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Let K be an arbitrary associative ring with identity. We denote by Mn(K) the ring

of all n× n matrices over K. Say K = F for some �eld F. Then it is a consequence of

Skolem-Noether theorem that every automorphism of Mn(F ) is inner.

Recall that a derivation of a ring K is an additive map D : K → K satisfying

D(ab) = D(a)b+ aD(b) for all a, b ∈ K.

The problem of describing all derivations of a ring is an interesting topic for many

researchers. Many papers are concerned with the study of derivations of matrix rings

and their subrings.

As a result of Skolem-Noether theorem, every derivation of Mn(F ) is inner.

In 1982, S.A. Amitsur proved that any derivation of Mn(K) is the sum of an inner

derivation and a derivation arising from a derivation on K where K is an arbitrary

ring.

Let NTn(K) be the ring of all niltriangular n×n matrices over K whose entries are

all zeros on and above the main diagonal. V.M. Levchuk characterized the automorp-

hisms of NTn(K) in 1983.

In 2006, J.H. Chun and J.W. Park proved that every derivation of NTn(K) is a

sum of a certain diagonal, trivial extension and a strongly nilpotent derivation.

The set de�ned by Rn(K, J) = NTn(K)+Mn(J) is a ring with usual matrix addition

and multiplication where K is a unital ring and J is an ideal of K. The automorphisms

of the ring Rn(K, J) were described by F. Kuzucuo§lu and V.M. Levchuk under certain

spesi�c properties.
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In the �rst section of this thesis, we give the historical background of derivations

and automorphisms of some certain matrix rings and algebras.

In the second section, we characterize all derivations of Rn(K, J).

Recall that the Jordan multiplication on a ring K is given with a ◦ b = ab+ ba for

any a, b ∈ K. An additive map Ω of K satisfying Ω(a ◦ b) = Ω(a) ◦ b+ a ◦Ω(b) is called

a Jordan derivation of K.

Every derivation is a Jordan derivation but there are Jordan derivations which are

not derivations.

All Jordan derivations of the ring NTn(K) are described by F. Kuzucuo§lu in 2011.

For an arbitrary associative and 2-torsion free ring K with identity and an ideal J

of K, we describe all Jordan derivations of Rn(K, J) in the third section.

Key words: niltriangular matrix, automorphism, derivation, Jordan derivation.
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ÖZET

MATR�S HALKALARININ BAZI ALTHALKALARININ TÜREVLER�

VE OTOMORF�ZMALARI

Umut SAYIN

Doktora, Matematik Bölümü

Tez Dan�³man�: Prof. Dr. Feride KUZUCUO�LU

May�s 2018, 72 sayfa

K birimli ve birle³meli herhangi bir halka olmak üzere K üzerinde tan�ml� n × n

tipindeki tüm matrislerin kümesi Mn(K) ile gösterilir. Bu küme, matrislerin bilinen

toplama ve çarpma i³lemlerine göre bir halka yap�s� olu³turur. F herhangi bir cisim

olmak üzere, Skolem-Noether teoreminin bir sonucu olarak, Mn(F ) halkas�n�n her oto-

mor�zmas�n�n bir iç otomor�zma oldu§u görülür.

D dönü³ümü, K halkas� üzerinde tan�ml� toplamsal bir dönü³üm olmak üzere e§er

her a, b ∈ K için D(ab) = D(a)b + aD(b) ko³ulunu sa§l�yorsa bu dönü³üme K − nın

bir türevi denir. Yine Skolem-Noether teoreminin bir sonucu olarak, F bir cisim olmak

üzere Mn(F ) halkas�n�n her türev dönü³ümü bir iç türev dönü³ümüdür.

K birimli ve birle³meli herhangi bir halka olmak üzere tüm nilüçgensel matrislerin

halkas� NTn(K) olsun. Bu halkan�n otomor�zmalar� V.M. Levchuk taraf�ndan 1983

y�l�nda belirlenmi³tir.

2006 y�l�nda, J.H. Chun ve J.W. Park, NTn(K) halkas�n�n her türev dönü³ümünün

kö³egen(diagonal), halka(trivial extension) ve kuvvetli nilpotent(strongly nilpotent) tü-

rev dönü³ümlerinin toplam� olarak yaz�labilece§ini göstermi³lerdir.

Birimli ve birle³meli bir halka K ve bu halkan�n bir ideali J olsun. Rn(K, J) =

NTn(K) + Mn(J) ile tan�ml� küme, bilinen matris toplam� ve çarp�m� ile bir halka

olur. 2001 y�l�nda F. Kuzucuo§lu ve V.M. Levchuk taraf�ndan, Rn(K, J) halkas�n�n

otomor�zmalar� baz� özel ³artlar alt�nda belirlenmi³tir.

Bu tezin ilk bölümünde, baz� matris halkalar�n�n ve cebirlerinin türev dönü³ümleri

ve otomor�zmalar� ile ilgili geli³meler, tarihleriyle birlikte verilmi³tir. Daha sonra ikinci
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bölümde, birimli ve birle³meli bir K halkas� ile bu halkan�n bir ideali J için Rn(K, J)

halkas�n�n türev dönü³ümleri karakterize edilmi³tir.

Herhangi bir halkadan al�nan key� a ve b elemanlar� için a ◦ b = ab+ ba ile tan�ml�

çarp�ma Jordan çarp�m� denir. Bu halka üzerinde tan�ml� toplamsal bir ∆ dönü³ümü

∆(a ◦ b) = ∆(a) ◦ b + a ◦ ∆(b) ko³ulunu sa§l�yorsa bu dönü³üme halkan�n bir Jordan

türev dönü³ümü denir. Her türev dönü³ümü bir Jordan türev dönü³ümü iken bunun

tersi her zaman do§ru de§ildir. NTn(K) halkas�n�n tüm Jordan türev dönü³ümleri F.

Kuzucuo§lu taraf�ndan 2011 y�l�nda verilmi³tir.

Son olarak, key� birimli ve birle³meli K halkas� ile bu halkan�n herhangi bir J

ideali üzerinde tan�ml� Rn(K, J) halkas�n�n bütün Jordan türevleri üçüncü bölümde

karakterize edilmi³tir.

Anahtar Kelimeler: nilüçgensel matris, otomor�zma, türev, Jordan türev.
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1 INTRODUCTION

Historical Background of Automorphisms and Derivations on Rings and

Algebras

A central simple algebra over a �eld F is a �nite dimensional associative F−algebra

without nontrivial two-sided ideals and whose center is F. The easiest example of a

central simple algebra is the matrix algebra over F. For any natural number n, the

F − algebra Mn(F ) of n×n matrices with coe�cients in F is a central simple algebra.

An inner automorphism of an algebra A is de�ned as x −→ a−1xa for an invertible

element a ∈ A.

Skolem-Noether Theorem characterizes the automorphisms of simple rings and it is

a fundamental result in the theory of central simple algebras.

Theorem 1.1 [1, Theorem 4.3.1] (Skolem-Noether) Every automorphism of a �nite

dimensional central simple algebra is inner.

A consequence of Skolem-Noether theorem is that any automorphism of Mn(F ) is

inner. An easy proof of this fact is given by Semrl:

Theorem 1.2 [2, Theorem 1.1] Let F be a �eld and Φ be a bijective linear map of

Mn(F ) satisfying Φ(PQ) = Φ(P )Φ(Q) for all P,Q ∈ Mn(F ). Then there is an inver-

tible matrix H ∈Mn(F ) so that Φ(G) = HGH−1 for every G in Mn(F ).

Proof. Let φ : Mn(F ) → Mn(F ) be a bijection satisfying φ(PQ) = φ(P )φ(Q) for

arbitrary matrices P,Q ∈ Mn(F ) and u, y ∈ F n be nonzero column vectors. Then

there must be an element z ∈ F n such that φ(uyt)z 6= 0 since φ is a bijection. Now

choose H : F n → F n with x → φ(xyt)z. Clearly, H is a linear map as φ is linear.

Besides, H is nonzero since Hu is nonzero. It can be seen that HP = φ(P )H by

HPx = φ(Pxyt)z

= φ(P )φ(xyt)z

= φ(P )Hx

for arbitrary x ∈ F n and P ∈ Mn(F ). As Hu 6= 0 and φ is surjective, we can �nd

Q ∈ Mn(F ) for any w ∈ F n such that φ(Q)Hu = w = HQu. Hence H is onto and

hence invertible. This completes the proof.
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In 1987, Isaacs proved the theorem given below:

Theorem 1.3 [3, Corollary 15] Let F be a unique factorization domain(UFD). Then

every automorphism of Mn(F ) is inner.

Automorphisms of certain subalgebras of matrix algebras have been actively studied

since 1950s.

Jondrup showed that if A is a simple algebra, �nite dimensional over its center K,

then all K-automorphisms of the algebra of upper triangular matrices of A are inner

(see [4]).

Let NTn(F ) be the set of all n× n matrices over a �eld F with zeros on and above

the main diagonal. In 1951, Dubisch and Perlis described the algebra automorphisms

of NTn(F ) as follows:

Theorem 1.4 [5, Theorem 5] Every automorphism of NTn(F ) is equal to a product

of a certain diagonal, an inner and a nil automorphism.

Let UTn(K) be the set of all matrices with entries above the main diagonal zero and

with the entries on the main diagonal all the identity element of K. The automorphism

group of UTn(F ) over a �eld F was studied by many authors. The �rst paper was

published by Pavlov in 1952. Pavlov ([6]) described the automorphism group of the

group of unitriangular matrices over a �nite �eld of odd prime order. In 1955, Weir

characterized the automorphism group of unitriangular matrices over a �nite �eld of

odd characteristic (see [7]).

Let NTn(K) be the set of all (lower) niltriangular n×nmatrices over any associative

ring K with identity.

De�nition 1.5 A ring R is called a nilpotent ring if there is a positive integer n such

that Rn = 0.

Proposition 1.6 NTn(K) is a nilpotent ring with usual matrix addition and multip-

lication.
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It is clear that NTn(K) is an adjoint group with adjoint multiplication a • b =

a+ b+ ab for all a, b ∈ NTn(K).

The unitriangular group UTn(K) and adjoint group of NTn(K) are isomorphic. The

map a→ a+ I is a well-known isomorphism from NTn(K) to UTn(K) where I is the

n× n identity matrix.

De�nition 1.7 [8, p9-10] A Lie ring is a nonassociative ring without identity and its

multiplication ∗ satis�es the following conditions

i) a ∗ a = 0 (anticommutativity)

ii) (a ∗ b) ∗ c+ (b ∗ c) ∗ a+ (c ∗ a) ∗ b = 0 (the Jacobi identity).

One can easily see that (NTn(K),+, ∗) is a Lie ring with a∗b = ab−ba as obviously

both anticommutativity and the Jacobi identity properties hold.

There are examples of Lie rings which are not rings;

Example 1.8 Let A be a set of all n× n matrices over a �eld F admitting AT = −A

for all A ∈ A. It is easy to show that A is a Lie ring under commutator but not a ring

under usual matrix multiplication.

Let (R,+, ∗) be a Lie ring, S ⊆ R and s, t be arbitrary elements in S. Then the

subset S is called a Lie ideal of the Lie ring (R,+, ∗) if and only if s + t ∈ S and

r ∗ s ∈ S where r is an arbitrary element of R.

In 1983, Levchuk characterized the group of automorphisms of NTn(K) as a ring,

Lie ring and an adjoint group where K is an associative ring with identity ([9]).

The fundamental ring automorphisms of NTn(K) can be de�ned as follows:

• If d ∈Mn(K) is an invertible diagonal matrix, then x→ d−1xd is an automorp-

hism of NTn(K) which is called diagonal.

• Let a be an invertible element of Mn(K). Then x→ a−1xa is an automorphism

of NTn(K) called inner automorphism.

• Every automorphism θ ofK can be extended to a ring automorphism θ̄ ofNTn(K)

with [xi,j]→ [θ̄(xi,j)].
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• Let λ be a group endomorphism of K+. Then [xi,j] → [xi,j] +
∑n−1

i=1 λ(xi+1,i)en,1

de�nes an annihilator automorphism of NTn(K).

Theorem 1.9 [9, Theorem 1] If K is unitary ring , then any automorphism of NTn(K)

can be written as a product of certain diagonal, inner, ring and annihilator automorp-

hisms of NTn(K) for n>2.

Levchuk proved this theorem by taking advantage of the structural relations between

the Lie ring and the adjoint group of NTn(K) :

Theorem 1.10 [10, Theorem 1] The class of all normal subgroups of the adjoint group

of NTn(K) matches with the class of all ideals of the Lie ring of NTn(K) for an

arbitrary ring K with identity.

For any associative ring R, the operation ∗ is a Lie product with x ∗ y = xy − yx

for all x, y ∈ R.

De�nition 1.11 An additive map ∆ of a ring R is called a Lie automorphism of R if

∆(x ∗ y) = ∆(x) ∗∆(y).

Proposition 1.12 Let R = NTn(K). Then the automorphism group of R is the inter-

section of the automorphism group of the adjoint group G(R) and the automorphism

group of the Lie ring Λ(R) of R.

Proof.We need to show that Aut(R) = Aut(G(R))∩Aut(Λ(R)). Let Ψ ∈ Aut(R) and

x, y ∈ R. Then Ψ(x+ y) = Ψ(x) + Ψ(y) and Ψ(xy) = Ψ(x)Ψ(y).

First, for x, y ∈ R, we have

Ψ(x • y) = Ψ(x+ y + xy)

= Ψ(x) + Ψ(y) + Ψ(xy)

= Ψ(x) + Ψ(y) + Ψ(x)Ψ(y)

= Ψ(x) •Ψ(y).
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This implies that Ψ ∈ Aut(G(R)).

Secondly,

Ψ(x ∗ y) = Ψ(xy − yx)

= Ψ(xy)−Ψ(yx)

= Ψ(x)Ψ(y)−Ψ(y)Ψ(x)

= Ψ(x) ∗Ψ(y).

Therefore Ψ ∈ Aut(Λ(R)). On the other hand, let Ψ ∈ Aut(G(R)) ∩ Aut(Λ(R)). We

know that Ψ(x + y) = Ψ(x) + Ψ(y) since Ψ ∈ Aut(Λ(R)). Then we have Ψ ∈ Aut(R)

considering that

Ψ(xy) = Ψ((x • y)− (x+ y))

= Ψ(x • y)−Ψ(x+ y)

= Ψ(x) + Ψ(y) + Ψ(x)Ψ(y)−Ψ(x)−Ψ(y)

= Ψ(x)Ψ(y).

Levchuk also described the Lie automorphisms and adjoint group automorphisms

of NTn(K) in 1983 (see [9, Theorem 1]).

De�nition 1.13 An ideal J of the associative ring K is called quasi-regular if J is a

group with respect to the adjoint multiplication x • y = x+ y + xy (see [11]).

The adjoint multiplication in an associative ring is always a semigroup operation.

An element r of a ring is nilpotent if there is a natural number n such that rn = 0.

De�nition 1.14 An arbitrary associative ring K is called a nil ring if every element

of K is nilpotent.

De�nition 1.15 Let (K, •) be a group. Then K is called a radical ring.

It is clear that every nilpotent ring is nil.

Proposition 1.16 Any nil ring is radical.
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Proof. Let a ∈ R. Then there can be found a natural number n such that an+1 = 0.

Consider the element b = −a+a2−a3+...+(−1)nan. Then ab+b = −a and a+b+ab = 0.

Therefore R is radical.

Next example demonstrates that the converse of Proposition 1.16 is not true:

Example 1.17 [12] Let S =
{

2x
2y+1

: x, y ∈ Z and (2x, 2y + 1) = 1
}
⊂ Q. This set is

a commutative ring under the usual addition and multiplication. The ring S has no

nilpotent element and so S is not nil. But every element of S is quasi-regular;

2x

2y + 1
• −2x

2(x+ y) + 1
=

2x

2y + 1
− 2x

2(x+ y) + 1
− 2x

2y + 1
.

2x

2(x+ y) + 1

=
2x[2x+ 2y + 1]− 2x(2y + 1)− 4x2

(2y + 1)(2x+ 2y + 1)

=
4x2 + 4xy + 2x− 4xy − 2x− 4x2

(2y + 1)(2x+ 2y + 1)

= 0.

Therefore, S is a radical ring.

The characterization of all associative radical rings R with the property that the

class of all ideals of the associated Lie ring matches with the class of all normal subg-

roups of the adjoint group is still an open question (See [13], Question 10-19).

Let ei,j denote the n × n matrix whose (i, j)−projection is equal to 1 and the

other projections are 0. The matrices xei,j (x ∈ K) are called elementary matrices.

Multiplication, Lie multiplication and adjoint multiplication of elementary matrices

are given as

(xei,j)(yek,m) = δj,kxyei,m

xei,j ∗ yek,m = δj,kxyei,m − δm,iyxek,j

and

xei,j • yek,m = xei,j + yek,m + δj,kxyei,m

respectively. Note that δi,j is Kronecker delta function.

LetK be a unitary ring. If J is an ideal ofK then R = Rn(K, J) = NTn(K)+Mn(J)

is a ring with usual matrix addition and multiplication.

Note that Rn(K, J) is generated by the sets Kei+1,i (i < n) and Je1,n.
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Proposition 1.18 If J is a quasi-regular ideal of the ring K then Rn(K, J) is radical.

Proof. Let (J, •) be a group. An arbitrary matrix α = [ai,j] ∈ Rn(K, J) can be

represented uniquely as follows:

α = β • δ • γ where β =
∑
i>j

xi,jei,j, δ =
n∑

i=1

yi,iei,i and γ =
∑
i<j

zi,j (xi,j ∈ K, yi,i ∈ J,

zi,j ∈ J).

Taking into account the relations

yi,iei,i • y′i,iei,i = yi,iei,i + y′i,iei,i + yi,iy
′
i,iei,i

= (yi,i + y′i,i + yi,iy
′
i,i)ei,i

= 0 (yi,i ∈ J),

xi,jei,j • (−xi,j)ei,j = 0 (xi,j ∈ K, i > j)

and

zi,jei,j • (−zi,jei,j) = 0 (zi,j ∈ J, i < j),

we can say that β, γ, δ have adjoint inverses β′, γ′, δ′ where β′ =
∑
i>j

x′i,jei,j, γ
′ =

n∑
i=1

y′i,iei,i, δ
′ =
∑
i<j

z′i,jei,j. Hence

β • β′ = β′ • β = 0,

δ • δ′ = δ′ • δ = 0,

γ • γ′ = γ′ • γ = 0.

Therefore, Rn(K, J) is a radical ring forasmuch as

α • γ′ • δ′ • β′ = β • δ • γ • γ′ • δ′ • β′

= 0

and α′ = γ′ • δ′ • β′.

For the ring NTn(K), the following are equivalent;

1. Any subgroup H of the adjoint group NTn(K) is normal.

2. H is a Lie ideal of the associated Lie ring (NTn(K),+, ∗).

7



The following two examples show that this equivalence doesn't hold for the ring

Rn(K, J).

Example 1.19 Let K be a commutative ring, R = Rn(K, J) and

L = {C ∈ R : tr(C) = 0} be a subset of R. If we choose any P ∈ L and Q ∈ R, then

we get

tr(P ∗Q) = tr(PQ−QP )

= tr(PQ)− tr(QP )

= tr(PQ)− tr(PQ)

= 0

and obviously tr(C1 +C2) = 0 for all C1, C2 ∈ L. Therefore L is a Lie ideal of R. Now

we will show that L is not even a subgroup of the adjoint group unless J = 0. Let e2,1

and ye1,2 (y 6= 0) be two elements in L. Then the adjoint product e2,1 • ye1,2 is not in

L because e2,1 • ye1,2 = e2,1 + ye1,2 + ye2,2 and tr(e2,1 • ye1,2) = y 6= 0.

Example 1.20 Let K be a commutative ring with identity and J be a quasi-regular

ideal of K. De�ne a map

ϕ : (Rn(K, J) , • ) → (GLn(K) , . )

A → A+ I

where I is the n× n identity matrix. As a result of that

ϕ(A •B) = ϕ(A+B + AB)

= A+B + AB + I

= (A+ I)(B + I)

= ϕ(A)ϕ(B),

ϕ is a group homomorphism. In fact, ϕ is a monomorphism. Now assume that H =

ϕ−1(ϕ(R)∩SLn(K)). Obviously H is normal in (Rn(K, J), •). Now let's see that H is

not a Lie ideal of the Lie ring Rn(K, J) :

If xe1,1+ye2,2 ∈ H, then 1 = det(ϕ(xe1,1+ye2,2)) and 1 = (1+x)(1+y) = 1+(x•y).

This means x•y = 0. So y is the adjoint inverse of x. Now xe1,2 ∗ e2,1 = xe1,1−xe2,2 =

x(e1,1 − e2,2) ∈ H (x ∈ J) holds only if y = −x and hence x2 = 0. Therefore, if the

ideal J contains an element a satisfying a2 6= 0, then it is not a Lie ideal.
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De�nition 1.21 Let K be a ring. Then annihilator of K and annihilator of an ideal

J in K are de�ned by

Ann(K) = {a ∈ K : aK = Ka = 0}

AnnK(J) = {a ∈ K : aJ = Ja = 0} .

De�nitions of the automorphisms of Rn(K, J) are given as follows:

• [xi,j]→ [xi,j]+

(
λn(x1,n) +

n−1∑
i=1

λi(xi+1,i)

)
en,1 is an annihilator automorphism

ofR with the conditions λn : J → AnnK(J), λn(J2) = 0, λi : K → AnnK(J),

λi(J) = 0 (i < n).

• Let α, β : J → J, γ : J → K be additive maps satisfying

i) α(xy) = xα(y)

ii) β(yx) = β(y)x

iii) yβ(z) + α(y)z = 0

iv) γ(zy) = β(z)α(y)

v) β(y)γ(z) + γ(y)α(z) = yγ(z) + α(y)α(z) = γ(y)z + β(y)β(z) = 0

where x ∈ K, y, z ∈ J. Then

∆ : Rn(K, J) −→ Rn(K, J)

ye1,n −→ ye1,n + α(y)e1,1 + β(y)en,n + γ(y)en,1

yei,n −→ yei,n + α(y)ei,1 , 1 < i ≤ n

ye1,j −→ ye1,j + β(y)en,j , 1 ≤ j < n

xi,jei,j −→ xi,jei,j , i > 1 and j < n

is an automorphism of R called almost annihilator.

• If d is an invertible diagonal matrix in Mn(K) then x→ d−1xd is an automorp-

hism of Rn(K, J) called a diagonal automorphism.

• Let θ ∈ Aut(K). Then θ̄ : [ai,j] → [θ(ai,j)] is an automorphism of Rn(K, J) if

θ(J) = J . Such automorphisms will be called ring automorphisms of R.
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Theorem 1.22 [14, Theorem 2.1] Let J be an ideal of K such that a one-sided or

two-sided annihilator of J t in K matches with J for a nonnegative integer t. Then any

automorphism of Rn(K, J) can be written as a product of annihilator, almost annihi-

lator, inner, diagonal and ring automorphisms for n > 2.

De�nition 1.23 An additive map Ψ of a ring R is called a derivation of R if Ψ(ab) =

Ψ(a)b+ aΨ(b) for all a, b ∈ R.

The set of all derivations of a ring R is denoted by Der(R). Lie product of two

derivations is a derivation again;

Let k, r ∈ R.

(d1 ∗ d2) (kr) = (d1d2 − d2d1)(kr)

= d1d2(kr)− d2d1(kr)

= d1 [d2(k)r + kd2(r)]− d2[d1(k)r + kd1(r)]

= d1[d2(k)]r + d2(k)d1(r) + d1(k)d2(r) + kd1[d2(r)]

− d2[d1(k)]r − d1(k)d2(r)− d2(k)d1(r)− kd2[d1(r)]

= d1[d2(k)]r − d2[d1(k)]r + kd1[d2(r)]− kd2[d1(r)]

= {d1d2(k)− d2d1(k)} r + k {d1d2(r)− d2d1(r)}

= (d1 ∗ d2)(k)r + k(d1 ∗ d2)(r).

Hence Der(R) is a Lie Ring.

Let a is an arbitrary element of a ring K. An inner derivation of K is de�ned by

x −→ ax− xa.

Theorem 1.24 [1, Proposition(p100)] Let A be a simple algebra �nite dimensional

over its center F . Then any derivation of A is inner.

Proof. Let A2 be the ring of all 2× 2 matrices over A. Obviously A2 is simple and has

F as its center and is �nite dimensional over F. Let

B =


a δ(a)

0 a

 : a ∈ A


10



where δ is a derivation of A and let

C =


a 0

0 a

 : a ∈ A

 .

It is trivial to show that δ(α) = 0 for α ∈ F. Hence the mapping ψ : C → B de�ned by

ψ

a 0

0 a

 =

a δ(a)

0 a


is easily shown to be an isomorphism of C onto B leaving F elementwise �xed. Also

C ≈ A. All the conditions of Skolem-Noether Theorem are satis�ed. Thus there is an

invertible matrixx y

z w


such thata δ(a)

0 a

x y

z w

 =

x y

z w

a 0

0 a

 .
Hence

ax+ δ(a)z = xa

ay + δ(a)w = ya

az = za

aw = wa

for all a ∈ A. These relations imply w, z ∈ F and as

x y

z w

 is invertible, one of these

scalars, say z, is nonzero. Putting u = xz−1, we get δ(a) = ua − au. As a result, δ is

inner.

Corollary 1.25 Let k be a �eld. Then any derivation of the matrix algebra Mn(k) is

inner.

Derivations of NTn(K) are given in [15] as follows:

• Let d be a diagonal matrix in Mn(K). Then id : x → dx − xd is a derivation of

NTn(K) which is called a diagonal derivation.

11



• If θ is a derivation of the ring K then θ̄ : [xi,j] → [θ(xi,j)] is a derivation of

NTn(K) called a ring derivation.

• Let st be a derivation of NTn(K). Then st is called a strongly nilpotent derivation

of NTn(K) if st(x) ∈ [NTn(K)]k+1 for all x ∈ [NTn(K)]k.

In 2006, Chun and Park determined the derivations of the niltriangular matrix ring

NTn(K).

Theorem 1.26 [15] Any derivation δ of NTn(K) can be written as a sum of diagonal,

ring and strongly nilpotent derivations.
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2 DERIVATIONS OF THE RING Rn(K, J)

Many authors have studied derivations of matrix rings and their subrings (see [16],

[17], [18], [19], [20]). Let K be an associative ring with identity and J be an ideal of

K. Recall that Rn(K, J) = NTn(K) + Mn(J) where NTn(K) is the set of all n × n

matrices over K with zeros on and above the main diagonal and Mn(J) is the set of

all n × n matrices over J. In this section, we characterize all derivations of the ring

Rn(K, J).

The ideals of Rn(K, J) are characterized in [21].

De�nition 2.1 An ideal J of a ring K is said to be a characteristic if it is invariant

under any derivation of K (see [22]).

It is obvious that Km is a characteristic ideal of any associative ring K for every

integer m > 1.

To compute the powers of R = Rn(K, J), we use the in�nite row of carpet ideals

of K where each ideal is repeated n times. This terminology is originally introduced

by Kargapolov and Merzljakov ([22, p107-108]). Regard the n× n matrix as a square

array of n2 points and cover it with carpet ideals J0 = K, J, J2, J3, ... , Jm, ... as

shown in the diagram for n = 4;

K K K K J J J J J2 J2 J2 J2 J3 J3 ...

K K K K J J J J J2 J2 J2 J2 J3 ...

K K K K J J J J J2 J2 J2 J2 ...

K K K K J J J J J2 J2 J2 J2...

From the diagram, R =


J J J J

K J J J

K K J J

K K K J

 , R
2 =


J J J J2

J J J J

K J J J

K K J J

 ,

R4 =


J J2 J2 J2

J J J2 J2

J J J J2

J J J J

 , R
5 =


J2 J2 J2 J3

J J2 J2 J2

J J J2 J2

J J J J2

 , R
8 =


J2 J3 J3 J3

J2 J2 J3 J3

J2 J2 J2 J3

J2 J2 J2 J2

 ,
13



R4s =


Js Js+1 Js+1 Js+1

Js Js Js+1 Js+1

Js Js Js Js+1

Js Js Js Js

 and so on.

Lemma 2.2 Let J be an ideal of a ring K. If J is nilpotent, so is Rn(K, J).

The left annihilator of any ring K is denoted by Annl(K) and

Annl(K) = {x ∈ K : xK = 0} .

The right annihilator of a ring can be de�ned in a similar way.

Let R = Rn(K, J). By using carpet ideals, it can be seen that

Annl(R
k) = {[xi,j] ∈ R : xu,v ∈ Annl(J

s+1) for v ≤ t and xu,v ∈ Annl(J
s) for v > t}

where k = sn+ t (0 ≤ t < n).

Proposition 2.3 Let AnnK(J) = {c ∈ K : cJ = Jc = 0} and

Ann(Rn(K, J)) = {A = [ai,j] : AX = 0 = XA for all X ∈ Rn(, J)}. Then

Ann(Rn(K, J)) = AnnK(J)en,1.

Proof. Let A = [ai,j] be any element of Ann(Rn(K, J)). Then Axi,jei,j = 0 = xi,jei,jA

for any 1 ≤ i, j ≤ n and xi,j ∈ Ii,j. We know that Kei+1,i and Je1,n generates all

matrices in Rn(K, J) since any elementary matrix can be written as

i−j−1∏
k=0

ei−k,i−k−1 for i > j and

i−2∏
k=0

ei−k,i−k−1ye1,n

n−j−1∏
k=0

en−k,n−k−1 for i ≤ j

where x ∈ K, y ∈ J. To determine the structure of a matrix A ∈ Ann(Rn(K, J)), it

is su�cient to check Axei+1,i = 0 = xei+1,iA and Aye1,n = 0 = ye1,nA for all x ∈ K,

y ∈ J.

0 = Axei+1,i =
∑
k

Ak,i+1xek,i =⇒ Ak,i+1 = 0 for 1 ≤ k ≤ n and 1 ≤ i < n,

0 = xei+1,iA =
∑
k

xAi,kei+1,k =⇒ Ai,k = 0 for 1 ≤ k ≤ n and 1 ≤ i < n.
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and this means Ai,j = 0 except (i, j) = (n, 1). Furthermore, An,1y = 0 = yAn,1

which means An,1 ∈ AnnK(J) for all y ∈ J since 0 = Aye1,n = An,1yen,n implies

An,1y = 0. and 0 = ye1,nA = yAn,1e1,1 implies yAn,1 = 0. As a result, it is clear that

Ann(Rn(K, J)) = AnnK(J)en,1.

Now we de�ne some derivations of Rn(K, J).

Proposition 2.4 Let λn : J −→ AnnK(J) , λn(J2) = 0 and λi : K −→ AnnK(J),

λi(J) = 0 be additive maps for i = 1 < n. Then the map

Ω : R −→ Ann(R)

X = [xi,j] −→

(
λn(x1,n) +

n−1∑
i=1

λi(xi+1,i)

)
en,1

determines a derivation of R. It is called an annihilator derivation.

Proof. Let X and Y be in R and λn : J −→ AnnK(J), λi : K −→ AnnK(J) (i < n)

be additive maps satisfying λn(J2) = 0, λi(J) = 0. The map Ω is additive because λi

is additive for all i = 1, 2, ..., n. On the other hand, Ω(XY ) is equal to zero as

Ω(XY ) =

(
n∑

k=1

λn(x1,kyk,n) +
n−1∑
i=1

n∑
k=1

λi(xi+1,kyk,i)

)
en,1,

λn(J2) = 0, λi(J) = 0 for i = 1, 2, ..., n−1. Finally, Ω(X)Y +XΩ(Y ) = 0 considering

that Ω : R→ Ann(R) where Ann(R) = (AnnK(J)) en,1.

Example 2.5 Let K = Z9 and J be the ideal generated by 3̄ in Z9. Then

Ω : [xi,j]→

(
n−1∑
i=1

λ(xi+1,i)

)
en,1

is an annihilator derivation of R where λ : x→ 3x is an additive map of K.

Proposition 2.6 If the additive group homomorphisms σ : J −→ AnnK(J) and λ, µ :

J −→ J satisfy the following relations

i) λ(xy) = xλ(y)

ii) µ(yx) = µ(y)x

iii) λ(y)z + yµ(z) = 0

iv) σ(J2) = 0

15



for x ∈ K and y, z ∈ J, then the map

∆ : R −→ R

ye1,n −→ λ(y)e1,1 + µ(y)en,n + σ(y)en,1

yei,n −→ λ(y)ei,1 , 1 < i ≤ n

ye1,j −→ µ(y)en,j , 1 ≤ j < n

xi,jei,j −→ 0 , i > 1 and j < n

determines a derivation of the ring R where y ∈ J and xi,j ∈ Ii,j. This derivation will

be called an almost annihilator derivation.

Proof. Let X and Y be in R and λ : J −→ AnnK(J), µ, σ : J −→ J be additive maps

satisfying the conditions i) − iv). It is obvious that ∆ is additive because λ, µ and σ

are additive maps. Besides, we have

∆(XY ) =
n∑

k=1

λ(x1,kyk,n)e1,1 +
n∑

k=1

µ(x1,kyk,n)en,n

+
n∑

i=2

n∑
k=1

λ(xi,kyk,n)ei,1 +
n−1∑
j=1

n∑
k=1

µ(x1,kyk,j)en,j

and

∆(X)Y +X∆(Y ) =
n∑

k=1

λ(x1,n)y1,ke1,k +
n∑

k=1

µ(x1,n)yn,ken,k

+
n∑

i=2

n∑
k=1

λ(xi,n)y1,kei,k +
n−1∑
j=1

n∑
k=1

µ(x1,j)yj,ken,k

+
n∑

k=1

xk,1λ(y1,n)ek,1 +
n∑

k=1

xk,nµ(y1,n)ek,n

+
n∑

i=2

n∑
k=1

xk,iλ(yi,n)ek,1 +
n−1∑
j=1

n∑
k=1

xk,nµ(y1,j)ek,j

by σ : J −→ AnnK(J) and iv). Now we need to show that these two are equal.

First of all, the (1, 1) coe�cients of ∆(XY ) and ∆(X)Y +X∆(Y ) are
n∑

k=1

λ(x1,kyk,n)

and
[
λ(x1,n)y1,1 + x1,nµ(y1,1) +

n∑
i=1

x1,iλ(yi,n)

]
, respectively and they are equal by the

conditions i) and iii). Secondly, the (n, n) entries
n∑

k=1

µ(x1,kyk,n) of ∆(XY ) and[
n∑

j=1

µ(x1,j)yj,n + λ(xn,n)y1,n + xn,nµ(y1,n)

]
of ∆(X)Y + X∆(Y ) are equal by ii) and

iii). After that, the (i, 1) coe�cients of ∆(XY ) and ∆(X)Y +X∆(Y ) for i > 1 are[
n∑

k=1

λ(x1,kyk,n)e1,1 +
n∑

i=2

n∑
k=1

λ(xi,kyk,n)ei,1 +
n∑

k=1

µ(x1,kyk,1)en,1

]
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and[
n∑

i=1

λ(xi,n)y1,1ei,1 +
n∑

j=1

µ(x1,j)yj,1en,1 +
n∑

i=1

n∑
k=1

xk,iλ(yi,n)ek,1 +
n∑

k=1

xk,nµ(y1,1)ek,1

]
,

respectively. These two are equal to each other by i), ii) and iii). Finally, the (n, j)

entries of ∆(XY ) and ∆(X)Y +X∆(Y ) for j < n are[
n∑

k=1

µ(x1,kyk,n)en,n +
n∑

k=1

λ(xn,kyk,n)en,1 +
n−1∑
j=1

n∑
k=1

µ(x1,kyk,j)en,j

]

and

n∑
k=1

µ(x1,n)yn,ken,k +
n∑

k=1

λ(xn,n)y1,ken,k +
n−1∑
j=1

n∑
k=1

µ(x1,j)yj,ken,k

+
n∑

i=1

xn,iλ(yi,n)en,1 +
n∑

j=1

xn,nµ(y1,j)en,j,

respectively, and these two sums are equal as well by i), ii) and iii).

Now, to complete the proof, we need to show that the entries except (i, 1) and (n, j)

of ∆(X)Y +X∆(Y ) are zero.

By excluding the (i, 1) and (n, j) entries of the matrix ∆(X)Y + X∆(Y ), we get
n−1∑
i=1

n∑
k=2

λ(xi,n)y1,kei,k +
n∑

j=2

n−1∑
k=1

xk,nµ(y1,j)ek,j which is equal to zero by iii).

Example 2.7 Let K = Z4 and J be the ideal generated by 2̄ in K. Then the map

∆ : Rn(K, J) −→ Rn(K, J)

ye1,n −→ λ(y)e1,1 + µ(y)en,n + σ(y)en,1

yei,n −→ λ(y)ei,1 , 1 < i ≤ n

ye1,j −→ µ(y)en,j , 1 ≤ j < n

xi,jei,j −→ 0 , i > 1 and j < n

is an almost annihilator derivation of R where λ, µ, σ : x→ x. In particular, if n=3,

then ∆ : [xi,j]→


x1,3 0 0

x2,3 0 0

x1,3 + x3,3 + x1,1 x1,2 x1,3

 is an almost annihilator derivation

of R3(K, J) where K = Z4 and J = (2̄).
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Proposition 2.8 If θ is a derivation of the ring K and also of J, then

θ̄ : [xi,j]→
n∑

i,j=1

θ(xi,j)ei,j is a derivation of R which is called a ring derivation.

Proof. Let X and Y be arbitrary elements of R and θ be a derivation of K and also

of J. Then θ̄ is additive as θ is an additive map of K. Besides, (i, j) entry of θ̄(XY )

is
n∑

k=1

θ(xi,kyk,j) and (i, j) entry of θ̄(X)Y +Xθ̄(Y ) is
n∑

k=1

θ(xi,k)yk,j +
n∑

k=1

xi,kθ(yk,j). As

a result of that θ(xi,kyk,j) = θ(xi,k)yk,j + xi,kθ(yk,j) for every k = 1, 2, ..., n, two sums
n∑

k=1

θ(xi,kyk,j) and
n∑

k=1

θ(xi,k)yk,j +
n∑

k=1

xi,kθ(yk,j) are equal.

Let θ be an additive map of K and J . Then θ̄ : [xi,j] →
n∑

i,j=1

θ(xi,j)ei,j determines

a derivation of the ring R2(K, J) if the relation θ(xy) = θ(x)y + xθ(y) holds and

θ(1) = 0 where x ∈ K, y ∈ J or x ∈ J, y ∈ K. This derivation is called a (K+, J)-ring

derivation.

Example 2.9 Let K = R[x] be the ring of all polynomials on R and J = (x) be the

ideal generated by x. Then θ̄ : [xi,j] → [θ(xi,j)] is a ring derivation of Rn(K, J) where

θ is the ordinary derivation.

Proposition 2.10 For any ring R and any element a of this ring, the map Ψa : x −→

ax−xa is a derivation of R which is called the inner derivation of R induced by the

element a.

Proof. Let x, y ∈ R be arbitrary elements. It can easily be seen that Ψa is an additive

map of R. We need to show Ψa(xy) = Ψa(x)y + xΨa(y);

Ψa(xy) = axy − xya

= axy − (xay − xay)− xya

= axy − xay + xay − xya

= (ax− xa)y + x(ay − ya)

= Ψa(x)y + xΨa(y).

Proposition 2.11 Let d =
n∑

i=1

diei,i (di ∈ K). Then the map δd(x) = dx − xd is a

derivation of Rn(K, J) which is called the diagonal derivation induced by the diagonal

matrix d.
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Proof. Same technique which is followed in the previous proposition applies.

For the following theorem and lemmas, Rn(K, J) will be denoted by R and n will

be greater than 2 unless stated otherwise.

Theorem 2.12 Every derivation ϕ of R is a sum of certain diagonal, inner, almost

annihilator, annihilator and ring derivations.

Lemma 2.13 Let ϕ be a derivation of R for n > 2, x ∈ Ik,m and

ϕ(xek,m) =
n∑

s,t=1

ϕk,m
s,t (x)es,t =



ϕk,m
1,1 (x) . . . ϕk,m

1,n (x)

. .

. .

. .

ϕk,m
n,1 (x) . . . ϕk,m

n,n (x)


for any k,m. Then ϕ(xek,m) is exactly equal to the matrix



0 0 . . . 0 ϕ
k,m
1,m (x) 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ϕ
k,m
k−1,m

(x) 0 . . . 0

ϕ
k,m
k,1

(x) ϕ
k,m
k,2

(x) . . . ϕ
k,m
k,m−1

(x) ϕ
k,m
k,m

(x) ϕ
k,m
k,m+1

(x) . . . ϕ
k,m
k,n

(x)

0 0 . . . 0 ϕ
k,m
k+1,m

(x) 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ϕ
k,m
n−1,m(x) 0 . . . 0

ϕ
k,m
n,1 (x) 0 . . . 0 ϕk,m

n,m(x) 0 . . . 0



.

Proof. If m 6= i+ 1 we obtain

0 = ϕ(xek,mei+1,i)

= ϕ(xek,m)ei+1,i + xek,mϕ(ei+1,i)

=

(
n∑

s,t=1

ϕk,m
s,t (x)es,t

)
ei+1,i + xek,m

(
n∑

s,t=1

xϕi+1,i
s,t (1)es,t

)

=
n∑

s=1

ϕk,m
s,i+1(x)es,i +

n∑
t=1

xϕi+1,i
m,t (1)ek,t

=
∑
s 6=k

ϕk,m
s,i+1(x)es,i +

∑
t6=i

xϕi+1,i
m,t (1)ek,t +

[
ϕk,m
k,i+1(x) + xϕi+1,i

m,i (1)
]
ek,i
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which can be written as

0 0 . . . 0 ϕ
k,m
1,i+1(x) 0 . . . 0

0 0 . . . 0 ϕ
k,m
2,i+1(x) 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ϕ
k,m
k−1,i+1

(x) 0 . . . 0

xϕ
i+1,i
m,1 (1) xϕ

i+1,i
m,2 (1) . . . xϕ

i+1,i
m,i−1(1) ϕ

k,m
k,i+1

(x) + xϕ
i+1,i
m,i (1) xϕ

i+1,i
m,i+1(1) . . . xϕi+1,i

m,n (1)

0 0 . . . 0 ϕ
k,m
k+1,i+1

(x) 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ϕ
k,m
n,i+1(x) 0 . . . 0



.

Thus

ϕk,m
s,i+1(x) = 0 (i)

for [s 6= k] . It can be seen by (i) that ϕ(xek,m) has nonzero entries only in the k-th

row, m-th column, and �rst column. If i 6= k then we obtain

0 = ϕ(ei+1,ixek,m)

= ϕ(ei+1,i)xek,m + ei+1,iϕ(xek,m)

=

(
n∑

s,t=1

xϕi+1,i
s,t (1)es,t

)
xek,m + ei+1,i

(
n∑

s,t=1

ϕk,m
s,t (x)es,t

)

=
n∑

s=1

ϕi+1,i
s,k (1)xes,m +

n∑
t=1

ϕk,m
i,t (x)ei+1,t

=
n∑

s 6=i+1

ϕi+1,i
s,k (1)xes,m +

n∑
t6=m

ϕk,m
i,t (x)ei+1,t +

[
ϕi+1,i
i+1,k(1)x+ ϕk,m

i,m (x)
]
ei+1,m

which can be written as

0 0 . . . 0 ϕ
i+1,i
1,k

(1)x 0 . . . 0

0 0 . . . 0 ϕ
i+1,i
2,k

(1)x 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ϕ
i+1,i
i,k

(1)x 0 . . . 0

ϕ
k,m
i,1 (x) ϕ

k,m
i,2 (x) . . . ϕ

k,m
i,m−1(x) ϕ

i+1,i
i+1,k

(1)x + ϕ
k,m
i,m (x) ϕ

k,m
i,m+1(x) . . . ϕ

k,m
i,n (x)

0 0 . . . 0 ϕ
i+1,i
i+2,k

(1)x 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ϕ
i+1,i
n,k

(1)x 0 . . . 0



.

Hence

ϕk,m
i,t (x) = 0 [t 6= m] . (ii)

It follows that the matrix ϕ(xek,m) has nonzero entries only on the k-th row, m-th

column and n-th row for x ∈ Ik,m. Now if we combine (i) and (ii), then the image
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of xek,m under ϕ is the matrix with zeros out of k-th row, m-th column and (n, 1)

position. This completes the proof.

Lemma 2.14 Let ϕ be a derivation of the ring R. Then there is a diagonal derivation

δd of R such that (i+1, i)-coe�cient of [ϕ− δd](ei+1,i) is zero for 1 ≤ i < n.

Proof. Let

d =
n∑

i=2

diei,i

be a matrix with di+1 =
i∑

k=1

ck and ck = ϕk+1,k
k+1,k(1). Then

δd(ei+1,i) = dei+1,i − ei+1,id

= di+1ei+1,i − diei+1,i

= ciei+1,i

= ϕi+1,i
i+1,i(1)ei+1,i.

Thus, the (i+ 1, i)-coe�cient of the matrix [ϕ− δd](ei+1,i) is equal to zero for all i.

Lemma 2.15 Let ϕ be a derivation of R such that (i+1,i) coe�cient of the matrix

ϕ(ei+1,i) is zero for i = 1, 2, ..., n − 1. Then there is an inner derivation Ψ satisfying

that [ϕ−Ψ] (ei+1,i) has zero i− th column and (i+ 1, 1) entries.

Proof. Initially, we will see there is an inner derivation ΨA satisfying that

[ϕ−ΨA] (ei+1,i) has nonzero entries only in (i+1, 1) and (n, 1) position for 1 < i < n−1.

Let Ak,k = 0 = Aj,1, Au,i+1 = ϕi+1,i
u,i (1) for u 6= i + 1, 1 < i < n and A be the matrix

[Ai,j]n×n. Clearly A is equal to

0 ϕ2,1
1,1(1) ϕ3,2

1,2(1) . . . ϕn,n−1
1,n−1 (1)

0 0 ϕ3,2
2,2(1) . . . ϕn,n−1

2,n−1 (1)

0 ϕ2,1
3,1(1) 0 . . . ϕn,n−1

3,n−1 (1)

0 ϕ2,1
4,1(1) ϕ3,2

4,2(1) . . . ϕn,n−1
4,n−1 (1)

. . . .

. . . .

. . . .

0 ϕ2,1
n−1,1(1) ϕ3,2

n−1,2(1) . . . ϕn,n−1
n−1,n−1(1)

0 ϕ2,1
n,1(1) ϕ3,2

n,2(1) . . . 0



.
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Consider the action of ΨA on the the matrices ei+1,i. Then ΨA(ei+1,i) = Aei+1,i−ei+1,iA
and this is equal to



0 0 . . . 0 ϕ
i+1,i
1,i (1) 0 . . . 0

0 0 . . . 0 ϕ
i+1,i
2,i (1) 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ϕ
i+1,i
i,i (1) 0 . . . 0

0 −ϕ
2,1
i,1 (1) . . . −ϕ

i−1,i−2
i,i−2 (1) 0 −ϕ

i+1,i
i,i (1) . . . −ϕ

n,n−1
i,n−1 (1)

0 0 . . . 0 ϕ
i+1,i
i+2,i(1) 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ϕ
i+1,i
n,i (1) 0 . . . 0



.

On the other hand, we �nd

0 = ϕ(ei,jek,m) = ϕ(ei,j)ek,m + ei,jϕ(ek,m)

=

[
n∑

s,t=1

ϕi,j
s,t(1)es,t

]
ek,m + ei,j

[
n∑

s,t=1

ϕk,m
s,t (1)es,t

]

=
n∑

s=1

ϕi,j
s,k(1)es,m +

n∑
t=1

ϕk,m
j,t (1)ei,t

for k > m, i > j and j 6= k. Thus

ϕi,j
i,k(1) + ϕk,m

j,m (1) = 0. (iii)

By (iii), it is clear that

[ϕ−ΨA] (ei+1,i) = ϕi+1,i
i+1,1(1)ei+1,1 + ϕi+1,i

n,1 (1)en,1.

Now let Γ = ϕ−ΨA for brevity. Then

Γ(ei+1,i) = Γi+1,i
i+1,1(1)ei+1,1 + Γi+1,i

n,1 (1)en,1 for 1 < i < n− 1.

In particular, Γ(e2,1) = 0. Let

B =



0 0 . . . 0 0

−b3 0 . . . 0 0

. . . .

. . . .

. . . .

−bn 0 . . . 0 0

0 0 . . . 0 0
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where bj+1 = Γj+1,j
j+1,1(1) for 2 < j < n and denote ΨB the inner derivation induced by

the matrix B. In this case it can be easily seen that

ΨB(ei+1,i) = Bei+1,i − ei+1,iB = Γi+1,i
i+1,1(1)ei+1,1 for i = 2, ..., n− 2

and this completes the proof.

Let Π = ϕ−ΨA −ΨB for brevity. Obviously Π(e2,1) = 0 = Π(en,n−1).

Lemma 2.16 There exists an annihilator derivation Ω such that (n, 1) entries of

[Π− Ω] (ye1,n) and [Π− Ω] (xei+1,i) are zeros where y ∈ J and x ∈ K.

Proof. Firstly, we want to show that the additive mappings Πi+1,i
n,1 satisfy the conditions

of an annihilator derivation. (n, 1) entry of the relation

Π(xye2,1) = Π(xe2,1ye1,1)

= Π(xe2,1)ye1,1 + xe2,1Π(ye1,1)

gives Π2,1
n,1(xy) = Π2,1

n,1(x)y and Π2,1
n,1(y) = Π2,1

n,1(1)y = 0 for x = 1 considering that

Π(e2,1) = 0. Hence Π2,1
n,1(J) = 0 and Π2,1

n,1(xy) = Π2,1
n,1(x)y = 0. Moreover, we have

0 = Πn,n
n,2 (y)x+ yΠ2,1

n,1(x) by (n, 1) coe�cient of the relation

0 = Π(yen,nxe2,1)

= Π(yen,n)xe2,1 + yen,nΠ(xe2,1)

and since Π(e2,1) = 0, we get Πn,n
n,2 (y) = 0 while x = 1. This implies yΠ2,1

n,1(x) = 0.

Consequently, we have Π2,1
n,1 : K −→ AnnK(J). Besides, we get Πn,n−1

n,1 (J) = 0 by

Π(en,n−1) = 0 and yΠn,n−1
n,1 (x) = 0 by (n, 1)− th coe�cient of the relation

Π(yxen,n−1) = Π(yen,nxen,n−1)

= Π(yen,n)xen,n−1 + yen,nΠ(xen,n−1).

Forasmuch as Π(en,n−1) = 0, we have Π1,1
n−1,1(y) = 0 and it follows Πn,n−1

n,1 (x)y = 0 by

(n, 1)− th coe�cient of the relation

0 = Π(xen,n−1ye1,1)

= Π(xen,n−1)ye1,1 + xen,n−1Π(ye1,1).

23



In addition, for 1 < i < n−1, it is obtained Πi+1,i
n,1 (x)y = 0 and yΠi+1,i

n,1 (x) = 0 by (n, n)

and (1, 1)− th coe�cients of the relations

0 = Π(xei+1,iye1,n)

= Π(xei+1,i)ye1,n + xei+1,iΠ(ye1,n)

and

0 = Π(ye1,nxei+1,i)

= Π(ye1,n)xei+1,,i + ye1,nΠ(xei+1,i),

respectively. In that (n, 1)− th coe�cient of the relation

Π(xyei+1,i) = Π(xei+1,iyei,i)

= Π(xei+1,i)yei,i + xei+1,iΠ(yei,i)

is zero, we have Πi+1,i
n,1 (J) = 0.

Secondly, (n, 1)− th coe�cient of the relation

Π(yze1,n) = Π(ye1,2ze2,n)

= Π(ye1,2)ze2,n + ye1,2Π(ze2,n)

gives Π1,n
n,1(J

2) = 0 and (n, 1)− th coe�cients of the relations

0 = Π(ye1,nze1,1)

= Π(ye1,n)ze1,1 + ye1,nΠ(ze1,1),

0 = Π(yen,nze1,n)

= Π(yen,n)ze1,n + yen,nΠ(ze1,n)

give Π1,n
n,1 : J → AnnK(J).

Finally,

Ω : R → Ann(R)

[xi,j] →
(

n−1∑
i=1

Πi+1,i
n,1 (xi+1,i) + Π1,n

n,1(x1,n)

)
en,1

is the desired annihilator derivation of R and [Π− Ω] (ei+1,i) = 0.
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Let Ξ = Π− Ω for brevity. Now consider the relations

0 = Ξ(xei+1,iej+1,j) (i 6= j + 1)

= Ξ(xei+1,i)ej+1,j + xei+1,iΞ(ej+1,j)

= Ξ(xei+1,i)ej+1,j

=
n∑

s=1

Ξi+1,i
s,j+1(x)es,j,

0 = Ξ(eu+1,uxei+1,i) (i+ 1 6= u)

= Ξ(eu+1,u)xei+1,i + eu+1,uΞ(xei+1,i)

= eu+1,uΞ(xei+1,i)

=
n∑

t=1

Ξi+1,i
u,t (x)eu+1,t,

0 = Ξ(ye1,nev+1,v) (v < n− 1)

= Ξ(ye1,n)ev+1,v + ye1,nΞ(ev+1,v)

= Ξ(ye1,n)ev+1,v

=
n∑

s=1

Ξ1,n
s,v+1(y)es,v

and

0 = Ξ(ea+1,aye1,n) (a 6= 1)

= Ξ(ea+1,a)ye1,n + ea+1,aΞ(ye1,n)

= ea+1,aΞ(ye1,n)

=
n∑

t=1

Ξ1,n
a,t (y)ea+1,t.

It follows that (j+1)− th column of Ξ(xei+1,i) is zero for i 6= j+1 where j < n, u− th

row of Ξ(xei+1,i) is zero for u 6= i+1 where u < n, (v+1)−th column of Ξ(ye1,n) is zero

for v < n−1 and a− th row of Ξ(ye1,n) is zero for 1 < a < n. That means Ξ(xei+1,i) is

zero except its (i+1, 1), (i+1, i), (n, i) coe�cients and Ξ(ye1,n) is zero except its (1, 1),

(1, n), (n, n) coe�cients. In other words, Ξ(xei+1,i) = Ξi+1,i
i+1,1(x)ei+1,1 + Ξi+1,i

i+1,i(x)ei+1,i +

Ξi+1,i
n,i (x)en,i for 1 < i < n− 1 and Ξ(ye1,n) = Ξ1,n

1,1 (y)e1,1 + Ξ1,n
1,n(y)e1,n + Ξ1,n

n,n(y)en,n. In

particular, Ξ(xe2,1) = Ξ2,1
2,1(x)e2,1 and Ξ(xen,n−1) = Ξn,n−1

n,n−1(x)en,n−1.
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Lemma 2.17 There exists an almost annihilator derivation ∆ such that (1, 1), (n, n)

coe�cients of [Ξ−∆] (ye1,n), (n, j) coe�cient of [Ξ−∆] (ye1,j) and (i, 1) coe�cient

of [Ξ−∆] (yei,n) are zeros where y ∈ J, 1 < i and j < n.

Proof. We need to show that the conditions of an almost annihilator derivation are

satis�ed. If 1 < i ≤ n, x ∈ K and y ∈ J, then we get Ξ1,n
1,1 (xy) = xΞ1,n

1,1 (y) and

Ξi,n
i,1 = Ξ1,n

1,1 for x = 1 by (i, 1)− th coe�cient of the relation

Ξ(xyei,n) = Ξ(xei,1ye1,n)

= Ξ(xei,1)ye1,n + xei,1Ξ(ye1,n).

In addition, if 1 ≤ i < n, x ∈ K and y ∈ J, then it is obtained Ξ1,n
n,n(yx) = Ξ1,n

n,n(y)x

and Ξ1,i
n,i = Ξ1,n

n,n for x = 1 by the (n, i)− th coe�cient of the relation

Ξ(yxe1,i) = Ξ(ye1,nxen,i)

= Ξ(ye1,n)xen,i + ye1,nΞ(xen,i).

Say λ := Ξi,n
i,1 = Ξ1,n

1,1 and µ := Ξ1,n
n,n = Ξ1,j

n,j. Then the following map is an almost

annihilator derivation of R;

∆ : R → R

ye1,n → λ(y)e1,1 + µ(y)en,n

ye1,j → µ(y)en,j (j < n)

yei,n → λ(y)ei,1 (i > 1)

xi,jei,j → 0 (i > 1 and j < n).

Let ξ := Ξ−∆ for brevity. By comparing the relations

ξ(xei+1,i−1) = ξ(xei+1,iei,i−1)

= ξ(xei+1,i)ei,i−1 + xei+1,iξ(xei,i−1)

= ξ(xei+1,i)ei,i−1

= ξi+1,i
i+1,i(x)ei+1,i−1 + ξi+1,i

n,i (x)en,i−1
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and

ξ(xei+1,i−1) = ξ(ei+1,ixei,i−1)

= ξ(ei+1,i)xei,i−1 + ei+1,iξ(xei,i−1)

= ei+1,iξ(xei,i−1)

= ξi,i−1i,1 (x)ei+1,1 + ξi,i−1i,i−1(x)ei+1,i−1 ,

it can be obtained ξi+1,i
i+1,1 = 0, ξi+1,i

n,i = 0 and one can see that ξ(xei+1,i) = ξi+1,i
i+1,i(x)ei+1,i.

Lemma 2.18 There exists a ring derivation θ̄ such that θ̄ = ξ.

Proof.We �rst need to show ξi,ji,j is a derivation of the coe�cient ring. Since ξ(xei+1,i) =

ξi+1,i
i+1,i(x)ei+1,i, clearly ξ(ei+1,i) = 0. So ξ(ei,j) is equal to zero for i > j. By (i,k)

coe�cient of the relation

ξ(xei,k) = ξ(x1ei,jx2ej,k)

= ξ(x1ei,j)x2ej,k + x1ei,jξ(x2ej,k) ,

we have ξi,ki,k(x1x2) = ξi,ji,j (x1)x2 + x1ξ
j,k
j,k(x2) for i > j > k and ξi,ki,k = ξi,ji,j = ξj,kj,k as

ξ(ei,k), ξ(ei,j), ξ(ej,k) are all zeros. This means ξu,vu,v = ξs,ts,t are derivations for all u > v

and s > t. On the other hand, we have ξi,1i,1 = ξi,ji,j for y ∈ J and i ≤ j by (i, 1) coe�cient

of the relation

ξ(yei,1) = ξ(yei,jej,1)

= ξ(yei,j)ej,1 + yei,jξ(ei,1)

= ξ(yei,j)ej,1.

This means ξu,vu,v = ξs,ts,t for all u ≤ v and s ≤ t because ξi,1i,1 = ξj,1j,1 for all i, j. Now it

is easy to see that ξi,ji,j = ξk,mk,m are all derivations for any i, j, k,m. Say θ := ξi,ji,j for

all 1 ≤ i, j ≤ n. Now
(
ξ − θ

)
(xei+1,i) = 0 and

(
ξ − θ

)
(ye1,n) = 0 where θ is a ring

derivation of R such that θ(A) =
n∑

i,j=1

θ(ai,j)ei,j, A = [ai,j] ∈ R. Considering that

any element xei,j can be written as xei,j = x
i−j−1∏
k=0

ei−k,i−k−1 for i > j and yei,j =

i−2∏
k=0

ei−k,i−k−1ye1,n
n−j−1∏
k=0

en−k,n−k−1 for i ≤ j where x ∈ K, y ∈ J, the map ξ− θ is equal

to zero. This completes the proof.
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We showed that any derivation ϕ of Rn(K, J) can be written as a sum of a certain

diagonal derivation δd, an inner derivation Ψ, an almost annihilator derivation Ω, an

annihilator derivation ∆ and a ring derivation θ̄, i.e.

ϕ = δd + Ψ + Ω + ∆ + θ̄.

If n=2, we �rst consider the action of ϕ on the relations

ye1,1e2,1 = 0 , xe2,1e2,1 = 0, e2,1ye2,2 = 0 (x ∈ K, y ∈ J)

and we obtain ϕ1,1
2,2 = 0 by (2,1) coe�cient of the relation 0 = ϕ(ye1,1e2,1) = ϕ(ye1,1)e2,1

+ ye1,1ϕ(e2,1), ϕ
2,1
1,2 = 0, by (1,1) coe�cient of 0 = ϕ(xe2,1e2,1) = ϕ(xe2,1)e2,1 +

xe2,1ϕ(e2,1) and ϕ2,2
1,1 = 0 by (2,1) coe�cient of 0 = ϕ(e2,1ye2,2) = ϕ(e2,1)ye2,2 +

e2,1ϕ(ye2,2). Then we have

ϕ(ye1,1) = ϕ1,1
1,1(y)e1,1 + ϕ1,1

1,2(y)e1,2 + ϕ1,1
2,1(y)e2,1 ,

ϕ(xe2,1) = ϕ2,1
1,1(x)e1,1 + ϕ2,1

2,1(x)e2,1 + ϕ2,1
2,2(x)e2,2 ,

ϕ(ye2,2) = ϕ2,2
1,2(y)e1,2 + ϕ2,2

2,1(y)e2,1 + ϕ2,2
2,2(y)e2,2.

Now let d = ϕ2,1
2,1(1)e2,2 be a diagonal matrix and A = ϕ2,1

1,1(1)e1,2 ∈ R2(K, J). Then

we �nd

(ϕ− δd −ΨA) (e2,1) = 0

where δd is the diagonal derivation induced by the diagonal matrix d and ΨA is the inner

derivation induced by the matrix A since δd(e2,1) = ϕ2,1
2,1(1)e2,2e2,1 − e2,1ϕ

2,1
2,1(1)e2,2 =

ϕ2,1
2,1(1)e2,1, ΨA(e2,1) = ϕ2,1

1,1(1)e1,2e2,1 − e2,1ϕ
2,1
1,1(1)e1,2 = ϕ2,1

1,1(1)e1,1 − ϕ2,1
1,1(1)e2,2 and

ϕ2,1
2,2(1) + ϕ2,1

1,1(1) = 0 by (2,1) coe�cient of the relation ϕ(e2,1e2,1) = 0.

Let ϕ − δd − ΨA = Π. For x, x1, x2 ∈ K and y ∈ J, the relations Π(ye1,1e2,1) = 0,

Π(x1e2,1x2e2,1) = 0, Π(e2,1ye2,2) = 0 give

Π(ye1,1) = Π1,1
1,1(y)e1,1 + Π1,1

2,1(y)e2,1 ,

Π(ye1,2) = Π1,2
1,1(y)e1,1 + Π1,2

1,2(y)e1,2 + Π1,2
2,1(y)e2,1 + Π1,2

2,2(y)e2,2 ,

Π(xe2,1) = Π2,1
2,1(x)e2,1 ,

Π(ye2,2) = Π2,2
2,1(y)e2,1 + Π2,2

2,2(y)e2,2 .
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On the other hand, we get Π1,1
2,1(yx) = Π1,2

2,2(y)x, Π1,2
2,2 = Π1,1

2,1, Π2,2
2,1(xy) = xΠ1,2

1,1(y)

and Π1,2
1,1 = Π2,2

2,1 by (2,1) coe�cients of the relations Π(ye1,2xe2,1) = Π(yxe1,1) and

Π(xe2,1ye1,2) = Π(xye2,2). In addition, (1,1) and (2,2) coe�cients of the relation 0 =

Π(ye1,2ze1,2) = Π(ye1,2)ze1,2 + ye1,2Π(ze1,2) gives Π1,2
2,1 : J → AnnK(J). Besides, we

have Π1,2
2,1(J

2) = 0 by (2,1) coe�cient of the relation Π(yze1,2) = Π(ye1,1ze1,2) =

Π(ye1,1)ze1,2 + ye1,1Π(ze1,2). Furthermore, we obtain Π1,2
1,1(y)z + yΠ1,2

2,2(z) = 0 by (1,2)

coe�cient of 0 = Π(ye1,2ze1,2) = Π(ye1,2)ze1,2+ye1,2Π(ze1,2). Put λ = Π1,2
1,1 = Π2,2

2,1, µ =

Π1,2
2,2 = Π1,1

2,1, σ = Π1,2
2,1. Then all conditions of almost annihilator derivation are satis�ed

and the map

∆ : R2(K, J) → R2(K, J)

ye1,2 → λ(y)e1,1 + µ(y)e2,2 + σ(y)e2,1

ye1,1 → µ(y)e2,1

ye2,2 → λ(y)e2,1

xe2,1 → 0

becomes an almost annihilator derivation of R2(K, J). Let ξ = Π−∆. Then ξ(xi,jei,j) =

ξi,ji,j (xi,j)ei,j. For x ∈ K and y ∈ J, the relations ξ(xe2,1ye1,1) = ξ(xye2,1), ξ(ye2,2xe2,1) =

ξ(yxe2,1), ξ(xe2,1ye1,2) = ξ(xye2,2) give θ = ξ1,11,1 = ξ2,12,1 = ξ1,21,2 = ξ2,22,2 , ξ
2,1
2,1(xy) =

ξ2,12,1(x)y + xξ2,12,1(y) and ξ2,12,1(yx) = ξ2,12,1(y)x + yξ2,12,1(x). Then θ̄ : [xi,j] → [θ(xi,j)] is a

(K+, J)- ring derivation since θ(1) = ξ2,12,1(1) = 0 and �nally ξ− θ̄ = 0. This means any

derivation ϕ of R2(K, J) can be written as a sum of a certain diagonal derivation δd,

an inner derivation ΨA, an almost annihilator derivation ∆ and a ring derivation θ̄ of

R2(K, J), i.e.

ϕ = δd + ΨA + ∆ + θ̄.

Some part of this section of this thesis is published in 2017 (see [23]).

29



3 JORDAN DERIVATIONS OF THE RING Rn(K, J)

In this section, we describe all Jordan derivations of the ring Rn(K, J). An additive

map d : K −→ K is a Jordan derivation if it satis�es

d(r ◦ s) = d(rs+ sr) = d(r)s+ sd(r) + rd(s) + d(s)r

for arbitrary elements r, s ∈ K where r ◦ s = rs+ sr. Jordan derivations of some rings

and algebras have been studied by some researchers ([24],[25],[26],[27],[28],[29]).

Derivations are examples of Jordan derivations and often it turns out that they are

actually the only possible examples. However, there exist Jordan derivations which are

not derivations. An example of non-trivial Jordan derivation is given as follows:

Example 3.1 Let S = C[x] with the relation x2 = 0 and let I = Cx. Obviously I is

an ideal of S as x2 = 0. Now let R̄ =


x y

z w

 : x, y, w ∈ S, z ∈ I

 . Obviously R̄

is a ring with matrix addition and multiplication. For any t =

x y

z w

 ∈ R̄, de�ne

δ(t) =

0 z

0 0

 . Then δ is not a derivation but a Jordan derivation of R̄. In order to

see that, we need to show δ is additive,

δ (q ◦ q′) = δ (q) ◦ q′ + q ◦ δ(q′)

= δ(q)q
′
+ q

′
δ(q) + qδ(q

′
) + δ(q

′
)q

holds and δ
(
qq
′) 6= δ(q)q

′
+ qδ(q

′
) for any q =

x y

z w

 , q′ =

x′ y′

z′ w′

 ∈ R̄.
First of all, δ is clearly additive, S is commutative and I2 = 0 by de�nition. Two
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relations

δ

x y

z w

 ◦
x′ y′

z′ w′

 = δ

x y

z w

x′ y′

z′ w′

+

x′ y′

z′ w′

x y

z w


= δ

x y

z w

x′ y′

z′ w′

+ δ

x′ y′

z′ w′

x y

z w


= δ

xx′ + yz′ xy′ + yw′

zx
′
+ wz

′
zy′ + ww′


+ δ

x′x+ y′z x′y + y′w

z′x+ w′z z′y + w′w


=

0 zx
′
+ wz

′

0 0

+

0 z′x+ w′z

0 0


=

0 zx
′
+ wz

′
+ z′x+ w′z

0 0


and

δ

x y

z w

x′ y′

z′ w′

+

x′ y′

z′ w′

 δ
x y

z w


+

x y

z w

 δ
x′ y′

z′ w′

+ δ

x′ y′

z′ w′

x y

z w


=

0 z

0 0

x′ y′

z′ w′

+

x′ y′

z′ w′

0 z

0 0


+

x y

z w

0 z′

0 0

+

0 z′

0 0

x y

z w


=

zz′ zw′

0 0

+

0 x′z

0 z′z

+

0 xz′

0 zz′

+

z′z z′w

0 0


=

0 zw′ + x′z + xz′ + z′w

0 0

 (zz′, z′z ∈ I2 = 0)

are clearly equal and we get δ(q ◦ q′) = δ (q) q′ + q′δ(q) + qδ(q′) + δ(q′)q. It means δ is
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a Jordan derivation. On the other hand,

δ

x y

z w

x′ y′

z′ w′

 = δ

xx′ + yz′ xy′ + yw′

zx′ + wz′ zy′ + ww′


=

0 zx′ + wz′

0 0


and

δ

x y

z w

x′ y′

z′ w′

+

x y

z w

 δ
x′ y′

z′ w′

 =

0 z

0 0

x′ y′

z′ w′


+

x y

z w

0 z′

0 0


=

zz′ zw′

0 0

+

0 xz′

0 zz′


=

0 zw′ + xz′

0 0


as zz′ and z′z are elements in I2 = 0. Then δ(qq′) and δ(q)q′ + qδ(q′) are obviously

di�erent from each other and this means δ is not a derivation.

Let NTn(K) be the ring of all (lower) niltriangular n × n matrices over any asso-

ciative ring with identity whose entries are all zeros on and above the main diagonal.

The following is an example of a Jordan derivation of NTn(K) that is not a derivation

of the same ring.

Example 3.2 [28] Let a, b, x ∈ K such that aK2 = 0 = b(K ◦ K). Then the map

τ : xe2,1 → bxen,2 + axen,3, xe3,1 → axen,2 is a Jordan derivation but not a derivation

of NTn(K) for n > 3. To see that τ is a Jordan derivation, we need to show τ is additive

and τ(S◦T ) = τ(S)◦T+S◦τ(T ) for arbitrary matrices [si,j] = S, [ti,j] = T ∈ NTn(K).
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τ is additive because

τ(S + T ) = τ([si,j] + [ti,j])

= τ([si,j + ti,j])

= b(s2,1 + t2,1)en,2 + a(s2,1 + t2,1)en,3 + a(s3,1 + t3,1)en,2

= bs2,1en,2 + bt2,1en,2 + as2,1en,3 + at2,1en,3 + as3,1en,2 + at3,1en,2

= bs2,1en,2 + as2,1en,3 + as3,1en,2 + bt2,1en,2 + as2,1en,3 + at3,1en,2

= τ(S) + τ(T ).

In addition,

τ(S ◦ T ) = τ(ST + TS)

= b
∑
k

s2,ktk,1en,2 + a
∑
k

s2,ktk,1en,3 + a
∑
k

s3,ktk,1en,2

+ b
∑
k

t2,ksk,1en,2 + a
∑
k

t2,ksk,1en,3 + a
∑
k

t3,ksk,1en,2

= a(s3,2t2,1 + t3,2s2,1)en,2 (si,j = ti,j = 0 if i ≤ j)

= 0
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and

τ(S) ◦ T + S ◦ τ(T ) = τ(S)T + Tτ(S) + Sτ(T ) + τ(T )S

= (bs2,1en,2 + as2,1en,3 + as3,1en,2)T

+ T (bs2,1en,2 + as2,1en,3 + as3,1en,2)

+ S (bt2,1en,2 + at2,1en,3 + at3,1en,2)

+ (bt2,1en,2 + at2,1en,3 + at3,1en,2)S

=
∑
k

bs2,1t2,ken,k +
∑
k

as2,1t3,ken,k +
∑
k

as3,1t2,ken,k

+
∑
k

tk,nbs2,1ek,2 +
∑
k

tk,nas2,1ek,3 +
∑
k

tk,nas3,1ek,2

+
∑
k

sk,nbt2,1ek,2 +
∑
k

sk,nat2,1ek,3 +
∑
k

sk,nat3,1ek,2

+
∑
k

bt2,1s2,ken,k +
∑
k

at2,1s3,ken,k +
∑
k

at3,1s2,ken,k

= bs2,1t2,1en,1 + as2,1t3,1en,1 + as2,1t3,2en,2 + as3,1t2,1en,1

+ bt2,1s2,1en,1 + at2,1s3,1en,1 + at2,1s3,2en,2 + at3,1s2,1en,1

= b(s2,1t2,1 + t2,1s2,1)en,1 (aK2 = 0)

= 0.

This means τ is a Jordan derivataion forasmuch as τ(S ◦ T ) = τ(S) ◦ T + S ◦ τ(T ).

However, τ is not a derivation as the right sides of the equalities

τ(ST ) = b
∑
k

s2,ktk,1en,2 + a
∑
k

s2,ktk,1en,3 + a
∑
k

s3,ktk,1en,2

= 0 (aK2 = 0 and si,j = yi,j = 0 for i ≤ j)

and

τ(S)T + Sτ(T ) = (bs2,1en,2 + as2,1en,3 + as3,1en,2)T

+ S (bt2,1en,2 + at2,1en,3 + at3,1en,2)

=
∑
k

bs2,1t2,ken,k +
∑
k

as2,1t3,ken,k +
∑
k

as3,1t2,ken,k

+
∑
k

sk,nbt2,1ek,2 +
∑
k

sk,nat2,1ek,3 +
∑
k

sk,nat3,1ek,2

= bs2,1t2,1en,1 (aK2 = 0 and si,j = yi,j = 0 for i ≤ j)

are di�erent from each other.
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The following is another example of a Jordan derivation of NTn(K) that is not a

derivation of the same ring.

Example 3.3 [28] Let K be an associative ring and c, d, x ∈ K such that (K ◦K)c =

0 = K2d. Then the map ω : xen,n−1 → xcen−1,1 + xden−2,1, xen,n−2 → xden−1,1 is a

Jordan derivation but not a derivation of NTn(K) for n > 3. So as to see that ω is a

Jordan derivation, we need to show ω is additive and ω(S ◦ T ) = ω(S) ◦ T + S ◦ ω(T )

for arbitrary matrices [si,j] = S, [ti,j] = T ∈ NTn(K).

ω : NTn(K)→ NTn(K) is additive:

ω(S + T ) = ω([si,j] + [ti,j])

= ω([si,j + ti,j])

= (sn,n−1 + tn,n−1)cen−1,1 + (sn,n−1 + tn,n−1)den−2,1

+ (sn,n−2 + tn,n−2)den−1,1

= sn,n−1cen−1,1 + tn,n−1cen−1,1 + sn,n−1den−2,1

+ tn,n−1den−2,1 + sn,n−2den−1,1 + tn,n−2den−1,1

= sn,n−1cen−1,1 + sn,n−1den−2,1 + sn,n−2den−1,1

+ tn,n−1cen−1,1 + tn,n−1den−2,1 + tn,n−2den−1,1

= ω(S) + ω(T ).

ω is a Jordan derivation since two relations

ω(S ◦ T ) = ω(ST + TS)

= ω(ST ) + ω(TS)

=
∑
k

sn,ktk,n−1cen−1,1 +
∑
k

sn,ktk,n−1den−2,1

+
∑
k

sn,ktk,n−2den−1,1 +
∑
k

tn,ksk,n−1cen−1,1

+
∑
k

tn,ksk,n−1den−2,1 +
∑
k

tn,ksk,n−2den−1,1

= 0 (K2d = 0, si,j = ti,j = 0 for i ≤ j)
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and

ω(S) ◦ T + S ◦ ω(T ) = ω(S)T + Tω(S) + Sω(T ) + ω(T )S

= (sn,n−1cen−1,1 + sn,n−1den−2,1 + sn,n−2den−1,1)T

+ T (sn,n−1cen−1,1 + sn,n−1den−2,1 + sn,n−2den−1,1)

+ S(tn,n−1cen−1,1 + tn,n−1den−2,1 + tn,n−2den−1,1)

+ (tn,n−1cen−1,1 + tn,n−1den−2,1 + tn,n−2den−1,1)S

=
∑
k

sn,n−1ct1,ken−1,k +
∑
k

sn,n−1dt1,ken−2,k

+
∑
k

sn,n−2dt1,ken−1,k +
∑
k

tk,n−1sn,n−1cek,1

+
∑
k

tk,n−2sn,n−1dek,1 +
∑
k

tk,n−1sn,n−2dek,1

+
∑
k

sk,n−1tn,n−1cek,1 +
∑
k

sk,n−2tn,n−1dek,1

+
∑
k

sk,n−1tn,n−2dek,1 +
∑
k

tn,n−1cs1,ken−1,k

+
∑
k

tn,n−1ds1,ken−2,k +
∑
k

tn,n−2ds1,ken−1,k

= (tn,n−1sn,n−1 + sn,n−1tn,n−1)cen,1 (K2d = 0)

= (tn,n−1 ◦ sn,n−1)cen,1

= 0 ((K ◦K)c = 0).

are equal to each other. But it is not a derivation since two equalities are distinct from

each other:

ω(ST ) =
∑
k

sn,ktk,n−1cen−1,1 +
∑
k

sn,ktk,n−1den−2,1

+
∑
k

sn,ktk,n−2den−1,1

= 0 (K2d = 0 and si,j = ti,j = 0 for i ≤ j),
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ω(S)T + Sω(T ) = (sn,n−1cen−1,1 + sn,n−1den−2,1 + sn,n−2den−1,1)S

+ S(tn,n−1cen−1,1 + tn,n−1den−2,1 + tn,n−2den−1,1)

=
∑
k

sn,n−1ct1,ken−1,k +
∑
k

sn,n−1dt1,ken−2,k

+
∑
k

sn,n−2dt1,ken−1,k +
∑
k

sk,n−1tn,n−1cek,1

+
∑
k

sk,n−2tn,n−1dek,1 +
∑
k

sk,n−1tn,n−2dek,1

= sn,n−1tn,n−1cen,1 (K2d = 0 and si,j = ti,j = 0 for i ≤ j).

The following is an example of a Jordan derivation of NT3(K) that is not a deriva-

tion of the same ring.

Example 3.4 [28] Let ρ be an additive map of a ring K with ρ : xe2,1 → axe3,2 where

a(K ◦K) = 0. Then ρ is a Jordan derivation but not a derivation of NT3(K).

To see that, choose arbitrary matrices S, T ∈ NT3(K). Then ρ is a Jordan derivation

of NT3(K) because the right sides of the equalities

ρ(S ◦ T ) = ρ(ST + TS)

= ρ(ST ) + ρ(TS)

= a
∑
k

s2,ktk,1e3,2 + a
∑
k

t2,ksk,1e3,2

= 0 (si,j = ti,j = 0 for i ≤ j)

and

ρ(S) ◦ T + S ◦ ρ(T ) = ρ(S)T + Tρ(S) + Sρ(T ) + ρ(T )S

= as2,1e3,2T + Tas2,1e3,2 + Sat2,1e3,2 + at2,1e3,2S

=
∑
k

as2,1t2,ke3,k +
∑
k

tk,3as2,1ek,2

+
∑
k

sk,3at2,1ek,2 +
∑
k

at2,1s2,ke3,k

= as2,1t2,1e3,1 + at2,1s2,1e3,1 (si,j = ti,j = 0 for i ≤ j)

= a(s2,1 ◦ t2,1)e3,1

= 0 (a(K ◦K) = 0),
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are equal. However, ρ is not a derivation of NT3(K) = 0 as a result of that the right

sides of the equalities

ρ(ST ) = a
∑
k

s2,ktk,1e3,2

= 0 (si,j = ti,j = 0 for i ≤ j)

and

ρ(S)T + Sρ(T ) = as2,1e3,2T + Sat2,1e3,2

=
∑
k

as2,1t2,ke3,k +
∑
k

sk,3at2,1ek,2

= as2,1t2,1e3,1 (si,j = ti,j = 0 for i ≤ j)

are di�erent from each other.

The following is another example of a Jordan derivation of NT3(K) that is not a

derivation of the same ring.

Example 3.5 [28] The additive map ρ̄ : xe3,2 → axe2,1 of K is a Jordan derivation

but not a derivation of NT3(K) if ras+ sar = 0 for all r, s ∈ K :

Let S and T be arbitrary elements of NT3(K). Then ρ̄ is a Jordan derivation because

the right sides of the equalities

ρ̄(S ◦ T ) = ρ̄(ST + TS)

= ρ̄(ST ) + ρ̄(TS)

= a
∑
k

s3,ktk,2e2,1 + a
∑
k

t3,ksk,2e2,1

= 0 (si,j = ti,j = 0 for i ≤ j)

and

ρ̄(S) ◦ T + S ◦ ρ̄(T ) = ρ̄(S)T + T ρ̄(S) + Sρ̄(T ) + ρ̄(T )S

= as3,2e2,1T + Tas3,2e2,1 + Sat3,2e2,1 + at3,2e2,1S

=
∑
k

as3,2t1,ke2,k +
∑
k

tk,2as3,2ek,1

+
∑
k

sk,2at3,2ek,1 +
∑
k

at3,2s1,ke2,k

= (t3,2as3,2 + s3,2at3,2)e3,1 (si,j = ti,j = 0 for i ≤ j)

= 0 (ras+ sar = 0)
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are equal to each other. But ρ̄ is not a derivation of NT3(K) since ρ̄(ST ) 6= ρ̄(S)T +

Sρ̄(T ) by

ρ̄(ST ) = a
∑
k

s3,ktk,2e2,1

= 0 (si,j = ti,j = 0 for i ≤ j)

and

ρ̄(S)T + Sρ̄(T ) = as3,2e2,1T + Sat3,2e2,1

=
∑
k

as3,2t1,ke2,k +
∑
k

sk,2at3,2ek,1

= s3,2at3,2e3,1 (si,j = ti,j = 0 for i ≤ j).

De�nition 3.6 A 2-torsion free ring K is a ring with the property that 2x = 0 implies

x = 0 for x ∈ K.

It is clear that any �eld of characteristic not 2 is 2-torsion free, moreover, M2(Z) is

2-torsion free as well since Z is 2-torsion free.

If d is a Jordan derivation of a 2-torsion free ring K then the following equalities

hold where r and s are arbitrary elements of K.

i) d(r2) = d(r)r + rd(r)

ii) d(rsr) = d(r)sr + rd(s)r + rsd(r).

A ring K is called prime if and only if aKb = 0 implies a = 0 or b = 0 where

a, b ∈ K.

In 1957, Herstein proved the theorem given below:

Theorem 3.7 [27, Theorem 3.1] Every Jordan derivation of a prime ring of charac-

teristic di�erent from 2 is an ordinary derivation.
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Taking into account that K is 2-torsion free in this section, a useful proposition can

be given:

Proposition 3.8 Let K be a 2-torsion free ring, d : K → K be an additive map and

k be an arbitrary element of K. Then d is a Jordan derivation of K if and only if

d(k2) = d(k)k + kd(k).

Proof. Let K be a 2-torsion free ring, d be a Jordan derivation of K and k ∈ K.

Forasmuch as

2d(k2) = d(2k2)

= d(kk + kk)

= d(k ◦ k)

= d(k)k + kd(k) + kd(k) + d(k)k

= 2(d(k)k + kd(k))

one can deduce that 2 {d(k2)− [d(k)k + kd(k)]} = 0. Then, as K is a 2-torsion free

ring, it is obtained d(k2) = d(k)k + kd(k).

Now let d be an additive map of K satisfying d(k2) = d(k)k + kd(k) for all k ∈ K

and s, v be arbitrary elements of K. In that right sides of the equations

d
[
(s+ v)2

]
= d(s2 + sv + vs+ v2)

= d(s2) + d(sv) + d(vs) + d(v2)

= d(s)s+ sd(s) + d(sv) + d(vs) + d(v)v + vd(v)

and

d
[
(s+ v)2

]
= d(s+ v).(s+ v) + (s+ v).d(s+ v)

= [d(s) + d(v)] (s+ v) + (s+ v) [d(s) + d(v)]

= d(s)s+ d(s)v + d(v)s+ d(v)v

+ vd(s) + sd(v) + vd(s) + vd(v)

are equal, we get d(sv+ vs) = d(s)v+ d(v)s+ sd(v) + vd(s) which means d is a Jordan

derivation of K.

Besides, we have the following property for Jordan derivations of 2-torsion free rings.
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Proposition 3.9 If K is a 2-torsion free ring and d is a Jordan derivation of K, then

d(wtw) = d(w)tw + wd(t)w + wtd(w) for all w, t ∈ K.

Proof. Let d : K → K be a Jordan derivation and w, t be arbitrary elements of K. By

the relations

d(w ◦ (w ◦ t)) = d(w) ◦ (w ◦ t) + w ◦ d(w ◦ t)

= d(w) ◦ (wt+ tw) + w ◦ (d(w) ◦ t+ w ◦ d(t))

= d(w)(wt+ tw) + (wt+ tw)d(w)

+ w ◦ (d(w)t+ td(w) + wd(t) + d(t)w)

= d(w)wt+ d(w)tw + wtd(w) + twd(w)

+ wd(w)t+ wtd(w) + w2d(t) + wd(t)w

+ d(w)tw + td(w)w + wd(t)w + d(t)w2

= 2(d(w)tw + wd(t)w + wtd(w))

+ d(w)wt+ twd(w) + wd(w)t

+ w2d(t) + td(w)w + d(t)w2

and

d(w ◦ (w ◦ t)) = d(w ◦ (wt+ tw))

= d(w2t+ wtw + wtw + tw2)

= d(w2 ◦ t+ 2wtw)

= d(w2 ◦ t) + 2d(wtw)

= d(w2) ◦ t+ w2 ◦ d(t) + 2d(wtw)

= d(w2)t+ td(w2) + w2d(t) + d(t)w2 + 2d(wtw)

= (d(w)w + wd(w))t+ t(d(w)w + wd(w)) (Proposition 3.8)

+ w2d(t) + d(t)w2 + 2d(wtw)

= d(w)wt+ wd(w)t+ td(w)w + twd(w)

+ w2d(t) + d(t)w2 + 2d(wtw)

we get

2d(wtw) = 2(d(w)tw + wd(t)w + wtd(w))
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and

d(wtw) = d(w)tw + wd(t)w + wtd(w)

as K is a 2-torsion free ring.

For many researchers, the usual goal has been to describe the nontrivial Jordan

derivations.

The problem was studied for semi-prime rings (see [30],[25]) and certain algebras of

triangular n× n matrices over a 2-torsion free commutative ring (see [24]). All Jordan

derivations are trivial for semi-prime rings and any algebra of triangular n×n matrices

over a 2-torsion free ring.

In 2011, Kuzucu§lu described the Jordan derivations of NTn(K).

Theorem 3.10 [28] Every Jordan derivation of NTn(K) can be written as a sum of

a derivation and an extremal Jordan derivation.

From now on, we denote a 2-torsion free and associative ring with identity by K

and an ideal of K by J . As it is stated before, we will show that any Jordan derivation

of Rn(K, J) can be written as a sum of a derivation and an extremal Jordan derivation.

Now we de�ne some extremal Jordan derivations as follows:

Proposition 3.11 If the additive maps α, β, γ : J → AnnK(J) satisfy the conditions

i) α(yx) = xα(y)

ii) β(yx) = xβ(y)

iii) β(xy) = β(y)x

iv) γ(xy) = γ(y)x

v) α(J2) = β(J2) = γ(J2) = 0

for x ∈ K and y ∈ J, then the map

Ω : Rn(K, J) −→ Rn(K, J)

ye1,n −→ α(y)en−1,1 + β(y)en−1,2 + γ(y)en,2

ye1,n−1 −→ α(y)en,1 + β(y)en,2

ye2,n−1 −→ β(y)en,1

ye2,n −→ β(y)en−1,1 + γ(y)en,1

xi,jei,j −→ 0 ((i, j) 6= (1, n), (1, n− 1), (2, n− 1), (2, n))
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determines a Jordan derivation of the ring R which will be called an extremal Jordan

derivation.

Proof. LetX and Y be arbitrary elements of R and α, β, γ : J → AnnK(J) be additive

maps satisfying α(yx) = xα(y), β(yx) = xβ(y), β(xy) = β(y)x, γ(xy) = γ(y)x,

α(J2) = 0, β(J2) = 0 and γ(J2) = 0. Then

Ω(X ◦ Y ) = Ω(XY + Y X)

=

[
n∑

k=1

α(x1,kyk,n + y1,kxk,n)

]
en−1,1

+

[
n∑

k=1

β(x1,kyk,n + y1,kxk,n)

]
en−1,2

+

[
n∑

k=1

γ(x1,kyk,n + y1,kxk,n)

]
en,2

+

[
n∑

k=1

α(x1,kyk,n−1 + y1,kxk,n−1)

]
en,1

+

[
n∑

k=1

β(x1,kyk,n−1 + y1,kxk,n−1)

]
en,2

+

[
n∑

k=1

β(x2,kyk,n−1 + y2,kxk,n−1)

]
en,1

+

[
n∑

k=1

β(x2,kyk,n + y2,kxk,n)

]
en−1,1

+

[
n∑

k=1

γ(x2,kyk,n + y2,kxk,n)

]
en,1

= [α(x1,nyn,n−1 + y1,nxn,n−1) + β(x2,1y1,n−1 + y2,1x1,n−1)]en,1

+ [β(x2,nyn,n−1 + y2,nxn,n−1) + γ(x2,1y1,n + y2,1x1,n)]en,1

+ [β(x2,1y1,n + y2,1x1,n)] en−1,1

+ [β(x1,nyn,n−1 + y1,nxn,n−1)] en,2
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considering that α(J2) = 0, β(J2) = 0, γ(J2) = 0. On the other hand

Ω(X) ◦ Y +X ◦ Ω(Y ) = Ω(X)Y + Y Ω(X) +XΩ(Y ) + Ω(Y )X

=

[
n∑

k=1

α(x1,n)y1,k + α(y1,n)x1,k

]
en−1,k

+

[
n∑

k=1

β(x1,n)y2,k + β(y1,n)x2,k

]
en−1,k

+

[
n∑

k=1

γ(x1,n)y2,k + γ(y1,n)x2,k

]
en,k

+

[
n∑

k=1

α(x1,n−1)y1,k + α(y1,n−1)x1,k

]
en,k

+

[
n∑

k=1

β(x1,n−1)y2,k + β(y1,n−1)x2,k

]
en,k

+

[
n∑

k=1

β(x2,n−1)y1,k + β(y2,n−1)x1,k

]
en,k

+

[
n∑

k=1

β(x2,n)y1,k + β(y2,n)x1,k

]
en−1,k

+

[
n∑

k=1

γ(x2,n)y1,k + γ(y2,n)x1,k

]
en,k

= [yn,n−1α(x1,n) + xn,n−1α(y1,n) + β(y1,n−1)x2,1]en,1

+ [β(x1,n−1)y2,1 + yn,n−1β(x2,n) + xn,n−1β(y2,n)]en,1

+ [γ(y1,n)x2,1 + γ(x1,n)y2,1]en,1

+ [β(y1,n)x2,1 + β(x1,n)y2,1] en−1,1

+ [yn,n−1β(x1,n) + xn,n−1β(y1,n)] en,2

since α(J), β(J), γ(J) are all contained in AnnK(J). Now, by considering the conditions

i)− iv), one can easily see that

Ω(X) ◦ Y +X ◦ Ω(Y ) = Ω(X ◦ Y )

which completes the proof.

Example 3.12 Let K1 be a commutative ring with identity and let J1 be an ideal of

K1 which is nilpotent of class two. If K = K1 ×K1 and J = J1 × J1 is an ideal of K,
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then the maps

α : J → AnnK(J)

: (a, b)→ (a, 0)

β : J → AnnK(J)

: (a, b)→ (0, b)

γ : J → AnnK(J)

: (a, b)→ (a, b)

are all additive and satisfy all the conditions i)-v). This means

Ω : Rn(K, J) −→ Rn(K, J)

ye1,n −→ α(y)en−1,1 + β(y)en−1,2 + γ(y)en,2

ye1,n−1 −→ α(y)en,1 + β(y)en,2

ye2,n−1 −→ β(y)en,1

ye2,n −→ β(y)en−1,1 + γ(y)en,1

xi,jei,j −→ 0 ((i, j) 6= (1, n), (1, n− 1), (2, n− 1), (2, n))

is a Jordan derivation of Rn(K, J).

Proposition 3.13 If additive maps α1, α2 : J → AnnK(J) satisfy the conditions

i) α1(xy) = α1(y)x

ii) α2(yx) = xα2(y)

iii) α1(J
2) = 0 = α2(J

2)

for x ∈ K and y ∈ J, then the map

z : R3(K, J) → R3(K, J)

ye1,3 → α1(y)e3,2 + α2(y)e2,1

ye1,2 → α2(y)e3,1

ye2,3 → α1(y)e3,1

xi,jei,j → 0 ((i, j) 6= (1, 2), (1, 3), (2, 3))

determines a Jordan derivation which will be called an extremal Jordan derivation as

well.
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Proof. Let P = [pi,j] and Q = [qi,j] be arbitrary matrices in R3(K, J) and α1, α2 : J →

AnnK(J) be additive maps with the properties i), ii) and iii). z is clearly an additive

map by de�nition. In addition, right sides of the two equalities

z(P ) ◦Q+ P ◦z(Q) = z(P )Q+Qz(P ) + Pz(Q) + z(Q)P

= [α1(p1,3)e3,2 + α2(p1,3)e2,1 + α2(p1,2)e3,1 + α1(p2,3)e3,1]Q

+Q[α1(p1,3)e3,2 + α2(p1,3)e2,1 + α2(p1,2)e3,1 + α1(p2,3)e3,1]

+ P [α1(q1,3)e3,2 + α2(q1,3)e2,1 + α2(q1,2)e3,1 + α1(q2,3)e3,1]

+ [α1(q1,3)e3,2 + α2(q1,3)e2,1 + α2(q1,2)e3,1 + α1(q2,3)e3,1]P

=
∑
k

α1(p1,3)q2,ke3,k +
∑
k

α2(p1,3)q1,ke2,k

+
∑
k

α2(p1,2)q1,ke3,k +
∑
k

α1(p2,3)q1,ke3,k

+
∑
k

qk,3α1(q1,3)ek,2 +
∑
k

qk,2α2(p1,3)ek,1

+
∑
k

qk,3α2(p1,2)ek,1 +
∑
k

qk,3α1(p2,3)ek,1

+
∑
k

pk,3α1(q1,3)ek,2 +
∑
k

pk,2α2(q1,3)ek,1

+
∑
k

pk,3α2(q1,2)ek,1 +
∑
k

pk,3α1(q2,3)ek,1

+
∑
k

α1(q1,3)p2,ke3,k +
∑
k

α2(q1,3)p1,ke2,k

+
∑
k

α2(q1,2)p1,ke3,k +
∑
k

α1(q2,3)p1,ke3,k

= α1(p1,3)y2,1e3,1 + q3,2α2(p1,3)e3,1

+ p3,2α2(q1,3)e3,1 + α1(q1,3)x2,1e3,1
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and

z(P ◦Q) = z(PQ+QP )

= z(PQ) + z(QP )

=
∑
k

α1(p1,kqk,3)e3,2 +
∑
k

α2(p1,kqk,3)e2,1 +
∑
k

α2(p1,kqk,2)e3,1

+
∑
k

α1(p2,kqk,3)e3,1 +
∑
k

α1(q1,kpk,3)e3,2 +
∑
k

α2(q1,kpk,3)e2,1

+
∑
k

α2(q1,kpk,2)e3,1 +
∑
k

α1(q2,kpk,3)e3,1

= [α2(p1,3q3,2) + α1(p2,1q1,3)

+ α2(q1,3p3,2) + α1(q2,1p1,3)]e3,1 (α1(J
2) = 0 = α2(J

2))

are equal by i) and ii). Then z(P ◦ Q) = z(P ) ◦ Q + P ◦ z(Q) and the proof is

completed.

Proposition 3.14 If δi : J → J, βi : J → K, θ : J → K and γ : J → K (i = 1, 2, 3)

are additive maps satisfying

δ2(J
2) = 0, γ(y)z = δ3(yz),

β2(J) ⊆ AnnK(J), yβ3(z) = δ1(yz),

δ1(yz) = yθ(z), δ3(y)x+ xδ2(y) = γ(yx),

θ(yz) = yβ3(z), xθ(y) = β2(yx) + β3(xy),

γ(yz) = γ(y)z, θ(xy) = xδ1(y) + δ2(y)x,

δ3(yz) = β1(y)z, γ(y)x = β1(yx) + β2(xy),

θ(yz) = yθ(z), zγ(y) + δ1(z)y + yδ2(z) = 0,

γ(yz) = β1(y)z, δ2(y)z + zδ3(y) + θ(z)y = 0,

zγ(y) + θ(z)y = 0, β1(yz + zy) = β1(y)z + β1(z)y,

zγ(y) + β3(z)y = 0, δ3(yz) = δ3(y)z + zδ3(y) + β3(z)y,

θ(y)z + yβ1(z) = 0, δ1(yz) = zβ1(y) + yδ1(z) + δ1(z)y,

δ2(y)z + zδ2(y) = 0, zδ1(y) + δ3(y)z = β1(yz) + β3(yz),

zβ1(y) + β3(z)y = 0, δ1(y)z + zδ3(y) + δ1(z)y + yδ3(z) = 0,
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then the following map is a Jordan derivation of R3(K, J) where x ∈ K, y, z ∈ J.

Υ : ye1,3 →
3∑

i=1

δi(y)ei,i

yei,i → βi(y)e3,1

ye2,3 → θ(y)e2,1

ye1,2 → γ(y)e3,2

We assume that the images of the elementary matrices except ye1,3, ye1,2, ye2,3 and yei,i

(i = 1, 2, 3) are zeros.

Proof. Let X = [xi,j], Y = [yi,j] be arbitrary matrices in R3(K, J). We know that

Υ(X ◦ Y ) = Υ(XY + Y X)

= Υ(XY ) + Υ(Y X)

=
3∑

i=1

3∑
k=1

δi(x1,kyk,3)ei,i +
3∑

i=1

3∑
k=1

δi(y1,kxk,3)ei,i

+
3∑

i=1

3∑
k=1

βi(xi,kyk,i)e3,1 +
3∑

i=1

3∑
k=1

βi(yi,kxk,i)e3,1

+
3∑

k=1

θ(x2,kyk,3)e2,1 +
3∑

k=1

θ(y2,kxk,3)e2,1

+
3∑

k=1

γ(x1,kyk,2)e3,2 +
3∑

k=1

γ(y1,kxk,2)e3,2
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and

Υ(X) ◦ Y +X ◦Υ(Y ) = Υ(X)Y + YΥ(X) +XΥ(Y ) + Υ(Y )X

=


3∑

i=1

δi(x1,3)ei,i +
3∑

i=1

βi(xi,i)e3,1

+θ(x2,3)e2,1 + γ(x1,2)e3,2

Y

+ Y


3∑

i=1

δi(x1,3)ei,i +
3∑

i=1

βi(xi,i)e3,1

+θ(x2,3)e2,1 + γ(x1,2)e3,2


+X


3∑

i=1

δi(y1,3)ei,i +
3∑

i=1

βi(yi,i)e3,1

+θ(y2,3)e2,1 + γ(y1,2)e3,2


+


3∑

i=1

δi(y1,3)ei,i +
3∑

i=1

βi(yi,i)e3,1

+θ(y2,3)e2,1 + γ(y1,2)e3,2

X

=


3∑

k=1

3∑
i=1

δi(x1,3)yi,kei,k +
3∑

k=1

3∑
i=1

βi(xi,i)y1,ke3,k

+
3∑

k=1

θ(x2,3)y1,ke2,k +
3∑

k=1

γ(x1,2)y2,ke3,k



+


3∑

k=1

3∑
i=1

yk,iδi(x1,3)ek,i +
3∑

k=1

3∑
i=1

yk,3βi(xi,i)ek,1

+
3∑

k=1

yk,2θ(x2,3)ek,1 +
3∑

k=1

yk,3γ(x1,2)ek,2



+


3∑

k=1

3∑
i=1

xk,iδi(y1,3)ek,i +
3∑

k=1

3∑
i=1

xk,3βi(yi,i)ek,1

+
3∑

k=1

xk,2θ(y2,3)ek,1 +
3∑

k=1

xk,3γ(y1,2)ek,2



+


3∑

k=1

3∑
i=1

δi(y1,3)xi,kei,k +
3∑

k=1

3∑
i=1

βi(yi,i)x1,ke3,k

+
3∑

k=1

θ(y2,3)x1,ke2,k +
3∑

k=1

γ(y1,2)x2,ke3,k

 .

Then we obtain Υ(X ◦ Y ) = Υ(X) ◦ Y + X ◦ Υ(Y ) by using the given conditions for

additive maps δi, βi and θ (i = 1, 2, 3).

Theorem 3.15 Every Jordan derivation of Rn(K, J) for n ≥ 4 is of the form ∆ =

Φ + Ω where Φ is a derivation of Rn(K, J) and Ω is an extremal Jordan derivation

of Rn(K, J). Moreover, Φ is the sum of certain diagonal, inner, annihilator, ring and

almost annihilator derivations.
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Before we prove the theorem, the following helpful lemmas will be given.

Lemma 3.16 Let ∆ be an arbitrary Jordan derivation of R for n ≥ 4. Then for

1 < i < n− 1 and x ∈ K, y ∈ J, we have

∆(xei+1,i) =
∑

∆i+1,i
i+1,t(x)ei+1,t +

∑
s 6=i+1

∆i+1,i
s,i (x)es,i + ∆i+1,i

n,1 (x)en,1 (1)

which can be written as

0 0 . . . 0 ∆
i+1,i
1,i (x) 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ∆
i+1,i
i,i (x) 0 . . . 0

∆
i+1,i
i+1,1(x) ∆

i+1,i
i+1,2(x) . . . ∆

i+1,i
i+1,i−1(x) ∆

i+1,i
i+1,i(x) ∆

i+1,i
i+1,i+1(x) . . . ∆

i+1,i
i+1,n(x)

0 0 . . . 0 ∆
i+1,i
i+2,i(x) 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ∆
i+1,i
n−1,i(x) 0 . . . 0

∆
i+1,i
n,1 (x) 0 . . . 0 ∆

i+1,i
n,i (x) 0 . . . 0


and

∆(ye1,n) =
∑

∆1,n
1,t (y)e1,t +

∑
s 6=1

∆1,n
s,n(y)es,n + ∆1,n

n−1,1(y)en−1,1

+∆1,n
n−1,2(y)en−1,2 + ∆1,n

n,1(y)en,1 + ∆1,n
n,2(y)en,2 (2)

which is equal to



∆
1,n
1,1 (y) ∆

1,n
1,2 (y) ∆

1,n
1,3 (y) . . . ∆

1,n
1,n−1(y) ∆

1,n
1,n(y)

0 0 0 . . . 0 ∆
1,n
2,n(y)

. . . . .

. . . . .

. . . . .

0 0 0 . . . 0 ∆
1,n
n−2,n(y)

∆
1,n
n−1,1(y) ∆

1,n
n−1,2(y) 0 . . . 0 ∆

1,n
n−1,n(y)

∆
1,n
n,1(y) ∆

1,n
n,2(y) 0 . . . 0 ∆1,n

n,n(y)



.

Proof. Let us �x i, j and choose k,m such that k > m. If k 6= j and m 6= i then

xi,jei,j ◦ yk,mek,m = 0. By di�erentiating xi,jei,j ◦ yk,mek,m = 0, we get

0 = ∆(xi,jei,j) ◦ yk,mek,m + xi,jei,j ◦∆(yk,mek,m)

= ∆(xi,jei,j)yk,mek,m + yk,mek,m∆(xi,jei,j) + xi,jei,j∆(yk,mek,m)

+ ∆(yk,mek,m)xi,jei,j

=
∑
s

∆i,j
s,k(xi,j)yk,mes,m +

∑
t

yk,m∆i,j
m,t(xi,j)ek,t

+
∑
t

xi,j∆
k,m
j,t (yk,m)ei,t +

∑
s

∆k,m
s,i (yk,m)xi,jes,j
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Putting yk,m = 1, the matrix on the right has zeros except i − th , k − th rows and

j − th, m− th columns. Hence we have

∆i,j
s,k = 0 for m 6= j, s 6= i, s 6= k, (3)

∆i,j
m,t = 0 for i 6= k, t 6= m, t 6= j. (4)

On the other hand, for k > s > m and k 6= i, j , s 6= i, j , m 6= i, j , the (k,m),

(s,m), (k, s) coe�cients of the equations ∆(xi,jei,j ◦ ek,m) = 0, ∆(xi,jei,j ◦ es,m) = 0,

∆(xi,jei,j ◦ ek,s) = 0 are

∆i,j
k,k(xi,j) + ∆i,j

m,m(xi,j) = 0, (5)

∆i,j
s,s(xi,j) + ∆i,j

m,m(xi,j) = 0, (6)

∆i,j
k,k(xi,j) + ∆i,j

s,s(xi,j) = 0, (7)

respectively. Comparing (5) with (6) and (7), we get ∆i,j
k,k(xi,j) = ∆i,j

s,s(xi,j) = ∆i,j
m,m(xi,j).

By using (7), it can be easily seen that 2∆i,j
k,k = 2∆i,j

s,s = 0 = 2∆i,j
m,m. Now that K is

a 2-torsion free ring, we obtain ∆i,j
k,k = 0 for all k 6= i, j. Therefore, the image of

xei+1,i (x ∈ K) under ∆ is the matrix with zeros outside (i + 1) − th row, i − th

column and (n, 1) position and ∆(xei+1,i) has the form (1) for 1 < i < n − 1. In

particular, ∆(xe2,1) =
∑

∆2,1
2,t (x)e2,t +

∑
s 6=2

∆2,1
s,1(x)es,1 + ∆2,1

n,2(x)en,2 + ∆2,1
n,3(x)en,3 and

∆(xen,n−1) =
∑

∆n,n−1
n,t (x)en,t+

∑
s 6=n

∆n,n−1
s,n−1 (x)es,n−1+∆n,n−1

n−1,1 (x)en−1,1+∆n,n−1
n−2,1 (x)en−2,1.

By (3) and (4), we get ∆1,n
n−1,1(y) 6= 0 because k 6= n, k 6= 1, m 6= n−1 and ∆1,n

n−1,2(y) 6= 0

while m 6= n − 1, k 6= 2 for y ∈ J . Similarly, ∆1,n
n,1(y) 6= 0 since k 6= 1, m 6= n and

∆1,n
n,2(y) 6= 0 as m 6= n, k 6= 2 for y ∈ J . Thus we get (2).

Lemma 3.17 Let ∆ : R → R be a Jordan derivation. Then there can be found a

diagonal derivation δD of R such that (i + 1, i) − th coe�cient of (∆− δD) (ei+1,i) is

zero.

Proof. Let D =
n∑

i=2

diei,i where di+1 =
i∑

k=1

ak and ak = ∆k+1,k
k+1,k(1). Then there exists a

diagonal derivation δD : X → DX −XD induced by the diagonal matrix D such that

δD(ei+1,i) = Dei+1,i − ei+1,iD = ∆i+1,i
i+1,i(1)ei+1,i . Since (i + 1, i) − th coe�cient of the

matrix ∆ is equal to ∆i+1,i
i+1,i(1), the proof is completed.
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Lemma 3.18 Let ∆ : R → R be a Jordan derivation and (i+ 1, i)− th coe�cient of

∆(ei+1,i) is zero for all 1 ≤ i < n. Then there is an inner derivation I satisfying that

(∆− I) (ei+1,i) has zero i− th column and (i+ 1, 1) entry.

Proof. De�ne a matrix A = [Ai,j]n×n with Av,v = 0 = Aj,1, Au,i+1 = ϕi+1,i
u,i (1)

(u 6= i+ 1, 1 ≤ i < n). Clearly A is equal to

0 ϕ2,1
1,1(1) ϕ3,2

1,2(1) . . . ϕn,n−1
1,n−1 (1)

0 0 ϕ3,2
2,2(1) . . . ϕn,n−1

2,n−1 (1)

0 ϕ2,1
3,1(1) 0 . . . ϕn,n−1

3,n−1 (1)

0 ϕ2,1
4,1(1) ϕ3,2

4,2(1) . . . ϕn,n−1
4,n−1 (1)

. . . .

. . . .

. . . .

0 ϕ2,1
n−1,1(1) ϕ3,2

n−1,2(1) . . . ϕn,n−1
n−1,n−1(1)

0 ϕ2,1
n,1(1) ϕ3,2

n,2(1) . . . 0



.

Now consider the action of the inner derivation IA on the matrices ei+1,i . Then

IA(ei+1,i) = Aei+1,i− ei+1,iA =
n∑

k=1
k 6=i+1

∆i+1,i
k,i (1)ek,i +

n−1∑
m=1

m 6=i−1

[−∆m+1,m
i,m (1)]ei+1,m+1 which is

equal to

0 0 . . . 0 ϕ
i+1,i
1,i (1) 0 . . . 0

0 0 . . . 0 ϕ
i+1,i
2,i (1) 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ϕ
i+1,i
i,i (1) 0 . . . 0

0 −ϕ
2,1
i,1 (1) . . . −ϕ

i−1,i−2
i,i−2 (1) 0 −ϕ

i+1,i
i,i (1) . . . −ϕ

n,n−1
i,n−1 (1)

0 0 . . . 0 ϕ
i+1,i
i+2,i(1) 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . 0 ϕ
i+1,i
n,i (1) 0 . . . 0



.

Therefore, i-th column of each matrix (∆ − IA)(ei+1,i) is equal to zero. Now de�ne a

matrix

B =



0 0 . . . 0 0

−b3 0 . . . 0 0

. . . .

. . . .

. . . .

−bn 0 . . . 0 0

0 0 . . . 0 0
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and denote by IB the inner derivation induced by the matrix B. It can be easily seen

that IB(ei+1,i) = Bei+1,i − ei+1,iB = ∆i+1,i
i+1,1(1)ei+1,1 for i = 2, ..., n − 1. Hence i-th

columns and (i+1,1) entries of the matrices (∆ − I)(ei+1,i) are zeros for I = IA + IB

and this comletes the proof.

Lemma 3.19 Let ∆ : R → R be a Jordan derivation such that i − th columns and

(i + 1, 1) entries of the matrices ∆(ei+1,i) are all zeros. Then the following equalities

are obtained for xk,m ∈ Ik,m, x ∈ K and y ∈ J ;

∆(e2,1) = 0 (1)

∆(en,n−1) = 0 (2)

∆(ei+1,i) = ∆i+1,i
n,1 (1)en,1 , 1 < i < n− 1 (3)

∆(ei,j) = 0 , i− j > 1 (4)

∆(xei,1) = ∆i,1
i,1(x)ei,1 + ∆i,1

n,1(x)en,1 , 1 < i < n (5)

∆(xn,jen,j) = ∆n,j
n,1(xn,j)en,1 + ∆n,j

n,j(xn,j)en,j (6)

∆(ye1,i) = ∆1,i
1,1(y)e1,1 + ∆1,i

1,2(y)e1,2

+ ∆1,i
1,i(y)e1,i + ∆1,i

n,1(y)en,1

+ ∆1,i
n,2(y)en,2 + ∆1,i

n,i(y)en,i , i 6= 1, n (7)

∆(yei,n) = ∆i,n
i,1 (y)ei,1 + ∆i,n

n−1,1(y)en−1,1

+ ∆i,n
n,1(y)en,1 + ∆i,n

i,n(y)ei,n

+ ∆i,n
n−1,n(y)en−1,n + ∆i,n

n,n(y)en,n , 1 < i < n− 1 (8)

∆(ye1,n) = ∆1,n
1,1 (y)e1,1 + ∆1,n

1,2 (y)e1,2 + ∆1,n
1,n(y)e1,n

+ ∆1,n
n−1,1(y)en−1,1 + ∆1,n

n−1,2(y)en−1,2 + ∆1,n
n−1,n(y)en−1,n

+ ∆1,n
n,1(y)en,1 + ∆1,n

n,2(y)en,2 + ∆1,n
n,n(y)en,n (9)

∆(xi,jei,j) = ∆i,j
i,1(xi,j)ei,1 + ∆i,j

i,j(xi,j)ei,j

+ ∆i,j
n,1(xi,j)en,1 + ∆i,j

n,j(xi,j)en,j , 1 < i, j < n (10)

Proof. By (i+1,i) coe�cient of the relation

0 = ∆ (ei+1,i ◦ ei+1,i) (i 6= 1, n− 1)

= ∆(ei+1,i) ◦ ei+1,i + ei+1,i ◦∆ (ei+1,i)
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we get 2∆i+1,i
i+1,i+1(1) = 0 and this implies ∆i+1,i

i+1,i+1(1) = 0 considering thatK is 2-torsion

free. In addition, we obtain ∆i+1,i
i+1,j+1(1) = 0 for j 6= i−1, i, i+ 1 from (i+1,j) coe�cient

of the relation

0 = ∆(ei+1,i ◦ ej+1,j) (i 6= j − 1, j, j + 1)

= ∆(ei+1,i) ◦ ej+1,j + ei+1,i ◦∆(ej+1,j).

Then (i+1,i) coe�cient of the relation

0 = ∆(ei+1,i ◦ ei+2,i)

= ∆(ei+1,i) ◦ ei+2,i + ei+1,i ◦∆(ei+2,i),

and (i,i), (i+1,i+1) coe�cients of the relation

∆(ei+2,i) = ∆(ei+2,i+1 ◦ ei+1,i)

= ∆(ei+2,i+1) ◦ ei+1,i + ei+2,i+1 ◦∆(ei+1,i)

give 0 = ∆i+1,i
i+1,i+2(1) + ∆i+2,i

i,i (1) + ∆i+2,i
i+1,i+1(1) and ∆i+2,i

i,i (1) = 0, ∆i+2,i
i+1,i+1(1) =

∆i+1,i
i+1,i+2(1). So it is obtained 2∆i+1,i

i+1,i+2(1) = 0 and we have (3). Now consider the

products e2,1 ◦ e2,1 = 0, e2,1 ◦ e3,1 = 0 and e3,2 ◦ e2,1 = e3,1. Hence we obtain ∆2,1
n,2(1) = 0

by (n,1) coe�cient of the relation

0 = ∆(e2,1 ◦ e2,1)

= ∆(e2,1) ◦ e2,1 + e2,1 ◦∆(e2,1),

∆2,1
2,3(1) + ∆3,1

1,1(1) + ∆3,1
2,2(1) = 0, ∆2,1

n,3(1) + ∆3,1
n,2(1) = 0 by (2,1) and (n,1) coe�cients of

the relation

0 = ∆(e2,1 ◦ e3,1)

= ∆(e2,1) ◦ e3,1 + e2,1 ◦∆(e3,1)

and ∆2,1
n,3(1) = ∆3,1

n,2(1), ∆2,1
2,3(1) = ∆3,1

2,2(1), ∆3,1
1,1(1) = ∆3,2

1,2(1) = 0 by (n,2), (2,2) and

(1,1) coe�cients of the relation

∆(e3,1) = ∆(e3,2 ◦ e2,1)

= ∆(e3,2) ◦ e2,1 + e3,2 ◦∆(e2,1).
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By comparing these results obtained from the products e2,1 ◦ e2,1 = 0, e2,1 ◦ e3,1 = 0

and e3,2 ◦ e2,1 = e3,1, it is easy to see that ∆2,1
2,3(1), ∆2,1

n,2(1) and ∆2,1
n,3(1) are zeros taking

into account that K is 2-torsion free. So we have (1).

(n,n-1), (n,1) coe�cients of the relation

0 = ∆(en,n−1 ◦ en,n−1)

= ∆(en,n−1) ◦ en,n−1 + en,n−1 ◦∆(en,n−1)

give ∆n,n−1
n,n (1) = 0 and ∆n,n−1

n−1,1 (1) = 0. Besides, we have ∆n,n−1
n−2,1 (1) + ∆n,n−2

n−1,1 (1) = 0 by

(n,1) coe�cient of

0 = ∆(en,n−1 ◦ en,n−2)

= ∆(en,n−1) ◦ en,n−2 + en,n−1 ◦∆(en,n−2)

and ∆n,n−1
n−2,1 (1) = ∆n,n−2

n−1,1 (1) by (n,1) coe�cient of

∆(en,n−2) = ∆(en,n−1 ◦ en−1,n−2)

= ∆(en,n−1) ◦ en−1,n−2 + en,n−1 ◦∆(en−1,n−2).

Last two results ∆n,n−1
n−2,1 (1) = ∆n,n−2

n−1,1 (1) and ∆n,n−1
n−2,1 (1) + ∆n,n−2

n−1,1 (1) = 0 give

2∆n,n−1
n−2,1 (1) = 0 and we have (2) since K is a 2-torsion free ring.

It can be easily seen that ∆(ei,j) = 0 for i− j > 1 by induction on i− j :

If i− j = 2, then

∆(ei+2,i) = ∆(ei+2,i+1 ◦ ei+1,i)

= ∆(ei+2,i+1) ◦ ei+1,i + ei+2,i+1 ◦∆(ei+1,i)

= ∆i+2,i+1
n,1 (1)en,1 ◦ ei+1,i + ei+2,i+1 ◦∆i+1,i

n,1 (1)en,1

= 0.

Let ∆(ei,j) = 0 for an arbitrary appropriate number t = i − j and let k −m = t + 1.

Then we have (4) by

∆(ek,m) = ∆(ek,m+1 ◦ em+1,m)

= ∆(ek,m+1) ◦ em+1,m + ek,m+1 ◦∆(em+1,m)

= 0 + ek,m+1 ◦∆m+1,m
n,1 (1)en,1

= 0.
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If we consider the relation

0 = ∆(xi,1ei,1 ◦ ek,m)

= ∆(xi,1ei,1) ◦ ek,m

for 1 < i < n, m 6= i, k > m, we get ∆i,1
s,k = 0 = ∆i,1

m,t. This means that each entry on

k − th column and m − th row of ∆(xi,1ei,1) is zero for all k 6= 1 and m 6= i, n. So we

have (5). In particular, ∆(xn,1en,1) = ∆n,1
n,1(xn,1)en,1. Similarly, by using the relations

0 = ∆(xn,ien,i ◦ ek,m) (i 6= 1, k 6= i, k > m)

= ∆(xn,ien,i) ◦ ek,m + xn,ien,i ◦∆(ek,m)

= ∆(xn,ien,i) ◦ ek,m,

0 = ∆(y1,ie1,i ◦ ek,m) (k 6= i, m 6= 1, i 6= n)

= ∆(y1,ie1,i) ◦ ek,m + y1,ie1,i ◦∆(ek,m)

= ∆(y1,ie1,i) ◦ ek,m,

0 = ∆(yi,nei,n ◦ ek,m) (i 6= 1, i 6= n, k 6= n, m 6= i)

= ∆(yi,nei,n) ◦ ek,m + yi,nei,n ◦∆(ek,m)

= ∆(yi,nei,n) ◦ ek,m,

and

0 = ∆(y1,ne1,n ◦ ek,m) (k 6= n, m 6= 1)

= ∆(y1,ne1,n) ◦ ek,m + y1,ne1,n ◦∆(ek,m)

= ∆(y1,ne1,n) ◦ ek,m,

we get (6),(7),(8) and (9), respectively. In particular,

∆(y1,1e1,1) = ∆1,1
1,1(y1,1)e1,1 + ∆1,1

1,2(y1,1)e1,2 + ∆1,1
n,1(y1,1)en,1 + ∆1,1

n,2(y1,1)en,2

and

∆(yn−1,nen−1,n) = ∆n−1,n
n−1,n(yn−1,n)en−1,n + ∆n−1,n

n,n (yn−1,n)en,n.
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If 1 < i, j < n, then we have (10) because ∆i,j
sk and ∆i,j

m,t are zeros for k 6= j, m 6= i,

k > m by the relation

0 = ∆(xi,jei,j ◦ ek,m)

= ∆(xi,jei,j) ◦ ek,m + xei,j ◦∆(ek,m)

= ∆(xi,jei,j) ◦ ek,m.

Lemma 3.20 Let ∆ be a Jordan derivation of R satisfying the conditions (1)-(10) in

Lemma 3.19. Then there exists an annihilator derivation Υ such that (n, 1) coe�cients

of (∆−Υ)(xei+1,i) and (∆−Υ)(ye1,n) are equal to zero.

Proof. Let x ∈ K, y, z ∈ J be arbitrary elements. For i 6= 1, n, the (1,1) coe�cient of

the relation

∆(ye1,i) = ∆(en,i ◦ ye1,n)

= ∆(en,i) ◦ ye1,n + en,i ◦∆(ye1,n)

= en,i ◦∆(ye1,n)

gives ∆1,i
1,1 = 0. Besides, we have ∆1,n−1

1,1 (y) = ∆n,n−1
n,1 (y) = 0 by (n,1) coe�cient of the

relation

∆(yen,n−1) = ∆(en,1 ◦ ye1,n−1)

= ∆(en,1) ◦ ye1,n−1 + en,1 ◦∆(ye1,n−1)

= en,1 ◦∆(ye1,n−1)

as we know that ∆1,i
1,1 = 0 for all i 6= 1, n. Say ςi = ∆i+1,i

n,1 . Then ςn−1(J) = 0. If k > 2,

then (n,k) coe�cient of

∆(ye2,k) = ∆(e2,1 ◦ ye1,k)

= ∆(e2,1) ◦ ye1,k + e2,1 ◦∆(ye1,k)

= e2,1 ◦∆(ye1,k)
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gives ∆2,k
n,k = 0. Moreover, we get ∆1,1

n,2(y) = ∆2,2
n,2(y) = ∆2,1

n,1(y) = ς1(y) by comparing

(n,1) coe�cients of

∆(ye2,1) = ∆(e2,1 ◦ ye1,1)

= ∆(e2,1) ◦ ye1,1 + e2,1 ◦∆(ye1,1)

= e2,1 ◦∆(ye1,1),

∆(ye2,1) = ∆(ye2,2 ◦ e2,1)

= ∆(ye2,2) ◦ e2,1 + ye2,2 ◦∆(e2,1)

= ∆(ye2,2) ◦ e2,1

and ∆1,1
n,2(y) + ∆2,2

n,2(y) = 0 by (n,2) coe�cient of

∆(ye2,2 + ye1,1) = ∆(e2,1 ◦ ye1,2)

= ∆(e2,1) ◦ ye1,2 + e2,1 ◦∆(ye1,2)

= e2,1 ◦∆(ye1,2).

Forasmuch as ∆1,1
n,2(y) = ∆2,2

n,2(y) = ∆2,1
n,1(y) = ς1(y) and ∆1,1

n,2(y) + ∆2,2
n,2(y) = 0, we

obtain ∆1,1
n,2(y) = ∆2,2

n,2(y) = ∆2,1
n,1(y) = ς1(y) = 0 because K is 2-torsion free.

For i 6= 1, n− 1, (n,1) coe�cient of the relation

∆(yei+1,i) = ∆(en,i ◦ yei+1,n)

= ∆(en,i) ◦ yei+1,n + en,i ◦∆(yei+1,n)

= en,i ◦∆(yei+1,n)

gives ∆i+1,n
i,1 (y) = ∆i+1,i

n,1 (y) = 0 = ςi(y). So ςi(J) is zero (i < n). For 2 ≤ i ≤ n− 2, we

get ςi(x)y = 0, yςi(x) = 0 by (1,1) and (n,n) coe�cients of the relation

0 = ∆(xei+1,i ◦ ye1,n)

= ∆(xei+1,i) ◦ ye1,n + xei+1,i ◦∆(ye1,n).

Furthermore, we have y∆2,1
n,1(x) = 0, ∆2,1

n,1(x)y = 0 by (n,1) coe�cients of the relations

∆(yxe2,1) = ∆(ye2,2 ◦ xe2,1)

= ∆(ye2,2) ◦ xe2,1 + ye2,2 ◦∆(xe2,1)
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and

∆(xye2,1) = ∆(xe2,1 ◦ ye1,1)

= ∆(xe2,1) ◦ ye1,1 + xe2,1 ◦∆(ye1,1)

since ∆2,1
n,1(J) = 0. Besides, we obtain y∆n,n−1

n,1 (x) = 0, ∆n,n−1
n,1 (x)y = 0 from (1,1) and

(n,1) coe�cients of the relations

∆(yxe1,n−1) = ∆(xen,n−1 ◦ ye1,n)

= ∆(xen,n−1) ◦ ye1,n + xen,n−1 ◦∆(ye1,n)

and

0 = ∆(xen,n−1 ◦ ye1,1)

= ∆(xen,n−1) ◦ ye1,1 + xen,n−1 ◦∆(ye1,1),

respectively. Finally, we have ςn(J2) = 0 and ςn(J) ⊂ AnnK(J) by (n,1) coe�cients of

∆(yze1,n) = ∆(ye1,k ◦ zek,n) (1 < k < n)

= ∆(ye1,k) ◦ zek,n + ye1,k ◦∆(zek,n),

∆(yze1,n) = ∆(ye1,1 ◦ ze1,n)

= ∆(ye1,1) ◦ ze1,n + ye1,1 ◦∆(ze1,n),

and

∆(yze1,n) = ∆(ye1,n ◦ zen,n)

= ∆(ye1,n) ◦ zen,n + ye1,n ◦∆(zen,n),

respectively. Now we showed that ςi : K → AnnK(J), ςi(J) = 0, ςn : J → AnnK(J),

ςn(J2) = 0 for all i = 1, 2, ..., n − 1. Thus Υ : [xi,j] →
(
ςn(x1,n) +

n−1∑
i=1

ςi(xi+1,i)

)
en,1 is

an annihilator derivation and (∆−Υ)(ei+1,i) = 0 for all i. Say Θ = ∆−Υ. Hence (n, 1)

coe�cients of Θ(xei+1,i) and Θ(ye1,n) are equal to zeros. This completes the proof.

Lemma 3.21 Let Θ = ∆−Υ be a Jordan derivation of the ring R as in Lemma 3.20.

Then there is a ring derivation θ̄ and (i, j) coe�cient of (Θ − θ̄)(xi,jei,j) is equal to

zero.
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Proof. Let x, x1, x2 ∈ K and y ∈ J be arbitrary elements. By using (i,k) coe�cient of

the relation

Θ(x1x2ei,k) = Θ(x1ei,j ◦ x2ej,k)

= Θ(x1ei,j) ◦ x2ej,k + x1ei,j ◦Θ(x2ej,k)

we have

Θi,k
i,k(x1x2) = Θi,j

i,j(x1)x2 + x1Θ
j,k
j,k(x2)

for i > j > k. Besides, we have Θi,k
i,k = Θi,j

i,j = Θj,k
j,k as Θi,k

i,k(1) = Θi,j
i,j(1) = Θj,k

j,k(1) = 0.

So Θi,j
i,j is a derivation of K for i > j and Θi,j

i,j = Θk,m
k,m for every k > m. Moreover,

(i,i+1) coe�cients of the relations

Θ(yei,i+1) = Θ(ei,k ◦ yek,i+1) (k < i)

= Θ(ei,k) ◦ yek,i+1 + ei,k ◦Θ(yek,i+1)

= ei,k ◦Θ(yek,i+1)

and

Θ(yei,i+1) = Θ(yei,s ◦ es,i+1) (s > i+ 1)

= Θ(yei,s) ◦ es,i+1 + yei,s ◦Θ(es,i+1)

= Θ(yei,s) ◦ es,i+1

give Θi,i+1
i,i+1 = Θi,s

i,s and Θi,i+1
i,i+1 = Θk,i+1

k,i+1 for k < i < s − 1. This means Θi,j
i,j = Θs,t

s,t for

every i < j and s < t. In addition, we can say Θi,i
i,i = Θj,j

j,j = Θi,j
i,j for all i < j and s < t

by (i,i), (j,j) coe�cients of the relation

Θ(yei,i + yej,j) = Θ(yei,j ◦ ej,i)

= Θ(yei,j) ◦ ej,i + yei,j ◦Θ(ej,i)

= Θ(yei,j) ◦ ej,i

which gives Θi,j
i,j = Θs,t

s,t for all i ≤ j and s ≤ t. Besides, we obtain that Θi,j
i,j = Θk,m

k,m for

any i, j, k,m because (i,1) coe�cient of the relation

Θ(yei,1) = Θ(ei,1 ◦ ye1,1)

= Θ(ei,1) ◦ ye1,1 + ei,1 ◦Θ(ye1,1)

= ei,1 ◦Θ(ye1,1)
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gives Θi,1
i,1(y) = Θ1,1

1,1(y) and we know that all Θi,j
i,j are equal for i ≤ j and Θk,m

k,m are

equal for k > m. Then Θi,j
i,j = θ is a ring derivation of K. Similarly, Θi,j

i,j(y) = Θi,i−1
i,i−1(y)

by yei,j ◦ ej,i−1 = yei,i−1 for i ≤ j. This implies that θ is a derivation of J as well. So

θ̄ : [xi,j]→
∑
i,j

θ(xi,j)ei,j is a ring derivation of R and (i,j) coe�cient of (Θ− θ̄)(xi,j) is

zero for all i, j.

Let Ξ = Θ− θ̄ for brevity. Thus (i, j) coe�cients of the matrices Ξ(xi,jei,j) are equal

to zero.

Lemma 3.22 Let Ξ be a Jordan derivation of R as in Lemma 3.21. Then Ξ(xei,j) = 0

for all i > j, Ξ(yei,i) = Ξi,i
n,1(y)en,1 for all i, Ξ(ye1,j) = Ξ1,j

n,j(y)en,j for 1 < j < n − 1

and Ξ(yei,n) = Ξi,n
i,1 (y)ei,1 for i 6= 1, 2 where x ∈ K, y ∈ J are arbitrary elements.

Proof. Let x, x1, x2 ∈ K and y ∈ J be arbitrary elements. For 1 < i < n, we get

Ξi+1,i−1
n,i−1 = Ξi+1,i

n,i = Ξi+1,i−1
i+1,1 = Ξi,i−1

i,1 = 0 by (n,i-1), (i+1,1) coe�cients of

Ξ(x1x2ei+1,i−1) = Ξ(x1ei+1,i ◦ x2ei,i−1)

= Ξ(x1ei+1,i) ◦ x2ei,i−1 + x1ei+1,i ◦ Ξ(x2ei,i−1)

considering that Ξ(ei+1,i) = 0 for all i. Hence Ξ(xei,j) is equal to zero for i > j.

We have Ξi+1,i+1
i+1,1 = 0 by (i+2,1) coe�cient of

0 = Ξ(xyei+2,i+1) (1 ≤ i < n− 1)

= Ξ(xei+2,i+1 ◦ yei+1,i+1)

= Ξ(xei+2,i+1) ◦ yei+1,i+1 + xei+2,i+1 ◦ Ξ(yei+1,i+1)

and Ξi+1,i+1
n,i+1 = 0 by (n,i) coe�cient of

0 = Ξ(yxei+1,i) (1 < i < n)

= Ξ(yei+1,i+1 ◦ xei+1,i)

= Ξ(yei+1,i+1) ◦ xei+1,i + yei+1,i+1 ◦ Ξ(xei+1,i).

Besides, (2,2) coe�cient of the relation

0 = Ξ(xye2,1)

= Ξ(xe2,1 ◦ ye1,1)

= Ξ(xe2,1) ◦ ye1,1 + xe2,1 ◦ Ξ(ye1,1)
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gives Ξ1,1
1,2 = 0. So we get Ξ(yei,i) = Ξi,i

n,1(y)en,1. Furthermore, for 1 < j < n − 1, we

obtain Ξ1,j
1,1 = Ξ1,j

1,2 = Ξ1,j
n,1 = Ξ1,j

n,2 = 0 by (1,1), (1,2), (n,1), (n,2) coe�cients of the

relation

Ξ(yxe1,j) = Ξ(xen,j ◦ ye1,n)

= Ξ(xen,j) ◦ ye1,n + xen,j ◦ Ξ(ye1,n)

= xen,j ◦ Ξ(ye1,n)

and it means Ξ(ye1,j) = Ξ1,j
n,j(y)en,j. Finally, we can say Ξi,n

n−1,1 = Ξi,n
n−1,n = Ξi,n

n,1 =

Ξi,n
n,n = 0 by (n-1,1), (n-1,n), (n,1) and (n,n) coe�cients of the relation

Ξ(xyei,n) = Ξ(xei,1 ◦ ye1,n)

= Ξ(xei,1) ◦ ye1,n + xei,1 ◦ Ξ(ye1,n)

= xei,1 ◦ Ξ(ye1,n)

for 2 < i < n and we have Ξ(yei,n) = Ξi,n
i,1 (y)ei,1.

Lemma 3.23 Let Ξ be a Jordan derivation of R as in Lemma 3.22. Then there exists

an almost annihilator derivation Γ of R such that Ξ − Γ is an extremal Jordan

derivation of R which is de�ned in Proposition 3.11.

Proof. Let n > k > m > s > 1, x ∈ K and y ∈ J. Then (n, 1) coe�ecient of the

relation

Ξ(xyek,k + yxem,m) = Ξ(xek,m ◦ yem,k)

= Ξ(xek,m) ◦ yem,k + xek,m ◦ Ξ(yem,k)

= xek,m ◦ Ξ(yem,k)

gives Ξm,m
n,1 (yx) + Ξk,k

n,1(xy) = 0.We can similarly �nd that Ξs,s
n,1(yx) + Ξk,k

n,1(xy) = 0 and

Ξs,s
n,1(yx) + Ξm,m

n,1 (xy) = 0. This means Ξk,k
n,1 = Ξs,s

n,1 = Ξm,m
n,1 = 0 as K is 2-torsion free.

On the other hand, considering that Ξ2,2
n,1 = 0 = Ξn−1,n−1

n,1 , the (n, 1) coe�cients of the

relations

Ξ(yxe1,1 + xye2,2) = Ξ(ye1,2 ◦ xe2,1)

= Ξ(ye1,2) ◦ xe2,1 + ye1,2 ◦ Ξ(xe2,1)

= Ξ(ye1,2) ◦ xe2,1
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and

Ξ(yxen−1,n−1 + xyen,n) = Ξ(yen−1,n ◦ xen,n−1)

= Ξ(yen−1,n) ◦ xen,n−1 + yen−1,n ◦ Ξ(xen,n−1)

= Ξ(yen−1,n) ◦ xen,n−1

give Ξ1,1
n,1(yx) = Ξ1,2

n,2(y)x and Ξn,n
n,1 (xy) = xΞn−1,n

n−1,1 (y), respectively. Let ᾱ = Ξ1,n
1,1 , β̄ =

Ξ1,n
n,n, x ∈ K and y, z ∈ J . We have ᾱ = Ξi,n

i,1 and ᾱ(xy) = xᾱ(y) by (i, 1) coe�cient of

the relation

Ξ(xyei,n) = Ξ(xei,1 ◦ ye1,n)

= Ξ(xei,1) ◦ ye1,n + xei,1 ◦ Ξ(ye1,n)

= xei,1 ◦ Ξ(ye1,n).

where i 6= 1, n. Besides, we obtain β̄ = Ξ1,j
n,j and β̄(yx) = β̄(y)x by (n, j) coe�cient of

the relation

Ξ(yxe1,j) = Ξ(ye1,n ◦ xen,j)

= Ξ(ye1,n) ◦ xen,j + ye1,n ◦ Ξ(xen,j)

= Ξ(ye1,n) ◦ xen,j.

for j 6= 1, n. Now it is easy to see that the additive map

Γ : Rn(K, J) → Rn(K, J)

ye1,n → ᾱ(y)e1,1 + β̄(y)en,n

yei,n → ᾱ(y)ei,1 (1 < i ≤ n)

ye1,j → β̄(y)en,j (1 ≤ j < n)

xi,jei,j → 0 (1 < iandj < n)

is obviously an almost annihilator derivation of R. As the last part of the Lemma, we

need to see Ξ − Γ satis�es the conditions of the extremal Jordan derivation given in

Proposition 3.11.

Firstly, the relation

Ξ(yxe1,j) = Ξ(xen−1,j ◦ ye1,n−1)

= xen,n−1 ◦ Ξ(ye1,n−1)
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gives Ξ(ye1,j) = 0 for 1 < j < n− 1 and we can say

Ξ(ye1,j) = 0

for 1 ≤ j < n− 1 as Ξ1,1
1,2 = Ξ1,1

n,2 = 0 by Lemma 3.20, 3.21.

Secondly, the relation

Ξ(ye1,n−1) = Ξ(ye1,n ◦ en,n−1)

= Ξ(ye1,n) ◦ en,n−1

gives Ξ(ye1,n−1) = Ξ1,n−1
n,1 (y)en,1+Ξ1,n−1

n,2 (y)en,2 because we have Ξ(ye1,n) = Ξ1,n
n,2(y)en,2+

Ξ1,n
n−1,1(y)en−1,1 + Ξ1,n

n−1,2(y)en−1,2 and if we consider that Ξ(ye1,n−1) = Ξ1,n−1
n,1 (y)en,1 +

Ξ1,n−1
n,2 (y)en,2 and the relation

Ξ(xyei,j) = Ξ(xei,1 ◦ ye1,j)

= xei,1 ◦ Ξ(ye1,j),

we get Ξ(yei,j) = 0 for 1 < i < j < n where (i, j) 6= (2, n− 1).

Thirdly, if we say Π = Ξ− Γ then we have

Π(ye1,n) = Π1,n
n−1,1(y)en−1,1 + Π1,n

n−1,2(y)en−1,2 + Π1,n
n,2(y)en,2,

Π(ye1,n−1) = Π1,n−1
n,1 (y)en,1 + Π1,n−1

n,2 (y)en,2,

Π(ye2,n−1) = Π2,n−1
n,1 (y)en,1,

Π(ye2,n) = Π2,n
n−1,1(y)en−1,1 + Π2,n

n,1(y)en,1

Π(xi,jei,j) = 0 for (i, j) 6= (1, n), (2, n), (1, n− 1), (2, n− 1)

by the relations

Π(ye2,n−1) = Π(e2,1 ◦ ye1,n−1)

= e2,1 ◦ Π(ye1,n−1)

and

Π(ye2,n) = Π(e2,1 ◦ ye1,n)

= e2,1 ◦ Π(ye1,n).

Finally, the relations

Π(yxe1,n−1) = Π(ye1,n ◦ xen,n−1)

= Π(ye1,n) ◦ xen,n−1,
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Π(xye2,n−1) = Π(xe2,1 ◦ ye1,n−1)

= xe2,1 ◦ Π(ye1,n−1),

Π(xye2,n) = Π(xe2,1 ◦ ye1,n)

= xe2,1 ◦ Π(ye1,n)

and

Π(yze1,n) = Π(ye1,3 ◦ ze3,n)

= Π(ye1,3) ◦ ze3,n + ye1,3 ◦ Π(ze3,n)

= 0

give α = Π1,n
n−1,1 = Π1,n−1

n,1 , β = Π1,n
n−1,2 = Π1,n−1

n,2 = Π2,n−1
n,1 = Π2,n

n−1,1 , γ = Π1,n
n,2 = Π2,n

n,1,

α(yx) = xα(y), β(yx) = xβ(y), β(xy) = β(y)x, γ(xy) = γ(y)x and α(J2) = β(J2) =

γ(J2) = 0. Also we can say

α, β, γ : J → AnnK(J)

by the relations

0 = Π(yze1,n) = Π(ye1,n−1 ◦ zen−1,n) = Π(ye1,1 ◦ ze1,n),

0 = Π(yze1,n) = Π(ye1,2 ◦ ze2,n) = Π(ye1,n ◦ zen−1,n−1)

0 = Π(ye1,n ◦ ze3,n).

Now we have all conditions of the extremal Jordan derivation given in Proposition 3.11

for n > 4.

Let n = 4. Then we get α(J2) = 0, β(J2) = 0, γ(J2) by (4,2), (3,1), (3,2) coe�cients

of the relations Π(ye1,2◦ze2,4) = Π(yze1,4), Π(ye1,1◦ze1,4) = Π(yze1,4), Π(ye1,3◦ze3,4) =

Π(yze1,4), respectively. In addition, we have α, β, γ : J → AnnK(J) by (3,1), (3,2)-

(4,2), (3,1)-(3,2), (3,2) coe�cients of the relations Π(ye1,1 ◦ze1,4) = Π(yze1,4), Π(ye1,2 ◦

ze2,4) = Π(yze1,4), Π(ye1,3 ◦ ze3,4) = Π(yze1,4) , Π(ye1,4 ◦ ze3,4) = 0, respectively. This

completes the proof.

Theorem 3.15 follows by Lemma 3.16 - 3.23. In other words, any Jordan derivation

∆ of Rn(K, J) can be written as

∆ = δD + I + Υ + θ̄ + Γ + Ω
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where δD, I, Υ, θ̄, Γ and Ω are diagonal, inner, annihilator, ring, almost annihilator

derivations and extremal Jordan derivation, respectively.

Let n=3. After applying Lemma 3.16 - 3.21, it is obtained that Ξ is equal to the

sum of the Jordan derivations described in Proposition 3.13, 3.14:

• The conditions of the Jordan derivation given in Proposition 3.13 can be obtained

by using the relations ye1,3 ◦ xe3,2 = yxe1,2, xe2,1 ◦ ye1,3 = xye2,3, ye1,2 ◦ ze2,3 =

yze1,3, ye1,3 ◦ ze2,3 = 0, ye1,3 ◦ ze1,2 = 0.

• The conditions of the Jordan derivation given in Proposition 3.14 can be obtained

by using the relations

ye1,2 ◦ ze2,3 = 0, ye1,3 ◦ ze1,3 = 0,

ye2,2 ◦ ze1,3 = 0, ye1,1 ◦ ze1,3 = yze1,3,

ye1,3 ◦ ze3,3 = 0, ye2,3 ◦ ze3,3 = yze2,3,

ye1,1 ◦ ze3,3 = 0, ye1,1 ◦ ze1,2 = yze1,2,

ye1,2 ◦ ze2,2 = 0, xe2,1 ◦ ye1,3 = xye2,3,

ye2,3 ◦ ze1,1 = 0, ye1,1 ◦ ze1,1 = yze1,1 + zye1,1,

ye1,2 ◦ ze3,3 = 0, ye1,2 ◦ ze2,1 = yze1,1 + zye2,2,

ye1,2 ◦ ze1,3 = 0, ye1,3 ◦ ze3,1 = yze1,1 + zye3,3,

ye1,3 ◦ ze2,3 = 0, ye2,3 ◦ xe3,2 = yxe2,2 + xye3,3.
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4 RESULTS

In this thesis, some elementary matrix operations are utilized to classify the deriva-

tions of Rn(K, J), and therefore the Jordan derivations of the same ring. Firstly, it is

proved that any derivation of Rn(K, J) can be written as a sum of diagonal, inner, an-

nihilator and almost annihilator derivations and some of this proof is published ([23]).

After describing the derivations of Rn(K, J), we characterized all Jordan derivations

of Rn(K, J) and we showed that any Jordan derivation of Rn(K, J) can be written as

a sum of a derivation and an extremal Jordan derivation.
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