it

(right).

Figure 4.4 Attribute table of the generated building footprints

4.3 Digital Terrain Model (DTM) Generation

DTMs are 3D representations of the terrain elevations found on the bare earth’s surface.

They are usually generated from data collected by airborne LiDAR, photogrammetry, SAR

Interferometry methods or extracted from existing vector data such as contour lines and

breaklines. DTMs are becoming important base data for a great number of applications in

many engineering fields.

In this work, the DTMs are required to make sure that buildings are located correctly on

the terrain, not under or above of it. It is also used to calculate the base height of a building

from the terrain. The resolution requirements for the DTMs are substantially lower than

DSMs in the methodology proposed here. A grid resolution between 1 m and 5 m is usually

33

sufficient. The general recommendation from the BuildingReconstruction software is to use

a grid interval of 1 meters. The BuildingReconstruction software works best with the tile-

based raster data since raw LiDAR data can be very massive, and it is recommended by the

software vendors to create grid DTMs from LiDAR data and store them in ESRI ASCII Grid

Format. Figure 4.5 shows an overview of the manually extracted elevation data and a

zoomed view of it.

Figure 4.5 General view of the manually extracted elevation data (left) and close view (right).

Within the photogrammetric flight project, contour lines with different intervals (i.e.

1m, 2m, 5m, 10m), breaklines and grid DTM points have been manually measured using

Bentley MicroStation [88] software by photogrammetry operators. More than 1.2 million

height points, thousands of contour lines and break lines merged into one single file at the

data preparation stage for building reconstruction, and converted into a single 1-meter

resolution raster DTM using FME 2018 software. The software has a translator called

“RasterDEMGenerator” which takes contour lines, break lines and points as input and

constructs TIN with Delaunay approach, then converts TIN into intented raster formats.

A grid DTM is then interpolated from the TIN and stored in raster format. The output

data resolution is specified by “Output DEM Cell Spacing” parameter, then the software

produces a single raster file consist of equidistant, 3D height points arranged in the grid

structure. For this project, a single DTM file covering the whole project area (260 km2) with

1-meter resolution is generated using FME 2018. The FME workbench for raster DTM

generation is depicted in Figure 4.6.

34

Figure 4.6 FME workbench for raster DTM generation

One of the important point while generating DTM is checking the parameter “No data

Values”. All output raster cells that are not calculated while generating terrain model will be

assigned the value of this parameter. If this parameter left blank it is interpreted as NaN (Not

a Number), otherwise, these values will be assigned to given value. After fixing null values,

generated raster DTM has become ready to be input for BuildingReconstruction software

and for visualizing on the web. Figure 4.7 shows the DTM with and without null values.

Figure 4.7 DTM with null values (left) and null values fixed (right)

35

4.4 Digital Surface Model (DSM) Generation

For the DSM generation, a number of different software has been investigated to obtain

an optimum balance between the DSM quality and production speed. Taking these two

parameters into consideration, a high-resolution DSM was generated using Agisoft

Photoscan Pro [86]. The most important reason for choosing this software is that it allows

parallel processing by allowing GPU usage along with the CPU during the DSM generation.

Using the GPU at the process led to a dramatic drop in the processing time and let the total

time needed to produce the DSM to become one hour on the personal computer specified in

Table 3.1. Another reason for choosing the Agisoft Photoscan Pro software was its ability to

export point clouds and textured mesh models in Cesium 3D Tiles format directly, which

was later used to visualize the data in 3D on the web without the need for a format

conversion.The DSM of the project area has been generated in 7 sub-blocks as these blocks

have already been formed for the triangulation. These sub-blocks are depicted in Figure 4.8.

Since the BuildingReconstruction can reconstruct a maximum of a couple of thousand

buildings in a single process, the larger blocks have again been divided into more sub-blocks

to decrease the processing area and time. While generating DSMs for the sub-block parts,

stereo aerial photographs along with adjusted exterior orientation parameters and GCP

coordinates were used for acquiring best result at reconstruction and georeferencing.

Figure 4.8 Photogrammetric blocks generated for the area

36

Camera interior orientation parameters have been used as input in the software for

camera calibration. Aerial images and the GCPs in the project area have also been added to

the project. While selecting the aerial photographs in every sub-block part, it has been taken

consideration that buildings near the outer boundary of the project area should be visible at

least 6 or more photographs for better reconstruction. To achieve this, image footprints have

been used to create a buffer zone at the outer boundary of the production area. Also when

choosing GCPs in every sub-block part, it has been taken care that every GCP appears in 6

or more photographs for better georeferencing.

For the DSM production in Agisoft Photoscan, the GPU usage has been activated from

the Software Settings. Photos of the project area have later been imported into the software.

A text file containing adjusted exterior orientation parameters of all photos must be prepared

before starting the process. These parameters have been imported into the software with

respective reference coordinate system. While importing the parameters, the type of the units

(yaw-pitch-roll or omega-phi-kappa) or units (degree – grad) should be noted. Finally, GCPs

adjusted ground coordinates have been imported and the accuracy of these parameters have

been specified using the software GUI before starting the DSM generation.

At “Align Photos” stage, the software matches tie points between stereo images and

estimates camera location for every photo, then generates sparse point cloud. Within this

study, “Highest” accuracy has been selected for aligning the photos (i.e. tie point generation),

which takes a longer time to process but gives more accurate camera positions. After this

process is completed, ground control points have been measured on photos. Using GCPs

together with the exterior orientation parameters leads better reconstruction results and

precise georeferencing of images. After measuring all GCPs on the images, we can start

“Dense cloud” generation process. Based on the established camera orientations, the

software generates a dense point cloud (i.e. DSM). Figure 4.9 depicts the tie points and the

dense point cloud generated in one part.

Figure 4.9 Generated Tie points (left) and dense point cloud (right)

37

Dense point clouds in Agisoft Photoscan can be generated in 5 different resolutions such

as 1px, 2px, 4px, 8px and 16 px. Higher quality requires more hardware resources and have

longer processing times. Lower quality has lower processing times and requires less

computational resources. A DSM with a resolution of 25cm is sufficient for the

BuildingReconstruction software to generate building models with optimum accuracy.

Therefore, the DSM production has been performed at a resolution of 4 pixels (30cm)

considering both production speed and accuracy criteria. After the dense cloud has been

reconstructed, it has been converted into TIN and grid DSMs.

The software allows users to generate and visualize both point cloud and raster DSMs.

A raster DSM is a grid-based representation of point cloud surface model with height values.

They can be generated from different sources such as dense cloud, sparse cloud or mesh

model. The accuracy of the DSMs increase with the point cloud density. The DSM density

is specified with the pixel size parameter. The grid DSMs can be stored in different formats

such as GeoTIFF or ESRI Grid format. The optimal results with the BuildingReconstruction

software are achieved with a DSM between 25cm and 50cm resolution for LoD2 buildings.

Considering this fact, the DSMs have been generated at a resolution of 30cm which covers

the whole project area. These DSMs have afterwards been clipped according to the bounding

box of the production area and converted into ESRI ASCII Grid format for being input to

the BuildingReconstruction software. An overview and a zoomed view of the generated

DSMs from one part is shown in Figure 4.10.

Figure 4.10 An overview (left) and a close view (right) of the generated DSM.

38

4.5 Automated Building Reconstruction

In this study, BuildingReconstruction 2018 software has been used for automatic

reconstruction of buildings for generation of 3D city model in CityGML format. The

BuildingReconstruction 2018 software can reconstruct CityGML-based 3D city models

from raw GIS data. It enables automatic generation and manual editing of building models

in LoD1 and LoD2. BuildingReconstruction reconstruct 3D building models in city scale

efficiently based on DSMs generated from different sources such as LiDAR or

photogrammetry, existing DTMs, and building footprints. The main advantage of this

method is automatic reconstruction of the 3D city models along with the rich semantic

information and thematic attributes of the buildings. BuildingReconstruction 2018 software

works best with tile-based input files. If an entire region is required to be reconstructed, users

should generate tiles with 1 km² or smaller sizes with the footprint data, laser data and

orthophotos. The general workflow of the BuildingReconstruction software is given in

Figure 4.11.

Figure 4.11 BuildingReconstruction 2018 software workflow [89].

39

The 3D building geometries are reconstructed automatically in CityGML LoD1 or

LoD2. A model-driven approach was used in BuildingReconstruction software to detect and

reconstruct the general roof geometry and roof type using a roof library containing 32 types

of roof geometry popularly used in urban areas around the world. For every given polygon

in input footprint shapefile, a discrete 3D building geometry is reconstructed. This

reconstructed building's geometry is ensured to be fully closed without any holes or gaps

between surfaces, and also be fully compatible with given building footprint. Along with the

automated reconstruction, the software offers an interactive editor. Manual editing on the

building geometries can be done using this tool. The city model can be exported in two

different formats: CityGML and ESRI Shapefile. Both of these formats can store semantic

information about buildings. In addition to the building models, BuildingReconstruction

allows adding attributes by enriching the semantic data and by calculating different building

properties such as building height, roof type, roof slope which can be used in analysis

processes. In Figure 4.12, two screenshots from the GUI of BuildingReconstruction 2018

software for project configuration are given. Figure 4.13 shows further views from the

software GUI.

Figure 4.12 BuildingReconstruction 2018 project configuration wizard

BuildingReconstruction 2018 achieves optimal results from DSMs with grid intervals

between 25 cm and 50 cm (16 ppm and 4 ppm). 4ppm/ 50cm data is generally sufficient to

fulfill all requirements for LoD2. With a data density of 16ppm/ 25cm, the optimal result

can be achieved with the reconstruction algorithms (with a minimally slower automatic

reconstruction process). Working with a higher data density in BuildingReconstruction 2018

40

does not yield any further improvements in the automatic result, but it does adversely affect

the overall performance of the software.

Figure 4.13 BuildingReconstruction graphical user interface

The required input data for the BuildingReconstruction software are as follows:

 Digital Surface Model (DSM) with between 25-50 cm resolution as ASCII

Grid or XYZ Point Cloud

 Digital Terrain Model with 1-meter resolution as ASCII Grid or XYZ Point

Cloud

 2D building footprints with intended attributes (polygon with a unique ID)

 Digital Orthophoto for visual control with minimum 40cm resolution

Figure 4.14 shows screenshots of one DSM and one DTM from the project area. The

DSMs are used to determine roof shape and the properties of the roof, whereas the DTMs

are used to calculate the height and the ground surface of the building. Footprints are used

to define the areas in which the reconstruction is performed, and they are used to determine

the geometric structures of the walls in the building model. The software also supports

processing without a DTM and if no terrain model available, the base height of a building is

determined from a buffer in which the lowest point around a building is determined. But this

only works in areas where building density is low. For areas which have high building

density, the terrain points are often insufficient to calculate the DTM.

Since the BuildingReconstruction software uses model-driven approach to reconstruct

building and its parts from input data, it is suitable for working with DSMs having low point

density as well. Currently, BuildingReconstruction supports 32 different roof types for

41

reconstructing 3D building geometries. The buildings with the simple roof types, roof

heights, and roof types can be in general reconstructed more accurately than complex ones.

This problem arises because the software cannot match the complex roof types with the roof

models in its library. Also, small parts on the roofs are mostly ignored by the software. These

kinds of roofs don’t exist in its library because there can be unlimited variations of them.

The main advantage of the model-driven method is reconstructing models without any gaps

or holes between surfaces with correct geometry. This method's production speed is slightly

better than other methods. The main handicap of this method is the requirement of a very

comprehensive roof library for comparing roof geometries generated from given DSM.

Figure 4.14 25cm resolution DSM and 1m resolution DTM input for BuildingReconstruction software

The project area is split into several tiles based on the overall extent of the available

input data. For each tile, the input data is loaded into the BuildingReconstruction software.

Building outlines/footprints help the software to identify the location of single buildings. All

building outlines/footprints should be delivered as closed polygons. Every footprint will be

mapped onto a separate 3D building model. The input DSM is analyzed for each building

footprint to detect the roof type using the following three algorithms: Rectangle intersection,

Cell decomposition, and Footprint Extrusion. Simple geometries such as rectangular

42

buildings with gabled or hipped roofs are processed with rectangle intersection. The software

creates several intersecting rectangles and squares from the basis of the footprint to construct

buildings in 3D. An analysis of point clusters on the surfaces of the roof is taken from the

digital height model to create a solid geometry.

 The cell decomposition algorithm is used for buildings with multiple roof forms and/or

with different heights. The building is divided into several cells lying within the building

footprint. A built-in library of more than 32 main and connecting roof types is used to detect

the best fitting roof type for each generated cell. Neighboring cells are analyzed to connect

the roof geometries in order to reconstruct even complex roof shapes. Cells can be merged

or even deleted to create a more accurate 3D building model. The footprint extrusion

algorithm is used to create city-wide LoD1 models. In addition, this reconstruction method

can be used for flat LoD2 buildings. To accomplish this, the building height is set to the

height where the largest number of points is found; in this way, a false building height, for

instance, due to chimneys, is avoided. This process ensures that roofs do not overshoot the

building footprint and thus guarantees compliance with the official 2D basemap. The DTM

used to calculate the height of the building’s ground surface. This guarantees that the

building perfectly grounded on the digital terrain model rather than floating over or sinking

into it. Figure 4.15 shows an example from the automatically generated buildings with

BuildingReconstruction 2018 software from the project area.

Figure 4.15 Automatically generated buildings with BuildingReconstruction 2018 software

43

After generating city model, manual editing of the buildings can be done from

“Advanced Cell Editor” tab. It includes extensive editing functions for more accurate LoD2

buildings. If necessary, a particular roof shape and its orientation can be forced. In cell

decomposition mode, cells can be reconstituted, deleted or merged. With complex roof

shapes such as domed roofs, various parameters can be changed. As the last step before

exporting city model, the semantic data need to be added correctly to the exported CityGML

and Shapefile to make queries on GIS software or web interface.

Figure 4.16 shows a part of the automatically generated roof geometries overlayed on

the orthophoto with 10 cm GSD. The reconstruction accuracy has been analysed by visual

checks on 1000 buildings and the results are provided in Table 4.2. During the visual

assessments, even if roof structures smaller than the grid interval have not been detected,

they are considered to be true. In addition, if the main roof structure is modeled correctly, it

is also considered as true.

Figure 4.16 Automatically generated roof geometries overlayed on the orthophoto with 10 cm

resolution.

44

Reconstruction Accuracy of 1000 buildings generated by BuildingReconstruction 2018 software

DSM Resolution Process Time LoD1 Successfulness LoD2 Successfulness

10 cm 6 min 50 sec 100% 73.8%

25 cm 1 min 54 sec 100% 72.7%

50 cm 1 min 2 sec 100% 65.4%

100 cm 39 sec 100% 55.1%

Table 4.2 Automatic reconstruction accuracy of 1000 buildings generated by BuildingReconstruction

2018 software evaluated by visual checks.

Advantages of the BuildingReconstruction software can be listed as follows:

 Large-area reconstruction of LoD1 and LoD2 building models

 Building models are suitable for texturing with nadir/oblique aerial images

 Direct export to CityGML and Shapefile with flexible attribute mapping

 Fast processing of 3D Buildings with semantic information

 Automatic calculation of attributes to enrich the building model

 High geometric accuracy with a ground plan based reconstruction

Disadvantages of the BuildingReconstruction software can be listed as:

 Reconstruction accuracy is limited to roof library due to a model-driven method

 Small roof parts are ignored while reconstruction

 Cannot reconstruct complex roof types

 The manual editing interface is not user-friendly

45

5. AUTOMATIC TEXTURING BUILDINGS

Automatic-texturing of buildings was carried out with CityGRID Texturizer software

by UVM Systems GmbH [64]. The following sub-sections will elaborate on the details of

model texturing.

5.1 CityGRID Texturizer

Existing 3D city models can be automatically textured from oriented images using

CityGRID Texturizer. As a result, the attractiveness of the digital city model can be

significantly improved with little effort. Oriented aerial photographs can be used for the

texturing of roofs and facades, mobile mapping for the high-resolution texturing of street-

side facades.Roof and terrain are textured automatically if a texture image together with its

correct orientation parameters was imported into the data source and is assigned to the

model. The facade texture is assigned interactively or fully automatic from oriented images.

Terrain texture is always calculated online, whereas roof texture and facade texture is

calculated for each Unit and saved with the Unit. Roof texture is derived automatically and

can be calculated for each Unit separately, where the texture coordinates can be revised and

corrected if the orientation parameters and/or the building model are not accurate enough)

or for all Units of a Model in one step. Orthophotos of the facades are generated by simple

affine transformation in the texture tool. The photos are loaded, assigned to the respective

facade of the Unit and saved with the Unit in the data source. Automatic texturing workflow

of CityGRID Texturizer is given in Figure 5.1.

Figure 5.1 CityGRID Texturizer automatic texturing workflow [64].

46

5.2 Image Acquisition and Radiometric Pre-Processing

There are several criteria for the acquisition of airborne images for automatic texturing.

The accepted optimal resolution for automatic texturing is usually 10 cm or better. The flight

altitude to obtain this resolution is between 800 and 2500 meters from terrain, but these

values can range depending on different factors such as airport restrictions in the area,

building heights, terrain elevation, camera type (e.g. camera format), camera parameters (in

particular focal length), image acquisition method (vertical or oblique) and required image

GSD. In this project, the images have been acquired from an altitude of 1500 meters with 8

cm resolution with the aim of production of basemaps for Çeşme City. In this type of

acquisition, the vividness of the colors is not considered as an important aspect in the “Base

Map” generation process, however in order to generate a fine texture the sharpness of images

together with the vividness of colors is of a great importance. In order to obtain a more vivid

and impressive texture, the images need to go through a color enhancement process. This

process involves the utilization of scripts (in a photo editing software) for improving the

realistic look of color tones in the texture. As a result of this process, the images (and

textures/scenes composed of them) become more vivid, sharp and realistic. Figure 5.2 shows

an example from the original images and the color-enhancement result.

Figure 5.2 Raw aerial image (left) and pre-processed (color-enhanced) image (right) of Çeşme

47

5.3 Image Rectification

In order to accomplish the automatic texturing of vector models such as building

representations in 3D, the models and the images should be in the same reference coordinate

system. This can be done by transforming the coordinates of either the images or the building

representations to the specified reference coordinate system. Usually, airborne imagery is

acquired and processed before the generation of building models. Thus, the common practice

is using the coordinate system of the acquired images as the base reference system and

generation of building representations using the coordinate system of the images. This

practice stems from the idea that the acquired images would be rectified right after the image

acquisition process and final images would have a coordinate system where the building

geometries can comply. In some exceptional situations, the building models are generated

prior to the aerial image acquisition and this might result in two different representations of

the building (such as vector or photogrammetric) in 2 different reference coordinate systems.

In such cases, a coordinate transformation of building representations is required.

Following this stage, the characteristics of the camera system need to be input into the

texturizer software i.e. CityGRID. For instance, if the images are captured by using (a large

format) an UltraCam camera (such as the implementation in this project) the exterior

orientation parameters would be acquired directly from the parameter files generated by the

IMU (Inertial Measurement Unit) device. In some other medium-format cameras more

manual effort for parameter input can be necessary to input the parameters in correct order.

The acquired airborne images can appear as rotated as a result of an intermediary process

and this also should be taken into account when inputting the parameters to the texturizer

software. The texturizer software also checks the direction and path of the flight, along with

if there exists any unplanned change of direction or path. Following this, checks are made to

prevent matching errors between the building representations and the rectified images. If no

errors are found the process carries on with database setup and data import to the database.

An example to the image orientation checking with CityGRID software for automatic

texturing is given in Figure 5.3.

48

Figure 5.3 Image orientation checking with CityGRID software for automatic texturing

5.4 Database Creation and Data Import

The automatic-texturing software used in this study works on a database system. To run

the automatic-texturing process, first aerial photographs, and their parameters together with

buildings should be imported into a database such as Oracle or SQL. Generally, city models

are generated based on maps, but the aerial image acquisition route is different from the

maps. The flight is in the form of a column, so the project area needs to be transformed into

a model space. A model space is an area that is covered by imported aerial photographs and

this model has four main elements: orthophoto, DTM, building models and stereo

photographs that correspond each model. The model space area is expanded with a buffer

zone so the buildings near the outer border are included completely in the project area. A

structure between software and the model space are generated as with this approach. Figure

5.4 shows the import GUI of CityGRID software.

49

Figure 5.4 Importing aerial images and building models to database

This model space usually generated in rectangular-shape based or neighborhood-based

in the layout. Neighborhood-based model space is rarely used as it can be very large. So, we

put the city model on a diagram in the database and organize it on a rectangular-shape basis.

After importing all data into a database, aerial photographs and adjusted exterior orientation

parameters are matched with buildings, DTMs and orthophotos in the database. The

relationship between the database and CityGRID Texturizer software is done with FME

workbench. This relationship promotes the software that which aerial photographs,

buildings, and DTMs are what the model space is made of. To summarize the model area,

compatibility between aerial photographs, interior and exterior orientation parameters and

buildings are checked and the process is started if there is no warning or errors.

5.5 Texture Mapping Process

In the CityGRID software, it is possible to choose the photo acquisition type such as

aerial oblique imagery, aerial nadir imagery or mobile vehicle. All these parameters are

calculated by the software and the algorithm determines the texturing style for the buildings.

Once the automatic-texturing starts, hundreds of photos can be defined for a model area. But

for a very large area like Çeşme, just using photos corresponding to the model area will

always make software work faster. For example, if there are 40 photos corresponding to the

model area and 100 photos are given as input, the software would try to find the right photos

corresponding to that area and eliminate redundant photos. Therefore, using correct photos

for the model area would avoid redundant work and help to reduce the processing time. To

find correct photos corresponding to a building object, the algorithm splits the a building

50

into objects (sub-parts) and assigns each of them to different classes. The buildings are

usually split into 4 different objects such as roof, façade, base, and fringe.

This object structure is similar to the object structure in CityGML specification. The

software can directly use CityGML object structure in the automatic-texturing process. The

software GUI for this process is provided in Figure 5.5.

Figure 5.5 Automatic texturing properties

The building objects entering automatic-texturing process are the roof, the vertical

surfaces of the roof and the façade. The fringes and the base part of the building are not used

in the process. In the software, these objects are decomposed and can be textured according

to the data type used in the project such as stereo photos, oblique photos or true-orthophotos.

The parts of the buildings that will be used in the texturing process can be selected by the

user. For example, only roofs can be textured in a project and other parts of the building can

be ignored. It is also possible to texture building façades with oblique images, and texture

roofs from orthophotos with the software. In oblique camera systems, both oblique and nadir

photos are being acquired. The software can handle both datasets at the same time to texture

different parts of the buildings. The nadir (vertical) stereo images in this study have been

taken with 80% forward and 60% lateral overlap, which is sufficient for texturing both the

roofs and the façades.

The most important factor in texturing roofs is the center point of the aerial photographs.

The best textures for the roofs are found in the photo where the building is located close to

the image center. In other words, the principal axis of the image should intersect the roof top

perpendicularly if possible. For example in the application dataset, the same roof can be

found in 9 or 10 different photos due to high overlap. The software finds the most suitable

51

photograph for the texturing roof by comparing the center point coordinates of the roof and

the aerial photographs. After the comparison, the photo with the closest center point to the

roof center is used for texturing. For this reason, the software doesn’t require “True

Orthophoto” for texturing roof objects.

Façade texturing is done with a different approach from the roof texturing. This

approach is flexible and affected mainly by the camera system and city structure. Other

parameters are whether the camera is large- or medium-format, how high the buildings in

the city are, how the vegetation is covered, whether there is fringe in the buildings, and

topographical characteristics. Image orientation angles along with center coordinates are of

great importance for the façade texturing. The façades appear to be better for texturing in the

regions closer to the outer border of the photograph. In terms of viewing angle, the building

has clearer outward appearance, but the camera distortions should also be taken into account

in this case.

Even though some companies produce quasi distortion-free cameras, the photos are

partially visually distorted. The photos to be used for the façade texturing are usually

analyzed visually to find out the best image zone between the photo center and the outer

border, although this is also subject to change due to parameters mentioned previously. After

the decision of the best zone, existing photographs of the building are detected automatically

by the software based on a coordinate comparison. Finally the software determine the ideal

pictures for texturing the façades calculate the distance between the photo center and the

façade. The photos, in which the building is located close to the outer border, are eliminated

and the remaining photos are analyzed to find the most appropriate photograph with a

suitable angle. The angle between the surface normal of the façade and the principal axis of

the photograph is calculated and the image that has the smallest angle with the façade normal

is used for texturing.

Another criterion for selection of the best photograph for automatic façade texturing is

the number of pixels that the building has in an image. On the other hand, if “Visibility

Analysis” feature is activated, a visibility check is performed to find out obstacles in the

scene, e.g. other buildings in that angle of vision. In other words, the façade texture may

contain pixels from other buildings. Therefore, even though an image has the most

appropriate geometry for a particular building model, it may fail in the visibility analysis.

Although the image geometry is worse, the photo that has the best view of the façade is

selected to protect the realism. A façade can be seen in photographs taken from different

52

flight strips and different directions. Due to the temporal difference in image acquisition,

there might be variations in the direction of the sun or the shadow of the clouds between the

images. In such cases, two different façades facing the same direction are textured from the

same photo to preserve homogeneity. Thus, the appearance of absurd textures on two

different façades facing the same direction is prohibited.

The software cuts out the chosen photos for all façades and saves them in separate image

files. While cutting out the aerial photos, a predefined buffer zone is kept at the peripherals.

Thus, if any editing is needed to be done in the building geometry, gaps in the building

envelope can be prevented. Each texture is then used in that part of the building according

to the CityGML data structure. The extracted image is not directly textured to the façade,

but it is related one-to-one based on file names. In other words, the texture parts cut out from

each aerial photograph is unique and can only be used for one façade belonging to one

building. Every texture image is used only for one building or façade.

In this way, a building is textured with dozens of photographs taken from different aerial

photographs. Thus, the number of textures in city models can reach hundreds of thousands

depending on the size of the city model. Each new element created in the database has a

unique ID number. Working in database prevents users to manually assign a unique ID to all

the texture files each time, which is done automatically by the database management system.

Automatic texturing supports parallel processing, multiple threads can be started at the

same time. Depending on the size of the buildings and the area, texturing of an average

building takes between 5 to 10 seconds. If “Visibility Analysis” feature is activated, this

process takes up to 3 times longer than the standard texturing. The software import photos

into RAM (random access memory), texture the buildings, and then delete the photo from

RAM so that the memory is released. The larger the photo size, the longer it takes to import

and export the photo to the RAM. This process is faster in photos with smaller size, but this

time the number of photos will increase, so the time usually remains the same. Multi-object

texturing (i.e. “Texture Atlassing” feature of the software) is not used for the automatic

texturing, since each object has a different structure and must be handled separately. Editing

a single photo to fit the structure of that object will be more efficient than editing all the

different structures of the entire building together. “Texture Atlassing” is done as a last step

for improving the presentation. This operation can be done on building or area basis.

53

Figure 5.6 shows the CityGRID GUI for exporting the textured models into CityGML

format. A part of the textured city model area is presented in Figure 5.7.

Figure 5.6 Textured CityGML export properties

Figure 5.7 Exported CityGML buildings with textures

54

6. WEB-BASED VISUALIZATION

6.1 CesiumJS Virtual Globe

CesiumJS [90] is an open-source JavaScript library for visualizing terrain and geospatial

2D and 3D data on a web interface (Figure 6.1). It works on WebGL using computer’s GPU

that provides the high FPS (Frame per Second) and performance on large datasets. WebGL

also provides optimum usage of computer hardware without installing any plugin on any

operating system or web browser. The library can be modified and new features can be added

depending on user’s requirements. Cesium only supports visualizing static data, loading

portions of large 3D city models dynamically from a database is not supported yet.

Figure 6.1 CesiumJS user interface

WebGL (Web Graphics Library) is an API for visualizing data on web interface without

installing any plug-ins. A WebGL context is created by requesting a WebGL context from

an HTML canvas element. WebGL supports visualizing 3D objects on directly in all major

web browsers running on all major operating systems without needing additional plug-ins or

extensions. WebGL changed web-based map approach from 2D maps to impressive 3D

maps [102]. It is designed as a rendering context for the HTML Canvas element. WebGL

brings OpenGL to JavaScript, and since JavaScript is mainly a web-based programming

language, it can be said that WebGL brings OpenGL to the web. JavaScript is a high-level,

dynamic and untyped interpreted programming language. So the only requirement to run

JavaScript code on a web interface is to add the tag of JavaScript file into HTML code for

each file [103].

55

Chaturvedi et al. [104] indicates the main features of Cesium as:

 It supports visualizing dynamic data on web-interface. Cesium Language (CZML) is

a JSON based schema for visualizing geospatial data and their attributes that

continuously changing or moving over time.

 It supports different Web Map Services (WMS) such as Open Street Map, Bingmaps,

Stamen, Mapbox or any other custom WMS. Every service is displayed as

background map with different image radiometric values.

 It allows users to visualize 2D objects along with the 3D objects. The users can show

vector data as points, polyline, etc.

 Different data formats such as KML or JSON can be visualized directly on Cesium.

 Exploring a virtual globe with different camera angles and zoom levels with using

keyboard or mouse is possible.

 Cesium allows users to change object façade appearances along with the custom

material support.

 It supports popular coordinate systems such as WGS84 and ICRF (International

Celestial Referance Frame), and allows users to reproject coordinate system with the

Cesium math libraries.

In addition to the features mentioned above, some other features can be listed as follows:

 User interface and features can be customized for the purpose of the project.

 It uses Cesium 3D Tiles format for streaming, styling and interacting 3D datasets.

Cesium 3D tiles supports building models, other 3D objects and dense point clouds.

 It supports visualization of high-resolution global terrain datasets.

 Selection and infobox widgets for highlighting objects and displaying information.

 It supports creating visual effects such as atmospheric changes, shadows, fog, sun

light or water.

 Hardware optimization for reducing GPU, CPU and power usage while visualizing

the data.

56

6.2 KML/COLLADA/glTF visualization using 3DCityDB

KML (Keyhole Markup Language) is an XML based file format that allows users to

visualize geographic data on CesiumJS or other software. COLLADA (Collaborative Design

Activity) is also an XML based file format that represents 3D geometries. After integration

of COLLADA, KML can be used to visualize 3D models on the virtual globes. Although

conversion the CityGML data to COLLADA format makes it thematically designable in an

advanced 3D software environment, the main disadvantage of conversion into this format is

that all semantic data that are stored in CityGML data will no longer available after the

conversion. In other words, all possible database queries and aggregations regarding

CityGML semantics and also graphical data structure, will no longer available in COLLADA

format environment. 3DCityDB software allows users to visualize CityGML data with the

help of KML/COLLADA integration.

3DCityDB software [84] is a software package for visualizing and managing

CityGML based 3D city models. The software allows users to export CityGML data in

KML/COLLADA/glTF formats for visualization. These data can be visualized in various

applications such as CesiumJS and Google Earth. Setting up a 3DCityDB environment

requires a running installation of several software tools which are freely available. The

workflow for visualizing city models with 3DcityDB software is provided in Figure 6.2.

Figure 6.2 Workflow for visualizing with 3DCityDB software

Additional software which is specifically required in the environment are listed as

below:

 Java 8 Runtime Environment

 PostgreSQL and PostGIS

 3DCityDB Importer/Exporter Tool, Scripts, and Web map Client

 3DCityDB Spreadsheet Generator Plugin

 Google Earth Pro

 Node.js

57

After installing all the necessary software mentioned above, the settings for PostgreSQL

and PostGIS have to be made. As the first step, we create a new database as a superuser in

PostgreSQL. ITRF96 reference coordinate system that is being used in Turkey doesn’t exist

in the coordinate system table of the PostGIS software. This coordinate system is required

to georeference the data correctly and to generate tables in the database. The ITRF96

coordinate system is added to the “spatial_ref_sys” table as shown in Figure 6.3.

Figure 6.3 Adding ITRF96 coordinate system to PostGIS

In order to enable all spatial functions and data types, the PostGIS extension needs

to be added to the new database and this can only be done by the superuser. The extension

is added with the following command “CREATE EXTENSION postgis;”. A new database

is created with all required extensions to store and manage spatial features at this step. In the

next steps, CityGML data schema is loaded to the created database instance.

The 3DCityDB software package comes with a package of SQL (Structured Query

Language) scripts to create the required schemas on the spatial database system

(PostgreSQL/PostGIS) and with a group of scripts to manage the 3D city model stored in

the database. While creating schemas, the chosen reference system is applied to the spatial

columns which is ITRF96 for this project. The 3DCityDB schema will be created and the

database is ready for importing/exporting CityGML data.

3DCityDB Importer/Exporter offers both a graphical user interface (GUI) and a

command line interface (CLI). The graphical user interface is organized into four main

components as a menu bar, operations window, console window and a status bar. The

58

database tab of the operations windows allows the user to manage and establish database

connections and execute database operations. In order to connect to an instance of the 3D

City Database, valid connection parameters must be provided on the database tab. If the

required parameters have been correctly entered, the information of the connected

3DCityDB instance will be printed in the console window on the right side of the

Importer/Exporter user interface, as can be seen in Figure 6.4.

Figure 6.4. Database connection with 3DCityDB

Prior to the data import, the CityGML files should be validated against the CityGML

XML schema. It is strongly recommended that only CityGML files which have successfully

passed the validation process are imported into the database. Otherwise, errors in the data

may lead to unexpected behavior. After the validation process is successfully completed, the

CityGML file can be imported into the database. The spatial extent of the imported CityGML

objects can also be easily determined by using the Importer/Exporter Tool. The coordinate

values of the lower left (Xmin, Ymin) and upper right (Xmax, Ymax) corner of the calculated

bounding box are printed in the coordinate value fields of the dialog given in Figure 6.5.

Figure 6.5 Bounding box of the imported CityGML object

59

Spreadsheet Generator tool (Figure 6.6) lets users to export data from a 3DCityDB

instance into a Comma-separated values (CSV) or Microsoft Excel (XLSX) file. This

spreadsheet file may be imported to either a spreadsheet application like Microsoft Excel or

to a web-based online spreadsheet service like Google Fusion Table. In addition, online

spreadsheets offer features like sharing and collaborating in real-time with other users and

can be easily accessed via Internet.

Figure 6.6. 3DCityDB Spreadsheet Generator

A bounding box needs to be specified to make sure that the concerned CityGML

features lie within a given geographic area. Then the selected content information of all

CityGML features stored in the database are exported as Microsoft Excel file and uploaded

to Google Cloud Service (Figure 6.7).

Figure 6.7. Attribute table of the selected buildings in the 3DCityDB

60

The spatial data stored in the 3DCityDB can be exported in KML, COLLADA, and

glTF formats for presentation, viewing, and visual inspection in a different application areas

such as CesiumJS Virtual Globe. After configuring some settings for export from

“Preferences” tab, 4 different types of buildings are exported as shown in Figure 6.8.

Figure 6.8. Different visualization forms of models from LoD0 to Textured LoD2 on Google Earth

3DCityDB software package includes a Cesium-based web interface tool named

3DCityDB Web-map-client for data visualization. This tool helps users to explore and

visualize 3D City models with semantic data. Various changes and modifications have been

made to the Cesium interface and source code to make it easier for users to visualize and

explore 3D city models.

The 3DCityDB web client (Figure 6.9) is a static web application written in HTML

and JavaScript and can, therefore, be easily deployed by uploading its files to a simple web

server. The client comes with a lightweight JavaScript-based HTTP server that is mainly

meant to test the functionality of the 3D web client on local machines. For running this web

server, Node.js is required to be installed on the computer. After that, simply running

command “node server.js” in the client folder will make the client available via the selected

61

localhost port. After that last step, the client is ready for visualizing exported data on the web

interface.

Figure 6.9. Textured LoD2 buildings and attributes visualizing on 3DCityDB Web Map Client.

The advantages of the storing the data in KML/COLLADA/glTF format are:

 City model can be visualized both on Google Earth or CesiumJS Web Globe

 Attribute information can be changed directly from the spreadsheet

 User-friendly interface and easy use of 3DCityDB Web map Client

The disadvantages of the storing the data in KML/COLLADA/glTF format are:

 No query or styling capabilities

 Building geometry, attribute spreadsheet and textures are generated separately

 Database requirement

 Complex process steps and too many software needs to be used

 No Gzip support for reducing file sizes for better performance

6.3 Cesium 3D Tiles

Cesium 3D Tiles [105] is an open source initiative for streaming massive heterogeneous

3D geospatial datasets. It is capable of streaming 3D content like buildings, trees, point

clouds, textured meshes and vector data on the CesiumJS virtual globe. It is optimized for

streaming and rendering datasets interactively for users. It enables Hierarchical Level of

62

Detail (HLOD) for performance so only visible tiles on the web are streamed and those tiles

are the ones that are the most important for a given 3D view. Instead of relying on zoom

levels, 3D Tiles are based on geometric error for Level-of-Detail selection and a tunable

pixel error so that the performance is built for multiple zoom levels in the same view.

While CityGML is a versatile and exhaustive data storage and exchange format for city

infrastructure and landscapes, storing data in large XML files does not lend itself very well

to high performance streaming and rendering. This requires converting CityGML to a

runtime format such as 3D Tiles (Figure 6.10). It is also crucial not to lose any semantic

information during this conversion, as that is a key feature of CityGML. Currently, there is

no open-source tool for converting CityGML to Cesium 3D Tiles. FME 2018.0 software,

which provide free educational and research licenses, was used to convert untextured

CityGML to Cesium 3D Tiles. A dataset with textures requires a very different approach

than one without textures. Another example would be an urban area with dense data versus

a dataset that consists mostly of sparse suburbs. Taking performance issues with the textures

into the consideration, textured CityGML conversion has been done by Cesium Team.

Figure 6.10 An overview of the 3D Tiling pipeline by Cesium.com [90].

The 3D Tiling pipeline supports regular CityGML models, such as buildings, as well as

implicit models such as trees, lamps, city furniture, etc. For buildings and other regular

models, batched tiles are used, while implicit models are converted to instanced tiles. This

allows to batch and combines the data into optimal tiles from both a streaming and a

rendering perspective. 3D Tiles Batched 3D Model Tiles [106] are used for CityGML

63

buildings and other models in each tile. Each batch processed tile can contain numerous

objects and their metadata. If each building’s glTF could be to be stored independently per

tile, this would significantly affect runtime performance and make it considerably slower.

Combining buildings into a single model drastically improves runtime performance by

reducing the rendering overhead. An example of the textured CityGML data converted to

3D Tiles format is given in Figure 6.11

Figure 6.11 Textured CityGML converted to 3D Tiles format and visualized on CesiumJS

Once the models have been combined into batched and instanced tiles, the attribute

information of each model is preserved using the 3D Tiles Batch and Feature tables. This

allows picking, styling, and querying as if each building were its own model. Another key

point while data conversion was the selection of the right attribute types. All attributes with

numeric values must be written as “float”, and other attributes must be written as “string”

type. Otherwise, 3D Tiles styling on web interface will not work. Another important issue

was correct georeferencing of the dataset. The study dataset was georeferenced in Turkey’s

coordinate system ITRF96 – which wasn’t included in the coordinate systems list in FME

software. This coordinate system has been added manually to coordinate system list. After

this step, the untextured CityGML data could be converted into Cesium 3D Tiles format with

predefined attributes. Figure 6.12 shows a number of selected untextured LoD2 buildings

and their attribute table on the customized web interface.

64

Figure 6.12 Showing selected untextured LoD2 buildings to attribute table on the customized web interface.

 After the generation of the buildings with different levels of detail and conversion

into 3D Tiles format, a new web interface has been developed using CesiumJS library and

HTML5. In the new interface, as shown in Figure 6.12, it has become possible to query the

attribute information of the buildings. The following queries are added to the interface:

 grouping the buildings with respect to their heights and displaying each group with

a different building color (Figure 6.13)

 displaying other types of objects according to their elevation

 measuring building heights directly on the displayed model

 displaying selected buildings on Google Street Maps

 providing visual effects such as building shadows and fog

 the ability to select between 2 different 1-meter resolution DTM from the drop-down

menu, and

 many other features

The model is published online at www.cesme3d.com. Figures 6.13, 6.14 and 6.15 show

different visualization aspects of the implemented model and the interface.

http://www.cesme3d.com/

65

Figure 6.13 Çeşme city model colored grouped by their latitude using 3D Tiles styling.

Cesium 3D Tiles format also supports point clouds and textured mesh models. The

tiled model can be generated based on the point cloud or mesh data. This hierarchical tile

format offers a high-performance visualization for large-scale city modeling. It allows high-

performance and high-resolution visualization of city-level 3D models. Tiled model is build

based on dense point cloud, or mesh, or depth maps data. Tiled model is textured from source

data. Agisoft Photoscan Pro software can directly export point clouds and textured mesh

models in Cesium 3D Tiles format, ready for publishing at the web.

Figure 6.14 Textured mesh visualization on Cesium Web Globe

66

Figure 6.15 Point cloud visualization on Cesium Web Globe

The advantages of storing data in Cesium 3D Tiles format are:

 High performance while visualizing large and complex datasets

 Point cloud and Textured mesh support

 No database or many software requirements for implementation

 Building geometry attributes and textured stored in the same file

 Gzip support for reducing file size

 Supports styling such as color or show

 Direct conversion from CityGML to 3D Tiles with FME software

The disadvantages of storing data in Cesium 3D Tiles format are:

 Only can be visualized on Cesium Web Globe

 Attribute information of the buildings cannot be changed

 No open-source conversion tool from CityGML to 3D Tiles

67

6.4 Terrain Visualization with Cesium

Terrain rendering is important for a large range of game and simulation applications.

Computer hardware and algorithms improve rapidly, which enhances our ability to render

more realistic terrains. The shift in recent years in consumer hardware from CPU bound

graphics pipelines to high-speed special purpose graphics processing units (GPUs) has

drastically changed the tradeoffs in the geometric level of detail (LOD) terrain rendering

algorithms. These new tradeoffs have sparked the development of GPU-oriented aggregated

LOD algorithms. Furthermore, the increased quantity and detail of the data sets to be

rendered has raised the demand for good renderers and highlighted the importance of

handling data sets which do not fit in RAM. Meanwhile, the advances in shading and image

quality, in general, have raised the end-users expectations for image quality and lowered

their tolerance for visual artifacts.

 The ideal terrain renderer would let the viewer stand at the summit of a tall mountain

and see the surrounding countryside in perfect detail. The viewer would freely move around

the scene, walking through dense forests or flying rapidly through the air directly to some

distant spot, where both the local surroundings and distant vistas would always be perfectly

detailed to within the limits of the display. The place represented by the ideal terrain renderer

could be a faithful model of part of the real world or some imaginary locale, but in either

case should be visually rich and interesting. At no point should the viewer be aware of any

distracting artifacts arising from the shuffling of data or reorganizing of geometry within the

renderer itself.

Using triangulated terrain with different zoom levels has several important advantages:

 Efficient use of TIN structure

 Textures integrating accordingly to the LOD of the terrain

 Better terrain representation at rough terrain

 High performance and smooth vertex morphing

 Low CPU and hardware usage

The negative characteristics include:

 Terrain data must be pre-processed

 Only static terrain data can be visualized

 Generates more TINs than a basic algorithm for the same screen-space error.

68

 Sometimes data sizes are unnecessary big, depending on lossyness of data.

Terrain rendering is a smaller, but important sub-problem of constructing the ideal terrain

renderer described above. The terrain is not strictly necessary, and in fact are not sufficient

in themselves for ideal rendering, especially when the viewer gets closer to the ground, but

the terrain format is a very useful approximation. It embodies a basic method of compression

and a framework for organizing data and textures. There are a number of good solutions for

terrain level of detail rendering which effectively decreases the count of triangles which need

to be rendered, at the expense of doing some run-time meshing calculations.

Cesium is capable of visualizing and streaming DTMs. Visualizing the world with the

terrain model uses the advantage of showing terrain features and objects with high slope

such as mountains compared to 2D maps. Cesium only supports displaying one terrain model

at a time, so a single raster terrain file should be converted into supported formats for

visualizing big areas. Cesium currently supports two different formats for visualizing terrain:

heightmap 1.0 and quantized-mesh 1.0.

 The heightmap 1.0 format (Figure 6.16) is simple multi-resolution quadtree pyramid

of heightmaps according to the Tile Map Service (TMS) layout and global-geodetic profile.

The tiles are 65x65 vertices and overlaps with neighboring tiles at border points where they

intersect to form a continuous terrain model. In other words, at the root, the eastern-most

column of heights in the western tile is identical to the western-most column of heights in

the eastern tile. Cesium converts height tiles into TIN mesh structure. The main disadvantage

of this terrain format is its ability to represent the terrain with different slopes, both rugged

and rough terrain with regular tiles and same amount of data.

69

Figure 6.16 The Heightmap 1.0 format represents terrain with regular grid tiles.

Quantized-mesh 1.0 format (Figure 6.17) represents a terrain structure consisting of

irregular triangles. It has the same tile structure as the format's heightmap format, but each

tile is better optimized to represent larger-scale areas more accurately. Instead of generating

regular dense tiles for representing the terrain, TIN mesh for each tile is generated and pre-

rendered for each tile. This structure represents the terrain better compared to the heightmap

format with denser triangles in more rugged terrain, while forming larger and less detailed

tiles in rough terrain. The quantized-mesh terrain uses less memory and better at rendering

terrain.

Figure 6.17 Irregular triangle meshes as Quantized-mesh 1.0 format.

70

 Currently, Cesium Terrain Builder [91] is the only open-source tool for generating

heightmap and quantized-mesh tiles (Figure 6.18). It is a C++ library for generating terrain

tiles for use with the CesiumJS. This library creates gzipped terrain tiles from a GDAL raster

representing a terrain, saving the resulting tiles to a directory. The code compiled under

Windows using Visual Studio 2017 and GDAL. After compiling, the software would be

ready to use.

The input raster should contain data representing elevations relative to sea

level. NODATA (null) values are not currently dealt with: these should be filled using

interpolation in a data preprocessing step. In the case of multiband rasters, only the first band

is used as the input DTM. Before generating tiles from input raster, it is recommended that

the input raster is in the same spatial reference system as the output tile grid in order to

bypass the need to reproject the data. For terrain data, this is World Geodetic System (WGS

84). If the source data is in another spatial reference system, however, the tool will attempt

to reproject the data but with an associated performance penalty. For this recommendation,

the input raster dataset reprojected to WGS84 coordinate system from ITRF96 coordinate

system with FME.

Figure 6.18 Cesium Terrain Builder command list

 “ctb-tile” command will resample data from the source dataset when generating

tilesets for the various zoom levels. This can lead to performance issues and datatype

overflows at lower zoom levels (e.g. level 0) when the source dataset is very large. To

overcome this the tool can be used on the original dataset to only create the tileset at the

highest zoom level (e.g. level 18) using the --start-zoom and --end-zoom options. Once this

71

tileset is generated it can be turned into a GDAL Virtual Raster dataset for creating the next

zoom level down (e.g. level 17). Repeating this process until the lowest zoom level is created

means that the resampling is much more efficient (e.g. level 0 would be created from a VRT

representation of level 1). Because terrain tiles are not a format supported by VRT datasets

you will need to perform this process in order to create tiles in a GDAL DEM format as an

intermediate step. VRT representations of these intermediate tilesets can then be used to

create the final terrain tile output.

Quantized-mesh 1.0 : ctb-tile --output-dir ./qmesh --output-format Mesh --start-zoom 19 --

end-zoom 0 cesme_wgs84.img

Heightmap 1.0 : ctb-tile --output-dir ./heightmap --output-format Terrain --start-zoom 19 --

end-zoom 0 cesme_wgs84.img

 Using previous commands, 1-meter resolution digital terrain model in 2 different

formats and 20 zoom levels was created. But it doesn’t satisfy the requirements for

visualizing terrain. And to finish, the "-l" (or "--layer") option will allow you to create the

"layer.json" file with all metadata information that describes the tileset (Figure 6.19). It fills

the "available" json-attribute too, it seems mandatory to successfully load the terrain in

Cesium.

Figure 6.19 layer.json file with all metadata information that describes the tileset.

72

 To visualize terrain data in CesiumJS, generated terrain data must be served on a

Cross-Origin Resource Sharing (CORS) enabled server. For this purpose, terrain data served

on a CORS-enabled local Apache server. Once the server settings have been set and the

CORS activated, we can visualize our terrain on Cesium. A view generated 1m resolution

DTM on Cesium is given in Figure 6.20.

Figure 6.20 A view of generated 1m resolution DTM on Cesium

After generating DTM for the whole project area, 6.4 GB raster terrain size reduced to

940 MB for Heightmap 1.0 format and 938 MB for Quantized-mesh 1.0 format. A DTM

with a resolution of 1 meter or better is usually required to clamp building to the terrain. If a

lower resolution DTM is used, some parts of the buildings or whole building may be buried

in the ground or building could hang in the air. If a 3D city model will be visualized without

a terrain model, reducing the altitudes of the buildings to zero or WGS84 ellipsoid will

prevent the buildings hanging on the air. As a result, a high-resolution digital terrain model

will always be required to precisely and effectively visualization. A 3D city model without

an underlying Digital Terrain Model will always be visually incomplete. Examples to the

terrain visualization from the project are given in Figures 6.21 and 6.22.

73

Figure 6.21 Buildings hanging in the air without terrain (left) and buildings clamped to terrain (right)

 Figure 6.22 Wireframe view of terrain in Heightmap format (left) and Quantized-mesh format (right)

74

7. VISUALIZATION BASED ON UNITY GAME ENGINE

Unity is a cross-platform game engine designed to support and develops 2D and 3D

video games, simulations for computers, virtual reality, consoles and mobile devices

platform [107]. It is commercial software developed by Unity Technologies. Unity 3D

provides three dimensional manipulation and simulation through functions defined using

programming languages. The main advantage of visualizing city models with Unity game is

it can run in different operating systems such as Windows, Mac or Linux.

CityGRID Builder (Figure 6.23) software was used to visualize 3D city models in

the Unity game engine. The main function of this software is to create scenes of 3D city

model in Unity game engine for exploring cities with Virtual Reality googles. The imported

textured city model and terrain model can be exported as scene after optimization.

Figure 6.23 CityGRID Builder control center

All scene data from FME and 3D Studio Builder have been optimized and

restructured prior to loading in CityGRID Scout. In this process, the previous files have been

resolved and combined to variants. In addition LoD levels of geometry and images are

created, data trees (voxel octree) are formed and new files which are optimized for

75

performance will be generated. "Scenario" function is used to present in real-time in

CityGRID Scout with scene difference combinations and switch between scenarios.

A scene from the Builder project can be used in multiple scenarios. Builder Projects

can contain multiple scenarios. Scenarios determine when to show or turn off which data is

running Scout. The data are calculated once and sent to the graphics card when needed (when

the scenario is changed).

Depending on the size of the Scout project, there are two alternative optimization

methods: Project and City. These two methods are offered in the Properties Window. The

two methods process the Scout data in different ways and have different demands on used

software modules and computing times. Also, the data handling in the Scout is

fundamentally different. The processing mode Project is intended for local, small-scale

projects. All data are processed so that they can be completely held in the main memory or

graphics memory. Applying processing mode Project, there will be no reloading of data. The

textures are processed in different resolutions (LOD) and the geometry files generated are

optimized for the Scout. At the start of the project Scout determines the amount of available

storage and automatically selects the possible resolution of the textures. The geometry is

always displayed with the full amount of data.

The process mode City is available for the visualization of large-scale projects (entire cities

or regions) with high data density. In contrast to Project mode, Scout now applies a distance-

dependent visualization of the geometry and texture data. Scouts load the data dynamically

at runtime, so at close range Scout always visualizes the best possible resolution of geometry

and textures. The further away data are from the current focus of Scout project, the more

generalized they are displayed. As a prerequisite, CityGRID Builder organizes the geometry

data in the form of data trees, which store the data in its original resolution and additionally

in generalized Levels of Detail (LoDs). 3D Studio Max functions are used for generating the

LoDs. For that reason, a license of 3D Studio Max has to be available at the computer. If no

3D Studio Max is available, just a simplified tree structure can be calculated without the

LoD stages. Due to this, the range of visibility will be limited when Scout visualizes this

simplified structure. A scene from Unity Game Engine visualization generated with

CityGRID Builder is shown in Figure 6.24.

76

.

Figure 6.24 A scene from Unity Game Engine visualization generated with CityGRID Builder

Scout projects are interactive and freely navigable 3D scenes and allow viewing the

project from every angle. Users can explore the scene with Mouse / Keyboard,

Gamecontroller, Body Motion or Virtual Reality Glasses. Produced scenes can be copied

and distributed in an unlimited number of times. Some of the features of are listed as below:

 High-performance visualization of 3D city models with terrain

 Shadow effect by daytime

 Coordinate and distance measurement

 Moving object support such as cars, ships or train

 Building queries for attributes

 WMTS map support for navigation

 Support for video sequence render

 Offline visualization

77

8. CONCLUSIONS AND RECOMMENDATIONS

 In this thesis, a workflow has been developed for the production and visualization of

3D city models, which have now become a necessity for better management of cities. Large-

format aerial imagery and vector maps manually produced from this data have been used for

this purpose. During this study, open-source software and other software with free academic

licenses have been preferred whenever possible. Potential fixes and improvements have been

noted by reviewing the problems encountered. In Turkey, 3D city models in LOD2 and

DSMs can be produced using existing aerial photogrammetric datasets and their project

outputs without additional cost and effort as shown in this thesis. The created 3D model is

automatically textured from aerial images and published online on the web at

www.cesme3d.com . Some of the problems encountered during the thesis work and

suggestions for their solutions are as follows:

• Excessive amount of data preprocessing and file format conversion in the project.

Many of the data used in this project was not directly in the format to be input to the

software and needs to be pre-processed. For example, building footprints needs to be

converted to ESRI Shapefile from Microstation DGN file and assign unique ID to each

building, DSM and DTM file in GeoTiff format to needs to be converted ESRI ASCII Grid

(.asc) file, and orthophotos needs to be converted to .jpg format from .tif file. Texturing and

other similar processes require continuous file format conversion and modification. This is

an inevitable situation, but all file conversions and modifications can be performed with

FME software. Although many conversions can be done without FME software, it is easy to

do all pre-processing in one software.

• The building roof models, which are under single or blocks trees or other objects, are

reconstructed incorrectly from DSMs.

In order to fix this problem, which is also depicted in Figure 6.25, the generated DSM must

be visually checked quickly and manual editing on the point cloud should be done. After the

objects are cleaned, it should be converted to raster DSM and become an input for the

BuildingReconstruction software.

http://www.cesme3d.com/

78

Figure 6.25 Trees over the roofs of the buildings

• BuildingReconstruction software problems due to topological errors

If the building footprints do not close properly (as seen in Figure 6.26),

BuildingReconstruction software will stop the production due to error. In order to prevent

this, all building polygons have to be closed properly. Checking and correcting the closure

can be done manually in small areas, but impossible for a large number of buildings.

Therefore, it must be checked and corrected automatically with FME software.

Figure 6.26 An example of unclosed building footprint

79

• BuildingReconstruction software limitations in large areas (> 1 km2)

In this study 43,158 buildings were reconstructed automatically in an area of 270 km2. In

order to be able to perform an automatic reconstruction on such a large area, the working

area is divided into small pieces and then divided into folders by producing DSM, DTM and

building footprint for each area. The segments were separately produced and exported as

CityGML, and these separate files were later converted into a single CityGML file covering

the entire city with the aid of FME software.

• The country coordinate system (ITRF96) is not available by default in some software,

which obstruct correct georeferencing of the data.

FME and PostGIS software doesn’t have Turkish Reference Coordinate System

(ITRF96) in their coordinate list. The coordinate system of the input data muse be specified

for georeference our input data. To prevent this problem, the parameters of the ITRF96

coordinate system are manually entered into the file where the two software programs

contain the coordinate systems.

As a final recommendation, an automatic quality control and quality assessment should be

implemented for the 3D city models. Such methods are especially crucial for the QC & QC

of large datasets.

80

REFERENCES

[1] Nations, U., World Urbanization Prospects Highlights. 2014

[2] Kolbe, T.H., Representing and Exchanging 3D City Models with CityGML. In 3D

geo-information sciences: p. 15-31, 2009

[3] Kada, M., The 3D Berlin Project. Photogrammetric Week '09, 2009

[4] Agugiaro, G., First Steps Towards an Integrated Citygml-Based 3d Model of Vienna.

ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information

Sciences. III-4: p. 139-146, 2016

[5] Özerbil, T., et al., Konya Büyükşehir Belediyesi Eğik (Oblique) Görüntü Alımı, 3

Boyutlu Kent Modeli ve 3 Boyutlu Kent Rehberi Projesi. V. Uzaktan Algılama ve

Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2014), 14-17 Ekim 2014, İstanbul,

2014

[6] Şengül, A., Extracting Semantic Building Models From Aerial Stereo Images and

Conversion to CityGML. International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences. XXXIX-B3, 2012

[7] Kobayashi, Y., Photogrammetry and 3D City Modeling. Proceedings of Digital

Architecture, 2006

[8] Nex, F. and F. Remondino, Automatic Roof Outlines Reconstruction From

Photogrammetric DSM. ISPRS Annals of the Photogrammetry, Remote Sensing and

Spatial Information Sciences. I-3(XXII ISPRS Congress, 25 August – 01 September

2012, Melbourne, Australia): p. 257 - 262, 2012

[9] Novel, C., et al., Comparing aerial photogrammetry and 3d laser scanning methods

for creating 3d models of complex objects. Capturing Reality Forum. Bentley

Systems, Salzburg: p. 15, 2015

[10] Stadler, A. and T.H. Kolbe, Spatio-semantic coherence in the integration of 3D city

models. In Proceedings of the 5th International Symposium on Spatial Data Quality,

2007

[11] Döllner, J., et al., The Virtual 3D City Model of Berlin - Managing, Integrating, and

Communicating Complex Urban Information. In Proceedings of the 25th Urban Data

Management Symposium UDMS. 2006

[12] Kolbe, T., G. Gröger, and L. Plümer, CityGML: Interoperable access to 3D city

models Geo-information for disaster management. Springer: p. 883-899, 2005

[13] Schilling, A., V. Coors, and K. Laakso, Dynamic 3D maps for mobile tourism

applications Map-based Mobile Services. Springer: p. 227-239, 2005

[14] Wagner, D., et al., Geometric-semantical consistency validation of CityGML

models. In Progress and new trends in 3D geoinformation sciences: p. 171-192, 2013

[15] Prieto, I., J.L. Izkara, and F.J. Delgado, From point cloud to web 3D through

CityGML. 18th international IEEE conference on virtual systems and multimedia

(VSMM): p. 405-412, 2012

81

[16] Ujang, U., et al., 3D Hilbert Space Filling Curves in 3D City Modeling for Faster

Spatial Queries. International Journal of 3-D Information Modeling, 3(2), 1-18,

April-June 2014: p. 1-17, 2014

[17] Zhu, Q., et al., Research and practice in three-dimensional city modeling. Geo-spatial

Information Science. 12(1): p. 18-24, 2009

[18] Kolbe, T., G. Gröger, and L. Plümer, CityGML – 3D city models and their potential

for emergency response. Geospatial information technology for emergency response.

257, 2008

[19] Zlatanova, S., 3D GIS for urban development. International Inst. for Aerospace

Survey and Earth Sciences (ITC), 2000

[20] Biljecki, F., et al., Applications of 3D City Models: State of the Art Review. ISPRS

International Journal of Geo-Information. 4(4): p. 2842-2889, 2015

[21] Gröger, G. and L. Plümer, CityGML – Interoperable semantic 3D city models. ISPRS

Journal of Photogrammetry and Remote Sensing. 71: p. 12-33, 2012

[22] City Geography Markup Language (CityGML) Encoding Standard Version 2.0.0,

http://www.opengis.net/spec/citygml/2.0,

[23] Buyukaslih, I., U. Isikdag, and S. Zlatanova, Exploring the processes of generating

LOD (0-2) CityGML models in greater municipality of Istanbul. In 8th 3DGeoInfo

Conference & WG II/2 Workshop, Istanbul, Turkey. ISPRS Archives Vol. II-2/W1.,

2013

[24] Biljecki, F., H. Ledoux, and J. Stoter, An improved LOD specification for 3D

building models. Computers, Environment and Urban Systems. 59: p. 25-37, 2016

[25] Arefi, H., et al., Level of Detail in 3D Building Reconstruction from LIDAR Data.

International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences. 37(B3b): p. 485-490, 2008

[26] Kolbe, T.H., G. Grögerr, and L. Plümer, CityGML - Interoperable Access to 3D City

Models. Proceedings of the International Symposium on Geo-Information for

Disaster Management on 21-23 March 2005 in Delft, Springer Vertag, 2005

[27] Fan, H. and L. Meng, A Three-Step Approach of Simplifying 3D Buildings Modeled

by CityGML. International Journal of Geographical Information Science. 26(6): p.

1-18, 2012

[28] Hu, J., S. You, and N. Ulrich, Approaches to Large-Scale Urban Modeling. IEEE

Computer Society, 2003

[29] Suveg, I. and G. Vosselman, Reconstruction of 3D building models from aerial

images and maps. ISPRS Journal of Photogrammetry and Remote Sensing. 58, 2004

[30] Kada, M. and L. McKinley, 3D Building Reconstruction From LiDAR Based On a

Cell Decomposition Approach. IAPRS. 38(3/W4): p. 47 - 52, 2009

[31] Haala, N. and M. Kada, An update on automatic 3D building reconstruction. ISPRS

Journal of Photogrammetry and Remote Sensing. 65(6): p. 570-580, 2010

[32] Haala, N., M. Rothermel, and S. Cavegn, Extracting 3D urban models from oblique

aerial images, in 2015 Joint Urban Remote Sensing Event (JURSE). 2015. p. 1-4.

[33] Kocaman, S., et al., 3D City Modeling From High-Resolution Satellite Images.

http://www.opengis.net/spec/citygml/2.0

82

[34] Kraus, T., M. Lehner, and P. Reinartz, Modeling of urban areas form high resolution

stereo satellite images. Proceedings of the ISPRS Hannover Workshop 2007 High-

Resolution Earth Imaging for Geospatial Information, 2007

[35] Flamanc, D., G. Maillet, and H. Jibrini, 3D City Models: An Operational Approach

Using Aerial Images And Cadastral Maps. ISPRS Archives. XXXIV, 2003

[36] Kabolizade, M., H. Ebadi, and A. Mohammadzadeh, Design and implementation of

an algorithm for automatic 3D reconstruction of building models using genetic

algorithm. International Journal of Applied Earth Observation and Geoinformation.

19: p. 104-114, 2012

[37] El Garouani, A., A. Alobeid, and S. El Garouani, Digital surface model based on

aerial image stereo pairs for 3D building. International Journal of Sustainable Built

Environment. 3(1): p. 119-126, 2014

[38] Yi, C., et al., Urban building reconstruction from raw LiDAR point data. Computer-

Aided Design. 93: p. 1 - 14, 2017

[39] Haala, N. and C. Brenner, Extraction of buildings and trees in urban environments.

ISPRS Journal of Photogrammetry & Remote Sensing. 54: p. 130-137, 1999

[40] Dorninger, P. and N. Pfeifer, A Comprehensive Automated 3D Approach for

Building Extraction, Reconstruction, and Regularization from Airborne Laser

Scanning Point Clouds. Sensors. 8:11: p. 7323 - 7343, 2008

[41] Tarsha-Kurdi, F., et al., Model-driven and data-driven approaches using lidar data:

analysis and comparison. International Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences. 36: p. 87 - 92, 2007a

[42] Huang, H., C. Brenner, and M. Sester, 3d building roof reconstruction from point

clouds via generative models. Proceedings of the 19th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems: p. 16 –

24, 2011

[43] Brenner, C. and N. Haala, Fast Production of Virtual Reality City Models.

International Archives of Photogrammetry, Remote Sensing and Spatial Information

Sciences. 32:4, 1998

[44] Schindler, K. and J. Bauer, A Model-based Method for Building Reconstruction.

Higher-Level Knowledge in 3D Modeling and Motion Analysis: p. 74 - 82, 2003

[45] Huang, H., C. Brenner, and M. Sester, A generative statistical approach to automatic

3d building roof reconstruction from laser scanning data. ISPRS Journal of

Photogrammetry and Remote Sensing. 79: p. 29-43, 2013

[46] Taillandier, F., Automatic building reconstruction from cadastral maps and aerial

images. International Archives of Photogrammetry and Remote Sensing. 36(3): p.

105-110, 2005

[47] Sampath, A. and J. Shan, Segmentation and reconstruction of polyhedral building

roofs from aerial lidar point clouds. IEEE Transactions on geoscience and remote

sensing. 48(3): p. 1554-1567, 2010

[48] Elberink, S.O., Problems in automated building reconstruction based on dense

airborne laser scanning data. Proceedings of the International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. 37(B3a): p. 93-

98, 2008

83

[49] Fan, H., W. Yao, and Q. Fu, Segmentation of sloped roofs from airborne lidar point

clouds using ridge-based hierarchical decomposition. Remote Sensing. 6(4): p. 3284-

3301, 2014

[50] Karsli, F. and O. Kahya, Building extraction from laser scanning data. Proceedings

of the International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences. 37(B3b): p. 289-294, 2008

[51] Liu, Y. and Y. Xiong, Automatic segmentation of unorganized noisy point clouds

based on the gaussian map. Computer-Aided Design. 40(5): p. 576-594, 2008

[52] Büyüksalih, G. and K. Jacobsen, Comparison of DEM Generation by Very High

Resolution Optical Satellites: EARSeL. Band “New Developments and Challenges

in Remote Sensing”. Rotterdam: Millpress,Warschau. p. 627-637, 2007

[53] Tack, F., G. Buyuksalih, and R. Goossens, 3D building reconstruction based on given

ground plan information and surface models extracted from spaceborne imagery.

ISPRS Journal of Photogrammetry and Remote Sensing. 67(52-64), 2012

[54] Oude Elberink, S. and G. Vosselman, Quality analysis on 3D building models

reconstructed from airbone laser scanning data. ISPRS Journal of Photogrammetry

and Remote Sensing. 66: p. 157 - 165, 2011

[55] Rothermel, M., et al., SURE: Photogrammetric Surface Reconstruction from

Imagery.

[56] Hirschmüller, H., Stereo processing by semiglobal matching and mutual information.

EEE Transactions on Pattern Analysis and Machine Intelligence. 30: p. 328-341,

2008

[57] Frueh, C., R. Sammon, and A. Zakhor, Automated Texture Mapping of 3D City

Models With Oblique Aerial Imagery.

[58] Früh, C. and A. Zakhor, Constructing 3D City Models by Merging Aerial and Ground

Views. IEEE Computer Graphics and Applications. 23(6): p. 52-61, 2003

[59] Kada, M., D. Klinec, and N. Haala, Façade Texturing for Rendering 3D City Models.

ASPRS 2005 Annual Conference March 7 - 11 2005 Baltimore, Maryland, 2005

[60] Ellul, C. and J. Altenbuchner, Investigating approaches to improving rendering

performance of 3D city models on mobile devices. Geo-spatial Information Science.

17(2): p. 73-84, 2014

[61] Klimke, J., B. Hagedorn, and J. Döllner, Scalable Multi-Platform Distribution of

Spatial 3D Contents. International Journal of 3-D Information Modeling, 3(3), 35-

49, July-September 2014: p. 35-49, 2014

[62] Buyuksalih, I., et al., 3d Modelling and Visualization Based on the Unity Game

Engine – Advantages and Challenges. ISPRS Annals of Photogrammetry, Remote

Sensing and Spatial Information Sciences. IV-4/W4: p. 161-166, 2017

[63] Schultz, R.B., J.J. Kerski, and T.C. Patterson, The use of virtual globes as a spatial

teaching tool with suggestions for metadata standards. Journal of Geography.

107(1): p. 27 - 34, 2008

[64] UVM Systems GmbH, http://www.uvmsystems.com/index.php/en/software/soft-

city, Last Access: May 2018

http://www.uvmsystems.com/index.php/en/software/soft-city
http://www.uvmsystems.com/index.php/en/software/soft-city

84

[65] Prandi, F., et al., 3D web visualization of huge CityGML models. ISPRS -

International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences. XL-3/W3: p. 601-605, 2015

[66] Christen, M., S. Nebiker, and B. Loesch, Web-Based Large-Scale 3D-

Geovisualisation Using WebGL: The OpenWebGlobe Project. International Journal

of 3-D Information Modeling, 1(3), 16-25, July-September 2012: p. 16-25, 2012

[67] Jochem, R. and M. Goetz, Towards Interactive 3D City Models on the Web.

International Journal of 3-D Information Modeling, 1(3), 26-36, July-September

2012: p. 26-36, 2012

[68] Gesquière, G. and A. Manin, 3D Visualization of Urban Data Based on CityGML

with WebGL. International Journal of 3-D Information Modeling. 1(3): p. 1-15,

2012

[69] Goetz, M. and A. Zipf, Towards Defining a Framework for the Automatic Derivation

of 3D CityGML Models from Volunteered Geographic Information. International

Journal of 3-D Information Modeling, 1(2), 1-16, April-June 2012: p. 1-16, 2012

[70] Brovelli, M.A., M. Minghini, and G. Zamboni, Three Dimensional Volunteered

Geographic Information: A Prototype of a Social Virtual Globe. International

Journal of 3-D Information Modeling, 3(2), 19-34, April-June 2014: p. 19-34, 2014

[71] Zardiny, A.Z. and F. Hakimpour, 3D Web Services for Visualization and Data

Sharing in 3D Cadastre. International Journal of 3-D Information Modeling, 4(4), 1-

15, October-December 2015: p. 1-15, 2015

[72] Bahu, J., et al., Towards a 3D Spatial Urban Energy Modelling Approach.

International Journal of 3-D Information Modeling, 3(3), 1-16, July-September

2014: p. 1-16, 2014

[73] Kaden, R. and T. Kolbe, Simulation-Based Total Energy Demand Estimation of

Buildings using Semantic 3D City Models. International Journal of 3-D Information

Modeling, 3(2), 35-53, April-June 2014: p. 35-52, 2014

[74] Rüppel, U. and K. Schatz, Designing a BIM-based serious game for fire safety

evacuation simulations. Advanced Engineering Informatics. 25(4): p. 600-611, 2011

[75] Musliman, I., A. Abdul-Rahman, and V. Coors, 3D Navigation for 3D-GIS — Initial

Requirements. Innovations in 3D Geo Information Systems,Springer, Berlin,

Heidelberg,: p. 259–268, 2006

[76] Rossmann, J., M. Hoppen, and A. Bücken, GML-Based Data Management and

Semantic World Modelling for a 4D Forest Simulation and Information System.

International Journal of 3-D Information Modeling, 3(3), 50-67, July-September

2014: p. 50-67, 2014

[77] Portalés, C., J. Lerma, and S. Navarro, Augmented reality and photogrammetry: A

synergy to visualize physical and virtual city environments. ISPRS Journal of

Photogrammetry and Remote Sensing. 65(1): p. 134-142, 2010

[78] Rau, J. and C. Cheng, A cost-effective strategy for multi-scale photo-realistic

building modeling and web-based 3-D GIS applications in real estate. Computers,

Environment and Urban Systems. 38: p. 35-44, 2013

85

[79] Wolff, M. and H. Asche, Towards Geovisual Analysis of Crime Scenes – A 3D

Crime Mapping Approach. Advances in GIScience, Springer, Berlin, Heidelberg: p.

429-448, 2009

[80] Yan, J., Advances in Computer-Generated Imagery for Flight Simulation. IEEE

Computer Graphics and Applications. 5(8): p. 37-51, 1985

[81] San José, R., J. Pérez, and R. González-Barras, 3D Visualization of Air Quality Data.

Proceedings of the 11th International Conference “Reliability and Statistics in

Transportation and Communication” (RelStat’11). Riga, Latvia: p. 1-9, 2011

[82] Kemec, S., et al., Selecting 3D urban visualisation models for disaster management:

Fethiye tsunami inundation case. Proceedings of the 3rd International Conference

on Cartography and GIS. Nessebar, Bulgaria., 2010

[83] Vexcel Imaging Ultracam Falcon, http://www.vexcel-imaging.com/ultracam-

falcon/, Last Access: May 2018

[84] 3D City Database, https://www.3dcitydb.org/3dcitydb/3dcitydbhomepage/, Last

Access: May 2018

[85] Adobe Photoshop CC, https://www.adobe.com/products/photoshop.html, Last

Access: May 2018

[86] Agisoft Photoscan Pro, http://www.agisoft.com/features/professional-edition/, Last

Access: May 2018

[87] ESRI ArcGIS, https://www.arcgis.com/, Last Access: May 2018

[88] Bentley Microstation, https://www.bentley.com/en/products/product-line/modeling-

and-visualization-software/microstation, Last Access: May 2018

[89] VirtualCity Systems BuildingReconstruction,

http://www.virtualcitysystems.de/en/products/buildingreconstruction, Last Access:

May 2018

[90] CesiumJS, https://cesiumjs.org/, Last Access: May 2018

[91] Cesium Terrain Builder, https://github.com/geo-data/cesium-terrain-builder, Last

Access: May 2018

[92] CityGRID Builder, http://www.uvmsystems.com/index.php/en/software/soft-vis,

Last Access: May 2018

[93] CityGRID Texturizer, http://www.uvmsystems.com/index.php/en/software/soft-

city, Last Access: May 2018

[94] Safe Software FME, https://www.safe.com/, Last Access: May 2018

[95] Google Earth Pro, https://earth.google.com, Last Access: May 2018

[96] Microsoft Visual Studio, https://www.visualstudio.com/, Last Access: May 2018

[97] PostGIS, https://postgis.net/, Last Access: May 2018

[98] Sublime Text 3, https://www.sublimetext.com/3, Last Access: May 2018

[99] QGIS, https://qgis.org/, Last Access: May 2018

[100] Quick Terrain Reader, http://appliedimagery.com/, Last Access: May 2018

[101] XAMPP, https://www.apachefriends.org/index.html, Last Access: May 2018

http://www.vexcel-imaging.com/ultracam-falcon/
http://www.vexcel-imaging.com/ultracam-falcon/
https://www.3dcitydb.org/3dcitydb/3dcitydbhomepage/
https://www.adobe.com/products/photoshop.html
http://www.agisoft.com/features/professional-edition/
https://www.arcgis.com/
https://www.bentley.com/en/products/product-line/modeling-and-visualization-software/microstation
https://www.bentley.com/en/products/product-line/modeling-and-visualization-software/microstation
http://www.virtualcitysystems.de/en/products/buildingreconstruction
https://cesiumjs.org/
https://github.com/geo-data/cesium-terrain-builder
http://www.uvmsystems.com/index.php/en/software/soft-vis
http://www.uvmsystems.com/index.php/en/software/soft-city
http://www.uvmsystems.com/index.php/en/software/soft-city
https://www.safe.com/
https://earth.google.com/
https://www.visualstudio.com/
https://postgis.net/
https://www.sublimetext.com/3
https://qgis.org/
http://appliedimagery.com/
https://www.apachefriends.org/index.html

86

[102] Cozzi, P. and D. Bagnell, A WebGL globe rendering pipeline. GPU Pro 4: Advanced

Rendering Techniques AK Peters/CRC Press: p. 39-48, 2013

[103] Cozzi, P. and C. Riccio, OpenGL Insights. AK Peters/CRC Press, 2012

[104] Chaturvedi, K., Z. Yao, and T.H. Kolbe, Web-based Exploration of and Interaction

with Large and Deeply Structured Semantic 3D City Models using HTML5 and

WebGL. 2015

[105] Cesium 3D Tiles, https://github.com/AnalyticalGraphicsInc/3d-tiles, Last Access:

May 2018

[106] Cesium Batched 3D Model, https://github.com/AnalyticalGraphicsInc/3d-

tiles/tree/master/TileFormats/Batched3DModel, Last Access: May 2018

[107] Unity Documentation, https://docs.unity3d.com/, Last Access: May 2018

https://github.com/AnalyticalGraphicsInc/3d-tiles
https://github.com/AnalyticalGraphicsInc/3d-tiles/tree/master/TileFormats/Batched3DModel
https://github.com/AnalyticalGraphicsInc/3d-tiles/tree/master/TileFormats/Batched3DModel
https://docs.unity3d.com/

87

APPENDIX

A. Camera locations and image overlap of photogrammetric blocks.

Figure A.1 Camera locations and image overlaps of block 1

Figure A.2 Camera locations and image overlaps of block 2

88

Figure A.3 Camera locations and image overlaps of block 3

Figure A.4 Camera locations and image overlaps of block 4

89

Figure A.5 Camera locations and image overlaps of block 5

Figure A.6 Camera locations and image overlaps of block 6

90

Figure A.7 Camera locations and image overlaps of block 7

91

B.Developed JavaScript code for CesiumJS Virtual Globe Web Interface

// A demo of 3D City model of Çeşme

var viewer = new Cesium.Viewer('cesiumContainer', {

 animation : false,

 geocoder : false,

 timeline : false,

 fullscreenButton : false,

 homeButton : false,

 scene3DOnly : true,

 navigationHelpButton : true

});

// Set the initial camera view to look at Çeşme

var initialPosition = Cesium.Cartesian3.fromDegrees(26.285, 38.3217, 1000);

var initialOrientation = new Cesium.HeadingPitchRoll.fromDegrees(90.0, -30.0, 0.0);

viewer.scene.camera.setView({

 destination: initialPosition,

 orientation: initialOrientation,

 endTransform: Cesium.Matrix4.IDENTITY

});

// Cesium Navigation Widget

viewer.extend(Cesium.viewerCesiumNavigationMixin, {});

//Hacettepe Geomatics Credit

var credit1 = new Cesium.Credit({

 text : 'Hacettepe University Geomatics Engineering',

 imageUrl : 'Build/hacettepe.png',

 link : 'http://geomatik.hacettepe.edu.tr',

 showOnScreen: true,

});

viewer.scene.frameState.creditDisplay.addDefaultCredit(credit1);

//CesiumJS Credit

var credit2 = new Cesium.Credit({

 text : 'CesiumJS',

 imageUrl : 'Build/cesium.png',

 link : 'http://www.cesiumjs.org',

 showOnScreen: true,

});

viewer.scene.frameState.creditDisplay.addDefaultCredit(credit2);

var scene = viewer.scene;

var viewModelTileset;

function reset() {

 viewer.entities.removeAll();

 viewer.scene.primitives.removeAll();

 viewModelTileset = undefined;

}

// The viewModel tracks the state of our mini application.

var viewModel = {

 maximumScreenSpaceError : 8.0,

 geometricErrorScale : 1.0,

 maximumAttenuation : 0, // Equivalent to undefined

 baseResolution : 0, // Equivalent to undefined

 eyeDomeLightingStrength : 1.0,

 eyeDomeLightingRadius : 1.0,

 rightClickAction: 'annotate',

92

 middleClickAction: 'hide'

};

function tilesetToViewModel(tileset) {

 viewModelTileset = tileset;

 var pointCloudShading = tileset.pointCloudShading;

 viewModel.maximumScreenSpaceError = tileset.maximumScreenSpaceError;

 viewModel.geometricErrorScale = pointCloudShading.geometricErrorScale;

 viewModel.maximumAttenuation = pointCloudShading.maximumAttenuation ?

pointCloudShading.maximumAttenuation : 0;

 viewModel.baseResolution = pointCloudShading.baseResolution ? pointCloudShading.baseResolution : 0;

 viewModel.eyeDomeLightingStrength = pointCloudShading.eyeDomeLightingStrength;

 viewModel.eyeDomeLightingRadius = pointCloudShading.eyeDomeLightingRadius;

}

function loadtexturedlod2() {

 var tileset = new Cesium.Cesium3DTileset({ url: 'lod2tx' });

 viewer.scene.primitives.add(tileset);

 tileset.maximumScreenSpaceError = 8.0;

 tilesetToViewModel(tileset);

}

function loadlod2() {

 var tileset = new Cesium.Cesium3DTileset({ url: 'lod2' });

 viewer.scene.primitives.add(tileset);

 tileset.maximumScreenSpaceError = 8.0;

 tilesetToViewModel(tileset);

}

function loadlod1() {

 var tileset = new Cesium.Cesium3DTileset({ url: 'lod1' });

 viewer.scene.primitives.add(tileset);

 tileset.maximumScreenSpaceError = 8.0;

 tilesetToViewModel(tileset);

}

function loadlod0() {

 var tileset = new Cesium.Cesium3DTileset({ url: 'lod0' });

 viewer.scene.primitives.add(tileset);

 tileset.maximumScreenSpaceError = 8.0;

 tilesetToViewModel(tileset);

}

function loadpcloud() {

 var tileset = new Cesium.Cesium3DTileset({ url: 'pointcloud' });

 viewer.scene.primitives.add(tileset);

 tileset.maximumScreenSpaceError = 4.0; // For better performance, due to how this tileset treats

geometric error.

 tileset.pointCloudShading.maximumAttenuation = 8.0; // Don't allow points larger than 8 pixels.

 tileset.pointCloudShading.baseResolution = 0.05; // Assume an original capture resolution of 5

centimeters between neighboring points.

 tileset.pointCloudShading.geometricErrorScale = 1.0; // Applies to both geometric error and the base

resolution.

 tileset.pointCloudShading.attenuation = true;

 tileset.pointCloudShading.eyeDomeLighting = false;

 tilesetToViewModel(tileset);

}

function loadmesh() {

93

 var tileset = new Cesium.Cesium3DTileset({ url: 'mesh' });

 viewer.scene.primitives.add(tileset);

 tileset.maximumScreenSpaceError = 0.0;

 tilesetToViewModel(tileset);

}

loadtexturedlod2();

// Convert the viewModel members into knockout observables.

Cesium.knockout.track(viewModelTileset);

// Load Çeşme Digital Terrain Model - 1m Resolution - Quantized Mesh Tile

var cesiumTerrainProviderMeshes = new Cesium.CesiumTerrainProvider({

 url : 'qmesh',

 requestWaterMask : false,

 requestVertexNormals : false

});

viewer.terrainProvider = cesiumTerrainProviderMeshes;

// Quantized Mesh Tile DTM Baselayer Menu

var quantizedmeshterrain = viewer.baseLayerPicker.viewModel;

var quantizedmeshterrainProvider = new Cesium.ProviderViewModel({

 name: 'Çeşme Quantized-Mesh 1M',

 iconUrl: 'Build/terrainicon.jpg',

 tooltip: 'Çeşme Quantized-Mesh 1M DTM',

 creationFunction: function () {

 return new Cesium.CesiumTerrainProvider({

 url: 'qmesh'

 });

 }

});

quantizedmeshterrain.terrainProviderViewModels.push(quantizedmeshterrainProvider);

quantizedmeshterrain.selectedTerrain = quantizedmeshterrainProvider;

// Heightmap DTM Baselayer Menu

var heightmapterrain = viewer.baseLayerPicker.viewModel;

var heightmapterrainProvider = new Cesium.ProviderViewModel({

 name: 'Çeşme Heightmap 1M',

 iconUrl: 'Build/terrainicon.jpg',

 tooltip: 'Çeşme Heightmap 1M',

 creationFunction: function () {

 return new Cesium.CesiumTerrainProvider({

 url: 'heightmap'

 });

 }

});

heightmapterrain.terrainProviderViewModels.push(heightmapterrainProvider);

// HTML overlay for showing feature name on mouseover

var nameOverlay = document.createElement('div');

viewer.container.appendChild(nameOverlay);

// Information about the currently selected feature

var selected = {

 feature: undefined,

 originalColor: new Cesium.Color()

};

// Information about the currently highlighted feature

var highlighted = {

94

 feature: undefined,

 originalColor: new Cesium.Color()

};

// An entity object which will hold info about the currently selected feature for infobox display

var selectedEntity = new Cesium.Entity();

// Color a feature yellow on hover.

viewer.screenSpaceEventHandler.setInputAction(function onMouseMove(movement) {

 // If a feature was previously highlighted, undo the highlight

 if (Cesium.defined(highlighted.feature)) {

 highlighted.feature.color = highlighted.originalColor;

 highlighted.feature = undefined;

 }

 // Pick a new feature

 var pickedFeature = viewer.scene.pick(movement.endPosition);

 if (!Cesium.defined(pickedFeature)) {

 nameOverlay.style.display = 'none';

 return;

 }

 // Highlight the feature if it's not already selected.

 if (pickedFeature !== selected.feature) {

 highlighted.feature = pickedFeature;

 Cesium.Color.clone(pickedFeature.color, highlighted.originalColor);

 pickedFeature.color = Cesium.Color.LIME;

 }

}, Cesium.ScreenSpaceEventType.MOUSE_MOVE);

// Color a feature on selection and show metadata in the InfoBox.

var clickHandler =

viewer.screenSpaceEventHandler.getInputAction(Cesium.ScreenSpaceEventType.LEFT_CLICK);

viewer.screenSpaceEventHandler.setInputAction(function onLeftClick(movement) {

 // If a feature was previously selected, undo the highlight

 if (Cesium.defined(selected.feature)) {

 selected.feature.color = selected.originalColor;

 selected.feature = undefined;

 }

 // Pick a new feature

 var pickedFeature = viewer.scene.pick(movement.position);

 if (!Cesium.defined(pickedFeature)) {

 clickHandler(movement);

 return;

 }

 // Select the feature if it's not already selected

 if (selected.feature === pickedFeature) {

 return;

 }

 selected.feature = pickedFeature;

 // Save the selected feature's original color

 if (pickedFeature === highlighted.feature) {

 Cesium.Color.clone(highlighted.originalColor, selected.originalColor);

 highlighted.feature = undefined;

 } else {

 Cesium.Color.clone(pickedFeature.color, selected.originalColor);

 }

95

 // Highlight newly selected feature

 pickedFeature.color = Cesium.Color.LIME;

 // Set feature infobox description

 var featureName = pickedFeature.getProperty('buildingid');

 selectedEntity.name = featureName;

 selectedEntity.description = 'Loading <div class="cesium-infoBox-loading"></div>';

 viewer.selectedEntity = selectedEntity;

 selectedEntity.description = '<table class="cesium-infoBox-defaultTable"><tbody>' +

 '<tr><td>Building ID</th><td>' + pickedFeature.getProperty('buildingid') + '</td></tr>' +

 '<tr><td>Building Type</th><td>' + pickedFeature.getProperty('usage') + '</td></tr>' +

 '<tr><td>Number of Floors</th><td>' + pickedFeature.getProperty('floors') + '</td></tr>' +

 '<tr><td>Building Height</th><td>' + pickedFeature.getProperty('height') + '</th> meters</tr>' +

 '<tr><td>Ground Area</th><td>' + pickedFeature.getProperty('groundarea') + '</th> m²</tr>' +

 '<tr><td>Building Volume</th><td>' + pickedFeature.getProperty('volume') + '</th> m³</tr>' +

 '<tr><td>Latitude</th><td>' + pickedFeature.getProperty('latitude').toFixed(7) + '</th>°</tr>' +

 '<tr><td>Longitude</th><td>' + pickedFeature.getProperty('longitude').toFixed(7) + '</th>°</tr>' +

 '<tr><td>X Coordinate</th><td>' + pickedFeature.getProperty('xcoord').toFixed(2) + '</td></tr>' +

 '<tr><td>Y Coordinate</th><td>' + pickedFeature.getProperty('ycoord').toFixed(2) + '</td></tr>' +

 '<tr><td>Z Coordinate</th><td>' + pickedFeature.getProperty('zcoord').toFixed(2) + '</th> meters</tr>'

+

 '<tr><td>Coordinate Sys. </th><td>' + '</th>ITRF96 - 3°</th>' +

 '<tr><td>Street Maps</th><td>' + '<a href="http://data.mapchannels.com/dualmaps5/map.htm?lat=' +

pickedFeature.getProperty('latitude') + '&lng=' + pickedFeature.getProperty('longitude') + '&z=18&slat=' +

pickedFeature.getProperty('latitude') + '&slng=' + pickedFeature.getProperty('longitude') + '&sh=-

150.75&sp=-0.897&sz=1&gm=0&bm=2&panel=sb&mi=1&md=0" target="_blank">Show (Mid-Click)'

+

 '</tbody></table>';

}, Cesium.ScreenSpaceEventType.LEFT_CLICK);

// Color buildings based on their height.

function colorByHeight() {

 viewModelTileset.style = new Cesium.Cesium3DTileStyle({

 color: {

 conditions: [

 ["${height} >= 30", "rgba(45, 0, 75, 1)"],

 ["${height} >= 20", "rgb(102, 71, 151)"],

 ["${height} >= 18", "rgb(170, 162, 204)"],

 ["${height} >= 16", "rgb(224, 226, 238)"],

 ["${height} >= 13", "rgb(252, 230, 200)"],

 ["${height} >= 10", "rgb(248, 176, 87)"],

 ["${height} >= 5", "rgb(198, 106, 11)"],

 ["true", "rgb(127, 59, 8)"]

]

 }

 });

}

// Color buildings by their total area.

function colorByArea() {

 viewModelTileset.style = new Cesium.Cesium3DTileStyle({

 color: "mix(color('red'), color('cyan'), min(${groundarea} / 150.0, 1.0))"

 });

}

// Transparent buildings

function transparent() {

 viewModelTileset.style = new Cesium.Cesium3DTileStyle({

 color: "rgba(255, 255, 255, 0.5)"

96

 });

}

// Color buildings by their latitude

function colorByLatitude() {

 viewModelTileset.style = new Cesium.Cesium3DTileStyle({

 color: {

 conditions: [

 ["${latitude} >= 38.330", "color('purple')"],

 ["${latitude} >= 38.326", "color('red')"],

 ["${latitude} >= 38.322", "color('orange')"],

 ["${latitude} >= 38.318", "color('yellow')"],

 ["${latitude} >= 38.314", "color('lime')"],

 ["${latitude} >= 38.310", "color('blue')"],

 ["true", "color('cyan')"]

]

 }

 });

}

// Color buildings by their longitude

function colorByLongitude() {

 viewModelTileset.style = new Cesium.Cesium3DTileStyle({

 color: {

 conditions: [

 ["${longitude} >= 26.314", "color('purple')"],

 ["${longitude} >= 26.311", "color('red')"],

 ["${longitude} >= 26.308", "color('orange')"],

 ["${longitude} >= 26.305", "color('yellow')"],

 ["${longitude} >= 26.302", "color('lime')"],

 ["${longitude} >= 26.299", "color('blue')"],

 ["true", "color('cyan')"]

]

 }

 });

}

// Color buildings by distance from a landmark.

function colorByDistance() {

 viewModelTileset.style = new Cesium.Cesium3DTileStyle({

 defines : {

 distance : "distance(vec2(${longitude}, ${latitude}), vec2(26.30353346148452,

38.32355096813952))"

 },

 color : {

 conditions : [

 ["${distance} < 0.0003", "color('white')"],

 ["true", "mix(color('red'), color('yellow'), ${distance} / 0.01)"]

 /*["${distance} >= 0.0085", "color('purple')"],

 ["${distance} >= 0.007", "color('red')"],

 ["${distance} >= 0.0055", "color('orange')"],

 ["${distance} >= 0.004", "color('yellow')"],

 ["${distance} >= 0.0025", "color('lime')"],

 ["${distance} >= 0.001", "color('blue')"],*/

 /*["true", "color('white')"]*/

]

 }

 });

}

97

// Color buildings with a '79' in their name.

function colorByNameRegex() {

 viewModelTileset.style = new Cesium.Cesium3DTileStyle({

 color : "(regExp('79').test(${buildingid})) ? color('red', 1) : color('white', 1)"

 });

}

// Show only buildings greater than 13 meters in height.

function hideByHeight() {

 viewModelTileset.style = new Cesium.Cesium3DTileStyle({

 show : "${height} > 13"

 });

}

// Shows only school buildings.

function showOnlySchools() {

 viewModelTileset.style = new Cesium.Cesium3DTileStyle({

 show : "regExp('School').test(${usage})"

 });

}

function createScreenshot() {

 viewer.render();

 var imageUri = viewer.canvas.toDataURL();

 var imageWin = window.open("");

 imageWin.document.write("<html><head>" +

 "<title>" + imageUri + "</title></head><body>" +

 '' +

 "</body></html>");

 return imageWin;

}

Sandcastle.addToolbarMenu([{

 text : 'Choose a tileset...',

}, {

 text : 'Textured LoD2',

 onselect : function() {

 reset();

 loadtexturedlod2();

 }

}, {

 text : 'LoD2',

 onselect : function() {

 reset();

 loadlod2();

 }

}, {

 text : 'LoD1',

 onselect : function() {

 reset();

 loadlod1();

 }

}, {

 text : 'LoD0',

 onselect : function() {

 reset();

 loadlod0();

 }

}, {

98

 text : 'Point Cloud',

 onselect : function() {

 reset();

 loadpcloud();

 }

}, {

 text : 'Textured Mesh',

 onselect : function() {

 reset();

 loadmesh();

 }

}]);

// Çeşme Locations Toolbar

Sandcastle.addDefaultToolbarMenu([{

 text : 'Zoom to...',

}, {

 text : 'Çeşme Marina',

 onselect : function() {

 viewer.scene.camera.flyTo({

 destination : Cesium.Cartesian3.fromDegrees(26.285, 38.3217, 1000),

 orientation : Cesium.HeadingPitchRoll.fromDegrees(90.0, -30.0, 0.0),

 });

 }

}, {

 text : 'Çeşme Castle',

 onselect : function() {

 viewer.scene.camera.flyTo({

 destination : Cesium.Cartesian3.fromDegrees(26.2995, 38.3235, 200),

 orientation : Cesium.HeadingPitchRoll.fromDegrees(90.0, -30.0, 0.0),

 });

 }

}, {

 text : 'Çeşme Amphitheatre',

 onselect : function() {

 viewer.scene.camera.flyTo({

 destination : Cesium.Cartesian3.fromDegrees(26.308, 38.325, 200),

 orientation : Cesium.HeadingPitchRoll.fromDegrees(170.0, -35.0, 0.0),

 });

 }

}, {

 text : 'Ildırı',

 onselect : function() {

 viewer.scene.camera.flyTo({

 destination : Cesium.Cartesian3.fromDegrees(26.472, 38.377, 400),

 orientation : Cesium.HeadingPitchRoll.fromDegrees(90.0, -30.0, 0.0),

 });

 }

}, {

 text : 'Alaçatı',

 onselect : function() {

 viewer.scene.camera.flyTo({

 destination : Cesium.Cartesian3.fromDegrees(26.376, 38.285, 500),

 orientation : Cesium.HeadingPitchRoll.fromDegrees(0.0, -90.0, 0.0),

99

 });

 }

}, {

 text : 'Windsurf School',

 onselect : function() {

 viewer.scene.camera.flyTo({

 destination : Cesium.Cartesian3.fromDegrees(26.400, 38.255, 1300),

 orientation : Cesium.HeadingPitchRoll.fromDegrees(260.0, -50.0, 0.0),

 });

 }

}, {

 text : 'Ilıca Beach',

 onselect : function() {

 viewer.scene.camera.flyTo({

 destination : Cesium.Cartesian3.fromDegrees(26.370, 38.317, 600),

 orientation : Cesium.HeadingPitchRoll.fromDegrees(170.0, -30.0, 0.0),

 });

 }

}, {

 text : 'Goldensand Beach',

 onselect : function() {

 viewer.scene.camera.flyTo({

 destination : Cesium.Cartesian3.fromDegrees(26.258, 38.261, 550),

 orientation : Cesium.HeadingPitchRoll.fromDegrees(-5.0, -35.0, 0.0),

 });

 }

}], 'toolbar');

Sandcastle.addToolbarMenu([{

 text : '3D Queries',

}, {

 text : 'Color By Height',

 onselect : function() {

 colorByHeight();

 }

}, {

 text : 'Color By Area',

 onselect : function() {

 colorByArea();

 }

}, {

 text : 'Color By Distance',

 onselect : function() {

 colorByDistance();

 }

}, {

 text : 'Color By Latitude',

 onselect : function() {

 colorByLatitude();

 }

}, {

 text : 'Color By Longitude',

 onselect : function() {

 colorByLongitude();

 }

}, {

 text : 'Color By Name Regex',

100

 onselect : function() {

 colorByNameRegex();

 }

}, {

 text : 'Hide By Height',

 onselect : function() {

 hideByHeight();

 }

}, {

 text : 'Hide By Type',

 onselect : function() {

 showOnlySchools();

 }

}, {

 text : 'Transparent Buildings',

 onselect : function() {

 transparent();

 }

}, {

 text : 'Take Screenshot',

 onselect : function() {

 createScreenshot();

 }

}]);

Sandcastle.addToggleButton('Shadows', viewer.shadows, function(checked) {

 viewer.shadows = checked;

});

Sandcastle.addToggleButton('Lighting', viewer.scene.globe.enableLighting, function(checked) {

 viewer.scene.globe.enableLighting = checked;

});

Sandcastle.addToggleButton('Fog', viewer.scene.fog.enabled, function(checked) {

 viewer.scene.fog.enabled = checked;

});

Cesium.knockout.track(viewModel);

var toolbar = document.getElementById('toolbar');

Cesium.knockout.applyBindings(viewModel, toolbar);

var annotations = scene.primitives.add(new Cesium.LabelCollection());

var handler = new Cesium.ScreenSpaceEventHandler(viewer.canvas);

handler.setInputAction(function(movement) {

 var feature = viewer.scene.pick(movement.position);

 if (!Cesium.defined(feature)) {

 return;

 }

 var action = viewModel.rightClickAction;

 if (action === 'annotate') {

 annotate(movement, feature);

 }

}, Cesium.ScreenSpaceEventType.RIGHT_CLICK);

handler.setInputAction(function(movement) {

101

 var feature = viewer.scene.pick(movement.position);

 if (!Cesium.defined(feature)) {

 return;

 }

 var action = viewModel.middleClickAction;

 if (action === 'hide') {

 feature.show = false;

 }

}, Cesium.ScreenSpaceEventType.MIDDLE_CLICK);

function annotate(movement, feature) {

 if (scene.pickPositionSupported) {

 var cartesian = scene.pickPosition(movement.position);

 if(Cesium.defined(cartesian)){

 var cartographic = Cesium.Cartographic.fromCartesian(cartesian);

 var height = cartographic.height.toFixed(2) + ' m';

 annotations.add({

 position : cartesian,

 text : height,

 showBackground : true,

 font : '14px monospace',

 horizontalOrigin : Cesium.HorizontalOrigin.LEFT,

 verticalOrigin : Cesium.VerticalOrigin.BOTTOM,

 disableDepthTestDistance : Number.POSITIVE_INFINITY

 });

 }

 }

}

102

CURRICULUM VITAE

Credentials

Name, Surname : Mehmet BÜYÜKDEMİRCİOĞLU

Place of Birth : Istanbul, Turkey

Marital Status : Single

E-mail : mbuyukdemircioglu@hacettepe.edu.tr

Adress : Ankara, Turkey

Education

High School : Ar-El College

Bsc. : Selçuk University, Dept. of Geomatics Engineering

Msc. : -

PhD. : -

Foreign Languages

English (Good)

Work Experience

2012 - ... : Uncuoğlu Engineering and Consultancy

Areas of Experiences

Photogrammery, Geographical Information Systems, Web Programming

Projects and Budgets

Gaziantep Smart City 2023 Project

Publications

-

Oral and Poster Presentations

-

mailto:mbuyukdemircioglu@hacettepe.edu.tr

