DERIVATIONS AND AUTOMORPHISMS OF CERTAIN SUBRINGS OF MATRIX RINGS

MATRİS HALKALARININ BAZI ALTHALKALARININ TÜREVLERİ VE OTOMORFİZMALARI

UMUT SAYIN

PROF. DR. FERİDE KUZUCUOĞLU
 Supervisor

Submitted to Institute of Sciences of Hacettepe University
as a Partial Fulfillment to the Requirements
for the Award of the Degree of Doctor of Philosophy
in Mathematics

This work named "Derivations and Automorphisms of Certain Subrings of Matrix Rings" by UMUT SAYIN has been approved as a thesis for the Degree of DOCTOR OF PHILOSOPHY IN MATHEMATICS by the below mentioned Examining Committee Members.

Prof. Dr. Ali ERDOĞAN
Head

Prof. Dr. Feride KUZUCUOĞLU
Supervisor

Assoc. Prof. Dr. Ebru SOLAK
Member

Assoc. Prof. Dr. Evrim AKALAN
Member

Assoc. Prof. Dr. Ömer KÜÇÜKSAKALLI Member

This thesis has been approved as a thesis for the Degree of DOCTOR OF PHILOSOPHY IN MATHEMATICS by Board of Directors of the Institute for Graduate School of Science and Engineering.

Prof. Dr. Menemşe GÜMÜŞDERELİOĞLU
Director of the Institute of Graduate School of Science and Engineering

YAYINLAMA VE FİRI MÜLKIYET HAKLARI BEYANI

Enstitü tarafından onaylanan lisansüstü tezimin/raporumun tamamını veya herhangi bir kısmını, basılı (kağıt) ve elektronik formatta arşivleme ve aşağıda verilen koşullarla kullanıma açma iznini Hacettepe üniversitesine verdiğimi bildiririm. Bu izinle Üniversiteye verilen kullanım hakları dışındaki tüm fikri mülkiyet haklarım bende kalacak, tezimin tamamının ya da bir bölümünün gelecekteki çalışmalarda (makale, kitap, lisans ve patent vb.) kullanım hakları bana ait olacaktır.

Tezin kendi orijinal çalışmam olduğunu, başkalarının haklarını ihlal etmediğimi ve tezimin tek yetkili sahibi olduğumu beyan ve taahhüt ederim. Tezimde yer alan telif hakkı bulunan ve sahiplerinden yazılı izin alınarak kullanması zorunlu metinlerin yazılı izin alarak kullandığımı ve istenildiğinde suretlerini Üniversiteye teslim etmeyi taahhüt ederim.
(Tezimin/Raporumun tamamı dünya çapında erişime açılabilir ve bir kısmı veya tamamının fotokopisi alınabilir.
(Bu seçenekle teziniz arama motorlarında indekslenebilecek, daha sonra tezinizin erişim statüsünün değiştirilmesini talep etseniz ve kütüphane bu talebinizi yerine getirse bile, tezinin arama motorlarının önbelleklerinde kalmaya devam edebilecektir.)

Tezimin/Raporumun \qquad .tarihine kadar erişime açılmasını ve fotokopi alınmasını (íç Kapak, Özet, İçindekiler ve Kaynakça hariç) istemiyorum.
(Bu sürenin sonunda uzatma için başvuruda bulunmadığım taktirde, tezimin/raporumun tamamı her yerden erişime açılabilir, kaynak gösterilmek şartıyla bir kısmı ve ya tamamının fotokopisi alınabilir)

Tezimin/Raporumun \qquad tarihine kadar erişime açılmasını istemiyorum, ancak kaynak gösterilmek şartıyla bir kısmı veya tamamının fotokopisinin alınmasını onaylıyorum.

Serbest Seçenek/Yazarın Seçimi

Umut SAYIN

ETHICS

In this thesis study, prepared in accordance with the spelling rules of Institute of Graduate Studies in Science of Hacettepe University, I declare that

- all the information and documents have been obtained in the base of academic rules
- all audio-visual and written information and results have been presented according to the rules of scientific ethics
- in case of using other Works, related studies have been cited in accordance with the scientific standards
- all cited studies have been fully referenced
- I did not do any distortion in the data set
- and any part of this thesis has not been presented as another thesis study at this or any other university.

04/05/2018

UMUT SAYIN

ABSTRACT

DERIVATIONS AND AUTOMORPHISMS OF CERTAIN SUBRINGS OF MATRIX RINGS

Umut SAYIN
Doctor of Philosophy, Department of Mathematics
Supervisor: Prof. Dr. Feride KUZUCUOĞLU
May 2018, 72 pages

Let K be an arbitrary associative ring with identity. We denote by $M_{n}(K)$ the ring of all $n \times n$ matrices over K. Say $K=F$ for some field F. Then it is a consequence of Skolem-Noether theorem that every automorphism of $M_{n}(F)$ is inner.

Recall that a derivation of a ring K is an additive map $D: K \rightarrow K$ satisfying $D(a b)=D(a) b+a D(b)$ for all $a, b \in K$.

The problem of describing all derivations of a ring is an interesting topic for many researchers. Many papers are concerned with the study of derivations of matrix rings and their subrings.

As a result of Skolem-Noether theorem, every derivation of $M_{n}(F)$ is inner.
In 1982, S.A. Amitsur proved that any derivation of $M_{n}(K)$ is the sum of an inner derivation and a derivation arising from a derivation on K where K is an arbitrary ring.

Let $N T_{n}(K)$ be the ring of all niltriangular $n \times n$ matrices over K whose entries are all zeros on and above the main diagonal. V.M. Levchuk characterized the automorphisms of $N T_{n}(K)$ in 1983.

In 2006, J.H. Chun and J.W. Park proved that every derivation of $N T_{n}(K)$ is a sum of a certain diagonal, trivial extension and a strongly nilpotent derivation.

The set defined by $R_{n}(K, J)=N T_{n}(K)+M_{n}(J)$ is a ring with usual matrix addition and multiplication where K is a unital ring and J is an ideal of K. The automorphisms of the ring $R_{n}(K, J)$ were described by F. Kuzucuoğlu and V.M. Levchuk under certain spesific properties.

In the first section of this thesis, we give the historical background of derivations and automorphisms of some certain matrix rings and algebras.

In the second section, we characterize all derivations of $R_{n}(K, J)$.
Recall that the Jordan multiplication on a ring K is given with $a \circ b=a b+b a$ for any $a, b \in K$. An additive map Ω of K satisfying $\Omega(a \circ b)=\Omega(a) \circ b+a \circ \Omega(b)$ is called a Jordan derivation of K.

Every derivation is a Jordan derivation but there are Jordan derivations which are not derivations.

All Jordan derivations of the ring $N T_{n}(K)$ are described by F. Kuzucuoğlu in 2011.
For an arbitrary associative and 2-torsion free ring K with identity and an ideal J of K, we describe all Jordan derivations of $R_{n}(K, J)$ in the third section.

Key words: niltriangular matrix, automorphism, derivation, Jordan derivation.

ÖZET

MATRİS HALKALARININ BAZI ALTHALKALARININ TÜREVLERİ VE OTOMORFİZMALARI

Umut SAYIN
Doktora, Matematik Bölümü
Tez Danışmanı: Prof. Dr. Feride KUZUCUOĞLU
Mayı 2018, 72 sayfa

K birimli ve birleşmeli herhangi bir halka olmak üzere K üzerinde tanımlı $n \times n$ tipindeki tüm matrislerin kümesi $M_{n}(K)$ ile gösterilir. Bu küme, matrislerin bilinen toplama ve çarpma işlemlerine göre bir halka yapısı oluşturur. F herhangi bir cisim olmak üzere, Skolem-Noether teoreminin bir sonucu olarak, $M_{n}(F)$ halkasının her otomorfizmasının bir iç otomorfizma olduğu görülür.
D dönüşümü, K halkası üzerinde tanımlı toplamsal bir dönüşüm olmak üzere eğer her $a, b \in K$ için $D(a b)=D(a) b+a D(b)$ koşulunu sağlıyorsa bu dönüşüme $K-n \imath n$ bir türevi denir. Yine Skolem-Noether teoreminin bir sonucu olarak, F bir cisim olmak üzere $M_{n}(F)$ halkasının her türev dönüşümü bir iç türev dönüşümüdür.
K birimli ve birleşmeli herhangi bir halka olmak üzere tüm nilüçgensel matrislerin halkası $N T_{n}(K)$ olsun. Bu halkanın otomorfizmaları V.M. Levchuk tarafindan 1983 yılında belirlenmiştir.

2006 yılında, J.H. Chun ve J.W. Park, $N T_{n}(K)$ halkasının her türev dönüşümünün köşegen(diagonal), halka(trivial extension) ve kuvvetli nilpotent(strongly nilpotent) türev dönüşümlerinin toplamı olarak yazılabileceğini göstermişlerdir.

Birimli ve birleşmeli bir halka K ve bu halkanın bir ideali J olsun. $R_{n}(K, J)=$ $N T_{n}(K)+M_{n}(J)$ ile tanımlı küme, bilinen matris toplamı ve çarpımı ile bir halka olur. 2001 yılında F. Kuzucuoğlu ve V.M. Levchuk tarafindan, $R_{n}(K, J)$ halkasının otomorfizmaları bazı özel şartlar altında belirlenmiştir.

Bu tezin ilk bölümünde, bazı matris halkalarının ve cebirlerinin türev dönüşümleri ve otomorfizmaları ile ilgili gelişmeler, tarihleriyle birlikte verilmiştir. Daha sonra ikinci
bölümde, birimli ve birleşmeli bir K halkası ile bu halkanın bir ideali J için $R_{n}(K, J)$ halkasının türev dönüşümleri karakterize edilmiştir.

Herhangi bir halkadan alınan keyfi a ve b elemanları için $a \circ b=a b+b a$ ile tanımlı çarpıma Jordan çarpımı denir. Bu halka üzerinde tanımlı toplamsal bir Δ dönüşümü $\Delta(a \circ b)=\Delta(a) \circ b+a \circ \Delta(b)$ koşulunu sağlıyorsa bu dönüşüme halkanın bir Jordan türev dönüşümü denir. Her türev dönüşümü bir Jordan türev dönüşümü iken bunun tersi her zaman doğru değildir. $N T_{n}(K)$ halkasının tüm Jordan türev dönüşümleri F. Kuzucuoğlu tarafindan 2011 yılında verilmiştir.

Son olarak, keyfi birimli ve birleşmeli K halkası ile bu halkanın herhangi bir J ideali üzerinde tanımlı $R_{n}(K, J)$ halkasının bütün Jordan türevleri üçüncü bölümde karakterize edilmiştir.

Anahtar Kelimeler: nilüçgensel matris, otomorfizma, türev, Jordan türev.

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor, Prof. Dr. Feride Kuzucuoğlu, for her continuous support to my PhD studies and research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance has helped me during all my research and the writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD. On the other hand, I want to thank Prof. Dr. Ali Erdoğan and Assoc. Prof. Dr. Ebru Solak for their helpful suggestions during this PhD education period.

I am grateful to all the honourable staff members of the mathematics department of Hacettepe University for their help. I especially wish to thank Prof. Dr. Ruza Ertürk, Prof. Dr. Ayşe Çiğdem Özcan, Prof. Dr. Derya Keskin Tütüncü, Assoc. Prof. Dr. Bülent Saraç and Assoc. Prof. Dr. Evrim Akalan for their valuable suggestions throughout my studentship.

I reserve my deepest thanks to my dearest family members, who were always there with me through my PhD journey. I love you all and I am grateful for the bounty of a loving and supportive family.

I would also like to thank TÜBİTAK (The Scientific and Technological Research Council of Turkey) for their financial support under "TÜBİTAK 2211 National Graduate Scholarship Program" during my PhD.

Last but not least, I am indebted to my friends Hüseyin Çavdar and Çağdaş Kalyon for their limitless encouragement for both my educational and personal life.

CONTENTS

page
ABSTRACT i
ÖZET iii
ACKNOWLEDGEMENTS v
CONTENTS vi
1 INTRODUCTION 1
2 DERIVATIONS OF THE RING $R_{n}(K, J)$ 13
3 JORDAN DERIVATIONS OF THE RING $R_{n}(K, J)$ 30
4 RESULTS 67
REFERENCES 68
CURRICULUM VITAE 71

1 INTRODUCTION

Historical Background of Automorphisms and Derivations on Rings and

Algebras

A central simple algebra over a field F is a finite dimensional associative F-algebra without nontrivial two-sided ideals and whose center is F. The easiest example of a central simple algebra is the matrix algebra over F. For any natural number n, the F - algebra $M_{n}(F)$ of $n \times n$ matrices with coefficients in F is a central simple algebra.

An inner automorphism of an algebra \mathbb{A} is defined as $x \longrightarrow a^{-1} x a$ for an invertible element $a \in \mathbb{A}$.

Skolem-Noether Theorem characterizes the automorphisms of simple rings and it is a fundamental result in the theory of central simple algebras.

Theorem 1.1 [1, Theorem 4.3.1] (Skolem-Noether) Every automorphism of a finite dimensional central simple algebra is inner.

A consequence of Skolem-Noether theorem is that any automorphism of $M_{n}(F)$ is inner. An easy proof of this fact is given by Semrl:

Theorem 1.2 [2, Theorem 1.1] Let F be a field and Φ be a bijective linear map of $M_{n}(F)$ satisfying $\Phi(P Q)=\Phi(P) \Phi(Q)$ for all $P, Q \in M_{n}(F)$. Then there is an invertible matrix $H \in M_{n}(F)$ so that $\Phi(G)=H G H^{-1}$ for every G in $M_{n}(F)$.

Proof. Let $\phi: M_{n}(F) \rightarrow M_{n}(F)$ be a bijection satisfying $\phi(P Q)=\phi(P) \phi(Q)$ for arbitrary matrices $P, Q \in M_{n}(F)$ and $u, y \in F^{n}$ be nonzero column vectors. Then there must be an element $z \in F^{n}$ such that $\phi\left(u y^{t}\right) z \neq 0$ since ϕ is a bijection. Now choose $H: F^{n} \rightarrow F^{n}$ with $x \rightarrow \phi\left(x y^{t}\right) z$. Clearly, H is a linear map as ϕ is linear. Besides, H is nonzero since $H u$ is nonzero. It can be seen that $H P=\phi(P) H$ by

$$
\begin{aligned}
H P x & =\phi\left(P x y^{t}\right) z \\
& =\phi(P) \phi\left(x y^{t}\right) z \\
& =\phi(P) H x
\end{aligned}
$$

for arbitrary $x \in F^{n}$ and $P \in M_{n}(F)$. As $H u \neq 0$ and ϕ is surjective, we can find $Q \in M_{n}(F)$ for any $w \in F^{n}$ such that $\phi(Q) H u=w=H Q u$. Hence H is onto and hence invertible. This completes the proof.

In 1987, Isaacs proved the theorem given below:

Theorem 1.3 [3, Corollary 15] Let F be a unique factorization domain(UFD). Then every automorphism of $M_{n}(F)$ is inner.

Automorphisms of certain subalgebras of matrix algebras have been actively studied since 1950s.

Jondrup showed that if A is a simple algebra, finite dimensional over its center K, then all K-automorphisms of the algebra of upper triangular matrices of A are inner (see [4]).

Let $N T_{n}(F)$ be the set of all $n \times n$ matrices over a field F with zeros on and above the main diagonal. In 1951, Dubisch and Perlis described the algebra automorphisms of $N T_{n}(F)$ as follows:

Theorem 1.4 [5, Theorem 5] Every automorphism of $N T_{n}(F)$ is equal to a product of a certain diagonal, an inner and a nil automorphism.

Let $U T_{n}(K)$ be the set of all matrices with entries above the main diagonal zero and with the entries on the main diagonal all the identity element of K. The automorphism group of $U T_{n}(F)$ over a field F was studied by many authors. The first paper was published by Pavlov in 1952. Pavlov ([6]) described the automorphism group of the group of unitriangular matrices over a finite field of odd prime order. In 1955, Weir characterized the automorphism group of unitriangular matrices over a finite field of odd characteristic (see [7]).

Let $N T_{n}(K)$ be the set of all (lower) niltriangular $n \times n$ matrices over any associative ring K with identity.

Definition 1.5 A ring R is called a nilpotent ring if there is a positive integer n such that $R^{n}=0$.

Proposition 1.6 $N T_{n}(K)$ is a nilpotent ring with usual matrix addition and multiplication.

It is clear that $N T_{n}(K)$ is an adjoint group with adjoint multiplication $a \bullet b=$ $a+b+a b$ for all $a, b \in N T_{n}(K)$.

The unitriangular group $U T_{n}(K)$ and adjoint group of $N T_{n}(K)$ are isomorphic. The map $a \rightarrow a+I$ is a well-known isomorphism from $N T_{n}(K)$ to $U T_{n}(K)$ where I is the $n \times n$ identity matrix.

Definition 1.7 [8, p9-10] A Lie ring is a nonassociative ring without identity and its multiplication $*$ satisfies the following conditions
i) $a * a=0$ (anticommutativity)
ii) $(a * b) * c+(b * c) * a+(c * a) * b=0$ (the Jacobi identity).

One can easily see that $\left(N T_{n}(K),+, *\right)$ is a Lie ring with $a * b=a b-b a$ as obviously both anticommutativity and the Jacobi identity properties hold.

There are examples of Lie rings which are not rings;
Example 1.8 Let \mathbb{A} be a set of all $n \times n$ matrices over a field F admitting $A^{T}=-A$ for all $A \in \mathbb{A}$. It is easy to show that \mathbb{A} is a Lie ring under commutator but not a ring under usual matrix multiplication.

Let $(R,+, *)$ be a Lie ring, $S \subseteq R$ and s, t be arbitrary elements in S. Then the subset S is called a Lie ideal of the Lie ring $(R,+, *)$ if and only if $s+t \in S$ and $r * s \in S$ where r is an arbitrary element of R.

In 1983, Levchuk characterized the group of automorphisms of $N T_{n}(K)$ as a ring, Lie ring and an adjoint group where K is an associative ring with identity ([9]).

The fundamental ring automorphisms of $N T_{n}(K)$ can be defined as follows:

- If $d \in M_{n}(K)$ is an invertible diagonal matrix, then $x \rightarrow d^{-1} x d$ is an automorphism of $N T_{n}(K)$ which is called diagonal.
- Let a be an invertible element of $M_{n}(K)$. Then $x \rightarrow a^{-1} x a$ is an automorphism of $N T_{n}(K)$ called inner automorphism.
- Every automorphism θ of K can be extended to a ring automorphism $\bar{\theta}$ of $N T_{n}(K)$ with $\left[x_{i, j}\right] \rightarrow\left[\bar{\theta}\left(x_{i, j}\right)\right]$.
- Let λ be a group endomorphism of K^{+}. Then $\left[x_{i, j}\right] \rightarrow\left[x_{i, j}\right]+\sum_{i=1}^{n-1} \lambda\left(x_{i+1, i}\right) e_{n, 1}$ defines an annihilator automorphism of $N T_{n}(K)$.

Theorem 1.9 [9, Theorem 1] If K is unitary ring, then any automorphism of $N T_{n}(K)$ can be written as a product of certain diagonal, inner, ring and annihilator automorphisms of $N T_{n}(K)$ for $n>2$.

Levchuk proved this theorem by taking advantage of the structural relations between the Lie ring and the adjoint group of $N T_{n}(K)$:

Theorem 1.10 [10, Theorem 1] The class of all normal subgroups of the adjoint group of $N T_{n}(K)$ matches with the class of all ideals of the Lie ring of $N T_{n}(K)$ for an arbitrary ring K with identity.

For any associative ring R, the operation $*$ is a Lie product with $x * y=x y-y x$ for all $x, y \in R$.

Definition 1.11 An additive map Δ of a ring R is called a Lie automorphism of R if $\Delta(x * y)=\Delta(x) * \Delta(y)$.

Proposition 1.12 Let $R=N T_{n}(K)$. Then the automorphism group of R is the intersection of the automorphism group of the adjoint group $G(R)$ and the automorphism group of the Lie ring $\Lambda(R)$ of R.

Proof. We need to show that $\operatorname{Aut}(R)=\operatorname{Aut}(G(R)) \cap \operatorname{Aut}(\Lambda(R))$. Let $\Psi \in \operatorname{Aut}(R)$ and $x, y \in R$. Then $\Psi(x+y)=\Psi(x)+\Psi(y)$ and $\Psi(x y)=\Psi(x) \Psi(y)$.

First, for $x, y \in R$, we have

$$
\begin{aligned}
\Psi(x \bullet y) & =\Psi(x+y+x y) \\
& =\Psi(x)+\Psi(y)+\Psi(x y) \\
& =\Psi(x)+\Psi(y)+\Psi(x) \Psi(y) \\
& =\Psi(x) \bullet \Psi(y) .
\end{aligned}
$$

This implies that $\Psi \in \operatorname{Aut}(G(R))$.
Secondly,

$$
\begin{aligned}
\Psi(x * y) & =\Psi(x y-y x) \\
& =\Psi(x y)-\Psi(y x) \\
& =\Psi(x) \Psi(y)-\Psi(y) \Psi(x) \\
& =\Psi(x) * \Psi(y) .
\end{aligned}
$$

Therefore $\Psi \in \operatorname{Aut}(\Lambda(R))$. On the other hand, let $\Psi \in \operatorname{Aut}(G(R)) \cap \operatorname{Aut}(\Lambda(R))$. We know that $\Psi(x+y)=\Psi(x)+\Psi(y)$ since $\Psi \in \operatorname{Aut}(\Lambda(R))$. Then we have $\Psi \in \operatorname{Aut}(R)$ considering that

$$
\begin{aligned}
\Psi(x y) & =\Psi((x \bullet y)-(x+y)) \\
& =\Psi(x \bullet y)-\Psi(x+y) \\
& =\Psi(x)+\Psi(y)+\Psi(x) \Psi(y)-\Psi(x)-\Psi(y) \\
& =\Psi(x) \Psi(y) .
\end{aligned}
$$

Levchuk also described the Lie automorphisms and adjoint group automorphisms of $N T_{n}(K)$ in 1983 (see [9, Theorem 1]).

Definition 1.13 An ideal J of the associative ring K is called quasi-regular if J is a group with respect to the adjoint multiplication $x \bullet y=x+y+x y$ (see [11]).

The adjoint multiplication in an associative ring is always a semigroup operation.

An element r of a ring is nilpotent if there is a natural number n such that $r^{n}=0$.

Definition 1.14 An arbitrary associative ring K is called a nil ring if every element of K is nilpotent.

Definition 1.15 Let (K, \bullet) be a group. Then K is called a radical ring. It is clear that every nilpotent ring is nil.

Proposition 1.16 Any nil ring is radical.

Proof. Let $a \in R$. Then there can be found a natural number n such that $a^{n+1}=0$. Consider the element $b=-a+a^{2}-a^{3}+\ldots+(-1)^{n} a^{n}$. Then $a b+b=-a$ and $a+b+a b=0$. Therefore R is radical.

Next example demonstrates that the converse of Proposition 1.16 is not true:
Example 1.17 [12] Let $S=\left\{\frac{2 x}{2 y+1}: x, y \in \mathbb{Z}\right.$ and $\left.(2 x, 2 y+1)=1\right\} \subset \mathbb{Q}$. This set is a commutative ring under the usual addition and multiplication. The ring S has no nilpotent element and so S is not nil. But every element of S is quasi-regular;

$$
\begin{aligned}
\frac{2 x}{2 y+1} \bullet \frac{-2 x}{2(x+y)+1} & =\frac{2 x}{2 y+1}-\frac{2 x}{2(x+y)+1}-\frac{2 x}{2 y+1} \cdot \frac{2 x}{2(x+y)+1} \\
& =\frac{2 x[2 x+2 y+1]-2 x(2 y+1)-4 x^{2}}{(2 y+1)(2 x+2 y+1)} \\
& =\frac{4 x^{2}+4 x y+2 x-4 x y-2 x-4 x^{2}}{(2 y+1)(2 x+2 y+1)} \\
& =0 .
\end{aligned}
$$

Therefore, S is a radical ring.
The characterization of all associative radical rings R with the property that the class of all ideals of the associated Lie ring matches with the class of all normal subgroups of the adjoint group is still an open question (See [13], Question 10-19).

Let $e_{i, j}$ denote the $n \times n$ matrix whose (i, j)-projection is equal to 1 and the other projections are 0 . The matrices $x e_{i, j}(x \in K)$ are called elementary matrices. Multiplication, Lie multiplication and adjoint multiplication of elementary matrices are given as

$$
\begin{aligned}
\left(x e_{i, j}\right)\left(y e_{k, m}\right) & =\delta_{j, k} x y e_{i, m} \\
x e_{i, j} * y e_{k, m} & =\delta_{j, k} x y e_{i, m}-\delta_{m, i} y x e_{k, j}
\end{aligned}
$$

and

$$
x e_{i, j} \bullet y e_{k, m}=x e_{i, j}+y e_{k, m}+\delta_{j, k} x y e_{i, m}
$$

respectively. Note that $\delta_{i, j}$ is Kronecker delta function.
Let K be a unitary ring. If J is an ideal of K then $R=R_{n}(K, J)=N T_{n}(K)+M_{n}(J)$ is a ring with usual matrix addition and multiplication.

Note that $R_{n}(K, J)$ is generated by the sets $K e_{i+1, i}(i<n)$ and $J e_{1, n}$.

Proposition 1.18 If J is a quasi-regular ideal of the ring K then $R_{n}(K, J)$ is radical.

Proof. Let (J, \bullet) be a group. An arbitrary matrix $\alpha=\left[a_{i, j}\right] \in R_{n}(K, J)$ can be represented uniquely as follows:
$\alpha=\beta \bullet \delta \bullet \gamma$ where $\beta=\sum_{i>j} x_{i, j} e_{i, j}, \delta=\sum_{i=1}^{n} y_{i, i} e_{i, i}$ and $\gamma=\sum_{i<j} z_{i, j}\left(x_{i, j} \in K, y_{i, i} \in J\right.$, $\left.z_{i, j} \in J\right)$.

Taking into account the relations

$$
\begin{aligned}
y_{i, i} e_{i, i} \bullet y_{i, i}^{\prime} e_{i, i} & =y_{i, i} e_{i, i}+y_{i, i}^{\prime} e_{i, i}+y_{i, i} y_{i, i}^{\prime} e_{i, i} \\
& =\left(y_{i, i}+y_{i, i}^{\prime}+y_{i, i} y_{i, i}^{\prime}\right) e_{i, i} \\
& =0 \quad\left(y_{i, i} \in J\right), \\
x_{i, j} e_{i, j} \bullet\left(-x_{i, j}\right) e_{i, j} & =0 \quad\left(x_{i, j} \in K, i>j\right)
\end{aligned}
$$

and

$$
z_{i, j} e_{i, j} \bullet\left(-z_{i, j} e_{i, j}\right)=0 \quad\left(z_{i, j} \in J, \quad i<j\right),
$$

we can say that β, γ, δ have adjoint inverses $\beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ where $\beta^{\prime}=\sum_{i>j} x_{i, j}^{\prime} e_{i, j}, \gamma^{\prime}=$ $\sum_{i=1}^{n} y_{i, i}^{\prime} e_{i, i}, \delta^{\prime}=\sum_{i<j} z_{i, j}^{\prime} e_{i, j}$. Hence

$$
\begin{aligned}
& \beta \bullet \beta^{\prime}=\beta^{\prime} \bullet \beta=0, \\
& \delta \bullet \delta^{\prime}=\delta^{\prime} \bullet \delta=0, \\
& \gamma \bullet \gamma^{\prime}=\gamma^{\prime} \bullet \gamma=0 .
\end{aligned}
$$

Therefore, $R_{n}(K, J)$ is a radical ring forasmuch as

$$
\begin{aligned}
\alpha \bullet \gamma^{\prime} \bullet \delta^{\prime} \bullet \beta^{\prime} & =\beta \bullet \delta \bullet \gamma \bullet \gamma^{\prime} \bullet \delta^{\prime} \bullet \beta^{\prime} \\
& =0
\end{aligned}
$$

and $\alpha^{\prime}=\gamma^{\prime} \bullet \delta^{\prime} \bullet \beta^{\prime}$.

For the ring $N T_{n}(K)$, the following are equivalent;

1. Any subgroup H of the adjoint group $N T_{n}(K)$ is normal.
2. H is a Lie ideal of the associated Lie ring $\left(N T_{n}(K),+, *\right)$.

The following two examples show that this equivalence doesn't hold for the ring $R_{n}(K, J)$.

Example 1.19 Let K be a commutative ring, $R=R_{n}(K, J)$ and $L=\{C \in R: \operatorname{tr}(C)=0\}$ be a subset of R. If we choose any $P \in L$ and $Q \in R$, then we get

$$
\begin{aligned}
\operatorname{tr}(P * Q) & =\operatorname{tr}(P Q-Q P) \\
& =\operatorname{tr}(P Q)-\operatorname{tr}(Q P) \\
& =\operatorname{tr}(P Q)-\operatorname{tr}(P Q) \\
& =0
\end{aligned}
$$

and obviously $\operatorname{tr}\left(C_{1}+C_{2}\right)=0$ for all $C_{1}, C_{2} \in L$. Therefore L is a Lie ideal of R. Now we will show that L is not even a subgroup of the adjoint group unless $J=0$. Let $e_{2,1}$ and $y e_{1,2}(y \neq 0)$ be two elements in L. Then the adjoint product $e_{2,1} \bullet y e_{1,2}$ is not in L because $e_{2,1} \bullet y e_{1,2}=e_{2,1}+y e_{1,2}+y e_{2,2}$ and $\operatorname{tr}\left(e_{2,1} \bullet y e_{1,2}\right)=y \neq 0$.

Example 1.20 Let K be a commutative ring with identity and J be a quasi-regular ideal of K. Define a map

$$
\begin{array}{ccc}
\varphi:\left(R_{n}(K, J), \bullet\right) & \rightarrow & \left(G L_{n}(K), \cdot\right) \\
A & \rightarrow & A+I
\end{array}
$$

where I is the $n \times n$ identity matrix. As a result of that

$$
\begin{aligned}
\varphi(A \bullet B) & =\varphi(A+B+A B) \\
& =A+B+A B+I \\
& =(A+I)(B+I) \\
& =\varphi(A) \varphi(B),
\end{aligned}
$$

φ is a group homomorphism. In fact, φ is a monomorphism. Now assume that $H=$ $\varphi^{-1}\left(\varphi(R) \cap S L_{n}(K)\right)$. Obviously H is normal in $\left(R_{n}(K, J), \bullet\right)$. Now let's see that H is not a Lie ideal of the Lie ring $R_{n}(K, J)$:

If $x e_{1,1}+y e_{2,2} \in H$, then $1=\operatorname{det}\left(\varphi\left(x e_{1,1}+y e_{2,2}\right)\right)$ and $1=(1+x)(1+y)=1+(x \bullet y)$. This means $x \bullet y=0$. So y is the adjoint inverse of x. Now $x e_{1,2} * e_{2,1}=x e_{1,1}-x e_{2,2}=$ $x\left(e_{1,1}-e_{2,2}\right) \in H(x \in J)$ holds only if $y=-x$ and hence $x^{2}=0$. Therefore, if the ideal J contains an element a satisfying $a^{2} \neq 0$, then it is not a Lie ideal.

Definition 1.21 Let K be a ring. Then annihilator of K and annihilator of an ideal J in K are defined by

$$
\begin{aligned}
\operatorname{Ann}(K) & =\{a \in K: a K=K a=0\} \\
\operatorname{Ann}_{K}(J) & =\{a \in K: a J=J a=0\}
\end{aligned}
$$

Definitions of the automorphisms of $R_{n}(K, J)$ are given as follows:

- $\left[x_{i, j}\right] \rightarrow\left[x_{i, j}\right]+\left(\lambda_{n}\left(x_{1, n}\right)+\sum_{i=1}^{n-1} \lambda_{i}\left(x_{i+1, i}\right)\right) e_{n, 1}$ is an annihilator automorphism of R with the conditions $\lambda_{n}: J \rightarrow \operatorname{Ann}_{K}(J), \quad \lambda_{n}\left(J^{2}\right)=0, \quad \lambda_{i}: K \rightarrow A n n_{K}(J)$, $\lambda_{i}(J)=0(i<n)$.
- Let $\alpha, \beta: J \rightarrow J, \gamma: J \rightarrow K$ be additive maps satisfying
i) $\alpha(x y)=x \alpha(y)$
ii) $\beta(y x)=\beta(y) x$
iii) $y \beta(z)+\alpha(y) z=0$
iv) $\gamma(z y)=\beta(z) \alpha(y)$
v) $\beta(y) \gamma(z)+\gamma(y) \alpha(z)=y \gamma(z)+\alpha(y) \alpha(z)=\gamma(y) z+\beta(y) \beta(z)=0$
where $x \in K, y, z \in J$. Then

$$
\begin{array}{rlr}
\Delta: R_{n}(K, J) & \longrightarrow R_{n}(K, J) \\
y e_{1, n} & \longrightarrow y e_{1, n}+\alpha(y) e_{1,1}+\beta(y) e_{n, n}+\gamma(y) e_{n, 1} \\
y e_{i, n} & \longrightarrow y e_{i, n}+\alpha(y) e_{i, 1} \quad, \quad 1<i \leq n \\
y e_{1, j} & \longrightarrow y e_{1, j}+\beta(y) e_{n, j} \quad, \quad 1 \leq j<n \\
x_{i, j} e_{i, j} & \longrightarrow x_{i, j} e_{i, j} \quad, \quad i>1 \text { and } j<n
\end{array}
$$

is an automorphism of R called almost annihilator.

- If d is an invertible diagonal matrix in $M_{n}(K)$ then $x \rightarrow d^{-1} x d$ is an automorphism of $R_{n}(K, J)$ called a diagonal automorphism.
- Let $\theta \in \operatorname{Aut}(K)$. Then $\bar{\theta}:\left[a_{i, j}\right] \rightarrow\left[\theta\left(a_{i, j}\right)\right]$ is an automorphism of $R_{n}(K, J)$ if $\theta(J)=J$. Such automorphisms will be called ring automorphisms of R.

Theorem 1.22 [14, Theorem 2.1] Let J be an ideal of K such that a one-sided or two-sided annihilator of J^{t} in K matches with J for a nonnegative integer t. Then any automorphism of $R_{n}(K, J)$ can be written as a product of annihilator, almost annihilator, inner, diagonal and ring automorphisms for $n>2$.

Definition 1.23 An additive map Ψ of a ring R is called a derivation of R if $\Psi(a b)=$ $\Psi(a) b+a \Psi(b)$ for all $a, b \in R$.

The set of all derivations of a ring R is denoted by $\operatorname{Der}(R)$. Lie product of two derivations is a derivation again;

Let $k, r \in R$.

$$
\begin{aligned}
\left(d_{1} * d_{2}\right)(k r)= & \left(d_{1} d_{2}-d_{2} d_{1}\right)(k r) \\
= & d_{1} d_{2}(k r)-d_{2} d_{1}(k r) \\
= & d_{1}\left[d_{2}(k) r+k d_{2}(r)\right]-d_{2}\left[d_{1}(k) r+k d_{1}(r)\right] \\
= & d_{1}\left[d_{2}(k)\right] r+d_{2}(k) d_{1}(r)+d_{1}(k) d_{2}(r)+k d_{1}\left[d_{2}(r)\right] \\
& -d_{2}\left[d_{1}(k)\right] r-d_{1}(k) d_{2}(r)-d_{2}(k) d_{1}(r)-k d_{2}\left[d_{1}(r)\right] \\
= & d_{1}\left[d_{2}(k)\right] r-d_{2}\left[d_{1}(k)\right] r+k d_{1}\left[d_{2}(r)\right]-k d_{2}\left[d_{1}(r)\right] \\
= & \left\{d_{1} d_{2}(k)-d_{2} d_{1}(k)\right\} r+k\left\{d_{1} d_{2}(r)-d_{2} d_{1}(r)\right\} \\
= & \left(d_{1} * d_{2}\right)(k) r+k\left(d_{1} * d_{2}\right)(r) .
\end{aligned}
$$

Hence $\operatorname{Der}(R)$ is a Lie Ring.
Let a is an arbitrary element of a ring K. An inner derivation of K is defined by $x \longrightarrow a x-x a$.

Theorem 1.24 [1, Proposition(p100)] Let A be a simple algebra finite dimensional over its center F. Then any derivation of A is inner.

Proof. Let A_{2} be the ring of all 2×2 matrices over A. Obviously A_{2} is simple and has F as its center and is finite dimensional over F. Let

$$
B=\left\{\left[\begin{array}{cc}
a & \delta(a) \\
0 & a
\end{array}\right]: a \in A\right\}
$$

where δ is a derivation of A and let

$$
C=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right]: a \in A\right\} .
$$

It is trivial to show that $\delta(\alpha)=0$ for $\alpha \in F$. Hence the mapping $\psi: C \rightarrow B$ defined by

$$
\psi\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right]=\left[\begin{array}{cc}
a & \delta(a) \\
0 & a
\end{array}\right]
$$

is easily shown to be an isomorphism of C onto B leaving F elementwise fixed. Also $C \approx A$. All the conditions of Skolem-Noether Theorem are satisfied. Thus there is an invertible matrix

$$
\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]
$$

such that

$$
\left[\begin{array}{cc}
a & \delta(a) \\
0 & a
\end{array}\right]\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right] .
$$

Hence

$$
\begin{aligned}
a x+\delta(a) z & =x a \\
a y+\delta(a) w & =y a \\
a z & =z a \\
a w & =w a
\end{aligned}
$$

for all $a \in A$. These relations imply $w, z \in F$ and as $\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]$ is invertible, one of these scalars, say z, is nonzero. Putting $u=x z^{-1}$, we get $\delta(a)=u a-a u$. As a result, δ is inner.

Corollary 1.25 Let \mathbb{k} be a field. Then any derivation of the matrix algebra $M_{n}(\mathbb{k})$ is inner.

Derivations of $N T_{n}(K)$ are given in [15] as follows:

- Let d be a diagonal matrix in $M_{n}(K)$. Then $i_{d}: x \rightarrow d x-x d$ is a derivation of $N T_{n}(K)$ which is called a diagonal derivation.
- If θ is a derivation of the ring K then $\bar{\theta}:\left[x_{i, j}\right] \rightarrow\left[\theta\left(x_{i, j}\right)\right]$ is a derivation of $N T_{n}(K)$ called a ring derivation.
- Let s_{t} be a derivation of $N T_{n}(K)$. Then s_{t} is called a strongly nilpotent derivation of $N T_{n}(K)$ if $s_{t}(x) \in\left[N T_{n}(K)\right]^{k+1}$ for all $x \in\left[N T_{n}(K)\right]^{k}$.

In 2006, Chun and Park determined the derivations of the niltriangular matrix ring $N T_{n}(K)$.

Theorem 1.26 [15] Any derivation δ of $N T_{n}(K)$ can be written as a sum of diagonal, ring and strongly nilpotent derivations.

2 DERIVATIONS OF THE RING $R_{n}(K, J)$

Many authors have studied derivations of matrix rings and their subrings (see [16], [17], [18], [19], [20]). Let K be an associative ring with identity and J be an ideal of K. Recall that $R_{n}(K, J)=N T_{n}(K)+M_{n}(J)$ where $N T_{n}(K)$ is the set of all $n \times n$ matrices over K with zeros on and above the main diagonal and $M_{n}(J)$ is the set of all $n \times n$ matrices over J. In this section, we characterize all derivations of the ring $R_{n}(K, J)$.

The ideals of $R_{n}(K, J)$ are characterized in [21].

Definition 2.1 An ideal J of a ring K is said to be a characteristic if it is invariant under any derivation of K (see [22]).

It is obvious that K^{m} is a characteristic ideal of any associative ring K for every integer $m>1$.

To compute the powers of $R=R_{n}(K, J)$, we use the infinite row of carpet ideals of K where each ideal is repeated n times. This terminology is originally introduced by Kargapolov and Merzljakov ([22, p107-108]). Regard the $n \times n$ matrix as a square array of n^{2} points and cover it with carpet ideals $J^{0}=K, J, J^{2}, J^{3}, \ldots, J^{m}, \ldots$ as shown in the diagram for $n=4$;

$$
\begin{array}{ccccccccccccccc}
K & K & K & K & J & J & J & J & J^{2} & J^{2} & J^{2} & J^{2} & J^{3} & J^{3} & \ldots \\
& K & K & K & K & J & J & J & J & J^{2} & J^{2} & J^{2} & J^{2} & J^{3} & \ldots \\
& & K & K & K & K & J & J & J & J & J^{2} & J^{2} & J^{2} & J^{2} & \ldots \\
& & & K & K & K & K & J & J & J & J & J^{2} & J^{2} & J^{2} & J^{2} \ldots
\end{array}
$$

From the diagram, $R=\left[\begin{array}{cccc}J & J & J & J \\ K & J & J & J \\ K & K & J & J \\ K & K & K & J\end{array}\right], R^{2}=\left[\begin{array}{cccc}J & J & J & J^{2} \\ J & J & J & J \\ K & J & J & J \\ K & K & J & J\end{array}\right]$,

$$
R^{4}=\left[\begin{array}{llll}
J & J^{2} & J^{2} & J^{2} \\
J & J & J^{2} & J^{2} \\
J & J & J & J^{2} \\
J & J & J & J
\end{array}\right], R^{5}=\left[\begin{array}{cccc}
J^{2} & J^{2} & J^{2} & J^{3} \\
J & J^{2} & J^{2} & J^{2} \\
J & J & J^{2} & J^{2} \\
J & J & J & J^{2}
\end{array}\right], R^{8}=\left[\begin{array}{cccc}
J^{2} & J^{3} & J^{3} & J^{3} \\
J^{2} & J^{2} & J^{3} & J^{3} \\
J^{2} & J^{2} & J^{2} & J^{3} \\
J^{2} & J^{2} & J^{2} & J^{2}
\end{array}\right],
$$

$$
R^{4 s}=\left[\begin{array}{cccc}
J^{s} & J^{s+1} & J^{s+1} & J^{s+1} \\
J^{s} & J^{s} & J^{s+1} & J^{s+1} \\
J^{s} & J^{s} & J^{s} & J^{s+1} \\
J^{s} & J^{s} & J^{s} & J^{s}
\end{array}\right] \text { and so on. }
$$

Lemma 2.2 Let J be an ideal of a ring K. If J is nilpotent, so is $R_{n}(K, J)$.

The left annihilator of any ring K is denoted by $A n n_{l}(K)$ and

$$
\operatorname{Ann}_{l}(K)=\{x \in K: x K=0\}
$$

The right annihilator of a ring can be defined in a similar way.
Let $R=R_{n}(K, J)$. By using carpet ideals, it can be seen that
$A n n_{l}\left(R^{k}\right)=\left\{\left[x_{i, j}\right] \in R: x_{u, v} \in A n n_{l}\left(J^{s+1}\right)\right.$ for $v \leq t$ and $x_{u, v} \in A n n_{l}\left(J^{s}\right)$ for $\left.v>t\right\}$ where $k=s n+t(0 \leq t<n)$.

Proposition 2.3 Let $\operatorname{Ann}_{K}(J)=\{c \in K: c J=J c=0\}$ and
$\operatorname{Ann}\left(R_{n}(K, J)\right)=\left\{A=\left[a_{i, j}\right]: A X=0=X A\right.$ for all $\left.X \in R_{n}(, J)\right\}$. Then $\operatorname{Ann}\left(R_{n}(K, J)\right)=\operatorname{Ann}_{K}(J) e_{n, 1}$.

Proof. Let $A=\left[a_{i, j}\right]$ be any element of $\operatorname{Ann}\left(R_{n}(K, J)\right)$. Then $A x_{i, j} e_{i, j}=0=x_{i, j} e_{i, j} A$ for any $1 \leq i, j \leq n$ and $x_{i, j} \in I_{i, j}$. We know that $K e_{i+1, i}$ and $J e_{1, n}$ generates all matrices in $R_{n}(K, J)$ since any elementary matrix can be written as

$$
\begin{array}{r}
\prod_{k=0}^{i-j-1} e_{i-k, i-k-1} \text { for } i>j \text { and } \\
\prod_{k=0}^{i-2} e_{i-k, i-k-1} y e_{1, n} \prod_{k=0}^{n-j-1} e_{n-k, n-k-1} \text { for } i \leq j
\end{array}
$$

where $x \in K, y \in J$. To determine the structure of a matrix $A \in \operatorname{Ann}\left(R_{n}(K, J)\right)$, it is sufficient to check $A x e_{i+1, i}=0=x e_{i+1, i} A$ and $A y e_{1, n}=0=y e_{1, n} A$ for all $x \in K$, $y \in J$.

$$
\begin{aligned}
& 0=A x e_{i+1, i}=\sum_{k} A_{k, i+1} x e_{k, i} \Longrightarrow A_{k, i+1}=0 \text { for } 1 \leq k \leq n \text { and } 1 \leq i<n, \\
& 0=x e_{i+1, i} A=\sum_{k} x A_{i, k} e_{i+1, k} \Longrightarrow A_{i, k}=0 \text { for } 1 \leq k \leq n \text { and } 1 \leq i<n .
\end{aligned}
$$

and this means $A_{i, j}=0$ except $(i, j)=(n, 1)$. Furthermore, $A_{n, 1} y=0=y A_{n, 1}$ which means $A_{n, 1} \in A n n_{K}(J)$ for all $y \in J$ since $0=A y e_{1, n}=A_{n, 1} y e_{n, n}$ implies $A_{n, 1} y=0$. and $0=y e_{1, n} A=y A_{n, 1} e_{1,1}$ implies $y A_{n, 1}=0$. As a result, it is clear that $\operatorname{Ann}\left(R_{n}(K, J)\right)=\operatorname{Ann}_{K}(J) e_{n, 1}$.

Now we define some derivations of $R_{n}(K, J)$.

Proposition 2.4 Let $\lambda_{n}: J \longrightarrow \operatorname{Ann}_{K}(J), \lambda_{n}\left(J^{2}\right)=0$ and $\lambda_{i}: K \longrightarrow \operatorname{Ann}_{K}(J)$, $\lambda_{i}(J)=0$ be additive maps for $i=1<n$. Then the map

$$
\begin{aligned}
& \Omega: R \longrightarrow \operatorname{Ann}(R) \\
& X=\left[x_{i, j}\right] \longrightarrow\left(\lambda_{n}\left(x_{1, n}\right)+\sum_{i=1}^{n-1} \lambda_{i}\left(x_{i+1, i}\right)\right) e_{n, 1}
\end{aligned}
$$

determines a derivation of R. It is called an annihilator derivation.

Proof. Let X and Y be in R and $\lambda_{n}: J \longrightarrow A n n_{K}(J), \lambda_{i}: K \longrightarrow A n n_{K}(J)(i<n)$ be additive maps satisfying $\lambda_{n}\left(J^{2}\right)=0, \lambda_{i}(J)=0$. The map Ω is additive because λ_{i} is additive for all $i=1,2, \ldots, n$. On the other hand, $\Omega(X Y)$ is equal to zero as

$$
\Omega(X Y)=\left(\sum_{k=1}^{n} \lambda_{n}\left(x_{1, k} y_{k, n}\right)+\sum_{i=1}^{n-1} \sum_{k=1}^{n} \lambda_{i}\left(x_{i+1, k} y_{k, i}\right)\right) e_{n, 1},
$$

$\lambda_{n}\left(J^{2}\right)=0, \lambda_{i}(J)=0$ for $i=1,2, \ldots, n-1$. Finally, $\Omega(X) Y+X \Omega(Y)=0$ considering that $\Omega: R \rightarrow \operatorname{Ann}(R)$ where $\operatorname{Ann}(R)=\left(A n n_{K}(J)\right) e_{n, 1}$.

Example 2.5 Let $K=\mathbb{Z}_{9}$ and J be the ideal generated by $\overline{3}$ in \mathbb{Z}_{9}. Then

$$
\Omega:\left[x_{i, j}\right] \rightarrow\left(\sum_{i=1}^{n-1} \lambda\left(x_{i+1, i}\right)\right) e_{n, 1}
$$

is an annihilator derivation of R where $\lambda: x \rightarrow 3 x$ is an additive map of K.

Proposition 2.6 If the additive group homomorphisms $\sigma: J \longrightarrow A n n_{K}(J)$ and λ, μ : $J \longrightarrow J$ satisfy the following relations
i) $\quad \lambda(x y)=x \lambda(y)$
ii) $\mu(y x)=\mu(y) x$
iii) $\lambda(y) z+y \mu(z)=0$
iv) $\sigma\left(J^{2}\right)=0$
for $x \in K$ and $y, z \in J$, then the map

$$
\begin{aligned}
& \Delta: \quad R \quad \longrightarrow \quad R \\
& y e_{1, n} \longrightarrow \lambda(y) e_{1,1}+\mu(y) e_{n, n}+\sigma(y) e_{n, 1} \\
& y e_{i, n} \quad \longrightarrow \lambda(y) e_{i, 1} \quad, \quad 1<i \leq n \\
& y e_{1, j} \quad \longrightarrow \mu(y) e_{n, j} \quad, \quad 1 \leq j<n \\
& x_{i, j} e_{i, j} \longrightarrow 0 \quad, \quad i>1 \text { and } j<n
\end{aligned}
$$

determines a derivation of the ring R where $y \in J$ and $x_{i, j} \in I_{i, j}$. This derivation will be called an almost annihilator derivation.

Proof. Let X and Y be in R and $\lambda: J \longrightarrow A n n_{K}(J), \mu, \sigma: J \longrightarrow J$ be additive maps satisfying the conditions i) $-i v$). It is obvious that Δ is additive because λ, μ and σ are additive maps. Besides, we have

$$
\begin{aligned}
\Delta(X Y) & =\sum_{k=1}^{n} \lambda\left(x_{1, k} y_{k, n}\right) e_{1,1}+\sum_{k=1}^{n} \mu\left(x_{1, k} y_{k, n}\right) e_{n, n} \\
& +\sum_{i=2}^{n} \sum_{k=1}^{n} \lambda\left(x_{i, k} y_{k, n}\right) e_{i, 1}+\sum_{j=1}^{n-1} \sum_{k=1}^{n} \mu\left(x_{1, k} y_{k, j}\right) e_{n, j}
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta(X) Y+X \Delta(Y) & =\sum_{k=1}^{n} \lambda\left(x_{1, n}\right) y_{1, k} e_{1, k}+\sum_{k=1}^{n} \mu\left(x_{1, n}\right) y_{n, k} e_{n, k} \\
& +\sum_{i=2}^{n} \sum_{k=1}^{n} \lambda\left(x_{i, n}\right) y_{1, k} e_{i, k}+\sum_{j=1}^{n-1} \sum_{k=1}^{n} \mu\left(x_{1, j}\right) y_{j, k} e_{n, k} \\
& +\sum_{k=1}^{n} x_{k, 1} \lambda\left(y_{1, n}\right) e_{k, 1}+\sum_{k=1}^{n} x_{k, n} \mu\left(y_{1, n}\right) e_{k, n} \\
& +\sum_{i=2}^{n} \sum_{k=1}^{n} x_{k, i} \lambda\left(y_{i, n}\right) e_{k, 1}+\sum_{j=1}^{n-1} \sum_{k=1}^{n} x_{k, n} \mu\left(y_{1, j}\right) e_{k, j}
\end{aligned}
$$

by $\sigma: J \longrightarrow A n n_{K}(J)$ and $\left.i v\right)$. Now we need to show that these two are equal.
First of all, the $(1,1)$ coefficients of $\Delta(X Y)$ and $\Delta(X) Y+X \Delta(Y)$ are $\sum_{k=1}^{n} \lambda\left(x_{1, k} y_{k, n}\right)$ and $\left[\lambda\left(x_{1, n}\right) y_{1,1}+x_{1, n} \mu\left(y_{1,1}\right)+\sum_{i=1}^{n} x_{1, i} \lambda\left(y_{i, n}\right)\right]$, respectively and they are equal by the conditions i) and $i i i)$. Secondly, the (n, n) entries $\sum_{k=1}^{n} \mu\left(x_{1, k} y_{k, n}\right)$ of $\Delta(X Y)$ and $\left[\sum_{j=1}^{n} \mu\left(x_{1, j}\right) y_{j, n}+\lambda\left(x_{n, n}\right) y_{1, n}+x_{n, n} \mu\left(y_{1, n}\right)\right]$ of $\Delta(X) Y+X \Delta(Y)$ are equal by $\left.i i\right)$ and iii). After that, the $(i, 1)$ coefficients of $\Delta(X Y)$ and $\Delta(X) Y+X \Delta(Y)$ for $i>1$ are

$$
\left[\sum_{k=1}^{n} \lambda\left(x_{1, k} y_{k, n}\right) e_{1,1}+\sum_{i=2}^{n} \sum_{k=1}^{n} \lambda\left(x_{i, k} y_{k, n}\right) e_{i, 1}+\sum_{k=1}^{n} \mu\left(x_{1, k} y_{k, 1}\right) e_{n, 1}\right]
$$

and

$$
\left[\sum_{i=1}^{n} \lambda\left(x_{i, n}\right) y_{1,1} e_{i, 1}+\sum_{j=1}^{n} \mu\left(x_{1, j}\right) y_{j, 1} e_{n, 1}+\sum_{i=1}^{n} \sum_{k=1}^{n} x_{k, i} \lambda\left(y_{i, n}\right) e_{k, 1}+\sum_{k=1}^{n} x_{k, n} \mu\left(y_{1,1}\right) e_{k, 1}\right],
$$

respectively. These two are equal to each other by i, $i i$) and $i i i$). Finally, the (n, j) entries of $\Delta(X Y)$ and $\Delta(X) Y+X \Delta(Y)$ for $j<n$ are

$$
\left[\sum_{k=1}^{n} \mu\left(x_{1, k} y_{k, n}\right) e_{n, n}+\sum_{k=1}^{n} \lambda\left(x_{n, k} y_{k, n}\right) e_{n, 1}+\sum_{j=1}^{n-1} \sum_{k=1}^{n} \mu\left(x_{1, k} y_{k, j}\right) e_{n, j}\right]
$$

and

$$
\begin{aligned}
& \sum_{k=1}^{n} \mu\left(x_{1, n}\right) y_{n, k} e_{n, k}+\sum_{k=1}^{n} \lambda\left(x_{n, n}\right) y_{1, k} e_{n, k}+\sum_{j=1}^{n-1} \sum_{k=1}^{n} \mu\left(x_{1, j}\right) y_{j, k} e_{n, k} \\
& +\sum_{i=1}^{n} x_{n, i} \lambda\left(y_{i, n}\right) e_{n, 1}+\sum_{j=1}^{n} x_{n, n} \mu\left(y_{1, j}\right) e_{n, j}
\end{aligned}
$$

respectively, and these two sums are equal as well by i), $i i$) and $i i i$).
Now, to complete the proof, we need to show that the entries except $(i, 1)$ and (n, j) of $\Delta(X) Y+X \Delta(Y)$ are zero.

By excluding the $(i, 1)$ and (n, j) entries of the matrix $\Delta(X) Y+X \Delta(Y)$, we get $\sum_{i=1}^{n-1} \sum_{k=2}^{n} \lambda\left(x_{i, n}\right) y_{1, k} e_{i, k}+\sum_{j=2}^{n} \sum_{k=1}^{n-1} x_{k, n} \mu\left(y_{1, j}\right) e_{k, j}$ which is equal to zero by $\left.i i i\right)$.

Example 2.7 Let $K=Z_{4}$ and J be the ideal generated by $\overline{2}$ in K. Then the map

$$
\begin{aligned}
\Delta: R_{n}(K, J) & \longrightarrow R_{n}(K, J) \\
y e_{1, n} & \longrightarrow \lambda(y) e_{1,1}+\mu(y) e_{n, n}+\sigma(y) e_{n, 1} \\
y e_{i, n} & \longrightarrow \lambda(y) e_{i, 1} \quad, \quad 1<i \leq n \\
y e_{1, j} & \longrightarrow \mu(y) e_{n, j} \quad, \quad 1 \leq j<n \\
x_{i, j} e_{i, j} & \longrightarrow 0 \quad, \quad i>1 \text { and } j<n
\end{aligned}
$$

is an almost annihilator derivation of R where $\lambda, \mu, \sigma: x \rightarrow x$. In particular, if $n=3$,
then $\Delta:\left[x_{i, j}\right] \rightarrow\left[\begin{array}{ccc}x_{1,3} & 0 & 0 \\ x_{2,3} & 0 & 0 \\ x_{1,3}+x_{3,3}+x_{1,1} & x_{1,2} & x_{1,3}\end{array}\right]$ is an almost annihilator derivation
of $R_{3}(K, J)$ where $K=\mathbb{Z}_{4}$ and $J=(\overline{2})$.

Proposition 2.8 If θ is a derivation of the ring K and also of J, then
$\bar{\theta}:\left[x_{i, j}\right] \rightarrow \sum_{i, j=1}^{n} \theta\left(x_{i, j}\right) e_{i, j}$ is a derivation of R which is called a ring derivation.
Proof. Let X and Y be arbitrary elements of R and θ be a derivation of K and also of J. Then $\bar{\theta}$ is additive as θ is an additive map of K. Besides, (i, j) entry of $\bar{\theta}(X Y)$ is $\sum_{k=1}^{n} \theta\left(x_{i, k} y_{k, j}\right)$ and (i, j) entry of $\bar{\theta}(X) Y+X \bar{\theta}(Y)$ is $\sum_{k=1}^{n} \theta\left(x_{i, k}\right) y_{k, j}+\sum_{k=1}^{n} x_{i, k} \theta\left(y_{k, j}\right)$. As a result of that $\theta\left(x_{i, k} y_{k, j}\right)=\theta\left(x_{i, k}\right) y_{k, j}+x_{i, k} \theta\left(y_{k, j}\right)$ for every $k=1,2, \ldots, n$, two sums $\sum_{k=1}^{n} \theta\left(x_{i, k} y_{k, j}\right)$ and $\sum_{k=1}^{n} \theta\left(x_{i, k}\right) y_{k, j}+\sum_{k=1}^{n} x_{i, k} \theta\left(y_{k, j}\right)$ are equal.

Let θ be an additive map of K and J. Then $\bar{\theta}:\left[x_{i, j}\right] \rightarrow \sum_{i, j=1}^{n} \theta\left(x_{i, j}\right) e_{i, j}$ determines a derivation of the ring $R_{2}(K, J)$ if the relation $\theta(x y)=\theta(x) y+x \theta(y)$ holds and $\theta(1)=0$ where $x \in K, y \in J$ or $x \in J, y \in K$. This derivation is called a $\left(K^{+}, J\right)$-ring derivation.

Example 2.9 Let $K=\mathbb{R}[x]$ be the ring of all polynomials on \mathbb{R} and $J=(x)$ be the ideal generated by x. Then $\bar{\theta}:\left[x_{i, j}\right] \rightarrow\left[\theta\left(x_{i, j}\right)\right]$ is a ring derivation of $R_{n}(K, J)$ where θ is the ordinary derivation.

Proposition 2.10 For any ring R and any element a of this ring, the map $\Psi_{a}: x \longrightarrow$ ax - xa is a derivation of R which is called the inner derivation of R induced by the element a.

Proof. Let $x, y \in R$ be arbitrary elements. It can easily be seen that Ψ_{a} is an additive map of R. We need to show $\Psi_{a}(x y)=\Psi_{a}(x) y+x \Psi_{a}(y)$;

$$
\begin{aligned}
\Psi_{a}(x y) & =a x y-x y a \\
& =a x y-(x a y-x a y)-x y a \\
& =a x y-x a y+x a y-x y a \\
& =(a x-x a) y+x(a y-y a) \\
& =\Psi_{a}(x) y+x \Psi_{a}(y) .
\end{aligned}
$$

Proposition 2.11 Let $d=\sum_{i=1}^{n} d_{i} e_{i, i}\left(d_{i} \in K\right)$. Then the map $\delta_{d}(x)=d x-x d$ is a derivation of $R_{n}(K, J)$ which is called the diagonal derivation induced by the diagonal matrix d.

Proof. Same technique which is followed in the previous proposition applies.
For the following theorem and lemmas, $R_{n}(K, J)$ will be denoted by R and n will be greater than 2 unless stated otherwise.

Theorem 2.12 Every derivation φ of R is a sum of certain diagonal, inner, almost annihilator, annihilator and ring derivations.

Lemma 2.13 Let φ be a derivation of R for $n>2, x \in I_{k, m}$ and

$$
\varphi\left(x e_{k, m}\right)=\sum_{s, t=1}^{n} \varphi_{s, t}^{k, m}(x) e_{s, t}=\left[\begin{array}{cccc}
\varphi_{1,1}^{k, m}(x) & \cdot & \cdot & \varphi_{1, n}^{k, m}(x) \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
\varphi_{n, 1}^{k, m}(x) & \cdot & \cdot & \varphi_{n, n}^{k, m}(x)
\end{array}\right]
$$

for any k, m. Then $\varphi\left(x e_{k, m}\right)$ is exactly equal to the matrix

Proof. If $m \neq i+1$ we obtain

$$
\begin{aligned}
0 & =\varphi\left(x e_{k, m} e_{i+1, i}\right) \\
& =\varphi\left(x e_{k, m}\right) e_{i+1, i}+x e_{k, m} \varphi\left(e_{i+1, i}\right) \\
& =\left(\sum_{s, t=1}^{n} \varphi_{s, t}^{k, m}(x) e_{s, t}\right) e_{i+1, i}+x e_{k, m}\left(\sum_{s, t=1}^{n} x \varphi_{s, t}^{i+1, i}(1) e_{s, t}\right) \\
& =\sum_{s=1}^{n} \varphi_{s, i+1}^{k, m}(x) e_{s, i}+\sum_{t=1}^{n} x \varphi_{m, t}^{i+1, i}(1) e_{k, t} \\
& =\sum_{s \neq k} \varphi_{s, i+1}^{k, m}(x) e_{s, i}+\sum_{t \neq i} x \varphi_{m, t}^{i+1, i}(1) e_{k, t}+\left[\varphi_{k, i+1}^{k, m}(x)+x \varphi_{m, i}^{i+1, i}(1)\right] e_{k, i}
\end{aligned}
$$

which can be written as

Thus

$$
\begin{equation*}
\varphi_{s, i+1}^{k, m}(x)=0 \tag{i}
\end{equation*}
$$

for $[s \neq k]$. It can be seen by (i) that $\varphi\left(x e_{k, m}\right)$ has nonzero entries only in the k-th row, m-th column, and first column. If $i \neq k$ then we obtain

$$
\begin{aligned}
0 & =\varphi\left(e_{i+1, i} x e_{k, m}\right) \\
& =\varphi\left(e_{i+1, i}\right) x e_{k, m}+e_{i+1, i} \varphi\left(x e_{k, m}\right) \\
& =\left(\sum_{s, t=1}^{n} x \varphi_{s, t}^{i+1, i}(1) e_{s, t}\right) x e_{k, m}+e_{i+1, i}\left(\sum_{s, t=1}^{n} \varphi_{s, t}^{k, m}(x) e_{s, t}\right) \\
& =\sum_{s=1}^{n} \varphi_{s, k}^{i+1, i}(1) x e_{s, m}+\sum_{t=1}^{n} \varphi_{i, t}^{k, m}(x) e_{i+1, t} \\
& =\sum_{s \neq i+1}^{n} \varphi_{s, k}^{i+1, i}(1) x e_{s, m}+\sum_{t \neq m}^{n} \varphi_{i, t}^{k, m}(x) e_{i+1, t}+\left[\varphi_{i+1, k}^{i+1, i}(1) x+\varphi_{i, m}^{k, m}(x)\right] e_{i+1, m}
\end{aligned}
$$

which can be written as

Hence

$$
\begin{equation*}
\varphi_{i, t}^{k, m}(x)=0 \quad[t \neq m] . \tag{ii}
\end{equation*}
$$

It follows that the matrix $\varphi\left(x e_{k, m}\right)$ has nonzero entries only on the k-th row, m-th column and n-th row for $x \in I_{k, m}$. Now if we combine (i) and (ii), then the image
of $x e_{k, m}$ under φ is the matrix with zeros out of k-th row, m-th column and $(n, 1)$ position. This completes the proof.

Lemma 2.14 Let φ be a derivation of the ring R. Then there is a diagonal derivation δ_{d} of R such that ($i+1, i$-coefficient of $\left[\varphi-\delta_{d}\right]\left(e_{i+1, i}\right)$ is zero for $1 \leq i<n$.

Proof. Let

$$
d=\sum_{i=2}^{n} d_{i} e_{i, i}
$$

be a matrix with $d_{i+1}=\sum_{k=1}^{i} c_{k}$ and $c_{k}=\varphi_{k+1, k}^{k+1, k}(1)$. Then

$$
\begin{aligned}
\delta_{d}\left(e_{i+1, i}\right) & =d e_{i+1, i}-e_{i+1, i} d \\
& =d_{i+1} e_{i+1, i}-d_{i} e_{i+1, i} \\
& =c_{i} e_{i+1, i} \\
& =\varphi_{i+1, i}^{i+1, i}(1) e_{i+1, i} .
\end{aligned}
$$

Thus, the $(i+1, i)$-coefficient of the matrix $\left[\varphi-\delta_{d}\right]\left(e_{i+1, i}\right)$ is equal to zero for all i.

Lemma 2.15 Let φ be a derivation of R such that ($i+1, i$) coefficient of the matrix $\varphi\left(e_{i+1, i}\right)$ is zero for $i=1,2, \ldots, n-1$. Then there is an inner derivation Ψ satisfying that $[\varphi-\Psi]\left(e_{i+1, i}\right)$ has zero $i-$ th column and $(i+1,1)$ entries.

Proof. Initially, we will see there is an inner derivation Ψ_{A} satisfying that $\left[\varphi-\Psi_{A}\right]\left(e_{i+1, i}\right)$ has nonzero entries only in $(i+1,1)$ and $(n, 1)$ position for $1<i<n-1$. Let $A_{k, k}=0=A_{j, 1}, \quad A_{u, i+1}=\varphi_{u, i}^{i+1, i}(1)$ for $u \neq i+1,1<i<n$ and A be the matrix $\left[A_{i, j}\right]_{n \times n}$. Clearly A is equal to

$$
\left[\begin{array}{cccccc}
0 & \varphi_{1,1}^{2,1}(1) & \varphi_{1,2}^{3,2}(1) & . & . & \varphi_{1, n-1}^{n, n-1}(1) \\
0 & 0 & \varphi_{2,2}^{3,2}(1) & \cdot & \cdot & \varphi_{2, n-1}^{n, n-1}(1) \\
0 & \varphi_{3,1}^{2,1}(1) & 0 & \cdot & . & \varphi_{3, n-1}^{n, n-1}(1) \\
0 & \varphi_{4,1}^{2,1}(1) & \varphi_{4,2}^{3,2}(1) & \cdot & \cdot & \varphi_{4, n-1}^{n, n-1}(1) \\
\cdot & \cdot & \cdot & & & \cdot \\
\cdot & \cdot & \cdot & & & \cdot \\
\cdot & \cdot & \cdot & & & \cdot \\
0 & \varphi_{n-1,1}^{2,1}(1) & \varphi_{n-1,2}^{3,2}(1) & \cdot & . & \varphi_{n-1, n-1}^{n, n-1}(1) \\
0 & \varphi_{n, 1}^{2,1}(1) & \varphi_{n, 2}^{3,2}(1) & \cdot & \cdot & 0
\end{array}\right] .
$$

Consider the action of Ψ_{A} on the the matrices $e_{i+1, i}$. Then $\Psi_{A}\left(e_{i+1, i}\right)=A e_{i+1, i}-e_{i+1, i} A$ and this is equal to

On the other hand, we find

$$
\begin{aligned}
0 & =\varphi\left(e_{i, j} e_{k, m}\right)=\varphi\left(e_{i, j}\right) e_{k, m}+e_{i, j} \varphi\left(e_{k, m}\right) \\
& =\left[\sum_{s, t=1}^{n} \varphi_{s, t}^{i, j}(1) e_{s, t}\right] e_{k, m}+e_{i, j}\left[\sum_{s, t=1}^{n} \varphi_{s, t}^{k, m}(1) e_{s, t}\right] \\
& =\sum_{s=1}^{n} \varphi_{s, k}^{i, j}(1) e_{s, m}+\sum_{t=1}^{n} \varphi_{j, t}^{k, m}(1) e_{i, t}
\end{aligned}
$$

for $k>m, i>j$ and $j \neq k$. Thus

$$
\begin{equation*}
\varphi_{i, k}^{i, j}(1)+\varphi_{j, m}^{k, m}(1)=0 . \tag{iii}
\end{equation*}
$$

By (iii), it is clear that

$$
\left[\varphi-\Psi_{A}\right]\left(e_{i+1, i}\right)=\varphi_{i+1,1}^{i+1, i}(1) e_{i+1,1}+\varphi_{n, 1}^{i+1, i}(1) e_{n, 1} .
$$

Now let $\Gamma=\varphi-\Psi_{A}$ for brevity. Then

$$
\Gamma\left(e_{i+1, i}\right)=\Gamma_{i+1,1}^{i+1, i}(1) e_{i+1,1}+\Gamma_{n, 1}^{i+1, i}(1) e_{n, 1} \quad \text { for } \quad 1<i<n-1 .
$$

In particular, $\Gamma\left(e_{2,1}\right)=0$. Let

$$
B=\left[\begin{array}{ccccccc}
0 & 0 & . & . & . & 0 & 0 \\
-b_{3} & 0 & . & . & . & 0 & 0 \\
. & . & & & . & . \\
. & . & & & . & \cdot \\
. & \cdot & & & . & \cdot \\
-b_{n} & 0 & . & . & . & 0 & 0 \\
0 & 0 & . & . & . & 0 & 0
\end{array}\right]
$$

where $b_{j+1}=\Gamma_{j+1,1}^{j+1, j}(1)$ for $2<j<n$ and denote Ψ_{B} the inner derivation induced by the matrix B. In this case it can be easily seen that

$$
\Psi_{B}\left(e_{i+1, i}\right)=B e_{i+1, i}-e_{i+1, i} B=\Gamma_{i+1,1}^{i+1, i}(1) e_{i+1,1} \quad \text { for } \quad i=2, \ldots, n-2
$$

and this completes the proof.

Let $\Pi=\varphi-\Psi_{A}-\Psi_{B}$ for brevity. Obviously $\Pi\left(e_{2,1}\right)=0=\Pi\left(e_{n, n-1}\right)$.

Lemma 2.16 There exists an annihilator derivation Ω such that $(n, 1)$ entries of $[\Pi-\Omega]\left(y e_{1, n}\right)$ and $[\Pi-\Omega]\left(x e_{i+1, i}\right)$ are zeros where $y \in J$ and $x \in K$.

Proof. Firstly, we want to show that the additive mappings $\Pi_{n, 1}^{i+1, i}$ satisfy the conditions of an annihilator derivation. $(n, 1)$ entry of the relation

$$
\begin{aligned}
\Pi\left(x y e_{2,1}\right) & =\Pi\left(x e_{2,1} y e_{1,1}\right) \\
& =\Pi\left(x e_{2,1}\right) y e_{1,1}+x e_{2,1} \Pi\left(y e_{1,1}\right)
\end{aligned}
$$

gives $\Pi_{n, 1}^{2,1}(x y)=\Pi_{n, 1}^{2,1}(x) y$ and $\Pi_{n, 1}^{2,1}(y)=\Pi_{n, 1}^{2,1}(1) y=0$ for $x=1$ considering that $\Pi\left(e_{2,1}\right)=0$. Hence $\Pi_{n, 1}^{2,1}(J)=0$ and $\Pi_{n, 1}^{2,1}(x y)=\Pi_{n, 1}^{2,1}(x) y=0$. Moreover, we have $0=\Pi_{n, 2}^{n, n}(y) x+y \Pi_{n, 1}^{2,1}(x)$ by $(n, 1)$ coefficient of the relation

$$
\begin{aligned}
0 & =\Pi\left(y e_{n, n} x e_{2,1}\right) \\
& =\Pi\left(y e_{n, n}\right) x e_{2,1}+y e_{n, n} \Pi\left(x e_{2,1}\right)
\end{aligned}
$$

and since $\Pi\left(e_{2,1}\right)=0$, we get $\Pi_{n, 2}^{n, n}(y)=0$ while $x=1$. This implies $y \Pi_{n, 1}^{2,1}(x)=0$. Consequently, we have $\Pi_{n, 1}^{2,1}: K \longrightarrow \operatorname{Ann}_{K}(J)$. Besides, we get $\Pi_{n, 1}^{n, n-1}(J)=0$ by $\Pi\left(e_{n, n-1}\right)=0$ and $y \Pi_{n, 1}^{n, n-1}(x)=0$ by $(n, 1)-t h$ coefficient of the relation

$$
\begin{aligned}
\Pi\left(y x e_{n, n-1}\right) & =\Pi\left(y e_{n, n} x e_{n, n-1}\right) \\
& =\Pi\left(y e_{n, n}\right) x e_{n, n-1}+y e_{n, n} \Pi\left(x e_{n, n-1}\right) .
\end{aligned}
$$

Forasmuch as $\Pi\left(e_{n, n-1}\right)=0$, we have $\Pi_{n-1,1}^{1,1}(y)=0$ and it follows $\Pi_{n, 1}^{n, n-1}(x) y=0$ by $(n, 1)$ - th coefficient of the relation

$$
\begin{aligned}
0 & =\Pi\left(x e_{n, n-1} y e_{1,1}\right) \\
& =\Pi\left(x e_{n, n-1}\right) y e_{1,1}+x e_{n, n-1} \Pi\left(y e_{1,1}\right) .
\end{aligned}
$$

In addition, for $1<i<n-1$, it is obtained $\Pi_{n, 1}^{i+1, i}(x) y=0$ and $y \Pi_{n, 1}^{i+1, i}(x)=0$ by (n, n) and $(1,1)$ - th coefficients of the relations

$$
\begin{aligned}
0 & =\Pi\left(x e_{i+1, i} y e_{1, n}\right) \\
& =\Pi\left(x e_{i+1, i}\right) y e_{1, n}+x e_{i+1, i} \Pi\left(y e_{1, n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =\Pi\left(y e_{1, n} x e_{i+1, i}\right) \\
& =\Pi\left(y e_{1, n}\right) x e_{i+1, i}+y e_{1, n} \Pi\left(x e_{i+1, i}\right),
\end{aligned}
$$

respectively. In that $(n, 1)-t h$ coefficient of the relation

$$
\begin{aligned}
\Pi\left(x y e_{i+1, i}\right) & =\Pi\left(x e_{i+1, i} y e_{i, i}\right) \\
& =\Pi\left(x e_{i+1, i}\right) y e_{i, i}+x e_{i+1, i} \Pi\left(y e_{i, i}\right)
\end{aligned}
$$

is zero, we have $\Pi_{n, 1}^{i+1, i}(J)=0$.
Secondly, $(n, 1)$ - th coefficient of the relation

$$
\begin{aligned}
\Pi\left(y z e_{1, n}\right) & =\Pi\left(y e_{1,2} z e_{2, n}\right) \\
& =\Pi\left(y e_{1,2}\right) z e_{2, n}+y e_{1,2} \Pi\left(z e_{2, n}\right)
\end{aligned}
$$

gives $\Pi_{n, 1}^{1, n}\left(J^{2}\right)=0$ and $(n, 1)-$ th coefficients of the relations

$$
\begin{aligned}
0 & =\Pi\left(y e_{1, n} z e_{1,1}\right) \\
& =\Pi\left(y e_{1, n}\right) z e_{1,1}+y e_{1, n} \Pi\left(z e_{1,1}\right), \\
0 & =\Pi\left(y e_{n, n} z e_{1, n}\right) \\
& =\Pi\left(y e_{n, n}\right) z e_{1, n}+y e_{n, n} \Pi\left(z e_{1, n}\right)
\end{aligned}
$$

give $\Pi_{n, 1}^{1, n}: J \rightarrow \operatorname{Ann}_{K}(J)$.
Finally,
$\Omega: \quad R \quad \rightarrow \quad \operatorname{Ann}(R)$

$$
\left[x_{i, j}\right] \rightarrow \quad\left(\sum_{i=1}^{n-1} \Pi_{n, 1}^{i+1, i}\left(x_{i+1, i}\right)+\Pi_{n, 1}^{1, n}\left(x_{1, n}\right)\right) e_{n, 1}
$$

is the desired annihilator derivation of R and $[\Pi-\Omega]\left(e_{i+1, i}\right)=0$.

Let $\Xi=\Pi-\Omega$ for brevity. Now consider the relations

$$
\begin{aligned}
0 & =\Xi\left(x e_{i+1, i} e_{j+1, j}\right) \quad(i \neq j+1) \\
& =\Xi\left(x e_{i+1, i}\right) e_{j+1, j}+x e_{i+1, i} \Xi\left(e_{j+1, j}\right) \\
& =\Xi\left(x e_{i+1, i}\right) e_{j+1, j} \\
& =\sum_{s=1}^{n} \Xi_{s, j+1}^{i+1, i}(x) e_{s, j}, \\
0 & =\Xi\left(e_{u+1, u} x e_{i+1, i}\right) \quad(i+1 \neq u) \\
& =\Xi\left(e_{u+1, u}\right) x e_{i+1, i}+e_{u+1, u} \Xi\left(x e_{i+1, i}\right) \\
& =e_{u+1, u} \Xi\left(x e_{i+1, i}\right) \\
& =\sum_{t=1}^{n} \Xi_{u, t}^{i+1, i}(x) e_{u+1, t}, \\
0 & =\Xi\left(y e_{1, n} e_{v+1, v}\right) \quad(v<n-1) \\
& =\Xi\left(y e_{1, n}\right) e_{v+1, v}+y e_{1, n} \Xi\left(e_{v+1, v}\right) \\
& =\Xi\left(y e_{1, n}\right) e_{v+1, v} \\
& =\sum_{s=1}^{n} \Xi_{s, v+1}^{1, n}(y) e_{s, v}
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =\Xi\left(e_{a+1, a} y e_{1, n}\right) \quad(a \neq 1) \\
& =\Xi\left(e_{a+1, a}\right) y e_{1, n}+e_{a+1, a} \Xi\left(y e_{1, n}\right) \\
& =e_{a+1, a} \Xi\left(y e_{1, n}\right) \\
& =\sum_{t=1}^{n} \Xi_{a, t}^{1, n}(y) e_{a+1, t} .
\end{aligned}
$$

It follows that $(j+1)-t h$ column of $\Xi\left(x e_{i+1, i}\right)$ is zero for $i \neq j+1$ where $j<n, u-t h$ row of $\Xi\left(x e_{i+1, i}\right)$ is zero for $u \neq i+1$ where $u<n,(v+1)-t h$ column of $\Xi\left(y e_{1, n}\right)$ is zero for $v<n-1$ and a-th row of $\Xi\left(y e_{1, n}\right)$ is zero for $1<a<n$. That means $\Xi\left(x e_{i+1, i}\right)$ is zero except its $(i+1,1),(i+1, i),(n, i)$ coefficients and $\Xi\left(y e_{1, n}\right)$ is zero except its $(1,1)$, $(1, n),(n, n)$ coefficients. In other words, $\Xi\left(x e_{i+1, i}\right)=\Xi_{i+1,1}^{i+1, i}(x) e_{i+1,1}+\Xi_{i+1, i}^{i+1, i}(x) e_{i+1, i}+$ $\Xi_{n, i}^{i+1, i}(x) e_{n, i}$ for $1<i<n-1$ and $\Xi\left(y e_{1, n}\right)=\Xi_{1,1}^{1, n}(y) e_{1,1}+\Xi_{1, n}^{1, n}(y) e_{1, n}+\Xi_{n, n}^{1, n}(y) e_{n, n}$. In particular, $\Xi\left(x e_{2,1}\right)=\Xi_{2,1}^{2,1}(x) e_{2,1}$ and $\Xi\left(x e_{n, n-1}\right)=\Xi_{n, n-1}^{n, n-1}(x) e_{n, n-1}$.

Lemma 2.17 There exists an almost annihilator derivation Δ such that $(1,1),(n, n)$ coefficients of $[\Xi-\Delta]\left(y e_{1, n}\right),(n, j)$ coefficient of $[\Xi-\Delta]\left(y e_{1, j}\right)$ and $(i, 1)$ coefficient of $[\Xi-\Delta]\left(\right.$ e $\left._{i, n}\right)$ are zeros where $y \in J, 1<i$ and $j<n$.

Proof. We need to show that the conditions of an almost annihilator derivation are satisfied. If $1<i \leq n, x \in K$ and $y \in J$, then we get $\Xi_{1,1}^{1, n}(x y)=x \Xi_{1,1}^{1, n}(y)$ and $\Xi_{i, 1}^{i, n}=\Xi_{1,1}^{1, n}$ for $x=1$ by $(i, 1)-t h$ coefficient of the relation

$$
\begin{aligned}
\Xi\left(x y e_{i, n}\right) & =\Xi\left(x e_{i, 1} y e_{1, n}\right) \\
& =\Xi\left(x e_{i, 1}\right) y e_{1, n}+x e_{i, 1} \Xi\left(y e_{1, n}\right) .
\end{aligned}
$$

In addition, if $1 \leq i<n, x \in K$ and $y \in J$, then it is obtained $\Xi_{n, n}^{1, n}(y x)=\Xi_{n, n}^{1, n}(y) x$ and $\Xi_{n, i}^{1, i}=\Xi_{n, n}^{1, n}$ for $x=1$ by the $(n, i)-t h$ coefficient of the relation

$$
\begin{aligned}
\Xi\left(y x e_{1, i}\right) & =\Xi\left(y e_{1, n} x e_{n, i}\right) \\
& =\Xi\left(y e_{1, n}\right) x e_{n, i}+y e_{1, n} \Xi\left(x e_{n, i}\right) .
\end{aligned}
$$

Say $\lambda:=\Xi_{i, 1}^{i, n}=\Xi_{1,1}^{1, n}$ and $\mu:=\Xi_{n, n}^{1, n}=\Xi_{n, j}^{1, j}$. Then the following map is an almost annihilator derivation of R;

$$
\begin{aligned}
& \Delta: \quad R \quad \rightarrow \quad R \\
& y e_{1, n} \quad \rightarrow \quad \lambda(y) e_{1,1}+\mu(y) e_{n, n} \\
& y e_{1, j} \rightarrow \mu(y) e_{n, j} \quad(j<n) \\
& y e_{i, n} \quad \rightarrow \quad \lambda(y) e_{i, 1} \quad(i>1) \\
& x_{i, j} e_{i, j} \rightarrow 0(i>1 \text { and } j<n) .
\end{aligned}
$$

Let $\xi:=\Xi-\Delta$ for brevity. By comparing the relations

$$
\begin{aligned}
\xi\left(x e_{i+1, i-1}\right) & =\xi\left(x e_{i+1, i} e_{i, i-1}\right) \\
& =\xi\left(x e_{i+1, i}\right) e_{i, i-1}+x e_{i+1, i} \xi\left(x e_{i, i-1}\right) \\
& =\xi\left(x e_{i+1, i}\right) e_{i, i-1} \\
& =\xi_{i+1, i}^{i+1, i}(x) e_{i+1, i-1}+\xi_{n, i}^{i+1, i}(x) e_{n, i-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\xi\left(x e_{i+1, i-1}\right) & =\xi\left(e_{i+1, i} x e_{i, i-1}\right) \\
& =\xi\left(e_{i+1, i}\right) x e_{i, i-1}+e_{i+1, i} \xi\left(x e_{i, i-1}\right) \\
& =e_{i+1, i} \xi\left(x e_{i, i-1}\right) \\
& =\xi_{i, 1}^{i, i-1}(x) e_{i+1,1}+\xi_{i, i-1}^{i, i-1}(x) e_{i+1, i-1},
\end{aligned}
$$

it can be obtained $\xi_{i+1,1}^{i+1, i}=0, \xi_{n, i}^{i+1, i}=0$ and one can see that $\xi\left(x e_{i+1, i}\right)=\xi_{i+1, i}^{i+1, i}(x) e_{i+1, i}$.
Lemma 2.18 There exists a ring derivation $\bar{\theta}$ such that $\bar{\theta}=\xi$.

Proof. We first need to show $\xi_{i, j}^{i, j}$ is a derivation of the coefficient ring. Since $\xi\left(x e_{i+1, i}\right)=$ $\xi_{i+1, i}^{i+1, i}(x) e_{i+1, i}$, clearly $\xi\left(e_{i+1, i}\right)=0$. So $\xi\left(e_{i, j}\right)$ is equal to zero for $i>j$. By (i,k) coefficient of the relation

$$
\begin{aligned}
\xi\left(x e_{i, k}\right) & =\xi\left(x_{1} e_{i, j} x_{2} e_{j, k}\right) \\
& =\xi\left(x_{1} e_{i, j}\right) x_{2} e_{j, k}+x_{1} e_{i, j} \xi\left(x_{2} e_{j, k}\right),
\end{aligned}
$$

we have $\xi_{i, k}^{i, k}\left(x_{1} x_{2}\right)=\xi_{i, j}^{i, j}\left(x_{1}\right) x_{2}+x_{1} \xi_{j, k}^{j, k}\left(x_{2}\right)$ for $i>j>k$ and $\xi_{i, k}^{i, k}=\xi_{i, j}^{i, j}=\xi_{j, k}^{j, k}$ as $\xi\left(e_{i, k}\right), \xi\left(e_{i, j}\right), \xi\left(e_{j, k}\right)$ are all zeros. This means $\xi_{u, v}^{u, v}=\xi_{s, t}^{s, t}$ are derivations for all $u>v$ and $s>t$. On the other hand, we have $\xi_{i, 1}^{i, 1}=\xi_{i, j}^{i, j}$ for $y \in J$ and $i \leq j$ by $(i, 1)$ coefficient of the relation

$$
\begin{aligned}
\xi\left(y e_{i, 1}\right) & =\xi\left(y e_{i, j} e_{j, 1}\right) \\
& =\xi\left(y e_{i, j}\right) e_{j, 1}+y e_{i, j} \xi\left(e_{i, 1}\right) \\
& =\xi\left(y e_{i, j}\right) e_{j, 1} .
\end{aligned}
$$

This means $\xi_{u, v}^{u, v}=\xi_{s, t}^{s, t}$ for all $u \leq v$ and $s \leq t$ because $\xi_{i, 1}^{i, 1}=\xi_{j, 1}^{j, 1}$ for all i, j. Now it is easy to see that $\xi_{i, j}^{i, j}=\xi_{k, m}^{k, m}$ are all derivations for any i, j, k, m. Say $\theta:=\xi_{i, j}^{i, j}$ for all $1 \leq i, j \leq n$. Now $(\xi-\bar{\theta})\left(x e_{i+1, i}\right)=0$ and $(\xi-\bar{\theta})\left(y e_{1, n}\right)=0$ where $\bar{\theta}$ is a ring derivation of R such that $\bar{\theta}(A)=\sum_{i, j=1}^{n} \theta\left(a_{i, j}\right) e_{i, j}, A=\left[a_{i, j}\right] \in R$. Considering that any element $x e_{i, j}$ can be written as $x e_{i, j}=x \prod_{k=0}^{i-j-1} e_{i-k, i-k-1}$ for $i>j$ and $y e_{i, j}=$ $\prod_{k=0}^{i-2} e_{i-k, i-k-1} y e_{1, n} \prod_{k=0}^{n-j-1} e_{n-k, n-k-1}$ for $i \leq j$ where $x \in K, y \in J$, the map $\xi-\bar{\theta}$ is equal to zero. This completes the proof.

We showed that any derivation φ of $R_{n}(K, J)$ can be written as a sum of a certain diagonal derivation δ_{d}, an inner derivation Ψ, an almost annihilator derivation Ω, an annihilator derivation Δ and a ring derivation $\bar{\theta}$, i.e.

$$
\varphi=\delta_{d}+\Psi+\Omega+\Delta+\bar{\theta}
$$

If $\mathbf{n}=\mathbf{2}$, we first consider the action of φ on the relations

$$
y e_{1,1} e_{2,1}=0, \quad x e_{2,1} e_{2,1}=0, \quad e_{2,1} y e_{2,2}=0 \quad(x \in K, y \in J)
$$

and we obtain $\varphi_{2,2}^{1,1}=0$ by $(2,1)$ coefficient of the relation $0=\varphi\left(y e_{1,1} e_{2,1}\right)=\varphi\left(y e_{1,1}\right) e_{2,1}$ $+y e_{1,1} \varphi\left(e_{2,1}\right), \varphi_{1,2}^{2,1}=0$, by (1,1) coefficient of $0=\varphi\left(x e_{2,1} e_{2,1}\right)=\varphi\left(x e_{2,1}\right) e_{2,1}+$ $x e_{2,1} \varphi\left(e_{2,1}\right)$ and $\varphi_{1,1}^{2,2}=0$ by (2,1) coefficient of $0=\varphi\left(e_{2,1} y e_{2,2}\right)=\varphi\left(e_{2,1}\right) y e_{2,2}+$ $e_{2,1} \varphi\left(y e_{2,2}\right)$. Then we have

$$
\begin{aligned}
& \varphi\left(y e_{1,1}\right)=\varphi_{1,1}^{1,1}(y) e_{1,1}+\varphi_{1,2}^{1,1}(y) e_{1,2}+\varphi_{2,1}^{1,1}(y) e_{2,1} \\
& \varphi\left(x e_{2,1}\right)=\varphi_{1,1}^{2,1}(x) e_{1,1}+\varphi_{2,1}^{2,1}(x) e_{2,1}+\varphi_{2,2}^{2,1}(x) e_{2,2} \\
& \varphi\left(y e_{2,2}\right)=\varphi_{1,2}^{2,2}(y) e_{1,2}+\varphi_{2,1}^{2,2}(y) e_{2,1}+\varphi_{2,2}^{2,2}(y) e_{2,2}
\end{aligned}
$$

Now let $d=\varphi_{2,1}^{2,1}(1) e_{2,2}$ be a diagonal matrix and $A=\varphi_{1,1}^{2,1}(1) e_{1,2} \in R_{2}(K, J)$. Then we find

$$
\left(\varphi-\delta_{d}-\Psi_{A}\right)\left(e_{2,1}\right)=0
$$

where δ_{d} is the diagonal derivation induced by the diagonal matrix d and Ψ_{A} is the inner derivation induced by the matrix A since $\delta_{d}\left(e_{2,1}\right)=\varphi_{2,1}^{2,1}(1) e_{2,2} e_{2,1}-e_{2,1} \varphi_{2,1}^{2,1}(1) e_{2,2}=$ $\varphi_{2,1}^{2,1}(1) e_{2,1}, \Psi_{A}\left(e_{2,1}\right)=\varphi_{1,1}^{2,1}(1) e_{1,2} e_{2,1}-e_{2,1} \varphi_{1,1}^{2,1}(1) e_{1,2}=\varphi_{1,1}^{2,1}(1) e_{1,1}-\varphi_{1,1}^{2,1}(1) e_{2,2}$ and $\varphi_{2,2}^{2,1}(1)+\varphi_{1,1}^{2,1}(1)=0$ by $(2,1)$ coefficient of the relation $\varphi\left(e_{2,1} e_{2,1}\right)=0$.
Let $\varphi-\delta_{d}-\Psi_{A}=\Pi$. For $x, x_{1}, x_{2} \in K$ and $y \in J$, the relations $\Pi\left(y e_{1,1} e_{2,1}\right)=0$, $\Pi\left(x_{1} e_{2,1} x_{2} e_{2,1}\right)=0, \Pi\left(e_{2,1} y e_{2,2}\right)=0$ give

$$
\begin{aligned}
& \Pi\left(y e_{1,1}\right)=\Pi_{1,1}^{1,1}(y) e_{1,1}+\Pi_{2,1}^{1,1}(y) e_{2,1}, \\
& \Pi\left(y e_{1,2}\right)=\Pi_{1,1}^{1,2}(y) e_{1,1}+\Pi_{1,2}^{1,2}(y) e_{1,2}+\Pi_{2,1}^{1,2}(y) e_{2,1}+\Pi_{2,2}^{1,2}(y) e_{2,2} \\
& \Pi\left(x e_{2,1}\right)=\Pi_{2,1}^{2,1}(x) e_{2,1} \\
& \Pi\left(y e_{2,2}\right)=\Pi_{2,1}^{2,2}(y) e_{2,1}+\Pi_{2,2}^{2,2}(y) e_{2,2} .
\end{aligned}
$$

On the other hand, we get $\Pi_{2,1}^{1,1}(y x)=\Pi_{2,2}^{1,2}(y) x, \Pi_{2,2}^{1,2}=\Pi_{2,1}^{1,1}, \Pi_{2,1}^{2,2}(x y)=x \Pi_{1,1}^{1,2}(y)$ and $\Pi_{1,1}^{1,2}=\Pi_{2,1}^{2,2}$ by $(2,1)$ coefficients of the relations $\Pi\left(y e_{1,2} x e_{2,1}\right)=\Pi\left(y x e_{1,1}\right)$ and $\Pi\left(x e_{2,1} y e_{1,2}\right)=\Pi\left(x y e_{2,2}\right)$. In addition, $(1,1)$ and $(2,2)$ coefficients of the relation $0=$ $\Pi\left(y e_{1,2} z e_{1,2}\right)=\Pi\left(y e_{1,2}\right) z e_{1,2}+y e_{1,2} \Pi\left(z e_{1,2}\right)$ gives $\Pi_{2,1}^{1,2}: J \rightarrow A n n_{K}(J)$. Besides, we have $\Pi_{2,1}^{1,2}\left(J^{2}\right)=0$ by $(2,1)$ coefficient of the relation $\Pi\left(y z e_{1,2}\right)=\Pi\left(y e_{1,1} z e_{1,2}\right)=$ $\Pi\left(y e_{1,1}\right) z e_{1,2}+y e_{1,1} \Pi\left(z e_{1,2}\right)$. Furthermore, we obtain $\Pi_{1,1}^{1,2}(y) z+y \Pi_{2,2}^{1,2}(z)=0$ by $(1,2)$ coefficient of $0=\Pi\left(y e_{1,2} z e_{1,2}\right)=\Pi\left(y e_{1,2}\right) z e_{1,2}+y e_{1,2} \Pi\left(z e_{1,2}\right)$. Put $\lambda=\Pi_{1,1}^{1,2}=\Pi_{2,1}^{2,2}, \mu=$ $\Pi_{2,2}^{1,2}=\Pi_{2,1}^{1,1}, \sigma=\Pi_{2,1}^{1,2}$. Then all conditions of almost annihilator derivation are satisfied and the map

$$
\begin{aligned}
\Delta: R_{2}(K, J) & \rightarrow R_{2}(K, J) \\
y e_{1,2} & \rightarrow \lambda(y) e_{1,1}+\mu(y) e_{2,2}+\sigma(y) e_{2,1} \\
y e_{1,1} & \rightarrow \mu(y) e_{2,1} \\
y e_{2,2} & \rightarrow \lambda(y) e_{2,1} \\
x e_{2,1} & \rightarrow 0
\end{aligned}
$$

becomes an almost annihilator derivation of $R_{2}(K, J)$. Let $\xi=\Pi-\Delta$. Then $\xi\left(x_{i, j} e_{i, j}\right)=$ $\xi_{i, j}^{i, j}\left(x_{i, j}\right) e_{i, j}$. For $x \in K$ and $y \in J$, the relations $\xi\left(x e_{2,1} y e_{1,1}\right)=\xi\left(x y e_{2,1}\right), \xi\left(y e_{2,2} x e_{2,1}\right)=$ $\xi\left(y x e_{2,1}\right), \xi\left(x e_{2,1} y e_{1,2}\right)=\xi\left(x y e_{2,2}\right)$ give $\theta=\xi_{1,1}^{1,1}=\xi_{2,1}^{2,1}=\xi_{1,2}^{1,2}=\xi_{2,2}^{2,2}, \xi_{2,1}^{2,1}(x y)=$ $\xi_{2,1}^{2,1}(x) y+x \xi_{2,1}^{2,1}(y)$ and $\xi_{2,1}^{2,1}(y x)=\xi_{2,1}^{2,1}(y) x+y \xi_{2,1}^{2,1}(x)$. Then $\bar{\theta}:\left[x_{i, j}\right] \rightarrow\left[\theta\left(x_{i, j}\right)\right]$ is a $\left(K^{+}, J\right)$ - ring derivation since $\theta(1)=\xi_{2,1}^{2,1}(1)=0$ and finally $\xi-\bar{\theta}=0$. This means any derivation φ of $R_{2}(K, J)$ can be written as a sum of a certain diagonal derivation δ_{d}, an inner derivation Ψ_{A}, an almost annihilator derivation Δ and a ring derivation $\bar{\theta}$ of $R_{2}(K, J)$, i.e.

$$
\varphi=\delta_{d}+\Psi_{A}+\Delta+\bar{\theta}
$$

Some part of this section of this thesis is published in 2017 (see [23]).

3 JORDAN DERIVATIONS OF THE RING $R_{n}(K, J)$

In this section, we describe all Jordan derivations of the ring $R_{n}(K, J)$. An additive map $d: K \longrightarrow K$ is a Jordan derivation if it satisfies

$$
d(r \circ s)=d(r s+s r)=d(r) s+s d(r)+r d(s)+d(s) r
$$

for arbitrary elements $r, s \in K$ where $r \circ s=r s+s r$. Jordan derivations of some rings and algebras have been studied by some researchers ([24],[25],[26],[27],[28],[29]).

Derivations are examples of Jordan derivations and often it turns out that they are actually the only possible examples. However, there exist Jordan derivations which are not derivations. An example of non-trivial Jordan derivation is given as follows:

Example 3.1 Let $S=\mathbb{C}[x]$ with the relation $x^{2}=0$ and let $I=\mathbb{C} x$. Obviously I is an ideal of S as $x^{2}=0$. Now let $\bar{R}=\left\{\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]: x, y, w \in S, z \in I\right\}$. Obviously \bar{R} is a ring with matrix addition and multiplication. For any $t=\left[\begin{array}{cc}x & y \\ z & w\end{array}\right] \in \bar{R}$, define $\delta(t)=\left[\begin{array}{ll}0 & z \\ 0 & 0\end{array}\right]$. Then δ is not a derivation but a Jordan derivation of \bar{R}. In order to see that, we need to show δ is additive,

$$
\begin{aligned}
\delta\left(q \circ q^{\prime}\right) & =\delta(q) \circ q^{\prime}+q \circ \delta\left(q^{\prime}\right) \\
& =\delta(q) q^{\prime}+q^{\prime} \delta(q)+q \delta\left(q^{\prime}\right)+\delta\left(q^{\prime}\right) q
\end{aligned}
$$

holds and $\delta\left(q q^{\prime}\right) \neq \delta(q) q^{\prime}+q \delta\left(q^{\prime}\right)$ for any $q=\left[\begin{array}{cc}x & y \\ z & w\end{array}\right], q^{\prime}=\left[\begin{array}{cc}x^{\prime} & y^{\prime} \\ z^{\prime} & w^{\prime}\end{array}\right] \in \bar{R}$.
First of all, δ is clearly additive, S is commutative and $I^{2}=0$ by definition. Two
relations

$$
\begin{aligned}
\delta\left(\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right] \circ\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]\right) & =\delta\left(\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]+\left[\begin{array}{ll}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]\right) \\
& =\delta\left(\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]\right)+\delta\left(\left[\begin{array}{ll}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]\right) \\
& =\delta\left(\left[\begin{array}{ll}
x x^{\prime}+y z^{\prime} & x y^{\prime}+y w^{\prime} \\
z x^{\prime}+w z^{\prime} & z y^{\prime}+w w^{\prime}
\end{array}\right]\right) \\
& +\delta\left(\left[\begin{array}{cc}
x^{\prime} x+y^{\prime} z & x^{\prime} y+y^{\prime} w \\
z^{\prime} x+w^{\prime} z & z^{\prime} y+w^{\prime} w
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
0 & z x^{\prime}+w z^{\prime} \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & z^{\prime} x+w^{\prime} z \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & z x^{\prime}+w z^{\prime}+z^{\prime} x+w^{\prime} z \\
0 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \delta\left(\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]\right)\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]+\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right] \delta\left(\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]\right) \\
& +\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right] \delta\left(\left[\begin{array}{ll}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]\right)+\delta\left(\left[\begin{array}{ll}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]\right)\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & z \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]+\left[\begin{array}{ll}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]\left[\begin{array}{ll}
0 & z \\
0 & 0
\end{array}\right] \\
& +\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]\left[\begin{array}{cc}
0 & z^{\prime} \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & z^{\prime} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \\
& =\left[\begin{array}{cc}
z z^{\prime} & z w^{\prime} \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & x^{\prime} z \\
0 & z^{\prime} z
\end{array}\right]+\left[\begin{array}{cc}
0 & x z^{\prime} \\
0 & z z^{\prime}
\end{array}\right]+\left[\begin{array}{cc}
z^{\prime} z & z^{\prime} w \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & \left.z w^{\prime}+x^{\prime} z+x z^{\prime}+z^{\prime} w\right] \\
0 & \left(z z^{\prime}, z^{\prime} z \in I^{2}=0\right)
\end{array}\right.
\end{aligned}
$$

are clearly equal and we get $\delta\left(q \circ q^{\prime}\right)=\delta(q) q^{\prime}+q^{\prime} \delta(q)+q \delta\left(q^{\prime}\right)+\delta\left(q^{\prime}\right) q$. It means δ is
a Jordan derivation. On the other hand,

$$
\begin{aligned}
\delta\left(\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]\right) & =\delta\left(\left[\begin{array}{cc}
x x^{\prime}+y z^{\prime} & x y^{\prime}+y w^{\prime} \\
z x^{\prime}+w z^{\prime} & z y^{\prime}+w w^{\prime}
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
0 & z x^{\prime}+w z^{\prime} \\
0 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\delta\left(\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]\right)\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]+\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right] \delta\left(\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right]\right) & =\left[\begin{array}{ll}
0 & z \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
x^{\prime} & y^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right] \\
& +\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]\left[\begin{array}{cc}
0 & z^{\prime} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
z z^{\prime} & z w^{\prime} \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & x z^{\prime} \\
0 & z z^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & z w^{\prime}+x z^{\prime} \\
0 & 0
\end{array}\right]
\end{aligned}
$$

as $z z^{\prime}$ and $z^{\prime} z$ are elements in $I^{2}=0$. Then $\delta\left(q q^{\prime}\right)$ and $\delta(q) q^{\prime}+q \delta\left(q^{\prime}\right)$ are obviously different from each other and this means δ is not a derivation.

Let $N T_{n}(K)$ be the ring of all (lower) niltriangular $n \times n$ matrices over any associative ring with identity whose entries are all zeros on and above the main diagonal. The following is an example of a Jordan derivation of $N T_{n}(K)$ that is not a derivation of the same ring.

Example 3.2 [28] Let $a, b, x \in K$ such that $a K^{2}=0=b(K \circ K)$. Then the map $\tau: x e_{2,1} \rightarrow b x e_{n, 2}+a x e_{n, 3}, x e_{3,1} \rightarrow$ axe $_{n, 2}$ is a Jordan derivation but not a derivation of $N T_{n}(K)$ for $n>3$. To see that τ is a Jordan derivation, we need to show τ is additive and $\tau(S \circ T)=\tau(S) \circ T+S \circ \tau(T)$ for arbitrary matrices $\left[s_{i, j}\right]=S,\left[t_{i, j}\right]=T \in N T_{n}(K)$.
τ is additive because

$$
\begin{aligned}
\tau(S+T) & =\tau\left(\left[s_{i, j}\right]+\left[t_{i, j}\right]\right) \\
& =\tau\left(\left[s_{i, j}+t_{i, j}\right]\right) \\
& =b\left(s_{2,1}+t_{2,1}\right) e_{n, 2}+a\left(s_{2,1}+t_{2,1}\right) e_{n, 3}+a\left(s_{3,1}+t_{3,1}\right) e_{n, 2} \\
& =b s_{2,1} e_{n, 2}+b t_{2,1} e_{n, 2}+a s_{2,1} e_{n, 3}+a t_{2,1} e_{n, 3}+a s_{3,1} e_{n, 2}+a t_{3,1} e_{n, 2} \\
& =b s_{2,1} e_{n, 2}+a s_{2,1} e_{n, 3}+a s_{3,1} e_{n, 2}+b t_{2,1} e_{n, 2}+a s_{2,1} e_{n, 3}+a t_{3,1} e_{n, 2} \\
& =\tau(S)+\tau(T) .
\end{aligned}
$$

In addition,

$$
\begin{aligned}
\tau(S \circ T)= & \tau(S T+T S) \\
= & b \sum_{k} s_{2, k} t_{k, 1} e_{n, 2}+a \sum_{k} s_{2, k} t_{k, 1} e_{n, 3}+a \sum_{k} s_{3, k} t_{k, 1} e_{n, 2} \\
& +b \sum_{k} t_{2, k} s_{k, 1} e_{n, 2}+a \sum_{k} t_{2, k} s_{k, 1} e_{n, 3}+a \sum_{k} t_{3, k} s_{k, 1} e_{n, 2} \\
= & a\left(s_{3,2} t_{2,1}+t_{3,2} s_{2,1}\right) e_{n, 2} \quad \quad\left(s_{i, j}=t_{i, j}=0 \text { if } i \leq j\right) \\
= & 0
\end{aligned}
$$

and

$$
\begin{aligned}
\tau(S) \circ T+S \circ \tau(T)= & \tau(S) T+T \tau(S)+S \tau(T)+\tau(T) S \\
= & \left(b s_{2,1} e_{n, 2}+a s_{2,1} e_{n, 3}+a s_{3,1} e_{n, 2}\right) T \\
& +T\left(b s_{2,1} e_{n, 2}+a s_{2,1} e_{n, 3}+a s_{3,1} e_{n, 2}\right) \\
& +S\left(b t_{2,1} e_{n, 2}+a t_{2,1} e_{n, 3}+a t_{3,1} e_{n, 2}\right) \\
& +\left(b t_{2,1} e_{n, 2}+a t_{2,1} e_{n, 3}+a t_{3,1} e_{n, 2}\right) S \\
= & \sum_{k} b s_{2,1} t_{2, k} e_{n, k}+\sum_{k} a s_{2,1} t_{3, k} e_{n, k}+\sum_{k} a s_{3,1} t_{2, k} e_{n, k} \\
& +\sum_{k} t_{k, n} b s_{2,1} e_{k, 2}+\sum_{k} t_{k, n} a s_{2,1} e_{k, 3}+\sum_{k} t_{k, n} a s_{3,1} e_{k, 2} \\
& +\sum_{k} s_{k, n} b t_{2,1} e_{k, 2}+\sum_{k} s_{k, n} a t_{2,1} e_{k, 3}+\sum_{k} s_{k, n} a t_{3,1} e_{k, 2} \\
& +\sum_{k} b t_{2,1} s_{2, k} e_{n, k}+\sum_{k} a t_{2,1} s_{3, k} e_{n, k}+\sum_{k} a t_{3,1} s_{2, k} e_{n, k} \\
= & b s_{2,1} t_{2,1} e_{n, 1}+a s_{2,1} t_{3,1} e_{n, 1}+a s_{2,1} t_{3,2} e_{n, 2}+a s_{3,1} t_{2,1} e_{n, 1} \\
& +b t_{2,1} s_{2,1} e_{n, 1}+a t_{2,1} s_{3,1} e_{n, 1}+a t_{2,1} s_{3,2} e_{n, 2}+a t_{3,1} s_{2,1} e_{n, 1} \\
= & b\left(s_{2,1} t_{2,1}+t_{2,1} s_{2,1}\right) e_{n, 1} \quad\left(a K^{2}=0\right) \\
= & 0 .
\end{aligned}
$$

This means τ is a Jordan derivataion forasmuch as $\tau(S \circ T)=\tau(S) \circ T+S \circ \tau(T)$. However, τ is not a derivation as the right sides of the equalities

$$
\begin{aligned}
\tau(S T) & =b \sum_{k} s_{2, k} t_{k, 1} e_{n, 2}+a \sum_{k} s_{2, k} t_{k, 1} e_{n, 3}+a \sum_{k} s_{3, k} t_{k, 1} e_{n, 2} \\
& =0 \quad\left(a K^{2}=0 \text { and } s_{i, j}=y_{i, j}=0 \text { for } i \leq j\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\tau(S) T+S \tau(T) & =\left(b s_{2,1} e_{n, 2}+a s_{2,1} e_{n, 3}+a s_{3,1} e_{n, 2}\right) T \\
& +S\left(b t_{2,1} e_{n, 2}+a t_{2,1} e_{n, 3}+a t_{3,1} e_{n, 2}\right) \\
& =\sum_{k} b s_{2,1} t_{2, k} e_{n, k}+\sum_{k} a s_{2,1} t_{3, k} e_{n, k}+\sum_{k} a s_{3,1} t_{2, k} e_{n, k} \\
& +\sum_{k} s_{k, n} b t_{2,1} e_{k, 2}+\sum_{k} s_{k, n} a t_{2,1} e_{k, 3}+\sum_{k} s_{k, n} a t_{3,1} e_{k, 2} \\
& =b s_{2,1} t_{2,1} e_{n, 1} \quad\left(a K^{2}=0 \text { and } s_{i, j}=y_{i, j}=0 \text { for } i \leq j\right)
\end{aligned}
$$

are different from each other.

The following is another example of a Jordan derivation of $N T_{n}(K)$ that is not a derivation of the same ring.

Example 3.3 [28] Let K be an associative ring and $c, d, x \in K$ such that $(K \circ K) c=$ $0=K^{2} d$. Then the map $\omega: x e_{n, n-1} \rightarrow x c e_{n-1,1}+x d e_{n-2,1}, x e_{n, n-2} \rightarrow x d e_{n-1,1}$ is a Jordan derivation but not a derivation of $N T_{n}(K)$ for $n>3$. So as to see that ω is a Jordan derivation, we need to show ω is additive and $\omega(S \circ T)=\omega(S) \circ T+S \circ \omega(T)$ for arbitrary matrices $\left[s_{i, j}\right]=S,\left[t_{i, j}\right]=T \in N T_{n}(K)$.
$\omega: N T_{n}(K) \rightarrow N T_{n}(K)$ is additive:

$$
\begin{aligned}
\omega(S+T) & =\omega\left(\left[s_{i, j}\right]+\left[t_{i, j}\right]\right) \\
& =\omega\left(\left[s_{i, j}+t_{i, j}\right]\right) \\
& =\left(s_{n, n-1}+t_{n, n-1}\right) c e_{n-1,1}+\left(s_{n, n-1}+t_{n, n-1}\right) d e_{n-2,1} \\
& +\left(s_{n, n-2}+t_{n, n-2}\right) d e_{n-1,1} \\
& =s_{n, n-1} c e_{n-1,1}+t_{n, n-1} c e_{n-1,1}+s_{n, n-1} d e_{n-2,1} \\
& +t_{n, n-1} d e_{n-2,1}+s_{n, n-2} d e_{n-1,1}+t_{n, n-2} d e_{n-1,1} \\
& =s_{n, n-1} c e_{n-1,1}+s_{n, n-1} d e_{n-2,1}+s_{n, n-2} d e_{n-1,1} \\
& +t_{n, n-1} c e_{n-1,1}+t_{n, n-1} d e_{n-2,1}+t_{n, n-2} d e_{n-1,1} \\
& =\omega(S)+\omega(T) .
\end{aligned}
$$

ω is a Jordan derivation since two relations

$$
\begin{aligned}
\omega(S \circ T) & =\omega(S T+T S) \\
& =\omega(S T)+\omega(T S) \\
& =\sum_{k} s_{n, k} t_{k, n-1} c e_{n-1,1}+\sum_{k} s_{n, k} t_{k, n-1} d e_{n-2,1} \\
& +\sum_{k} s_{n, k} t_{k, n-2} d e_{n-1,1}+\sum_{k} t_{n, k} s_{k, n-1} c e_{n-1,1} \\
& +\sum_{k} t_{n, k} s_{k, n-1} d e_{n-2,1}+\sum_{k} t_{n, k} s_{k, n-2} d e_{n-1,1} \\
& =0 \quad\left(K^{2} d=0, \quad s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\omega(S) \circ T+S \circ \omega(T) & =\omega(S) T+T \omega(S)+S \omega(T)+\omega(T) S \\
& =\left(s_{n, n-1} c e_{n-1,1}+s_{n, n-1} d e_{n-2,1}+s_{n, n-2} d e_{n-1,1}\right) T \\
& +T\left(s_{n, n-1} c e_{n-1,1}+s_{n, n-1} d e_{n-2,1}+s_{n, n-2} d e_{n-1,1}\right) \\
& +S\left(t_{n, n-1} c e_{n-1,1}+t_{n, n-1} d e_{n-2,1}+t_{n, n-2} d e_{n-1,1}\right) \\
& +\left(t_{n, n-1} c e_{n-1,1}+t_{n, n-1} d e_{n-2,1}+t_{n, n-2} d e_{n-1,1}\right) S \\
& =\sum_{k} s_{n, n-1} c t_{1, k} e_{n-1, k}+\sum_{k} s_{n, n-1} d t_{1, k} e_{n-2, k} \\
& +\sum_{k} s_{n, n-2} d t_{1, k} e_{n-1, k}+\sum_{k} t_{k, n-1} s_{n, n-1} c e_{k, 1} \\
& +\sum_{k} t_{k, n-2} s_{n, n-1} d e_{k, 1}+\sum_{k} t_{k, n-1} s_{n, n-2} d e_{k, 1} \\
& +\sum_{k} s_{k, n-1} t_{n, n-1} c e_{k, 1}+\sum_{k} s_{k, n-2} t_{n, n-1} d e_{k, 1} \\
& +\sum_{k} s_{k, n-1} t_{n, n-2} d e_{k, 1}+\sum_{k} t_{n, n-1} c s_{1, k} e_{n-1, k} \\
& +\sum_{k} t_{n, n-1} d s_{1, k} e_{n-2, k}+\sum_{k} t_{n, n-2} d s_{1, k} e_{n-1, k} \\
& =\left(t_{n, n-1} s_{n, n-1}+s_{n, n-1} t_{n, n-1}\right) c e_{n, 1} \quad \quad\left(K^{2} d=0\right) \\
& =\left(t_{n, n-1} \circ s_{n, n-1}\right) c e_{n, 1} \\
& =0
\end{aligned}((K \circ K) c=0) . \quad 1
$$

are equal to each other. But it is not a derivation since two equalities are distinct from each other:

$$
\begin{aligned}
\omega(S T) & =\sum_{k} s_{n, k} t_{k, n-1} c e_{n-1,1}+\sum_{k} s_{n, k} t_{k, n-1} d e_{n-2,1} \\
& +\sum_{k} s_{n, k} t_{k, n-2} d e_{n-1,1} \\
& =0 \quad\left(K^{2} d=0 \text { and } s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right),
\end{aligned}
$$

$$
\begin{aligned}
\omega(S) T+S \omega(T) & =\left(s_{n, n-1} c e_{n-1,1}+s_{n, n-1} d e_{n-2,1}+s_{n, n-2} d e_{n-1,1}\right) S \\
& +S\left(t_{n, n-1} c e_{n-1,1}+t_{n, n-1} d e_{n-2,1}+t_{n, n-2} d e_{n-1,1}\right) \\
& =\sum_{k} s_{n, n-1} c t_{1, k} e_{n-1, k}+\sum_{k} s_{n, n-1} d t_{1, k} e_{n-2, k} \\
& +\sum_{k} s_{n, n-2} d t_{1, k} e_{n-1, k}+\sum_{k} s_{k, n-1} t_{n, n-1} c e_{k, 1} \\
& +\sum_{k} s_{k, n-2} t_{n, n-1} d e_{k, 1}+\sum_{k} s_{k, n-1} t_{n, n-2} d e_{k, 1} \\
& =s_{n, n-1} t_{n, n-1} c e_{n, 1} \quad\left(K^{2} d=0 \text { and } s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right)
\end{aligned}
$$

The following is an example of a Jordan derivation of $N T_{3}(K)$ that is not a derivation of the same ring.

Example 3.4 [28] Let ρ be an additive map of a ring K with $\rho: x_{2,1} \rightarrow$ axe $_{3,2}$ where $a(K \circ K)=0$. Then ρ is a Jordan derivation but not a derivation of $N T_{3}(K)$.

To see that, choose arbitrary matrices $S, T \in N T_{3}(K)$. Then ρ is a Jordan derivation of $N T_{3}(K)$ because the right sides of the equalities

$$
\begin{aligned}
\rho(S \circ T) & =\rho(S T+T S) \\
& =\rho(S T)+\rho(T S) \\
& =a \sum_{k} s_{2, k} t_{k, 1} e_{3,2}+a \sum_{k} t_{2, k} s_{k, 1} e_{3,2} \\
& =0 \quad\left(s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\rho(S) \circ T+S \circ \rho(T) & =\rho(S) T+T \rho(S)+S \rho(T)+\rho(T) S \\
& =a s_{2,1} e_{3,2} T+\operatorname{Tas}_{2,1} e_{3,2}+S a t_{2,1} e_{3,2}+a t_{2,1} e_{3,2} S \\
& =\sum_{k} a s_{2,1} t_{2, k} e_{3, k}+\sum_{k} t_{k, 3} a s_{2,1} e_{k, 2} \\
& +\sum_{k} s_{k, 3} a t_{2,1} e_{k, 2}+\sum_{k} a t_{2,1} s_{2, k} e_{3, k} \\
& =a s_{2,1} t_{2,1} e_{3,1}+a t_{2,1} s_{2,1} e_{3,1} \quad\left(s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right) \\
& =a\left(s_{2,1} \circ t_{2,1}\right) e_{3,1} \\
& =0 \quad(a(K \circ K)=0),
\end{aligned}
$$

are equal. However, ρ is not a derivation of $N T_{3}(K)=0$ as a result of that the right sides of the equalities

$$
\begin{aligned}
\rho(S T) & =a \sum_{k} s_{2, k} t_{k, 1} e_{3,2} \\
& =0 \quad\left(s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\rho(S) T+S \rho(T) & =a s_{2,1} e_{3,2} T+\text { Sat }_{2,1} e_{3,2} \\
& =\sum_{k} a s_{2,1} t_{2, k} e_{3, k}+\sum_{k} s_{k, 3} a t_{2,1} e_{k, 2} \\
& =a s_{2,1} t_{2,1} e_{3,1} \quad\left(s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right)
\end{aligned}
$$

are different from each other.
The following is another example of a Jordan derivation of $N T_{3}(K)$ that is not a derivation of the same ring.

Example 3.5 [28] The additive map $\bar{\rho}: x_{3,2} \rightarrow a_{2,1}$ of K is a Jordan derivation but not a derivation of $N T_{3}(K)$ if ras + sar $=0$ for all $r, s \in K$:

Let S and T be arbitrary elements of $N T_{3}(K)$. Then $\bar{\rho}$ is a Jordan derivation because the right sides of the equalities

$$
\begin{aligned}
\bar{\rho}(S \circ T) & =\bar{\rho}(S T+T S) \\
& =\bar{\rho}(S T)+\bar{\rho}(T S) \\
& =a \sum_{k} s_{3, k} t_{k, 2} e_{2,1}+a \sum_{k} t_{3, k} s_{k, 2} e_{2,1} \\
& =0 \quad\left(s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\rho}(S) \circ T+S \circ \bar{\rho}(T) & =\bar{\rho}(S) T+T \bar{\rho}(S)+S \bar{\rho}(T)+\bar{\rho}(T) S \\
& =a s_{3,2} e_{2,1} T+\operatorname{Tas}_{3,2} e_{2,1}+S a t_{3,2} e_{2,1}+a t_{3,2} e_{2,1} S \\
& =\sum_{k} a s_{3,2} t_{1, k} e_{2, k}+\sum_{k} t_{k, 2} a s_{3,2} e_{k, 1} \\
& +\sum_{k} s_{k, 2} a t_{3,2} e_{k, 1}+\sum_{k} a t_{3,2} s_{1, k} e_{2, k} \\
& =\left(t_{3,2} a s_{3,2}+s_{3,2} a t_{3,2}\right) e_{3,1} \quad\left(s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right) \\
& =0 \quad \quad(\text { ras }+ \text { sar }=0)
\end{aligned}
$$

are equal to each other. But $\bar{\rho}$ is not a derivation of $N T_{3}(K)$ since $\bar{\rho}(S T) \neq \bar{\rho}(S) T+$ $S \bar{\rho}(T)$ by

$$
\begin{aligned}
\bar{\rho}(S T) & =a \sum_{k} s_{3, k} t_{k, 2} e_{2,1} \\
& =0 \quad\left(s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\rho}(S) T+S \bar{\rho}(T) & =a s_{3,2} e_{2,1} T+S a t_{3,2} e_{2,1} \\
& =\sum_{k} a s_{3,2} t_{1, k} e_{2, k}+\sum_{k} s_{k, 2} a t_{3,2} e_{k, 1} \\
& =s_{3,2} a t_{3,2} e_{3,1} \quad\left(s_{i, j}=t_{i, j}=0 \text { for } i \leq j\right) .
\end{aligned}
$$

Definition 3.6 A 2-torsion free ring K is a ring with the property that $2 x=0$ implies $x=0$ for $x \in K$.

It is clear that any field of characteristic not 2 is 2 -torsion free, moreover, $M_{2}(\mathbb{Z})$ is 2-torsion free as well since \mathbb{Z} is 2 -torsion free.

If d is a Jordan derivation of a 2-torsion free ring K then the following equalities hold where r and s are arbitrary elements of K.
i) $d\left(r^{2}\right)=d(r) r+r d(r)$
ii) $d(r s r)=d(r) s r+r d(s) r+r s d(r)$.

A ring K is called prime if and only if $a K b=0$ implies $a=0$ or $b=0$ where $a, b \in K$.

In 1957, Herstein proved the theorem given below:

Theorem 3.7 [27, Theorem 3.1] Every Jordan derivation of a prime ring of characteristic different from 2 is an ordinary derivation.

Taking into account that K is 2 -torsion free in this section, a useful proposition can be given:

Proposition 3.8 Let K be a 2-torsion free ring, $d: K \rightarrow K$ be an additive map and k be an arbitrary element of K. Then d is a Jordan derivation of K if and only if

$$
d\left(k^{2}\right)=d(k) k+k d(k)
$$

Proof. Let K be a 2-torsion free ring, d be a Jordan derivation of K and $k \in K$. Forasmuch as

$$
\begin{aligned}
2 d\left(k^{2}\right) & =d\left(2 k^{2}\right) \\
& =d(k k+k k) \\
& =d(k \circ k) \\
& =d(k) k+k d(k)+k d(k)+d(k) k \\
& =2(d(k) k+k d(k))
\end{aligned}
$$

one can deduce that $2\left\{d\left(k^{2}\right)-[d(k) k+k d(k)]\right\}=0$. Then, as K is a 2 -torsion free ring, it is obtained $d\left(k^{2}\right)=d(k) k+k d(k)$.

Now let d be an additive map of K satisfying $d\left(k^{2}\right)=d(k) k+k d(k)$ for all $k \in K$ and s, v be arbitrary elements of K. In that right sides of the equations

$$
\begin{aligned}
d\left[(s+v)^{2}\right] & =d\left(s^{2}+s v+v s+v^{2}\right) \\
& =d\left(s^{2}\right)+d(s v)+d(v s)+d\left(v^{2}\right) \\
& =d(s) s+s d(s)+d(s v)+d(v s)+d(v) v+v d(v)
\end{aligned}
$$

and

$$
\begin{aligned}
d\left[(s+v)^{2}\right]= & d(s+v) \cdot(s+v)+(s+v) \cdot d(s+v) \\
= & {[d(s)+d(v)](s+v)+(s+v)[d(s)+d(v)] } \\
= & d(s) s+d(s) v+d(v) s+d(v) v \\
& +v d(s)+s d(v)+v d(s)+v d(v)
\end{aligned}
$$

are equal, we get $d(s v+v s)=d(s) v+d(v) s+s d(v)+v d(s)$ which means d is a Jordan derivation of K.

Besides, we have the following property for Jordan derivations of 2-torsion free rings.

Proposition 3.9 If K is a 2-torsion free ring and d is a Jordan derivation of K, then $d(w t w)=d(w) t w+w d(t) w+w t d(w)$ for all $w, t \in K$.

Proof. Let $d: K \rightarrow K$ be a Jordan derivation and w, t be arbitrary elements of K. By the relations

$$
\begin{aligned}
d(w \circ(w \circ t))= & d(w) \circ(w \circ t)+w \circ d(w \circ t) \\
= & d(w) \circ(w t+t w)+w \circ(d(w) \circ t+w \circ d(t)) \\
= & d(w)(w t+t w)+(w t+t w) d(w) \\
& +w \circ(d(w) t+t d(w)+w d(t)+d(t) w) \\
= & d(w) w t+d(w) t w+w t d(w)+t w d(w) \\
& +w d(w) t+w t d(w)+w^{2} d(t)+w d(t) w \\
& +d(w) t w+t d(w) w+w d(t) w+d(t) w^{2} \\
= & 2(d(w) t w+w d(t) w+w t d(w)) \\
& +d(w) w t+t w d(w)+w d(w) t \\
& +w^{2} d(t)+t d(w) w+d(t) w^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
d(w \circ(w \circ t))= & d(w \circ(w t+t w)) \\
= & d\left(w^{2} t+w t w+w t w+t w^{2}\right) \\
= & d\left(w^{2} \circ t+2 w t w\right) \\
= & d\left(w^{2} \circ t\right)+2 d(w t w) \\
= & d\left(w^{2}\right) \circ t+w^{2} \circ d(t)+2 d(w t w) \\
= & d\left(w^{2}\right) t+t d\left(w^{2}\right)+w^{2} d(t)+d(t) w^{2}+2 d(w t w) \\
= & (d(w) w+w d(w)) t+t(d(w) w+w d(w)) \text { (Proposition 3.8) } \\
& +w^{2} d(t)+d(t) w^{2}+2 d(w t w) \\
= & d(w) w t+w d(w) t+t d(w) w+t w d(w) \\
& +w^{2} d(t)+d(t) w^{2}+2 d(w t w)
\end{aligned}
$$

we get

$$
2 d(w t w)=2(d(w) t w+w d(t) w+w t d(w))
$$

and

$$
d(w t w)=d(w) t w+w d(t) w+w t d(w)
$$

as K is a 2 -torsion free ring.

For many researchers, the usual goal has been to describe the nontrivial Jordan derivations.

The problem was studied for semi-prime rings (see [30],[25]) and certain algebras of triangular $n \times n$ matrices over a 2 -torsion free commutative ring (see [24]). All Jordan derivations are trivial for semi-prime rings and any algebra of triangular $n \times n$ matrices over a 2 -torsion free ring.

In 2011, Kuzucuğlu described the Jordan derivations of $N T_{n}(K)$.
Theorem 3.10 [28] Every Jordan derivation of $N T_{n}(K)$ can be written as a sum of a derivation and an extremal Jordan derivation.

From now on, we denote a 2 -torsion free and associative ring with identity by K and an ideal of K by J. As it is stated before, we will show that any Jordan derivation of $R_{n}(K, J)$ can be written as a sum of a derivation and an extremal Jordan derivation. Now we define some extremal Jordan derivations as follows:

Proposition 3.11 If the additive maps $\alpha, \beta, \gamma: J \rightarrow \operatorname{Ann}_{K}(J)$ satisfy the conditions
i) $\alpha(y x)=x \alpha(y)$
ii) $\beta(y x)=x \beta(y)$
iii) $\beta(x y)=\beta(y) x$
iv) $\gamma(x y)=\gamma(y) x$
v) $\alpha\left(J^{2}\right)=\beta\left(J^{2}\right)=\gamma\left(J^{2}\right)=0$
for $x \in K$ and $y \in J$, then the map

$$
\left.\begin{array}{rl}
\Omega: R_{n}(K, J) & \longrightarrow R_{n}(K, J) \\
y e_{1, n} & \longrightarrow \alpha(y) e_{n-1,1}+\beta(y) e_{n-1,2}+\gamma(y) e_{n, 2} \\
y e_{1, n-1} & \longrightarrow \alpha(y) e_{n, 1}+\beta(y) e_{n, 2} \\
y e_{2, n-1} & \longrightarrow \beta(y) e_{n, 1} \\
y e_{2, n} & \longrightarrow \\
x_{i, j} e_{i, j} & \longrightarrow
\end{array}\right) e_{n-1,1}+\gamma(y) e_{n, 1},(0 \quad((i, j) \neq(1, n),(1, n-1),(2, n-1),(2, n))
$$

determines a Jordan derivation of the ring R which will be called an extremal Jordan derivation.

Proof. Let X and Y be arbitrary elements of R and $\alpha, \beta, \gamma: J \rightarrow A n n_{K}(J)$ be additive maps satisfying $\alpha(y x)=x \alpha(y), \beta(y x)=x \beta(y), \beta(x y)=\beta(y) x, \gamma(x y)=\gamma(y) x$, $\alpha\left(J^{2}\right)=0, \beta\left(J^{2}\right)=0$ and $\gamma\left(J^{2}\right)=0$. Then

$$
\begin{aligned}
\Omega(X \circ Y) & =\Omega(X Y+Y X) \\
& =\left[\sum_{k=1}^{n} \alpha\left(x_{1, k} y_{k, n}+y_{1, k} x_{k, n}\right)\right] e_{n-1,1} \\
& +\left[\sum_{k=1}^{n} \beta\left(x_{1, k} y_{k, n}+y_{1, k} x_{k, n}\right)\right] e_{n-1,2} \\
& +\left[\sum_{k=1}^{n} \gamma\left(x_{1, k} y_{k, n}+y_{1, k} x_{k, n}\right)\right] e_{n, 2} \\
& +\left[\sum_{k=1}^{n} \alpha\left(x_{1, k} y_{k, n-1}+y_{1, k} x_{k, n-1}\right)\right] e_{n, 1} \\
& +\left[\sum_{k=1}^{n} \beta\left(x_{1, k} y_{k, n-1}+y_{1, k} x_{k, n-1}\right)\right] e_{n, 2} \\
& +\left[\sum_{k=1}^{n} \beta\left(x_{2, k} y_{k, n-1}+y_{2, k} x_{k, n-1}\right)\right] e_{n, 1} \\
& +\left[\sum_{k=1}^{n} \beta\left(x_{2, k} y_{k, n}+y_{2, k} x_{k, n}\right)\right] e_{n-1,1} \\
& +\left[\sum_{k=1}^{n} \gamma\left(x_{2, k} y_{k, n}+y_{2, k} x_{k, n}\right)\right] e_{n, 1} \\
& =\left[\alpha\left(x_{1, n} y_{n, n-1}+y_{1, n} x_{n, n-1}\right)+\beta\left(x_{2,1} y_{1, n-1}+y_{2,1} x_{1, n-1}\right)\right] e_{n, 1} \\
& +\left[\beta\left(x_{2, n} y_{n, n-1}+y_{2, n} x_{n, n-1}\right)+\gamma\left(x_{2,1} y_{1, n}+y_{2,1} x_{1, n}\right)\right] e_{n, 1} \\
& +\left[\beta\left(x_{2,1} y_{1, n}+y_{2,1} x_{1, n}\right)\right] e_{n-1,1} \\
& +\left[\beta\left(x_{1, n} y_{n, n-1}+y_{1, n} x_{n, n-1}\right)\right] e_{n, 2}
\end{aligned}
$$

considering that $\alpha\left(J^{2}\right)=0, \beta\left(J^{2}\right)=0, \gamma\left(J^{2}\right)=0$. On the other hand

$$
\begin{aligned}
\Omega(X) \circ Y+X \circ \Omega(Y) & =\Omega(X) Y+Y \Omega(X)+X \Omega(Y)+\Omega(Y) X \\
& =\left[\sum_{k=1}^{n} \alpha\left(x_{1, n}\right) y_{1, k}+\alpha\left(y_{1, n}\right) x_{1, k}\right] e_{n-1, k} \\
& +\left[\sum_{k=1}^{n} \beta\left(x_{1, n}\right) y_{2, k}+\beta\left(y_{1, n}\right) x_{2, k}\right] e_{n-1, k} \\
& +\left[\sum_{k=1}^{n} \gamma\left(x_{1, n}\right) y_{2, k}+\gamma\left(y_{1, n}\right) x_{2, k}\right] e_{n, k} \\
& +\left[\sum_{k=1}^{n} \alpha\left(x_{1, n-1}\right) y_{1, k}+\alpha\left(y_{1, n-1}\right) x_{1, k}\right] e_{n, k} \\
& +\left[\sum_{k=1}^{n} \beta\left(x_{1, n-1}\right) y_{2, k}+\beta\left(y_{1, n-1}\right) x_{2, k}\right] e_{n, k} \\
& +\left[\sum_{k=1}^{n} \beta\left(x_{2, n-1}\right) y_{1, k}+\beta\left(y_{2, n-1}\right) x_{1, k}\right] e_{n, k} \\
& +\left[\sum_{k=1}^{n} \beta\left(x_{2, n}\right) y_{1, k}+\beta\left(y_{2, n}\right) x_{1, k}\right] e_{n-1, k} \\
& +\left[\sum_{k=1}^{n} \gamma\left(x_{2, n}\right) y_{1, k}+\gamma\left(y_{2, n}\right) x_{1, k}\right] e_{n, k} \\
& =\left[y_{n, n-1} \alpha\left(x_{1, n}\right)+x_{n, n-1} \alpha\left(y_{1, n}\right)+\beta\left(y_{1, n-1}\right) x_{2,1}\right] e_{n, 1} \\
& +\left[\beta\left(x_{1, n-1}\right) y_{2,1}+y_{n, n-1} \beta\left(x_{2, n}\right)+x_{n, n-1} \beta\left(y_{2, n}\right)\right] e_{n, 1} \\
& +\left[\gamma\left(y_{1, n}\right) x_{2,1}+\gamma\left(x_{1, n}\right) y_{2,1}\right] e_{n, 1} \\
& +\left[\beta\left(y_{1, n}\right) x_{2,1}+\beta\left(x_{1, n}\right) y_{2,1}\right] e_{n-1,1} \\
& +\left[y_{n, n-1} \beta\left(x_{1, n}\right)+x_{n, n-1} \beta\left(y_{1, n}\right)\right] e_{n, 2}
\end{aligned}
$$

since $\alpha(J), \beta(J), \gamma(J)$ are all contained in $A n n_{K}(J)$. Now, by considering the conditions $i)-i v$), one can easily see that

$$
\Omega(X) \circ Y+X \circ \Omega(Y)=\Omega(X \circ Y)
$$

which completes the proof.

Example 3.12 Let K_{1} be a commutative ring with identity and let J_{1} be an ideal of K_{1} which is nilpotent of class two. If $K=K_{1} \times K_{1}$ and $J=J_{1} \times J_{1}$ is an ideal of K,
then the maps

$$
\begin{aligned}
\alpha & : J \rightarrow \operatorname{Ann}_{K}(J) \\
& :(a, b) \rightarrow(a, 0) \\
\beta & : J \rightarrow \operatorname{Ann}_{K}(J) \\
& :(a, b) \rightarrow(0, b) \\
\gamma & : J \rightarrow \operatorname{Ann}_{K}(J) \\
& :(a, b) \rightarrow(a, b)
\end{aligned}
$$

are all additive and satisfy all the conditions i)-v). This means

$$
\begin{aligned}
\Omega: R_{n}(K, J) & \longrightarrow R_{n}(K, J) \\
y e_{1, n} & \longrightarrow \\
y e_{1, n-1} & \longrightarrow \\
y e_{2, n-1} & \longrightarrow \alpha(y) e_{n-1,1}+\beta(y) e_{n-1,2}+\gamma(y) e_{n, 2}+\beta(y) e_{n, 2} \\
y e_{2, n} & \longrightarrow \beta(y) e_{n, 1} \\
x_{i, j} e_{i, j} & \longrightarrow \beta(y) e_{n-1,1}+\gamma(y) e_{n, 1} \\
& \longrightarrow
\end{aligned}((i, j) \neq(1, n),(1, n-1),(2, n-1),(2, n))
$$

is a Jordan derivation of $R_{n}(K, J)$.

Proposition 3.13 If additive maps $\alpha_{1}, \alpha_{2}: J \rightarrow A n n_{K}(J)$ satisfy the conditions
i) $\alpha_{1}(x y)=\alpha_{1}(y) x$
ii) $\alpha_{2}(y x)=x \alpha_{2}(y)$
iii) $\alpha_{1}\left(J^{2}\right)=0=\alpha_{2}\left(J^{2}\right)$
for $x \in K$ and $y \in J$, then the map

$$
\digamma: \begin{aligned}
R_{3}(K, J) & \rightarrow R_{3}(K, J) \\
y e_{1,3} & \rightarrow \alpha_{1}(y) e_{3,2}+\alpha_{2}(y) e_{2,1} \\
y e_{1,2} & \rightarrow \alpha_{2}(y) e_{3,1} \\
y e_{2,3} & \rightarrow \alpha_{1}(y) e_{3,1} \\
x_{i, j} e_{i, j} & \rightarrow 0 \quad((i, j) \neq(1,2),(1,3),(2,3))
\end{aligned}
$$

determines a Jordan derivation which will be called an extremal Jordan derivation as well.

Proof. Let $P=\left[p_{i, j}\right]$ and $Q=\left[q_{i, j}\right]$ be arbitrary matrices in $R_{3}(K, J)$ and $\alpha_{1}, \alpha_{2}: J \rightarrow$ $A n n_{K}(J)$ be additive maps with the properties $\left.\left.i\right), i i\right)$ and $\left.i i i\right) . \digamma$ is clearly an additive map by definition. In addition, right sides of the two equalities

$$
\begin{aligned}
\digamma(P) \circ Q+P \circ \digamma(Q)= & \digamma(P) Q+Q \digamma(P)+P \digamma(Q)+\digamma(Q) P \\
= & {\left[\alpha_{1}\left(p_{1,3}\right) e_{3,2}+\alpha_{2}\left(p_{1,3}\right) e_{2,1}+\alpha_{2}\left(p_{1,2}\right) e_{3,1}+\alpha_{1}\left(p_{2,3}\right) e_{3,1}\right] Q } \\
& +Q\left[\alpha_{1}\left(p_{1,3}\right) e_{3,2}+\alpha_{2}\left(p_{1,3}\right) e_{2,1}+\alpha_{2}\left(p_{1,2}\right) e_{3,1}+\alpha_{1}\left(p_{2,3}\right) e_{3,1}\right] \\
& +P\left[\alpha_{1}\left(q_{1,3}\right) e_{3,2}+\alpha_{2}\left(q_{1,3}\right) e_{2,1}+\alpha_{2}\left(q_{1,2}\right) e_{3,1}+\alpha_{1}\left(q_{2,3}\right) e_{3,1}\right] \\
& +\left[\alpha_{1}\left(q_{1,3}\right) e_{3,2}+\alpha_{2}\left(q_{1,3}\right) e_{2,1}+\alpha_{2}\left(q_{1,2}\right) e_{3,1}+\alpha_{1}\left(q_{2,3}\right) e_{3,1}\right] P \\
= & \sum_{k} \alpha_{1}\left(p_{1,3}\right) q_{2, k} e_{3, k}+\sum_{k} \alpha_{2}\left(p_{1,3}\right) q_{1, k} e_{2, k} \\
& +\sum_{k} \alpha_{2}\left(p_{1,2}\right) q_{1, k} e_{3, k}+\sum_{k} \alpha_{1}\left(p_{2,3}\right) q_{1, k} e_{3, k} \\
& +\sum_{k} q_{k, 3} \alpha_{1}\left(q_{1,3}\right) e_{k, 2}+\sum_{k} q_{k, 2} \alpha_{2}\left(p_{1,3}\right) e_{k, 1} \\
& +\sum_{k} q_{k, 3} \alpha_{2}\left(p_{1,2}\right) e_{k, 1}+\sum_{k} q_{k, 3} \alpha_{1}\left(p_{2,3}\right) e_{k, 1} \\
& +\sum_{k} p_{k, 3} \alpha_{1}\left(q_{1,3}\right) e_{k, 2}+\sum_{k} p_{k, 2} \alpha_{2}\left(q_{1,3}\right) e_{k, 1} \\
& +\sum_{k} p_{k, 3} \alpha_{2}\left(q_{1,2}\right) e_{k, 1}+\sum_{k} p_{k, 3} \alpha_{1}\left(q_{2,3}\right) e_{k, 1} \\
& +\sum_{k} \alpha_{1}\left(q_{1,3}\right) p_{2, k} e_{3, k}+\sum_{k} \alpha_{2}\left(q_{1,3}\right) p_{1, k} e_{2, k} \\
& +\sum_{k} \alpha_{2}\left(q_{1,2}\right) p_{1, k} e_{3, k}+\sum_{k} \alpha_{1}\left(q_{2,3}\right) p_{1, k} e_{3, k} \\
= & \alpha_{1}\left(p_{1,3}\right) y_{2,1} e_{3,1}+q_{3,2} \alpha_{2}\left(p_{1,3}\right) e_{3,1} \\
+ & p_{3,2} \alpha_{2}\left(q_{1,3}\right) e_{3,1}+\alpha_{1}\left(q_{1,3}\right) x_{2,1} e_{3,1}
\end{aligned}
$$

and

$$
\begin{aligned}
\digamma(P \circ Q)= & \digamma(P Q+Q P) \\
= & \digamma(P Q)+\digamma(Q P) \\
= & \sum_{k} \alpha_{1}\left(p_{1, k} q_{k, 3}\right) e_{3,2}+\sum_{k} \alpha_{2}\left(p_{1, k} q_{k, 3}\right) e_{2,1}+\sum_{k} \alpha_{2}\left(p_{1, k} q_{k, 2}\right) e_{3,1} \\
& +\sum_{k} \alpha_{1}\left(p_{2, k} q_{k, 3}\right) e_{3,1}+\sum_{k} \alpha_{1}\left(q_{1, k} p_{k, 3}\right) e_{3,2}+\sum_{k} \alpha_{2}\left(q_{1, k} p_{k, 3}\right) e_{2,1} \\
& +\sum_{k} \alpha_{2}\left(q_{1, k} p_{k, 2}\right) e_{3,1}+\sum_{k} \alpha_{1}\left(q_{2, k} p_{k, 3}\right) e_{3,1} \\
= & {\left[\alpha_{2}\left(p_{1,3} q_{3,2}\right)+\alpha_{1}\left(p_{2,1} q_{1,3}\right)\right.} \\
& \left.+\alpha_{2}\left(q_{1,3} p_{3,2}\right)+\alpha_{1}\left(q_{2,1} p_{1,3}\right)\right] e_{3,1} \quad\left(\alpha_{1}\left(J^{2}\right)=0=\alpha_{2}\left(J^{2}\right)\right)
\end{aligned}
$$

are equal by i) and $i i$. Then $\digamma(P \circ Q)=\digamma(P) \circ Q+P \circ \digamma(Q)$ and the proof is completed.

Proposition 3.14 If $\delta_{i}: J \rightarrow J, \beta_{i}: J \rightarrow K, \theta: J \rightarrow K$ and $\gamma: J \rightarrow K \quad(i=1,2,3)$ are additive maps satisfying

$$
\begin{array}{ll}
\delta_{2}\left(J^{2}\right)=0, & \gamma(y) z=\delta_{3}(y z), \\
\beta_{2}(J) \subseteq A n n_{K}(J), & y \beta_{3}(z)=\delta_{1}(y z), \\
\delta_{1}(y z)=y \theta(z), & \delta_{3}(y) x+x \delta_{2}(y)=\gamma(y x), \\
\theta(y z)=y \beta_{3}(z), & x \theta(y)=\beta_{2}(y x)+\beta_{3}(x y), \\
\gamma(y z)=\gamma(y) z, & \theta(x y)=x \delta_{1}(y)+\delta_{2}(y) x, \\
\delta_{3}(y z)=\beta_{1}(y) z, & \gamma(y) x=\beta_{1}(y x)+\beta_{2}(x y), \\
\theta(y z)=y \theta(z), & z \gamma(y)+\delta_{1}(z) y+y \delta_{2}(z)=0, \\
\gamma(y z)=\beta_{1}(y) z, & \delta_{2}(y) z+z \delta_{3}(y)+\theta(z) y=0, \\
z \gamma(y)+\theta(z) y=0, & \beta_{1}(y z+z y)=\beta_{1}(y) z+\beta_{1}(z) y, \\
z \gamma(y)+\beta_{3}(z) y=0, & \delta_{3}(y z)=\delta_{3}(y) z+z \delta_{3}(y)+\beta_{3}(z) y, \\
\theta(y) z+y \beta_{1}(z)=0, & \delta_{1}(y z)=z \beta_{1}(y)+y \delta_{1}(z)+\delta_{1}(z) y, \\
\delta_{2}(y) z+z \delta_{2}(y)=0, & z \delta_{1}(y)+\delta_{3}(y) z=\beta_{1}(y z)+\beta_{3}(y z), \\
z \beta_{1}(y)+\beta_{3}(z) y=0, & \delta_{1}(y) z+z \delta_{3}(y)+\delta_{1}(z) y+y \delta_{3}(z)=0,
\end{array}
$$

then the following map is a Jordan derivation of $R_{3}(K, J)$ where $x \in K, y, z \in J$.

$$
\begin{aligned}
\Upsilon: y e_{1,3} & \rightarrow \sum_{i=1}^{3} \delta_{i}(y) e_{i, i} \\
y e_{i, i} & \rightarrow \beta_{i}(y) e_{3,1} \\
y e_{2,3} & \rightarrow \theta(y) e_{2,1} \\
y e_{1,2} & \rightarrow \gamma(y) e_{3,2}
\end{aligned}
$$

We assume that the images of the elementary matrices except $y e_{1,3}, y e_{1,2}, y e_{2,3}$ and $e_{i, i}$ ($i=1,2,3$) are zeros.

Proof. Let $X=\left[x_{i, j}\right], Y=\left[y_{i, j}\right]$ be arbitrary matrices in $R_{3}(K, J)$. We know that

$$
\begin{aligned}
\Upsilon(X \circ Y)= & \Upsilon(X Y+Y X) \\
= & \Upsilon(X Y)+\Upsilon(Y X) \\
= & \sum_{i=1}^{3} \sum_{k=1}^{3} \delta_{i}\left(x_{1, k} y_{k, 3}\right) e_{i, i}+\sum_{i=1}^{3} \sum_{k=1}^{3} \delta_{i}\left(y_{1, k} x_{k, 3}\right) e_{i, i} \\
& +\sum_{i=1}^{3} \sum_{k=1}^{3} \beta_{i}\left(x_{i, k} y_{k, i}\right) e_{3,1}+\sum_{i=1}^{3} \sum_{k=1}^{3} \beta_{i}\left(y_{i, k} x_{k, i}\right) e_{3,1} \\
& +\sum_{k=1}^{3} \theta\left(x_{2, k} y_{k, 3}\right) e_{2,1}+\sum_{k=1}^{3} \theta\left(y_{2, k} x_{k, 3}\right) e_{2,1} \\
& +\sum_{k=1}^{3} \gamma\left(x_{1, k} y_{k, 2}\right) e_{3,2}+\sum_{k=1}^{3} \gamma\left(y_{1, k} x_{k, 2}\right) e_{3,2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Upsilon(X) \circ Y+X \circ \Upsilon(Y)=\Upsilon(X) Y+Y \Upsilon(X)+X \Upsilon(Y)+\Upsilon(Y) X \\
& =\binom{\sum_{i=1}^{3} \delta_{i}\left(x_{1,3}\right) e_{i, i}+\sum_{i=1}^{3} \beta_{i}\left(x_{i, i}\right) e_{3,1}}{+\theta\left(x_{2,3}\right) e_{2,1}+\gamma\left(x_{1,2}\right) e_{3,2}} Y \\
& +Y\binom{\sum_{i=1}^{3} \delta_{i}\left(x_{1,3}\right) e_{i, i}+\sum_{i=1}^{3} \beta_{i}\left(x_{i, i}\right) e_{3,1}}{+\theta\left(x_{2,3}\right) e_{2,1}+\gamma\left(x_{1,2}\right) e_{3,2}} \\
& +X\binom{\sum_{i=1}^{3} \delta_{i}\left(y_{1,3}\right) e_{i, i}+\sum_{i=1}^{3} \beta_{i}\left(y_{i, i}\right) e_{3,1}}{+\theta\left(y_{2,3}\right) e_{2,1}+\gamma\left(y_{1,2}\right) e_{3,2}} \\
& +\binom{\sum_{i=1}^{3} \delta_{i}\left(y_{1,3}\right) e_{i, i}+\sum_{i=1}^{3} \beta_{i}\left(y_{i, i}\right) e_{3,1}}{+\theta\left(y_{2,3}\right) e_{2,1}+\gamma\left(y_{1,2}\right) e_{3,2}} X \\
& =\binom{\sum_{k=1}^{3} \sum_{i=1}^{3} \delta_{i}\left(x_{1,3}\right) y_{i, k} e_{i, k}+\sum_{k=1}^{3} \sum_{i=1}^{3} \beta_{i}\left(x_{i, i}\right) y_{1, k} e_{3, k}}{+\sum_{k=1}^{3} \theta\left(x_{2,3}\right) y_{1, k} e_{2, k}+\sum_{k=1}^{3} \gamma\left(x_{1,2}\right) y_{2, k} e_{3, k}} \\
& +\binom{\sum_{k=1}^{3} \sum_{i=1}^{3} y_{k, i} \delta_{i}\left(x_{1,3}\right) e_{k, i}+\sum_{k=1}^{3} \sum_{i=1}^{3} y_{k, 3} \beta_{i}\left(x_{i, i}\right) e_{k, 1}}{+\sum_{k=1}^{3} y_{k, 2} \theta\left(x_{2,3}\right) e_{k, 1}+\sum_{k=1}^{3} y_{k, 3} \gamma\left(x_{1,2}\right) e_{k, 2}} \\
& +\binom{\sum_{k=1}^{3} \sum_{i=1}^{3} x_{k, i} \delta_{i}\left(y_{1,3}\right) e_{k, i}+\sum_{k=1}^{3} \sum_{i=1}^{3} x_{k, 3} \beta_{i}\left(y_{i, i}\right) e_{k, 1}}{+\sum_{k=1}^{3} x_{k, 2} \theta\left(y_{2,3}\right) e_{k, 1}+\sum_{k=1}^{3} x_{k, 3} \gamma\left(y_{1,2}\right) e_{k, 2}} \\
& +\binom{\sum_{k=1}^{3} \sum_{i=1}^{3} \delta_{i}\left(y_{1,3}\right) x_{i, k} e_{i, k}+\sum_{k=1}^{3} \sum_{i=1}^{3} \beta_{i}\left(y_{i, i}\right) x_{1, k} e_{3, k}}{+\sum_{k=1}^{3} \theta\left(y_{2,3}\right) x_{1, k} e_{2, k}+\sum_{k=1}^{3} \gamma\left(y_{1,2}\right) x_{2, k} e_{3, k}} .
\end{aligned}
$$

Then we obtain $\Upsilon(X \circ Y)=\Upsilon(X) \circ Y+X \circ \Upsilon(Y)$ by using the given conditions for additive maps δ_{i}, β_{i} and $\theta(i=1,2,3)$.

Theorem 3.15 Every Jordan derivation of $R_{n}(K, J)$ for $n \geq 4$ is of the form $\Delta=$ $\Phi+\Omega$ where Φ is a derivation of $R_{n}(K, J)$ and Ω is an extremal Jordan derivation of $R_{n}(K, J)$. Moreover, Φ is the sum of certain diagonal, inner, annihilator, ring and almost annihilator derivations.

Before we prove the theorem, the following helpful lemmas will be given.

Lemma 3.16 Let Δ be an arbitrary Jordan derivation of R for $n \geq 4$. Then for $1<i<n-1$ and $x \in K, y \in J$, we have

$$
\begin{equation*}
\Delta\left(x e_{i+1, i}\right)=\sum \Delta_{i+1, t}^{i+1, i}(x) e_{i+1, t}+\sum_{s \neq i+1} \Delta_{s, i}^{i+1, i}(x) e_{s, i}+\Delta_{n, 1}^{i+1, i}(x) e_{n, 1} \tag{1}
\end{equation*}
$$

which can be written as
and

$$
\begin{array}{r}
\Delta\left(y e_{1, n}\right)=\sum \Delta_{1, t}^{1, n}(y) e_{1, t}+\sum_{s \neq 1} \Delta_{s, n}^{1, n}(y) e_{s, n}+\Delta_{n-1,1}^{1, n}(y) e_{n-1,1} \\
+\Delta_{n-1,2}^{1, n}(y) e_{n-1,2}+\Delta_{n, 1}^{1, n}(y) e_{n, 1}+\Delta_{n, 2}^{1, n}(y) e_{n, 2} \tag{2}
\end{array}
$$

which is equal to

Proof. Let us fix i, j and choose k, m such that $k>m$. If $k \neq j$ and $m \neq i$ then $x_{i, j} e_{i, j} \circ y_{k, m} e_{k, m}=0$. By differentiating $x_{i, j} e_{i, j} \circ y_{k, m} e_{k, m}=0$, we get

$$
\begin{aligned}
0= & \Delta\left(x_{i, j} e_{i, j}\right) \circ y_{k, m} e_{k, m}+x_{i, j} e_{i, j} \circ \Delta\left(y_{k, m} e_{k, m}\right) \\
= & \Delta\left(x_{i, j} e_{i, j}\right) y_{k, m} e_{k, m}+y_{k, m} e_{k, m} \Delta\left(x_{i, j} e_{i, j}\right)+x_{i, j} e_{i, j} \Delta\left(y_{k, m} e_{k, m}\right) \\
& +\Delta\left(y_{k, m} e_{k, m}\right) x_{i, j} e_{i, j} \\
= & \sum_{s} \Delta_{s, k}^{i, j}\left(x_{i, j}\right) y_{k, m} e_{s, m}+\sum_{t} y_{k, m} \Delta_{m, t}^{i, j}\left(x_{i, j}\right) e_{k, t} \\
& +\sum_{t} x_{i, j} \Delta_{j, t}^{k, m}\left(y_{k, m}\right) e_{i, t}+\sum_{s} \Delta_{s, i}^{k, m}\left(y_{k, m}\right) x_{i, j} e_{s, j}
\end{aligned}
$$

Putting $y_{k, m}=1$, the matrix on the right has zeros except $i-t h, k-t h$ rows and $j-t h, m-t h$ columns. Hence we have

$$
\begin{align*}
& \Delta_{s, k}^{i, j}=0 \text { for } m \neq j, s \neq i, s \neq k \tag{3}\\
& \Delta_{m, t}^{i, j}=0 \text { for } i \neq k, t \neq m, t \neq j \tag{4}
\end{align*}
$$

On the other hand, for $k>s>m$ and $k \neq i, j, s \neq i, j, m \neq i, j$, the (k, m), $(s, m),(k, s)$ coefficients of the equations $\Delta\left(x_{i, j} e_{i, j} \circ e_{k, m}\right)=0, \Delta\left(x_{i, j} e_{i, j} \circ e_{s, m}\right)=0$, $\Delta\left(x_{i, j} e_{i, j} \circ e_{k, s}\right)=0$ are

$$
\begin{align*}
\Delta_{k, k}^{i, j}\left(x_{i, j}\right)+\Delta_{m, m}^{i, j}\left(x_{i, j}\right) & =0 \tag{5}\\
\Delta_{s, s}^{i, j}\left(x_{i, j}\right)+\Delta_{m, m}^{i, j}\left(x_{i, j}\right) & =0 \tag{6}\\
\Delta_{k, k}^{i, j}\left(x_{i, j}\right)+\Delta_{s, s}^{i, j}\left(x_{i, j}\right) & =0 \tag{7}
\end{align*}
$$

respectively. Comparing (5) with (6) and (7), we get $\Delta_{k, k}^{i, j}\left(x_{i, j}\right)=\Delta_{s, s}^{i, j}\left(x_{i, j}\right)=\Delta_{m, m}^{i, j}\left(x_{i, j}\right)$. By using (7), it can be easily seen that $2 \Delta_{k, k}^{i, j}=2 \Delta_{s, s}^{i, j}=0=2 \Delta_{m, m}^{i, j}$. Now that K is a 2 -torsion free ring, we obtain $\Delta_{k, k}^{i, j}=0$ for all $k \neq i, j$. Therefore, the image of $x e_{i+1, i}(x \in K)$ under Δ is the matrix with zeros outside $(i+1)-t h$ row, $i-t h$ column and $(n, 1)$ position and $\Delta\left(x e_{i+1, i}\right)$ has the form (1) for $1<i<n-1$. In particular, $\Delta\left(x e_{2,1}\right)=\sum \Delta_{2, t}^{2,1}(x) e_{2, t}+\sum_{s \neq 2} \Delta_{s, 1}^{2,1}(x) e_{s, 1}+\Delta_{n, 2}^{2,1}(x) e_{n, 2}+\Delta_{n, 3}^{2,1}(x) e_{n, 3}$ and $\Delta\left(x e_{n, n-1}\right)=\sum \Delta_{n, t}^{n, n-1}(x) e_{n, t}+\sum_{s \neq n} \Delta_{s, n-1}^{n, n-1}(x) e_{s, n-1}+\Delta_{n-1,1}^{n, n-1}(x) e_{n-1,1}+\Delta_{n-2,1}^{n, n-1}(x) e_{n-2,1}$. By (3) and (4), we get $\Delta_{n-1,1}^{1, n}(y) \neq 0$ because $k \neq n, k \neq 1, m \neq n-1$ and $\Delta_{n-1,2}^{1, n}(y) \neq 0$ while $m \neq n-1, k \neq 2$ for $y \in J$. Similarly, $\Delta_{n, 1}^{1, n}(y) \neq 0$ since $k \neq 1, m \neq n$ and $\Delta_{n, 2}^{1, n}(y) \neq 0$ as $m \neq n, k \neq 2$ for $y \in J$. Thus we get (2).

Lemma 3.17 Let $\Delta: R \rightarrow R$ be a Jordan derivation. Then there can be found a diagonal derivation δ_{D} of R such that $(i+1, i)-$ th coefficient of $\left(\Delta-\delta_{D}\right)\left(e_{i+1, i}\right)$ is zero.

Proof. Let $D=\sum_{i=2}^{n} d_{i} e_{i, i}$ where $d_{i+1}=\sum_{k=1}^{i} a_{k}$ and $a_{k}=\Delta_{k+1, k}^{k+1, k}(1)$. Then there exists a diagonal derivation $\delta_{D}: X \rightarrow D X-X D$ induced by the diagonal matrix D such that $\delta_{D}\left(e_{i+1, i}\right)=D e_{i+1, i}-e_{i+1, i} D=\Delta_{i+1, i}^{i+1, i}(1) e_{i+1, i}$. Since $(i+1, i)-t h$ coefficient of the matrix Δ is equal to $\Delta_{i+1, i}^{i+1, i}(1)$, the proof is completed.

Lemma 3.18 Let $\Delta: R \rightarrow R$ be a Jordan derivation and $(i+1, i)$ - th coefficient of $\Delta\left(e_{i+1, i}\right)$ is zero for all $1 \leq i<n$. Then there is an inner derivation I satisfying that $(\Delta-I)\left(e_{i+1, i}\right)$ has zero $i-$ th column and $(i+1,1)$ entry.

Proof. Define a matrix $A=\left[A_{i, j}\right]_{n \times n}$ with $A_{v, v}=0=A_{j, 1}, \quad A_{u, i+1}=\varphi_{u, i}^{i+1, i}(1)$ $(u \neq i+1,1 \leq i<n)$. Clearly A is equal to

$$
\left[\begin{array}{cccccc}
0 & \varphi_{1,1}^{2,1}(1) & \varphi_{1,2}^{3,2}(1) & . & . & \varphi_{1, n-1}^{n, n-1}(1) \\
0 & 0 & \varphi_{2,2}^{3,2}(1) & \cdot & \cdot & \varphi_{2, n-1}^{n, n-1}(1) \\
0 & \varphi_{3,1}^{2,1}(1) & 0 & \cdot & \cdot & \varphi_{3, n-1}^{n, n-1}(1) \\
0 & \varphi_{4,1}^{2,1}(1) & \varphi_{4,2}^{3,2}(1) & \cdot & \cdot & \varphi_{4, n-1}^{n, n-1}(1) \\
\cdot & \cdot & \cdot & & & \cdot \\
\cdot & \cdot & \cdot & & & \cdot \\
\cdot & \cdot & \cdot & & & \cdot \\
0 & \varphi_{n-1,1}^{2,1}(1) & \varphi_{n-1,2}^{3,2}(1) & . & . & \varphi_{n-1, n-1}^{n, n-1}(1) \\
0 & \varphi_{n, 1}^{2,1}(1) & \varphi_{n, 2}^{3,2}(1) & . & . & 0
\end{array}\right]
$$

Now consider the action of the inner derivation I_{A} on the matrices $e_{i+1, i}$. Then $I_{A}\left(e_{i+1, i}\right)=A e_{i+1, i}-e_{i+1, i} A=\sum_{\substack{k=1 \\ k \neq i+1}}^{n} \Delta_{k, i}^{i+1, i}(1) e_{k, i}+\sum_{\substack{m=1 \\ m \neq i-1}}^{n-1}\left[-\Delta_{i, m}^{m+1, m}(1)\right] e_{i+1, m+1}$ which is equal to

Therefore, i-th column of each matrix $\left(\Delta-I_{A}\right)\left(e_{i+1, i}\right)$ is equal to zero. Now define a matrix

$$
B=\left[\begin{array}{ccccccc}
0 & 0 & . & . & . & 0 & 0 \\
-b_{3} & 0 & . & . & . & 0 & 0 \\
. & . & & & . & \cdot \\
. & . & & & \cdot & \cdot \\
. & \cdot & & & . & \cdot \\
-b_{n} & 0 & . & . & . & 0 & 0 \\
0 & 0 & . & . & . & 0 & 0
\end{array}\right]
$$

and denote by I_{B} the inner derivation induced by the matrix B. It can be easily seen that $I_{B}\left(e_{i+1, i}\right)=B e_{i+1, i}-e_{i+1, i} B=\Delta_{i+1,1}^{i+1, i}(1) e_{i+1,1}$ for $i=2, \ldots, n-1$. Hence i-th columns and $(\mathrm{i}+1,1)$ entries of the matrices $(\Delta-I)\left(e_{i+1, i}\right)$ are zeros for $I=I_{A}+I_{B}$ and this comletes the proof.

Lemma 3.19 Let $\Delta: R \rightarrow R$ be a Jordan derivation such that $i-$ th columns and $(i+1,1)$ entries of the matrices $\Delta\left(e_{i+1, i}\right)$ are all zeros. Then the following equalities are obtained for $x_{k, m} \in I_{k, m}, x \in K$ and $y \in J$;

$$
\begin{align*}
\Delta\left(e_{2,1}\right)= & 0 \tag{1}\\
\Delta\left(e_{n, n-1}\right)= & 0 \tag{2}\\
\Delta\left(e_{i+1, i}\right)= & \Delta_{n, 1}^{i+1, i}(1) e_{n, 1}, 1<i<n-1 \tag{3}\\
\Delta\left(e_{i, j}\right)= & 0, i-j>1 \tag{4}\\
\Delta\left(x e_{i, 1}\right)= & \Delta_{i, 1}^{i, 1}(x) e_{i, 1}+\Delta_{n, 1}^{i, 1}(x) e_{n, 1}, 1<i<n \tag{5}\\
\Delta\left(x_{n, j} e_{n, j}\right)= & \Delta_{n, 1}^{n, j}\left(x_{n, j}\right) e_{n, 1}+\Delta_{n, j}^{n, j}\left(x_{n, j}\right) e_{n, j} \tag{6}\\
\Delta\left(y e_{1, i}\right)= & \Delta_{1,1}^{1, i}(y) e_{1,1}+\Delta_{1,2}^{1, i}(y) e_{1,2} \\
& +\Delta_{1, i}^{1, i}(y) e_{1, i}+\Delta_{n, 1}^{1, i}(y) e_{n, 1} \\
& +\Delta_{n, 2}^{1, i}(y) e_{n, 2}+\Delta_{n, i}^{1, i}(y) e_{n, i}, i \neq 1, n \tag{7}\\
\Delta\left(y e_{i, n}\right)= & \Delta_{i, 1}^{i, n}(y) e_{i, 1}+\Delta_{n-1,1}^{i, n}(y) e_{n-1,1} \\
& +\Delta_{n, 1}^{i, n}(y) e_{n, 1}+\Delta_{i, n}^{i, n}(y) e_{i, n} \\
& +\Delta_{n-1, n}^{i, n}(y) e_{n-1, n}+\Delta_{n, n}^{i, n}(y) e_{n, n} \quad, \quad 1<i<n-1 \tag{8}\\
\Delta\left(y e_{1, n}\right)= & \Delta_{1,1}^{1, n}(y) e_{1,1}+\Delta_{1,2}^{1, n}(y) e_{1,2}+\Delta_{1, n}^{1, n}(y) e_{1, n} \\
& +\Delta_{n-1,1}^{1, n}(y) e_{n-1,1}+\Delta_{n-1,2}^{1, n}(y) e_{n-1,2}+\Delta_{n-1, n}^{1, n}(y) e_{n-1, n} \\
& +\Delta_{n, 1}^{1, n}(y) e_{n, 1}+\Delta_{n, 2}^{1, n}(y) e_{n, 2}+\Delta_{n, n}^{1, n}(y) e_{n, n} \tag{9}\\
\Delta\left(x_{i, j} e_{i, j}\right)= & \Delta_{i, 1}^{i, j}\left(x_{i, j}\right) e_{i, 1}+\Delta_{i, j}^{i, j}\left(x_{i, j}\right) e_{i, j} \\
& +\Delta_{n, 1}^{i, j}\left(x_{i, j}\right) e_{n, 1}+\Delta_{n, j}^{i, j}\left(x_{i, j}\right) e_{n, j} \quad, \quad 1<i, j<n \tag{10}
\end{align*}
$$

Proof. By (i+1,i) coefficient of the relation

$$
\begin{aligned}
0 & =\Delta\left(e_{i+1, i} \circ e_{i+1, i}\right) \quad(i \neq 1, n-1) \\
& =\Delta\left(e_{i+1, i}\right) \circ e_{i+1, i}+e_{i+1, i} \circ \Delta\left(e_{i+1, i}\right)
\end{aligned}
$$

we get $2 \Delta_{i+1, i+1}^{i+1, i}(1)=0$ and this implies $\Delta_{i+1, i+1}^{i+1, i}(1)=0$ considering that K is 2 -torsion free. In addition, we obtain $\Delta_{i+1, j+1}^{i+1, i}(1)=0$ for $j \neq i-1, i, i+1$ from ($\mathrm{i}+1, \mathrm{j}$) coefficient of the relation

$$
\begin{aligned}
0 & =\Delta\left(e_{i+1, i} \circ e_{j+1, j}\right) \quad(i \neq j-1, j, j+1) \\
& =\Delta\left(e_{i+1, i}\right) \circ e_{j+1, j}+e_{i+1, i} \circ \Delta\left(e_{j+1, j}\right) .
\end{aligned}
$$

Then ($\mathrm{i}+1, \mathrm{i}$) coefficient of the relation

$$
\begin{aligned}
0 & =\Delta\left(e_{i+1, i} \circ e_{i+2, i}\right) \\
& =\Delta\left(e_{i+1, i}\right) \circ e_{i+2, i}+e_{i+1, i} \circ \Delta\left(e_{i+2, i}\right)
\end{aligned}
$$

and $(\mathrm{i}, \mathrm{i}),(\mathrm{i}+1, \mathrm{i}+1)$ coefficients of the relation

$$
\begin{aligned}
\Delta\left(e_{i+2, i}\right) & =\Delta\left(e_{i+2, i+1} \circ e_{i+1, i}\right) \\
& =\Delta\left(e_{i+2, i+1}\right) \circ e_{i+1, i}+e_{i+2, i+1} \circ \Delta\left(e_{i+1, i}\right)
\end{aligned}
$$

give $0=\Delta_{i+1, i+2}^{i+1, i}(1)+\Delta_{i, i}^{i+2, i}(1)+\Delta_{i+1, i+1}^{i+2, i}(1)$ and $\Delta_{i, i}^{i+2, i}(1)=0, \quad \Delta_{i+1, i+1}^{i+2, i}(1)=$ $\Delta_{i+1, i+2}^{i+1, i}(1)$. So it is obtained $2 \Delta_{i+1, i+2}^{i+1, i}(1)=0$ and we have (3). Now consider the products $e_{2,1} \circ e_{2,1}=0, e_{2,1} \circ e_{3,1}=0$ and $e_{3,2} \circ e_{2,1}=e_{3,1}$. Hence we obtain $\Delta_{n, 2}^{2,1}(1)=0$ by $(n, 1)$ coefficient of the relation

$$
\begin{aligned}
0 & =\Delta\left(e_{2,1} \circ e_{2,1}\right) \\
& =\Delta\left(e_{2,1}\right) \circ e_{2,1}+e_{2,1} \circ \Delta\left(e_{2,1}\right),
\end{aligned}
$$

$\Delta_{2,3}^{2,1}(1)+\Delta_{1,1}^{3,1}(1)+\Delta_{2,2}^{3,1}(1)=0, \Delta_{n, 3}^{2,1}(1)+\Delta_{n, 2}^{3,1}(1)=0$ by $(2,1)$ and ($n, 1$) coefficients of the relation

$$
\begin{aligned}
0 & =\Delta\left(e_{2,1} \circ e_{3,1}\right) \\
& =\Delta\left(e_{2,1}\right) \circ e_{3,1}+e_{2,1} \circ \Delta\left(e_{3,1}\right)
\end{aligned}
$$

and $\Delta_{n, 3}^{2,1}(1)=\Delta_{n, 2}^{3,1}(1), \Delta_{2,3}^{2,1}(1)=\Delta_{2,2}^{3,1}(1), \Delta_{1,1}^{3,1}(1)=\Delta_{1,2}^{3,2}(1)=0$ by $(n, 2),(2,2)$ and $(1,1)$ coefficients of the relation

$$
\begin{aligned}
\Delta\left(e_{3,1}\right) & =\Delta\left(e_{3,2} \circ e_{2,1}\right) \\
& =\Delta\left(e_{3,2}\right) \circ e_{2,1}+e_{3,2} \circ \Delta\left(e_{2,1}\right) .
\end{aligned}
$$

By comparing these results obtained from the products $e_{2,1} \circ e_{2,1}=0, e_{2,1} \circ e_{3,1}=0$ and $e_{3,2} \circ e_{2,1}=e_{3,1}$, it is easy to see that $\Delta_{2,3}^{2,1}(1), \Delta_{n, 2}^{2,1}(1)$ and $\Delta_{n, 3}^{2,1}(1)$ are zeros taking into account that K is 2 -torsion free. So we have (1). $(n, n-1),(n, 1)$ coefficients of the relation

$$
\begin{aligned}
0 & =\Delta\left(e_{n, n-1} \circ e_{n, n-1}\right) \\
& =\Delta\left(e_{n, n-1}\right) \circ e_{n, n-1}+e_{n, n-1} \circ \Delta\left(e_{n, n-1}\right)
\end{aligned}
$$

give $\Delta_{n, n}^{n, n-1}(1)=0$ and $\Delta_{n-1,1}^{n, n-1}(1)=0$. Besides, we have $\Delta_{n-2,1}^{n, n-1}(1)+\Delta_{n-1,1}^{n, n-2}(1)=0$ by $(n, 1)$ coefficient of

$$
\begin{aligned}
0 & =\Delta\left(e_{n, n-1} \circ e_{n, n-2}\right) \\
& =\Delta\left(e_{n, n-1}\right) \circ e_{n, n-2}+e_{n, n-1} \circ \Delta\left(e_{n, n-2}\right)
\end{aligned}
$$

and $\Delta_{n-2,1}^{n, n-1}(1)=\Delta_{n-1,1}^{n, n-2}(1)$ by $(\mathrm{n}, 1)$ coefficient of

$$
\begin{aligned}
\Delta\left(e_{n, n-2}\right) & =\Delta\left(e_{n, n-1} \circ e_{n-1, n-2}\right) \\
& =\Delta\left(e_{n, n-1}\right) \circ e_{n-1, n-2}+e_{n, n-1} \circ \Delta\left(e_{n-1, n-2}\right)
\end{aligned}
$$

Last two results $\Delta_{n-2,1}^{n, n-1}(1)=\Delta_{n-1,1}^{n, n-2}(1)$ and $\Delta_{n-2,1}^{n, n-1}(1)+\Delta_{n-1,1}^{n, n-2}(1)=0$ give $2 \Delta_{n-2,1}^{n, n-1}(1)=0$ and we have (2) since K is a 2 -torsion free ring.
It can be easily seen that $\Delta\left(e_{i, j}\right)=0$ for $i-j>1$ by induction on $i-j$:
If $i-j=2$, then

$$
\begin{aligned}
\Delta\left(e_{i+2, i}\right) & =\Delta\left(e_{i+2, i+1} \circ e_{i+1, i}\right) \\
& =\Delta\left(e_{i+2, i+1}\right) \circ e_{i+1, i}+e_{i+2, i+1} \circ \Delta\left(e_{i+1, i}\right) \\
& =\Delta_{n, 1}^{i+2, i+1}(1) e_{n, 1} \circ e_{i+1, i}+e_{i+2, i+1} \circ \Delta_{n, 1}^{i+1, i}(1) e_{n, 1} \\
& =0 .
\end{aligned}
$$

Let $\Delta\left(e_{i, j}\right)=0$ for an arbitrary appropriate number $t=i-j$ and let $k-m=t+1$. Then we have (4) by

$$
\begin{aligned}
\Delta\left(e_{k, m}\right) & =\Delta\left(e_{k, m+1} \circ e_{m+1, m}\right) \\
& =\Delta\left(e_{k, m+1}\right) \circ e_{m+1, m}+e_{k, m+1} \circ \Delta\left(e_{m+1, m}\right) \\
& =0+e_{k, m+1} \circ \Delta_{n, 1}^{m+1, m}(1) e_{n, 1} \\
& =0 .
\end{aligned}
$$

If we consider the relation

$$
\begin{aligned}
0 & =\Delta\left(x_{i, 1} e_{i, 1} \circ e_{k, m}\right) \\
& =\Delta\left(x_{i, 1} e_{i, 1}\right) \circ e_{k, m}
\end{aligned}
$$

for $1<i<n, m \neq i, k>m$, we get $\Delta_{s, k}^{i, 1}=0=\Delta_{m, t}^{i, 1}$. This means that each entry on $k-t h$ column and $m-t h$ row of $\Delta\left(x_{i, 1} e_{i, 1}\right)$ is zero for all $k \neq 1$ and $m \neq i, n$. So we have (5). In particular, $\Delta\left(x_{n, 1} e_{n, 1}\right)=\Delta_{n, 1}^{n, 1}\left(x_{n, 1}\right) e_{n, 1}$. Similarly, by using the relations

$$
\begin{aligned}
0 & =\Delta\left(x_{n, i} e_{n, i} \circ e_{k, m}\right) \quad(i \neq 1, k \neq i, k>m) \\
& =\Delta\left(x_{n, i} e_{n, i}\right) \circ e_{k, m}+x_{n, i} e_{n, i} \circ \Delta\left(e_{k, m}\right) \\
& =\Delta\left(x_{n, i} e_{n, i}\right) \circ e_{k, m}, \\
0 & =\Delta\left(y_{1, i} e_{1, i} \circ e_{k, m}\right) \quad(k \neq i, m \neq 1, i \neq n) \\
& =\Delta\left(y_{1, i} e_{1, i}\right) \circ e_{k, m}+y_{1, i} e_{1, i} \circ \Delta\left(e_{k, m}\right) \\
& =\Delta\left(y_{1, i} e_{1, i}\right) \circ e_{k, m}, \\
0 & =\Delta\left(y_{i, n} e_{i, n} \circ e_{k, m}\right) \quad(i \neq 1, i \neq n, k \neq n, m \neq i) \\
& =\Delta\left(y_{i, n} e_{i, n}\right) \circ e_{k, m}+y_{i, n} e_{i, n} \circ \Delta\left(e_{k, m}\right) \\
& =\Delta\left(y_{i, n} e_{i, n}\right) \circ e_{k, m},
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =\Delta\left(y_{1, n} e_{1, n} \circ e_{k, m}\right) \quad(k \neq n, m \neq 1) \\
& =\Delta\left(y_{1, n} e_{1, n}\right) \circ e_{k, m}+y_{1, n} e_{1, n} \circ \Delta\left(e_{k, m}\right) \\
& =\Delta\left(y_{1, n} e_{1, n}\right) \circ e_{k, m},
\end{aligned}
$$

we get (6),(7),(8) and (9), respectively. In particular,

$$
\Delta\left(y_{1,1} e_{1,1}\right)=\Delta_{1,1}^{1,1}\left(y_{1,1}\right) e_{1,1}+\Delta_{1,2}^{1,1}\left(y_{1,1}\right) e_{1,2}+\Delta_{n, 1}^{1,1}\left(y_{1,1}\right) e_{n, 1}+\Delta_{n, 2}^{1,1}\left(y_{1,1}\right) e_{n, 2}
$$

and

$$
\Delta\left(y_{n-1, n} e_{n-1, n}\right)=\Delta_{n-1, n}^{n-1, n}\left(y_{n-1, n}\right) e_{n-1, n}+\Delta_{n, n}^{n-1, n}\left(y_{n-1, n}\right) e_{n, n} .
$$

If $1<i, j<n$, then we have (10) because $\Delta_{s k}^{i, j}$ and $\Delta_{m, t}^{i, j}$ are zeros for $k \neq j, m \neq i$, $k>m$ by the relation

$$
\begin{aligned}
0 & =\Delta\left(x_{i, j} e_{i, j} \circ e_{k, m}\right) \\
& =\Delta\left(x_{i, j} e_{i, j}\right) \circ e_{k, m}+x e_{i, j} \circ \Delta\left(e_{k, m}\right) \\
& =\Delta\left(x_{i, j} e_{i, j}\right) \circ e_{k, m} .
\end{aligned}
$$

Lemma 3.20 Let Δ be a Jordan derivation of R satisfying the conditions (1)-(10) in Lemma 3.19. Then there exists an annihilator derivation Υ such that $(n, 1)$ coefficients of $(\Delta-\Upsilon)\left(x e_{i+1, i}\right)$ and $(\Delta-\Upsilon)\left(y e_{1, n}\right)$ are equal to zero.

Proof. Let $x \in K, y, z \in J$ be arbitrary elements. For $i \neq 1, n$, the $(1,1)$ coefficient of the relation

$$
\begin{aligned}
\Delta\left(y e_{1, i}\right) & =\Delta\left(e_{n, i} \circ y e_{1, n}\right) \\
& =\Delta\left(e_{n, i}\right) \circ y e_{1, n}+e_{n, i} \circ \Delta\left(y e_{1, n}\right) \\
& =e_{n, i} \circ \Delta\left(y e_{1, n}\right)
\end{aligned}
$$

gives $\Delta_{1,1}^{1, i}=0$. Besides, we have $\Delta_{1,1}^{1, n-1}(y)=\Delta_{n, 1}^{n, n-1}(y)=0$ by $(n, 1)$ coefficient of the relation

$$
\begin{aligned}
\Delta\left(y e_{n, n-1}\right) & =\Delta\left(e_{n, 1} \circ y e_{1, n-1}\right) \\
& =\Delta\left(e_{n, 1}\right) \circ y e_{1, n-1}+e_{n, 1} \circ \Delta\left(y e_{1, n-1}\right) \\
& =e_{n, 1} \circ \Delta\left(y e_{1, n-1}\right)
\end{aligned}
$$

as we know that $\Delta_{1,1}^{1, i}=0$ for all $i \neq 1, n$. Say $\varsigma_{i}=\Delta_{n, 1}^{i+1, i}$. Then $\varsigma_{n-1}(J)=0$. If $k>2$, then (n, k) coefficient of

$$
\begin{aligned}
\Delta\left(y e_{2, k}\right) & =\Delta\left(e_{2,1} \circ y e_{1, k}\right) \\
& =\Delta\left(e_{2,1}\right) \circ y e_{1, k}+e_{2,1} \circ \Delta\left(y e_{1, k}\right) \\
& =e_{2,1} \circ \Delta\left(y e_{1, k}\right)
\end{aligned}
$$

gives $\Delta_{n, k}^{2, k}=0$. Moreover, we get $\Delta_{n, 2}^{1,1}(y)=\Delta_{n, 2}^{2,2}(y)=\Delta_{n, 1}^{2,1}(y)=\varsigma_{1}(y)$ by comparing $(\mathrm{n}, 1)$ coefficients of

$$
\begin{aligned}
\Delta\left(y e_{2,1}\right) & =\Delta\left(e_{2,1} \circ y e_{1,1}\right) \\
& =\Delta\left(e_{2,1}\right) \circ y e_{1,1}+e_{2,1} \circ \Delta\left(y e_{1,1}\right) \\
& =e_{2,1} \circ \Delta\left(y e_{1,1}\right), \\
\Delta\left(y e_{2,1}\right) & =\Delta\left(y e_{2,2} \circ e_{2,1}\right) \\
& =\Delta\left(y e_{2,2}\right) \circ e_{2,1}+y e_{2,2} \circ \Delta\left(e_{2,1}\right) \\
& =\Delta\left(y e_{2,2}\right) \circ e_{2,1}
\end{aligned}
$$

and $\Delta_{n, 2}^{1,1}(y)+\Delta_{n, 2}^{2,2}(y)=0$ by $(n, 2)$ coefficient of

$$
\begin{aligned}
\Delta\left(y e_{2,2}+y e_{1,1}\right) & =\Delta\left(e_{2,1} \circ y e_{1,2}\right) \\
& =\Delta\left(e_{2,1}\right) \circ y e_{1,2}+e_{2,1} \circ \Delta\left(y e_{1,2}\right) \\
& =e_{2,1} \circ \Delta\left(y e_{1,2}\right) .
\end{aligned}
$$

Forasmuch as $\Delta_{n, 2}^{1,1}(y)=\Delta_{n, 2}^{2,2}(y)=\Delta_{n, 1}^{2,1}(y)=\varsigma_{1}(y)$ and $\Delta_{n, 2}^{1,1}(y)+\Delta_{n, 2}^{2,2}(y)=0$, we obtain $\Delta_{n, 2}^{1,1}(y)=\Delta_{n, 2}^{2,2}(y)=\Delta_{n, 1}^{2,1}(y)=\varsigma_{1}(y)=0$ because K is 2-torsion free.

For $i \neq 1, n-1,(n, 1)$ coefficient of the relation

$$
\begin{aligned}
\Delta\left(y e_{i+1, i}\right) & =\Delta\left(e_{n, i} \circ y e_{i+1, n}\right) \\
& =\Delta\left(e_{n, i}\right) \circ y e_{i+1, n}+e_{n, i} \circ \Delta\left(y e_{i+1, n}\right) \\
& =e_{n, i} \circ \Delta\left(y e_{i+1, n}\right)
\end{aligned}
$$

gives $\Delta_{i, 1}^{i+1, n}(y)=\Delta_{n, 1}^{i+1, i}(y)=0=\varsigma_{i}(y)$. So $\varsigma_{i}(J)$ is zero $(i<n)$. For $2 \leq i \leq n-2$, we get $\varsigma_{i}(x) y=0, y \varsigma_{i}(x)=0$ by $(1,1)$ and (n, n) coefficients of the relation

$$
\begin{aligned}
0 & =\Delta\left(x e_{i+1, i} \circ y e_{1, n}\right) \\
& =\Delta\left(x e_{i+1, i}\right) \circ y e_{1, n}+x e_{i+1, i} \circ \Delta\left(y e_{1, n}\right) .
\end{aligned}
$$

Furthermore, we have $y \Delta_{n, 1}^{2,1}(x)=0, \Delta_{n, 1}^{2,1}(x) y=0$ by $(\mathrm{n}, 1)$ coefficients of the relations

$$
\begin{aligned}
\Delta\left(y x e_{2,1}\right) & =\Delta\left(y e_{2,2} \circ x e_{2,1}\right) \\
& =\Delta\left(y e_{2,2}\right) \circ x e_{2,1}+y e_{2,2} \circ \Delta\left(x e_{2,1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta\left(x y e_{2,1}\right) & =\Delta\left(x e_{2,1} \circ y e_{1,1}\right) \\
& =\Delta\left(x e_{2,1}\right) \circ y e_{1,1}+x e_{2,1} \circ \Delta\left(y e_{1,1}\right)
\end{aligned}
$$

since $\Delta_{n, 1}^{2,1}(J)=0$. Besides, we obtain $y \Delta_{n, 1}^{n, n-1}(x)=0, \Delta_{n, 1}^{n, n-1}(x) y=0$ from (1,1) and $(n, 1)$ coefficients of the relations

$$
\begin{aligned}
\Delta\left(y x e_{1, n-1}\right) & =\Delta\left(x e_{n, n-1} \circ y e_{1, n}\right) \\
& =\Delta\left(x e_{n, n-1}\right) \circ y e_{1, n}+x e_{n, n-1} \circ \Delta\left(y e_{1, n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =\Delta\left(x e_{n, n-1} \circ y e_{1,1}\right) \\
& =\Delta\left(x e_{n, n-1}\right) \circ y e_{1,1}+x e_{n, n-1} \circ \Delta\left(y e_{1,1}\right),
\end{aligned}
$$

respectively. Finally, we have $\varsigma_{n}\left(J^{2}\right)=0$ and $\varsigma_{n}(J) \subset A n n_{K}(J)$ by (n,1) coefficients of

$$
\begin{aligned}
\Delta\left(y z e_{1, n}\right) & =\Delta\left(y e_{1, k} \circ z e_{k, n}\right) \quad(1<k<n) \\
& =\Delta\left(y e_{1, k}\right) \circ z e_{k, n}+y e_{1, k} \circ \Delta\left(z e_{k, n}\right), \\
\Delta\left(y z e_{1, n}\right) & =\Delta\left(y e_{1,1} \circ z e_{1, n}\right) \\
& =\Delta\left(y e_{1,1}\right) \circ z e_{1, n}+y e_{1,1} \circ \Delta\left(z e_{1, n}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta\left(y z e_{1, n}\right) & =\Delta\left(y e_{1, n} \circ z e_{n, n}\right) \\
& =\Delta\left(y e_{1, n}\right) \circ z e_{n, n}+y e_{1, n} \circ \Delta\left(z e_{n, n}\right),
\end{aligned}
$$

respectively. Now we showed that $\varsigma_{i}: K \rightarrow A n n_{K}(J), \varsigma_{i}(J)=0, \varsigma_{n}: J \rightarrow A n n_{K}(J)$, $\varsigma_{n}\left(J^{2}\right)=0$ for all $i=1,2, \ldots, n-1$. Thus $\Upsilon:\left[x_{i, j}\right] \rightarrow\left(\varsigma_{n}\left(x_{1, n}\right)+\sum_{i=1}^{n-1} \varsigma_{i}\left(x_{i+1, i}\right)\right) e_{n, 1}$ is an annihilator derivation and $(\Delta-\Upsilon)\left(e_{i+1, i}\right)=0$ for all i. Say $\Theta=\Delta-\Upsilon$. Hence $(n, 1)$ coefficients of $\Theta\left(x e_{i+1, i}\right)$ and $\Theta\left(y e_{1, n}\right)$ are equal to zeros. This completes the proof.

Lemma 3.21 Let $\Theta=\Delta-\Upsilon$ be a Jordan derivation of the ring R as in Lemma 3.20. Then there is a ring derivation $\bar{\theta}$ and (i, j) coefficient of $(\Theta-\bar{\theta})\left(x_{i, j} e_{i, j}\right)$ is equal to zero.

Proof. Let $x, x_{1}, x_{2} \in K$ and $y \in J$ be arbitrary elements. By using (i,k) coefficient of the relation

$$
\begin{aligned}
\Theta\left(x_{1} x_{2} e_{i, k}\right) & =\Theta\left(x_{1} e_{i, j} \circ x_{2} e_{j, k}\right) \\
& =\Theta\left(x_{1} e_{i, j}\right) \circ x_{2} e_{j, k}+x_{1} e_{i, j} \circ \Theta\left(x_{2} e_{j, k}\right)
\end{aligned}
$$

we have

$$
\Theta_{i, k}^{i, k}\left(x_{1} x_{2}\right)=\Theta_{i, j}^{i, j}\left(x_{1}\right) x_{2}+x_{1} \Theta_{j, k}^{j, k}\left(x_{2}\right)
$$

for $i>j>k$. Besides, we have $\Theta_{i, k}^{i, k}=\Theta_{i, j}^{i, j}=\Theta_{j, k}^{j, k}$ as $\Theta_{i, k}^{i, k}(1)=\Theta_{i, j}^{i, j}(1)=\Theta_{j, k}^{j, k}(1)=0$. So $\Theta_{i, j}^{i, j}$ is a derivation of K for $i>j$ and $\Theta_{i, j}^{i, j}=\Theta_{k, m}^{k, m}$ for every $k>m$. Moreover, (i,i+1) coefficients of the relations

$$
\begin{aligned}
\Theta\left(y e_{i, i+1}\right) & =\Theta\left(e_{i, k} \circ y e_{k, i+1}\right) \quad(k<i) \\
& =\Theta\left(e_{i, k}\right) \circ y e_{k, i+1}+e_{i, k} \circ \Theta\left(y e_{k, i+1}\right) \\
& =e_{i, k} \circ \Theta\left(y e_{k, i+1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Theta\left(y e_{i, i+1}\right) & =\Theta\left(y e_{i, s} \circ e_{s, i+1}\right) \quad(s>i+1) \\
& =\Theta\left(y e_{i, s}\right) \circ e_{s, i+1}+y e_{i, s} \circ \Theta\left(e_{s, i+1}\right) \\
& =\Theta\left(y e_{i, s}\right) \circ e_{s, i+1}
\end{aligned}
$$

give $\Theta_{i, i+1}^{i, i+1}=\Theta_{i, s}^{i, s}$ and $\Theta_{i, i+1}^{i, i+1}=\Theta_{k, i+1}^{k, i+1}$ for $k<i<s-1$. This means $\Theta_{i, j}^{i, j}=\Theta_{s, t}^{s, t}$ for every $i<j$ and $s<t$. In addition, we can say $\Theta_{i, i}^{i, i}=\Theta_{j, j}^{j, j}=\Theta_{i, j}^{i, j}$ for all $i<j$ and $s<t$ by (i,i), (j, j) coefficients of the relation

$$
\begin{aligned}
\Theta\left(y e_{i, i}+y e_{j, j}\right) & =\Theta\left(y e_{i, j} \circ e_{j, i}\right) \\
& =\Theta\left(y e_{i, j}\right) \circ e_{j, i}+y e_{i, j} \circ \Theta\left(e_{j, i}\right) \\
& =\Theta\left(y e_{i, j}\right) \circ e_{j, i}
\end{aligned}
$$

which gives $\Theta_{i, j}^{i, j}=\Theta_{s, t}^{s, t}$ for all $i \leq j$ and $s \leq t$. Besides, we obtain that $\Theta_{i, j}^{i, j}=\Theta_{k, m}^{k, m}$ for any i, j, k, m because ($\mathrm{i}, 1$) coefficient of the relation

$$
\begin{aligned}
\Theta\left(y e_{i, 1}\right) & =\Theta\left(e_{i, 1} \circ y e_{1,1}\right) \\
& =\Theta\left(e_{i, 1}\right) \circ y e_{1,1}+e_{i, 1} \circ \Theta\left(y e_{1,1}\right) \\
& =e_{i, 1} \circ \Theta\left(y e_{1,1}\right)
\end{aligned}
$$

gives $\Theta_{i, 1}^{i, 1}(y)=\Theta_{1,1}^{1,1}(y)$ and we know that all $\Theta_{i, j}^{i, j}$ are equal for $i \leq j$ and $\Theta_{k, m}^{k, m}$ are equal for $k>m$. Then $\Theta_{i, j}^{i, j}=\theta$ is a ring derivation of K. Similarly, $\Theta_{i, j}^{i, j}(y)=\Theta_{i, i-1}^{i, i-1}(y)$ by $y e_{i, j} \circ e_{j, i-1}=y e_{i, i-1}$ for $i \leq j$. This implies that θ is a derivation of J as well. So $\bar{\theta}:\left[x_{i, j}\right] \rightarrow \sum_{i, j} \theta\left(x_{i, j}\right) e_{i, j}$ is a ring derivation of R and (i, j) coefficient of $(\Theta-\bar{\theta})\left(x_{i, j}\right)$ is zero for all i, j.

Let $\Xi=\Theta-\bar{\theta}$ for brevity. Thus (i, j) coefficients of the matrices $\Xi\left(x_{i, j} e_{i, j}\right)$ are equal to zero.

Lemma 3.22 Let Ξ be a Jordan derivation of R as in Lemma 3.21. Then $\Xi\left(x e_{i, j}\right)=0$ for all $i>j, \quad \Xi\left(y e_{i, i}\right)=\Xi_{n, 1}^{i, i}(y) e_{n, 1}$ for all $i, \quad \Xi\left(y e_{1, j}\right)=\Xi_{n, j}^{1, j}(y) e_{n, j}$ for $1<j<n-1$ and $\Xi\left(y e_{i, n}\right)=\Xi_{i, 1}^{i, n}(y) e_{i, 1}$ for $i \neq 1,2$ where $x \in K, y \in J$ are arbitrary elements.

Proof. Let $x, x_{1}, x_{2} \in K$ and $y \in J$ be arbitrary elements. For $1<i<n$, we get $\Xi_{n, i-1}^{i+1, i-1}=\Xi_{n, i}^{i+1, i}=\Xi_{i+1,1}^{i+1, i-1}=\Xi_{i, 1}^{i, i-1}=0$ by (n,i-1), (i+1,1) coefficients of

$$
\begin{aligned}
\Xi\left(x_{1} x_{2} e_{i+1, i-1}\right) & =\Xi\left(x_{1} e_{i+1, i} \circ x_{2} e_{i, i-1}\right) \\
& =\Xi\left(x_{1} e_{i+1, i}\right) \circ x_{2} e_{i, i-1}+x_{1} e_{i+1, i} \circ \Xi\left(x_{2} e_{i, i-1}\right)
\end{aligned}
$$

considering that $\Xi\left(e_{i+1, i}\right)=0$ for all i. Hence $\Xi\left(x e_{i, j}\right)$ is equal to zero for $i>j$.
We have $\Xi_{i+1,1}^{i+1, i+1}=0$ by $(\mathrm{i}+2,1)$ coefficient of

$$
\begin{aligned}
0 & =\Xi\left(x y e_{i+2, i+1}\right) \quad(1 \leq i<n-1) \\
& =\Xi\left(x e_{i+2, i+1} \circ y e_{i+1, i+1}\right) \\
& =\Xi\left(x e_{i+2, i+1}\right) \circ y e_{i+1, i+1}+x e_{i+2, i+1} \circ \Xi\left(y e_{i+1, i+1}\right)
\end{aligned}
$$

and $\Xi_{n, i+1}^{i+1, i+1}=0$ by (n,i) coefficient of

$$
\begin{aligned}
0 & =\Xi\left(y x e_{i+1, i}\right) \quad(1<i<n) \\
& =\Xi\left(y e_{i+1, i+1} \circ x e_{i+1, i}\right) \\
& =\Xi\left(y e_{i+1, i+1}\right) \circ x e_{i+1, i}+y e_{i+1, i+1} \circ \Xi\left(x e_{i+1, i}\right) .
\end{aligned}
$$

Besides, $(2,2)$ coefficient of the relation

$$
\begin{aligned}
0 & =\Xi\left(x y e_{2,1}\right) \\
& =\Xi\left(x e_{2,1} \circ y e_{1,1}\right) \\
& =\Xi\left(x e_{2,1}\right) \circ y e_{1,1}+x e_{2,1} \circ \Xi\left(y e_{1,1}\right)
\end{aligned}
$$

gives $\Xi_{1,2}^{1,1}=0$. So we get $\Xi\left(y e_{i, i}\right)=\Xi_{n, 1}^{i, i}(y) e_{n, 1}$. Furthermore, for $1<j<n-1$, we obtain $\Xi_{1,1}^{1, j}=\Xi_{1,2}^{1, j}=\Xi_{n, 1}^{1, j}=\Xi_{n, 2}^{1, j}=0$ by (1,1), (1,2), (n,1), (n,2) coefficients of the relation

$$
\begin{aligned}
\Xi\left(y x e_{1, j}\right) & =\Xi\left(x e_{n, j} \circ y e_{1, n}\right) \\
& =\Xi\left(x e_{n, j}\right) \circ y e_{1, n}+x e_{n, j} \circ \Xi\left(y e_{1, n}\right) \\
& =x e_{n, j} \circ \Xi\left(y e_{1, n}\right)
\end{aligned}
$$

and it means $\Xi\left(y e_{1, j}\right)=\Xi_{n, j}^{1, j}(y) e_{n, j}$. Finally, we can say $\Xi_{n-1,1}^{i, n}=\Xi_{n-1, n}^{i, n}=\Xi_{n, 1}^{i, n}=$ $\Xi_{n, n}^{i, n}=0$ by (n-1,1), (n-1,n), (n,1) and (n,n) coefficients of the relation

$$
\begin{aligned}
\Xi\left(x y e_{i, n}\right) & =\Xi\left(x e_{i, 1} \circ y e_{1, n}\right) \\
& =\Xi\left(x e_{i, 1}\right) \circ y e_{1, n}+x e_{i, 1} \circ \Xi\left(y e_{1, n}\right) \\
& =x e_{i, 1} \circ \Xi\left(y e_{1, n}\right)
\end{aligned}
$$

for $2<i<n$ and we have $\Xi\left(y e_{i, n}\right)=\Xi_{i, 1}^{i, n}(y) e_{i, 1}$.

Lemma 3.23 Let Ξ be a Jordan derivation of R as in Lemma 3.22. Then there exists an almost annihilator derivation Γ of R such that $\Xi-\Gamma$ is an extremal Jordan derivation of R which is defined in Proposition 3.11.

Proof. Let $n>k>m>s>1, x \in K$ and $y \in J$. Then $(n, 1)$ coeffiecient of the relation

$$
\begin{aligned}
\Xi\left(x y e_{k, k}+y x e_{m, m}\right) & =\Xi\left(x e_{k, m} \circ y e_{m, k}\right) \\
& =\Xi\left(x e_{k, m}\right) \circ y e_{m, k}+x e_{k, m} \circ \Xi\left(y e_{m, k}\right) \\
& =x e_{k, m} \circ \Xi\left(y e_{m, k}\right)
\end{aligned}
$$

gives $\Xi_{n, 1}^{m, m}(y x)+\Xi_{n, 1}^{k, k}(x y)=0$. We can similarly find that $\Xi_{n, 1}^{s, s}(y x)+\Xi_{n, 1}^{k, k}(x y)=0$ and $\Xi_{n, 1}^{s, s}(y x)+\Xi_{n, 1}^{m, m}(x y)=0$. This means $\Xi_{n, 1}^{k, k}=\Xi_{n, 1}^{s, s}=\Xi_{n, 1}^{m, m}=0$ as K is 2-torsion free. On the other hand, considering that $\Xi_{n, 1}^{2,2}=0=\Xi_{n, 1}^{n-1, n-1}$, the ($n, 1$) coefficients of the relations

$$
\begin{aligned}
\Xi\left(y x e_{1,1}+x y e_{2,2}\right) & =\Xi\left(y e_{1,2} \circ x e_{2,1}\right) \\
& =\Xi\left(y e_{1,2}\right) \circ x e_{2,1}+y e_{1,2} \circ \Xi\left(x e_{2,1}\right) \\
& =\Xi\left(y e_{1,2}\right) \circ x e_{2,1}
\end{aligned}
$$

and

$$
\begin{aligned}
\Xi\left(y x e_{n-1, n-1}+x y e_{n, n}\right) & =\Xi\left(y e_{n-1, n} \circ x e_{n, n-1}\right) \\
& =\Xi\left(y e_{n-1, n}\right) \circ x e_{n, n-1}+y e_{n-1, n} \circ \Xi\left(x e_{n, n-1}\right) \\
& =\Xi\left(y e_{n-1, n}\right) \circ x e_{n, n-1}
\end{aligned}
$$

give $\Xi_{n, 1}^{1,1}(y x)=\Xi_{n, 2}^{1,2}(y) x$ and $\Xi_{n, 1}^{n, n}(x y)=x \Xi_{n-1,1}^{n-1, n}(y)$, respectively. Let $\bar{\alpha}=\Xi_{1,1}^{1, n}, \bar{\beta}=$ $\Xi_{n, n}^{1, n}, x \in K$ and $y, z \in J$. We have $\bar{\alpha}=\Xi_{i, 1}^{i, n}$ and $\bar{\alpha}(x y)=x \bar{\alpha}(y)$ by $(i, 1)$ coefficient of the relation

$$
\begin{aligned}
\Xi\left(x y e_{i, n}\right) & =\Xi\left(x e_{i, 1} \circ y e_{1, n}\right) \\
& =\Xi\left(x e_{i, 1}\right) \circ y e_{1, n}+x e_{i, 1} \circ \Xi\left(y e_{1, n}\right) \\
& =x e_{i, 1} \circ \Xi\left(y e_{1, n}\right) .
\end{aligned}
$$

where $i \neq 1, n$. Besides, we obtain $\bar{\beta}=\Xi_{n, j}^{1, j}$ and $\bar{\beta}(y x)=\bar{\beta}(y) x$ by (n, j) coefficient of the relation

$$
\begin{aligned}
\Xi\left(y x e_{1, j}\right) & =\Xi\left(y e_{1, n} \circ x e_{n, j}\right) \\
& =\Xi\left(y e_{1, n}\right) \circ x e_{n, j}+y e_{1, n} \circ \Xi\left(x e_{n, j}\right) \\
& =\Xi\left(y e_{1, n}\right) \circ x e_{n, j} .
\end{aligned}
$$

for $j \neq 1, n$. Now it is easy to see that the additive map

$$
\begin{aligned}
& \Gamma: R_{n}(K, J) \rightarrow R_{n}(K, J) \\
& y e_{1, n} \quad \rightarrow \bar{\alpha}(y) e_{1,1}+\bar{\beta}(y) e_{n, n} \\
& y e_{i, n} \quad \rightarrow \quad \bar{\alpha}(y) e_{i, 1} \quad(1<i \leq n) \\
& y e_{1, j} \quad \rightarrow \quad \bar{\beta}(y) e_{n, j} \quad(1 \leq j<n) \\
& x_{i, j} e_{i, j} \rightarrow 0 \quad(1<i a n d j<n)
\end{aligned}
$$

is obviously an almost annihilator derivation of R. As the last part of the Lemma, we need to see $\Xi-\Gamma$ satisfies the conditions of the extremal Jordan derivation given in Proposition 3.11.

Firstly, the relation

$$
\begin{aligned}
\Xi\left(y x e_{1, j}\right) & =\Xi\left(x e_{n-1, j} \circ y e_{1, n-1}\right) \\
& =x e_{n, n-1} \circ \Xi\left(y e_{1, n-1}\right)
\end{aligned}
$$

gives $\Xi\left(y e_{1, j}\right)=0$ for $1<j<n-1$ and we can say

$$
\Xi\left(y e_{1, j}\right)=0
$$

for $1 \leq j<n-1$ as $\Xi_{1,2}^{1,1}=\Xi_{n, 2}^{1,1}=0$ by Lemma 3.20, 3.21.
Secondly, the relation

$$
\begin{aligned}
\Xi\left(y e_{1, n-1}\right) & =\Xi\left(y e_{1, n} \circ e_{n, n-1}\right) \\
& =\Xi\left(y e_{1, n}\right) \circ e_{n, n-1}
\end{aligned}
$$

gives $\Xi\left(y e_{1, n-1}\right)=\Xi_{n, 1}^{1, n-1}(y) e_{n, 1}+\Xi_{n, 2}^{1, n-1}(y) e_{n, 2}$ because we have $\Xi\left(y e_{1, n}\right)=\Xi_{n, 2}^{1, n}(y) e_{n, 2}+$ $\Xi_{n-1,1}^{1, n}(y) e_{n-1,1}+\Xi_{n-1,2}^{1, n}(y) e_{n-1,2}$ and if we consider that $\Xi\left(y e_{1, n-1}\right)=\Xi_{n, 1}^{1, n-1}(y) e_{n, 1}+$ $\Xi_{n, 2}^{1, n-1}(y) e_{n, 2}$ and the relation

$$
\begin{aligned}
\Xi\left(x y e_{i, j}\right) & =\Xi\left(x e_{i, 1} \circ y e_{1, j}\right) \\
& =x e_{i, 1} \circ \Xi\left(y e_{1, j}\right),
\end{aligned}
$$

we get $\Xi\left(y e_{i, j}\right)=0$ for $1<i<j<n$ where $(i, j) \neq(2, n-1)$.
Thirdly, if we say $\Pi=\Xi-\Gamma$ then we have

$$
\begin{aligned}
\Pi\left(y e_{1, n}\right) & =\Pi_{n-1,1}^{1, n}(y) e_{n-1,1}+\Pi_{n-1,2}^{1, n}(y) e_{n-1,2}+\Pi_{n, 2}^{1, n}(y) e_{n, 2}, \\
\Pi\left(y e_{1, n-1}\right) & =\Pi_{n, 1}^{1,-1}(y) e_{n, 1}+\Pi_{n, 2}^{1, n-1}(y) e_{n, 2}, \\
\Pi\left(y e_{2, n-1}\right) & =\Pi_{n, 1}^{2, n-1}(y) e_{n, 1}, \\
\Pi\left(y e_{2, n}\right) & =\Pi_{n-1,1}^{2, n}(y) e_{n-1,1}+\Pi_{n, 1}^{2, n}(y) e_{n, 1} \\
\Pi\left(x_{i, j} e_{i, j}\right) & =0 \text { for }(i, j) \neq(1, n),(2, n),(1, n-1),(2, n-1)
\end{aligned}
$$

by the relations

$$
\begin{aligned}
\Pi\left(y e_{2, n-1}\right) & =\Pi\left(e_{2,1} \circ y e_{1, n-1}\right) \\
& =e_{2,1} \circ \Pi\left(y e_{1, n-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Pi\left(y e_{2, n}\right) & =\Pi\left(e_{2,1} \circ y e_{1, n}\right) \\
& =e_{2,1} \circ \Pi\left(y e_{1, n}\right) .
\end{aligned}
$$

Finally, the relations

$$
\begin{aligned}
\Pi\left(y x e_{1, n-1}\right) & =\Pi\left(y e_{1, n} \circ x e_{n, n-1}\right) \\
& =\Pi\left(y e_{1, n}\right) \circ x e_{n, n-1},
\end{aligned}
$$

$$
\begin{aligned}
\Pi\left(x y e_{2, n-1}\right) & =\Pi\left(x e_{2,1} \circ y e_{1, n-1}\right) \\
& =x e_{2,1} \circ \Pi\left(y e_{1, n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Pi\left(x y e_{2, n}\right) & =\Pi\left(x e_{2,1} \circ y e_{1, n}\right) \\
& =x e_{2,1} \circ \Pi\left(y e_{1, n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Pi\left(y z e_{1, n}\right) & =\Pi\left(y e_{1,3} \circ z e_{3, n}\right) \\
& =\Pi\left(y e_{1,3}\right) \circ z e_{3, n}+y e_{1,3} \circ \Pi\left(z e_{3, n}\right) \\
& =0
\end{aligned}
$$

give $\alpha=\Pi_{n-1,1}^{1, n}=\Pi_{n, 1}^{1, n-1}, \beta=\Pi_{n-1,2}^{1, n}=\Pi_{n, 2}^{1, n-1}=\Pi_{n, 1}^{2, n-1}=\Pi_{n-1,1}^{2, n}, \gamma=\Pi_{n, 2}^{1, n}=\Pi_{n, 1}^{2, n}$, $\alpha(y x)=x \alpha(y), \beta(y x)=x \beta(y), \beta(x y)=\beta(y) x, \gamma(x y)=\gamma(y) x$ and $\alpha\left(J^{2}\right)=\beta\left(J^{2}\right)=$ $\gamma\left(J^{2}\right)=0$. Also we can say

$$
\alpha, \beta, \gamma: J \rightarrow \operatorname{Ann}_{K}(J)
$$

by the relations

$$
\begin{aligned}
& 0=\Pi\left(y z e_{1, n}\right)=\Pi\left(y e_{1, n-1} \circ z e_{n-1, n}\right)=\Pi\left(y e_{1,1} \circ z e_{1, n}\right), \\
& 0=\Pi\left(y z e_{1, n}\right)=\Pi\left(y e_{1,2} \circ z e_{2, n}\right)=\Pi\left(y e_{1, n} \circ z e_{n-1, n-1}\right) \\
& 0=\Pi\left(y e_{1, n} \circ z e_{3, n}\right) .
\end{aligned}
$$

Now we have all conditions of the extremal Jordan derivation given in Proposition 3.11 for $n>4$.

Let $n=4$. Then we get $\alpha\left(J^{2}\right)=0, \beta\left(J^{2}\right)=0, \gamma\left(J^{2}\right)$ by $(4,2),(3,1),(3,2)$ coefficients of the relations $\Pi\left(y e_{1,2} \circ z e_{2,4}\right)=\Pi\left(y z e_{1,4}\right), \Pi\left(y e_{1,1} \circ z e_{1,4}\right)=\Pi\left(y z e_{1,4}\right), \Pi\left(y e_{1,3} \circ z e_{3,4}\right)=$ $\Pi\left(y z e_{1,4}\right)$, respectively. In addition, we have $\alpha, \beta, \gamma: J \rightarrow \operatorname{Ann}_{K}(J)$ by (3,1), (3,2)-$(4,2),(3,1)-(3,2),(3,2)$ coefficients of the relations $\Pi\left(y e_{1,1} \circ z e_{1,4}\right)=\Pi\left(y z e_{1,4}\right), \Pi\left(y e_{1,2} \circ\right.$ $\left.z e_{2,4}\right)=\Pi\left(y z e_{1,4}\right), \Pi\left(y e_{1,3} \circ z e_{3,4}\right)=\Pi\left(y z e_{1,4}\right), \Pi\left(y e_{1,4} \circ z e_{3,4}\right)=0$, respectively. This completes the proof.

Theorem 3.15 follows by Lemma 3.16 - 3.23. In other words, any Jordan derivation Δ of $R_{n}(K, J)$ can be written as

$$
\Delta=\delta_{D}+I+\Upsilon+\bar{\theta}+\Gamma+\Omega
$$

where $\delta_{D}, I, \Upsilon, \bar{\theta}, \Gamma$ and Ω are diagonal, inner, annihilator, ring, almost annihilator derivations and extremal Jordan derivation, respectively.

Let $\mathbf{n}=\mathbf{3}$. After applying Lemma 3.16-3.21, it is obtained that Ξ is equal to the sum of the Jordan derivations described in Proposition 3.13, 3.14:

- The conditions of the Jordan derivation given in Proposition 3.13 can be obtained by using the relations $y e_{1,3} \circ x e_{3,2}=y x e_{1,2}, x e_{2,1} \circ y e_{1,3}=x y e_{2,3}, y e_{1,2} \circ z e_{2,3}=$ $y z e_{1,3}, y e_{1,3} \circ z e_{2,3}=0, y e_{1,3} \circ z e_{1,2}=0$.
- The conditions of the Jordan derivation given in Proposition 3.14 can be obtained by using the relations

$$
\begin{array}{ll}
y e_{1,2} \circ z e_{2,3}=0, & y e_{1,3} \circ z e_{1,3}=0, \\
y e_{2,2} \circ z e_{1,3}=0, & y e_{1,1} \circ z e_{1,3}=y z e_{1,3}, \\
y e_{1,3} \circ z e_{3,3}=0, & y e_{2,3} \circ z e_{3,3}=y z e_{2,3}, \\
y e_{1,1} \circ z e_{3,3}=0, & y e_{1,1} \circ z e_{1,2}=y z e_{1,2}, \\
y e_{1,2} \circ z e_{2,2}=0, & x e_{2,1} \circ y e_{1,3}=x y e_{2,3}, \\
y e_{2,3} \circ z e_{1,1}=0, & y e_{1,1} \circ z e_{1,1}=y z e_{1,1}+z y e_{1,1}, \\
y e_{1,2} \circ z e_{3,3}=0, & y e_{1,2} \circ z e_{2,1}=y z e_{1,1}+z y e_{2,2}, \\
y e_{1,2} \circ z e_{1,3}=0, & y e_{1,3} \circ z e_{3,1}=y z e_{1,1}+z y e_{3,3}, \\
y e_{1,3} \circ z e_{2,3}=0, & y e_{2,3} \circ x e_{3,2}=y x e_{2,2}+x y e_{3,3} .
\end{array}
$$

4 RESULTS

In this thesis, some elementary matrix operations are utilized to classify the derivations of $R_{n}(K, J)$, and therefore the Jordan derivations of the same ring. Firstly, it is proved that any derivation of $R_{n}(K, J)$ can be written as a sum of diagonal, inner, annihilator and almost annihilator derivations and some of this proof is published ([23]). After describing the derivations of $R_{n}(K, J)$, we characterized all Jordan derivations of $R_{n}(K, J)$ and we showed that any Jordan derivation of $R_{n}(K, J)$ can be written as a sum of a derivation and an extremal Jordan derivation.

REFERENCES

[1] Herstein, I.N., Noncommutative Rings, The Mathematical Association of America, 1968.
[2] Semrl, P., Maps on matrix spaces, Linear Algebra and its Applications, 413, 364-393, 2006.
[3] Isaacs, I.M., Automorphisms of matrix algebras over commutative rings, Linear Algebra and its Applications, 31, 215-231, 1980.
[4] Jondrup, S., Automorphisms of upper triangular matrix rings, Archiv der Mathematik, 49, 497-502, 1987.
[5] Dubisch, R., Perlis, S., On total nilpotent algebras, American Journal of Mathematics, 73, 439-452, 1951.
[6] Pavlov, P.P., Sylow p-subgroups of the full linear group over a simple field of characteristic p, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 16, 437-458, 1952.
[7] Weir, A.J., Sylow p-subgroups of the general linear group over finite fields of characteristic p, Proceedings of the American Mathematical Society, 6, 454-464, 1955.
[8] Khukhro, E.I., Nilpotent groups and their automorphisms, de Gruyter Expositions in Mathematics, 8, de Gruyter, Berlin, New York, 1993
[9] Levchuk, V.M., Connections between the unitriangular group and certain rings,II. Groups of automorphisms, Siberian Mathematical Journal, 24, 543557, 1983.
[10] Levchuk, V.M., Relation of the unitriangular group to certain rings. I, Algebra and Logic, 15, 348-360, 1976.
[11] Hungerford, T.W, Algebra, New York, 1974.
[12] Divinsky, N.J., Rings and radicals, University of Toronto Press, 1965.
[13] Khukhro, E.I., Mazurov, V.D, Unsolved Problems in Group Theory (The Kourovka Notebook), Institute of Mathematics, Novosibirsk, 1992.
[14] Kuzucuoğlu, F., Levchuk, V.M., The automorphism group of certain radical matrix rings, Journal of Algebra, 243, 473-485, 2001.
[15] Chun, J.H, Park, J.W., Derivations on subrings of matrix rings, BulletinKorean Mathematical Society, 43, 635-644, 2006.
[16] Amitsur, S.A., Extension of derivations to central simple algebras, Communications in Algebra, 10, 797-803, 1982.
[17] Coelho, S.P., Milies, C.P., Derivations of upper triangular matrix rings, Linear Algebra and its Applications, 187, 263-267, 1993.
[18] Kolesnikov, S.G., Mal'tsev, N.V., Derivations of a matrix ring containing a subring of triangular matrices, (Russian) Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 11, 23-33, 2011; translation in Russian Mathematics (Iz. VUZ) 55, 18-26, 2011.
[19] Levchuk, V.M., Radchenko, O.V., Derivations of the locally nilpotent matrix rings, Journal of Algebra and its Applications, 9, 717-724, 2010.
[20] Ou, S., Wang, D., Yao, R., Derivations of Lie algebra of strictly upper triangular matrices over a commutative rings, Linear Algebra and its Applications, 424, 378-383, 2007.
[21] Kuzucuoğlu, F., Levchuk, V.M., Ideals of some matrix rings, Communications in Algebra, 28, 3503-3513, 2000.
[22] Kargapolov, M.I, Merzljakov, J.I., Fundamentals of the theory of groups, Springer-Verlag, New York, Heidelberk, Berlin, 1979.
[23] Kuzucuoğlu, F., Sayın, U., Derivations of some classes of matrix rings, Journal of Algebra and its Applications, 16, 1750027, 12pp, 2017.
[24] Benkovic, D., Jordan derivations and antiderivations on triangular matrices, Linear Algebra and its Applications, 397, 235-244, 2005.
[25] Bresar, M., Jordan derivations on semiprime rings, Proceedings of the American Mathematical Society, 104, 1003-1006, 1988.
[26] Ghosseiri, N.M., Jordan derivations of some classes of matrix rings, Taiwanese Journal of Mathematics, 11, 51-62, 2007.
[27] Herstein, I.N., Jordan Derivations of prime rings, Proceedings of the American Mathematical Society, 8, 1104-1110, 1957.
[28] Kuzucuoğlu, F., Jordan derivations on strictly triangular matrix rings, Algebra Colloquium, 18, 519-522, 2011.
[29] Zhang, J., Jordan derivations of nest algebras, Acta Mathematica Sinica, 41, 205-212, 1998.
[30] Bresar, M., Jordan mappings of semiprime rings, Journal of Algebra, 120, 218-228, 1989.

CURRICULUM VITAE

Credentials
Name, Surname: Umut Sayın
Place of Birth: Ergani/Diyarbakır
Marital Status: Single
E-mail: sayinumutsayin@gmail.com
Address: Hacettepe University, Department of Mathematics, Beytepe/Ankara
\section*{Education}

High School: 2001-2004 Kocatepe Mimar Kemal High School, Çankaya/ANKARA

BSc.: 2005-2010 Ankara University, Department of Mathematics

MSc.: 2010-2012 Hacettepe University, Department of Mathematics

PhD. : 2012-2018 Hacettepe University, Department of Mathematics

Foreign Languages

English

Work Experience

1. Research Assistant in Hacettepe University, Department of Mathematics, 2014-2017,
2. Research Assistant in Düzce University, Department of Mathematics, 2017-...,

Areas of Experience

Research Assistant.

Projects and Budgets

Publications

1. Kuzucuoğlu F. and Sayın U., Derivations of some classes of matrix rings, Journal of Algebra and its Applications, 16(2), 1750027, 12 pp, 2017.

Oral and Poster Presentations

HACETTEPE UNIVERSITY GRADUATE SCHOOL OF SCIENCE AND ENGINEERING THESIS/DISSERTATION ORIGINALITY REPORT

HACETTEPE UNIVERSITY
 GRADUATE SCHOOL OF SCIENCE AND ENGINEERING TO THE DEPARTMENT OF MATHEMATICS

Date: 09/05/2018

Thesis Title: DERIVATIONS AND AUTOMORPHISMS OF CERTAIN SUBRINGS OF MATRIX RINGS
According to the originality report obtained by myself by using the Turnitin plagiarism detection software and by applying the filtering options stated below on $07 / 05 / 2018$ for the total of 68 pages including the a) Title Page, b) Introduction, c) Main Chapters, d) Conclusion sections of my thesis entitled as above, the similarity index of my thesis is 8%.

Filtering options applied:

1. Bibliography/Works Cited excluded
2. Quotes excluded
3. Match size up to 5 words excluded

I declare that I have carefully read Hacettepe University Graduate School of Science and Engineering Guidelines for Obtaining and Using Thesis Originality Reports; that according to the maximum similarity index values specified in the Guidelines, my thesis does not include any form of plagiarism; that in any future detection of possible infringement of the regulations I accept all legal responsibility; and that all the information I have provided is correct to the best of my knowledge.

I respectfully submit this for approval.

| Name Surname: | Umut Sayın | |
| ---: | :--- | :--- | :--- |
| Student No: | N 12147851 | |
| Department: | Mathematics | |
| Program: | | \square Integrated Ph.D. |
| Status: | \square Masters | $\boxed{\text { Ph.D. }} \quad \square$ |

ADVISOR APPROVAL

APPROVED.

Prof. Dr. Feride KUZUCUOĞLU

