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ABSTRACT 

AKÇORA, Begüm. Empirical Essays on Energy Economics, Ph.D Dissertation, Ankara, 2024. 

 

This thesis comprises three essays on energy economics. In the first chapter, we focus on detecting gas 

price bubbles by employing the generalized sup ADF (GSADF) test by Phillips et al. (2015). We utilize the 

Log-Periodic Power Law Singularity (LPPLS) method established by Filimonov and Sornette (2013) as a 

robustness check in the European gas markets. The findings from the GSADF test indicate that TTF exhibits 

the fewest number of price bubbles, followed by NBP. LPPLS test reveal that both TTF and NBP exhibit 

the fewest numbers of price bubbles. We underscore a significant level of gas market integration, notably 

evident in the similarity of dates of the bubble period in the Europe. The second chapter determines the 

causal link among EU ETS carbon prices as well as energy prices by employing a time-varying causality 

test (TVGC) by Shi et al. (2020, 2018). The robustness of the results is checked including stock market 

data and the Geopolitical Risk Index. Our study reveals a more evident causal relation between fossil energy 

and carbon emissions, particularly after 2016. The results indicate variations in energy prices are triggered 

by factors like surplus LNG, sanctions affecting oil prices, the COVID-19 pandemic, political 

announcements, spike natural gas prices due to stock levels, and similar factors affect carbon prices. The 

final chapter, the outcomes of oil price shocks on sectoral unemployment are considered by applying a 

Structural Vector Autoregression (SVAR) technique in the U.S.. The findings note evident heterogeneity 

in the response of sectoral unemployment to the oil-related shocks.  

 

Keywords: Price Bubbles, Causality, Oil Price Shocks, Carbon Market, Energy Market, Sectoral 

Unemployment 
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ÖZET 

AKÇORA, Begüm. Enerji Ekonomisi Üzerine Ampirik Makaleler, Doktora Tezi, Ankara, 2024. 

 

Bu tez enerji ekonomisi üzerine üç makaleden oluşmaktadır. Birinci bölümde, 2015 yılında Phillips ve 

arkadaşları tarafından geliştirilen GSADF testini kullanarak Avrupa’daki belirli hublarda gaz fiyat balonları 

tespit edilmektedir. Daha sonra, Filimonov ve Sornette (2013) tarafından geliştirilen LPPLS yöntemi ile 

Avrupa doğal gaz fiyat balonları karşılaştırılmaktadır. GSADF testinden elde edilen bulgular, en az sayıda 

fiyat balonunun TTF’te sonra da NBP'de oluştuğunu göstermektedir. LPPLS testi, hem TTF'nin hem de 

NBP'nin en az sayıda fiyat balonu sergilediğini ortaya çıkarmaktadır. Sonuçlarımıza göre doğal gaz fiyat 

balon dönemi tarihlerinin benzerliğinden dolayı Avrupa’da önemli derecede entegre bir doğal gaz piyasası 

olduğu tespit edilmektedir. İkinci bölümde, Shi ve diğerleri tarafından geliştirilen TVGC testini kullanarak 

AB ETS karbon fiyatları ve enerji fiyatları arasındaki nedensellik bağlantısı araştırılmaktadır.  Ayrıca daha 

sonra nedensellik ilişkisine borsa fiyat verileri ve Jeopolitik Risk Endeksi dahil edilerek sonuçların değişip 

değişmediği tekrar incelenmiştir. Çalışmamız, fosil enerji fiyatları ile karbon fiyatları arasında özellikle 

2016 sonrasında daha belirgin bir nedensellik ilişkisinin var olduğunu tespit etmektedir. Enerji 

fiyatlarındaki dalgalanmaların karbon fiyatları üzerindeki etkisinin nedensellik ilişkisini arttırdığı ve 

dalgalanmalarında LNG miktar fazlası, petrol fiyatlarını etkileyen yaptırımlar, Kovid-19 salgını, Rusya-

Ukrayna savaşı gibi faktörlerden kaynaklandığını göstermektedir. Son bölümde ise petrol fiyatı şoklarının 

Amerika Birleşik Devletleri sektörel işsizlik üzerindeki sonuçları, SVAR tekniği uygulanarak 

araştırılmaktadır. Bulgular, sektörel işsizliğin petrole bağlı şoklara verdiği yanıtta belirgin bir heterojenlik 

bulunduğuna dikkat çekmektedir. Talep kaynaklı petrol fiyat şokunun sektörel işsizlik üzerinde belirgin bir 

etkisinin olduğu gözlemlenmektedir. 

 

Keywords: Fiyat Balonu, Nedensellik, Petrol Fiyat Şoku, Karbon Piyasası, Enerji Piyasası, Sektörel 

İşsizlik 
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INTRODUCTION  

The global energy market has encountered noteworthy transformations, and one of the 

critical components is energy financialization. In recent decades, energy prices have 

performed very much like financial commodities which have gone through exuberance 

volatility, uncertainty, speculative bubbles, ambiguity, shocks, etc. As a result of 

financialization, there is an urgent need to measure risk or predict energy prices more 

efficiently because of the advancement of interconnectedness among various energy 

sources and integration across regions. 

Starting from 2018, the world energy market has undergone extraodinary shifts due to a 

diverse array of economic, political, and climate-related factors such as COVID-19 

pandemic demand tightness, Ukraine–Russia conflict, European energy crisis, climate 

goals etc. In this context, energy prices have a crucial impact on macroeconomic and 

microeconomic dynamics which can cause either economic loss or welfare. It is crucial 

to understand the fundamental characteristics of energy commodities to better grasp the 

causes and results of economic impacts for economists and policymakers. Contributing 

to the energy economics and finance era, the present thesis is organized as three specific 

essays, which delve into energy commodities from various perspectives. First, as an 

energy commodity, natural gas prices are similar to financial assets that experience 

volatility, speculation, and price bubbles. Caspi (2016) states that price bubbles form 

when commodity price substantially strays from its fundamental value. When asset price 

bubbles persist, and the duration is long, the probability of a less efficient market can 

emerge. Natural gas price bubbles are disadvantageous for firms, energy sectors, and 

economies since natural gas is a crucial input for production processes and household 

needs. When markets experience price bubbles, misleading price signals can misdirect 

market participants, resulting in economic losses. Therefore, detecting bubbles within 

natural gas markets is crucial to manage risks and ensure market participants are not 

exposed to misaligned prices. Thus, we investigate price bubbles in the European gas 

hubs. The world gas market is marked into three predominant regions regarding 

geography and pricing methods (IEA, 2013). In the U.S., prices are determined by the 
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gas-on-gas pricing mechanism (GOG), while in Europe, prices are formed by oil-indexed 

contracts with the hub price mechanism since the early 2000s. In Asia, prices are 

established through oil-indexed contracts. Therefore, by detecting gas price bubbles in 

Europe, we investigate that gas markets within the same geographic region employing a 

similar pricing methodology, such as the hub-based approach, might encounter varying 

occurrences of price bubbles owing to their distinctive characteristics. We contribute to 

the literature, examining price bubbles for the first time in the European hubs by 

employing two distinct methodologies. We present compelling evidence that not only 

does the price mechanism utilized in hubs play a role, but the unique characteristics of 

these hubs also decisively affect the occurrence of price bubbles. This research will 

empower market participants, economists, and policymakers to understand the distinct 

traits inherent to gas price bubble behavior in Europe. 

Cope with climate change, the Emission Trading Scheme (ETS) was initiated in 2005. 

ETS is the first and still the most extensive cap-and-trade mechanism as a cost-effective 

instrument for mitigating emissions in the European Union. ETS retrains the amount of 

CO2 allowances put into circulation from companies and can be subject to trade with each 

other. The objective of carbon pricing is diminishing greenhouse gases like carbon 

dioxide, thereby reducing the impacts of climate change. The primary carbon pricing 

systems are ETS as well as carbon taxes. The ETS operates through a cap-and-trade 

system, obligating actors possessing allowances equal to their emissions. The entire 

quantity of allowances diminishes, allowing companies to trade these allowances and 

consequently establish the carbon price. Climate change is a paramount driving force in 

the international energy market. A carbon tax directly sets a carbon price, aiming to 

incentivize companies to decrease their emissions. In this context, the ETS was operated 

marking the inception along with continued operation of the most comprehensive cap-

and-trade mechanism within the European Union. It stands as a cost-effective instrument 

aimed at curbing greenhouse gas emissions. The EU ETS is currently in Phase 4 (2021 to 

2030), which has progressively evolved into a more stringent mechanism. This study 

contributes by analyzing the causality link among the ETS carbon prices as well as energy 

prices. It employs a time-varying causality test (TVGC) developed by Shi et al. (2020, 

2018). The rationale for investigating this issue lies in the strong equivalence among 
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carbon and fossil energy. Fossil energy, primarily propelled by economic growth and 

industrial production, is the essential cause of emissions, establishing a profound 

connection among prices of carbon and energy. Furthermore, a cyclical interdependence 

exists among prices carbon allowance and energy despite the stability of the allowance 

supply, which originates externally. When carbon prices are low, there tends to be a surge 

for energy usage for affordability of carbon. Consequently, this surge causes a hike in the 

expenses of allowances. Alterations in the cost of fossil energy lead to substitution and 

income effects that influence carbon prices. This chapter emphasizes the causal relation 

among carbon and energy prices in the European Union that has become more evident 

since 2016, taking precautions to diminish emissions starting from the declaration of the 

Paris Agreement. Further, this study provides deep understanding between carbon and 

energy market, detecting causality periods and determines the reasons behind casual 

relations. Moreover, it is crucial for policymakers to attentively monitor and comprehend 

the dynamics of carbon in addition to traditional energy resources, in order to enhance 

carbon market effectiveness. 

Since the beginning of the oil crisis in the 1970s, a noteworthy correlation has been 

established between significant surges in oil prices along with recessions in the United 

States. This correlation has boosted the interest of economists and policymakers, 

prompting extensive investigation into how shocks in oil prices influence various 

economic indicators. The final chapter scrutinize how oil price shocks influence sectoral 

unemployment in the United States. Our goal in studying to find out whether oil price 

shocks affect on unemployment in different sectors. This research significantly provides 

to the current knowledge of oil price shocks as well as how they relating various 

unemployment sectors, offering valuable insights into the labor market. There are limited 

numbers of study investigated deeply oil price shocks and labor market. This chapter 

contributes examining the conclusion of structural oil shocks on sectoral unemployment. 

The outcomes show that there is indeed heterogeneity in the reacts of sector-specific 

unemployment levels to various oil-related shocks in the U.S.. In particular, various 

unemployment sectors display significant responses to oil supply shocks at different 

magnitude levels. For all sectors of unemployment are significantly affected by aggregate 
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demand shock. For this reason, policy makers should not make a uniform policy to apply 

to all unemployment, each sector should be examined specifically. 
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CHAPTER 1 

DETECTION PRICE BUBBLES IN THE EUROPEAN NATURAL 

GAS MARKET: 2011-2020 

1.1 INTRODUCTION 

Hub trading allows market actors to exchange gas as a financial commodity with 

standardized contracts and rules (Shi and Variam, 2018).  Standardization is the first 

condition for attracting traders to operate in the market since standardization engages with 

liquidity along with volume. Thus, all of these requirements facilitate market price 

transition (Heather, 2015). With the aim of establishing a reference price for natural gas, 

gas on gas price mechanisms through hub trading have emerged in the UK at National 

Balancing Point (NBP) (Grandi, 2014). Following the success of NBP, numerous 

individual hubs have emerged in Europe. However, each hub has different efficiency 

levels and specific conditions (Miriello and  Polo, 2015).   Shi and Variam (2018) clarify 

the framework of the elements to constitute gas hubs and evaluate them into two groups. 

The first group contains core elements of balancing hubs such as a trading point, hub 

operator, exchange, standard rules, spot products, and market actors. In the second group, 

it is stated that future products, financial actors, data transparency, and price reporting 

agencies index are required for an operational benchmark hub. Shi and Variam (2018) 

also argue that establishing a hub is not a sufficient condition to facilitate gas on gas price 

mechanism, and there is a strong need for both balancing and benchmarking hub 

elements. 

To eliminate the differences across the countries, the European Commission (EC) 

presents “Energy Packages” to regulate the rules for building a harmonized, liberal natural 

gas market. Although there is a common political willingness by the EU, the development 

levels of particular hubs are different. In this context, there is a wide range of researches 

that regularly monitor and rank European hubs. For instance, the Oxford Institute for 

Energy Studies (OIES) conducts several reports on the development processes of 
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European hubs and evaluates them based on trading activity. Heather (2015) determines 

five trading measurements such as the product range, volume, churn rate, market 

participants, and tradability index and scores EU hubs according to those trading data 

measurements. In his recent study, Heather (2020) indicates that the Dutch Title Transfer 

Facility (TTF) is the supreme all hub in the EU according to the trading measurements. 

In this report, NBP gets the second highest score, which lost the dominant position to 

TTF, but it is still a mature and liquid hub.   Although other hubs such as NetConnect 

Germany (NCG), Italian Punto di Scambio Virtuale (PSV), and Austrian Virtual Trading 

Point (VTP) score similarly among themselves, there is a clear difference between TTF 

and NBP. In addition to all these, the European Union Agency for the Cooperation of 

Energy Regulators (ACER) has prepared a guideline defined as the ACER Gas Target 

Model (AGTM) to evaluate the performance of European hubs. In AGTM, hubs are 

analyzed based on two primary metrics: market health metrics and market participants’ 

needs metrics. Market health metrics display whether a gas wholesale market is 

competitive, resilient, and it signifies an adequate level of supply diversification. Market 

participants’ needs metrics examine the products and the degree of liquidity of the market 

for the well-functioning of gas hubs. In accordance with the results of market participants’ 

needs metrics, hubs are categorized into four groups: Established hubs are used as a 

benchmark for long-term agreements and other hubs. Advanced hubs have a high level 

of liquidity. Emerging hubs enhance liquidity starting from a lower baseline, capitalizing 

on improved interconnectivity. Finally, illiquid-incipient hubs mostly rely on long-term 

contracts. 

Market fundamentals, with the prices of other competing energy sources such as oil, 

electricity, and coal have also substantial effects on hub prices (Stern, 2014). Due to the 

reflection of supply/demand conditions and unexpected events, gas prices are more 

volatile (Heather, 2010). Since 2008, energy commodities, including gas, exhibit similar 

characteristics with financial products. Therefore, volatility, speculation, and price 

bubbles in these commodities tend to be the consequences of financialization (Zhang et 

al., 2017). As it is known, when the asset price deviates excessively from the fundamental 

value, price bubbles occur (Caspi, 2016).  Fama et al. (1991) argue that in an efficient 

market, prices occur according to the relevant information and respond immediately, and 
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thereby; assets cannot be determined as undervalued or overvalued. When bubbles 

emerge in asset prices and they last longer, the likelihood of a less efficient market 

increases. As a result, economies are affected both at macro and micro levels by the 

natural gas price bubbles (Li et al., 2020). If markets are exposed to price bubbles, there 

will be false price signals for market actors that lead to an economic loss (Lammerding 

et al., 2013). Price bubbles are undesirable for both companies and energy sectors as 

energy is a vital input for production as well as for business operations. Thus, it is 

essential to identify bubbles in natural gas markets to mitigate risks and misaligned prices 

for market participants. 

Honore (2019) consider that the European Commission aims to decarbonize of energy 

sources diminishing greenhouse gas (GHG) emissions as well as inhibit the influence on 

global climate change. In this regard, facilitating carbon reduction natural gas is the 

primary instrument transitting low carbon energy sources (Mac Kinnon et al., 2018). 

Hence, it is essential to schedule. 

Therefore, the EU prioritizes diversifying gas supply and trading activities of gaseous 

renewables and executes extensive investments in renewable gas (e.g., blue hydrogen, 

biogas, and biomethane) to boost trading activities. Decarbonized natural gas goal gets 

more attention to natural gas infrastructure role to guarantee transportation and 

distribution of renewable gases and trading at natural gas hubs in the recent years (Khan 

et al., 2022). Hence, the in-depth assessments of the gas market and price bubbles will 

contribute to the transition of the decarbonized gas market along with drive the trading of 

low-carbon gas at the hubs that promote clean energy transition also energy and 

environmental sustainability.1 

The global gas market is divided into three primary regions on the basis of both geography 

and pricing regimes (IEA, 2013). Prices are determined in the US by the gas on gas 

pricing mechanism (GOG), whereas in Europe, mainly by the oil-indexed contracts since 

 
1 Parallel to the trend of transition from fossil fuels to green energy alternatives to achieve decarbonization 
target, more studies focus on the investigation of clean energy transition and enviromental sustainability. 
See Irfan et al., (2022); Tang et al., (2022); Xie et al., (2022); Khan et al., (2022b); Zhang et al., (2022); 
Khan et al., (2022a); Shahzad et al., (2022). 
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the beginning of the 2000s with the hub price mechanism, and in Asia by the oil-indexed 

contracts. Zhang et al., (2018) investigate the price bubbles across those regions and 

examine which price mechanisms are subject to fewer price bubbles. In the US, which is 

found as the most efficient market by Zhang et al. (2018), owing to the gas on gas price 

mechanism (GOG), the least number of price bubbles (only five bubbles) is seen. With 

GOG, gas prices compete with each other, and market fundamentals are the leading 

sources of price bubbles. The highest number of price bubbles is observed in Japan and 

the price bubbles (eight bubbles found in total) mostly occurred on the dates with high oil 

price explosiveness due to the oil-indexed gas contracts. In a nutshell, Zhang et al. (2018) 

conclude that the GOG pricing mechanism in the US is the most effective price regime 

for gas compared to oil-indexation. Li et al., (2020) examine the price bubbles in Europe, 

the US, and Asia and they specify the reasons for the bubbles in these regions. The main 

reasons behind the two price bubbles in Europe are stated as geopolitical factors. Also, it 

is indicated that financialization causes five price bubbles in the US, and oil price 

volatility in Asia caused six price bubbles. 

However, in our study, we argue that the countries which are in the same geographical 

region and using the same price methodology -hub-based- may experience different 

numbers of price bubbles due to their unique characteristics. The main reason behind this 

conviction is that, as we have already covered, in Europe, the degree of the development 

level of each hub differs substantially. That is, while some hubs are accepted as mature, 

others are considered as advanced hubs (see Heather (2020) and ACER (2020)). Mostly, 

the Dutch TTF is seen as the benchmark hub, followed by the British NBP and the 

German NCG, the Italian PSV, and the Austrian VTP are all classified as advanced hubs 

(see Heather, 2020; Shi, 2016; IEA, 2020a; ACER, 2020).  In this respect, to test our main 

hypothesis and to understand the bubble behavior in natural gas markets with the same 

pricing methodology, we examine the natural gas markets in the Netherlands, the United 

Kingdom, Italy, Germany, and Austria by applying generalized sup ADF test by Phillips 

et al., (2015).As a robustness check, we also employ the Log-Periodic Power Law 

Singularity (LPPLS) method by Filimonov and Sornette (2013). Using these two 

methodologies, we examine the price bubbles in the European gas markets, which are 

applying the same pricing methodology but differ in market structure. 
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Overall, based on both two methodologies, we observe that more efficient markets are 

less exposed to price bubbles. More specifically, GSADF test results show TTF has the 

least number of price bubbles while NBP has the second least number of price bubbles. 

Meanwhile, according to the LPPLS test results, both TTF and NBP generate the least 

number of price bubbles. To underline, the results show that both TTF and NBP are the 

most established hubs. Moreover, in both approaches, the number of price bubbles seen 

in PSV, NCG, and VTP, respectively, follows TTF and NBP. Austrian VTP is found to 

have the highest number of price bubbles based on both methodologies. Moreover, we 

observe that the timing of the bubble periods is quite similar in each hub due to the high 

level of interconnections. 

This paper makes several noteworthy contributions. This is the first research which 

identifies the gas price bubbles across European hubs. Besides, it is a contribution to the 

debate on whether the functionality of hubs, which use the same price methodology, 

affects the numbers of bubbles and the duration of the bubbles. Adopting two different 

well-suited approaches, we provide convincing evidence that not only the price 

mechanism used in hubs but also the characteristics of the hubs are decisive for the 

number of price bubbles. Understanding the bubble behavior in European natural gas 

hubs will enable market actors to better grasp the characteristics of these hubs. 

This paper has been structured as follows: Section 2 reviews the empirical literature; 

Section 3 presents the empirical methodology. Data are explained in Section 4, and the 

empirical results are discussed in Section 5. Finally, section 6 covers the conclusion, 

discussion, and policy recommendations. 

1.2 LITERATURE REVIEW 

Natural gas is a substitute fossil fuel for oil in the global energy sector, and the prices of 

these two commodities are related. The most crucial reason behind this link is that natural 

gas producers determine the gas price, especially for long-term contracts, based on a 

formula that includes weighted averages of oil price (Asche et al., 2002; Stern, 2014). 

However, this situation has changed through shale gas production, which initiated to trade 
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at Henry Hub in 2007. However, the abundant supply also global financial crisis in 2008 

altered the dynamics of the global natural gas market (Caporin and Fontini, 2017). 

According to Zhang et al. (2018), the hub-based pricing mechanism reflects the supply 

and demand factors in the market. Besides, in a mature hub, prices adjust quickly when 

recent information comes into the market. A significant number of empirical works have 

scrutinized other energy commodity prices and various supply/demand-side factors to 

grasp a better understanding of natural gas hub-based pricing mechanism. Moreover, 

Brown and Yucel (2008) show that oil and gas prices behave similarly for a long period, 

while they differentiate from each other in the short run in the US for the period between 

January 7, 1994 and June 8, 2007. Brigida (2014) uses the same variables as Brown and 

Yucel (2008) and applies the Markov switching cointegrating method for the period 

between June 1997 and September 2012. They demonstrate a strong relation among oil 

and gas prices in the US.  However, Wang et al., (2019) demonstrate the impact of oil 

prices on the Henry Hub prices decreases while the effect of supply/demand factors, stock 

market volatility, and speculative behavior have become more prominent for the period 

between 2001 and 2018. 

The studies on European gas markets mainly concentrate on the link between natural gas 

prices and market fundamentals also other energy commodity prices. For instance, 

applying the structural VAR model, Nick and Thoenes (2014) find that extraordinary 

deviations from temperatures and supply shortages affect the NetConnect gas price in 

Germany in the short period, while oil along with coal prices affect in the long period. 

For Belgium's gas market, Regnard and Zakoïan (2011) demonstrate prices of Brent oil 

along with gas are integrated, and the temperature changes affect the volatility of 

Zeebrugge spot prices. Hulshof et al. (2016) show that market fundamentals impact the 

Dutch TTF hub price over the period 2011-2014 and they find that after establishing gas 

on gas competition, oil prices influence on gas prices. 

Many other studies focus on the interactions between hub prices across Europe and their 

level of integration. For instance, Neumann and Cullmann (2012) apply the Kalman Filter 

method to show the degree of price cointegration for eight hubs in six European countries. 

Their study reveals that although TTF is the benchmark hub in Europe, not every hub in 
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the sample is cointegrated with the TTF price. Gianfreda et al. (2012) investigate whether 

Europe has a unique natural gas market area using VECM for five main energy markets. 

They find that each hub interacts with at least one other hub; yet none of them are 

interrelated. The findings of Asche et al. (2013) confirm the level of market 

interconnection among the British NBP, The Dutch TTF, and Belgian Zeebrugge hubs 

are very high. Miriello and Polo (2015) examine the advancement level of European 

natural gas hubs using a simple analytical framework and consider that the wholesale 

markets in the UK and the Netherlands are more advanced than those in Germany and 

Italy due to their dependencies on long-term import sources. Also, they emphasize that 

the convergence of prices in each hub depends on the level of interconnection. Schultz 

and Swieringa (2013) focus on the price formation process of the North-West European 

natural gas market. They find that NBP's future contract leads to price discovery using 

the sample period between 2008 and 2011.  Broadstock et al. (2020) investigate the level 

of interconnection of the North-West European gas market also find that the highest 

interconnectivity rate is around 65%, using Diebold and Yilmaz (2009) index for the 

period between 2005 and 2018. 

Recently, researchers have given substantial attention to the financialization of energy 

commodities following the growing volume of trading activities, the appearance of 

speculation, and the volatility of futures contracts (see, Broadstock et al., 2012; Ji et al., 

2018; Zhang, 2017). Implementing futures contracts for the commodity market entails 

the counterparties speculating and hedging on price movements in future due dates, 

leading to a commodity bubble (Creti and Nguyen, 2015). In their study, Cheng and 

Xiong (2014) mentioned the "Bubble view" of politicians, which is based on the opinion 

that futures contracts' speculative movements caused the oil price bubble in 2007-2008. 

This "Bubble view" caused a rise studies on extraordinary price oscillation. Sornette et 

al. (2009) diagnose that oil price fluctuations occurred faster than exponential growth 

between 2006 and 2008 by applying the log-periodic power law (LPPL) model. Wątorek 

and Stawiarski (2016) adopting the same approach, find a negative oil price bubble 

between 2014 and 2016. 
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The most common method to detect multiple bubbles is the generalized sup ADF test 

(GSADF), proposed by Phillips et al. (2015). This methodology depends on multiple 

regressions using various sizes of time windows detecting along with date-stamping 

bubbles. Gronwald (2016) shows the presence of oil bubbles using the GSADF method 

in 1990-1991, 2005-2006, and 2007-2008. Fantazzini (2016) applies both GSADF and 

LPPL methods. His results show that both tests confirm that the fundamental value of 

spot oil price declined between 2014 and 2015. Caspi et al. (2018) apply the GSADF test 

to determine the WTI bubbles between 1876 and 2014 and identify several bubble 

periods. Su et al. (2017) find deviations from WTI oil price's fundamental value in 1990, 

2005, 2006, 2008, and 2015. Liu and Lee (2018) examine the explosive movements of 

oil, gasoline, and coal prices from 1970 through 2014 and show that oil and gasoline price 

bubbles affect each other. Sharma and Escobari (2018) observe price bubbles for oil, 

heating oil, natural gas. Figuerola-Ferretti et al. (2020) identify an explosive bubble 

before the global financial crisis, along with a negative bubble for 2014 and 2016 due to 

the OPEC's supply decision. Khan et al. (2021b) examine the bubbles in crude oil price 

employing GSADF test and determine the factors behind the price explosivitiy as 

imbalance among demand and supply of oil, supply surplus by OPEC, shale oil 

production in the U.S.. Recently, Yang et al. (2021) find price bubbles in the shale gas 

industry using GSADF test. Pastor and Ewing (2022)  find the Alaska North Slope (ANS) 

West Coast oil price bubbles in North Slope throughout the period of 2007–2009 

recession. Ajmi et al. (2021) find two episodes of mutual bubbles examining Brent oil, 

Dubai, and WTI (July 1986 and March–July 2008). Khan et al. (2022)  observe price 

bubbles in various energy prices from January 2000 and September 2021 and they reveal 

that mildly explosive behavior is seen mostly in LNG prices. 

Only Zhang et al. (2018) and Li et al. (2020) have investigated the natural gas price 

bubbles. Both studies compare the natural gas prices in three distinctive regions (the US, 

Europe, and Asia) by applying the GSADF method. Those regions have different price 

mechanisms, namely gas on gas (GOG) competing for price in the US, oil indexation in 

Japan, and mix price series of oil indexation and GOG in Europe. Zhang et al. (2018) 

emphasize that GOG is the most efficient price mechanism; therefore, it should be subject 

to fewer bubbles than oil indexation. They provide empirical evidence confirming their 

https://www.sciencedirect.com/topics/engineering/liquefied-natural-gas
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hypothesis showing that the number of bubbles seen in the US is lower compared to 

Europe, whereas the highest number of price bubbles is seen in Japan for the period 

between 1982 and 2017. Consequently, they suggest that policymakers should encourage 

transformation from oil indexation to a hub-based pricing mechanism for a more efficient 

natural gas market. Li et al. (2020) apply the same methodology to the same regions as 

Zhang et al. (2018) with a shorter sample period. The results of their study show that there 

are two bubble periods in Europe, five in the US and six in Asia. The main reasons for 

these bubbles are stated as political factors for Europe, oil price fluctuations for Asia, and 

price volatility and speculation for the US. 

The key research question of this study is whether the number of gas price bubbles varies 

in countries that use the same price method -hub-based but have different market 

conditions. We search the bubble behavior in different European natural gas hubs, which 

apply the hub-based price methodology. This study fills the gap in literature scrutinizing 

the natural gas price bubbles and their possible reasons in Europe and reveals that 

benchmark hubs are exposed to less price bubbles. The results of this study are also 

important as understanding the European natural gas market dynamics more 

comprehensively is crucial in building and transitioning decarbonized internal gas market 

in the future. 

In the rest of the paper, using the gas prices for TTF, NBP, NCG, PSV, and VTP between 

03.01.2011 and 30.06.2020, we examine the price bubbles at the natural gas hubs in 

Europe. To this end, we apply both GSADF and LPPLS to understand whether that the 

countries in the same geographical region and those using the same price methodology 

may experience different numbers of price bubbles due to their specific characteristics. 
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1.3 EMPIRICAL METHODOLOGY 

1.3.1 Generalized sup ADF Test 

Phillips et al. (2011) (hereafter PSY), developed and extended the primary method, which 

uses the augmented Dickey-Fuller (ADF) model specification with a recursive evolving 

algorithm for multiple bubble identification. The algorithm depends on historical 

information and a time-varying model structure. By means of a flexible moving sample 

test procedure, the GSADF model can discover and date-stamp multiple bubbles despite 

the small size of data. In the ordinary market conditions, asset prices show a martingale 

characteristic, however in the expansion stage of the bubble they follow an explosive 

behavior (Phillips and Shi, 2018). If we consider 𝑦! is a time series data with the total 

number of T observations and the rolling windows consist of 𝑟" and 𝑟# are the starting 

point and ending point respectively, the length of the window calculated as 𝑟$ = 𝑟" − 𝑟#. 

The classic ADF regression is: 

𝑦! = 	µ + δ. 𝑦!%" + ∑ ϕ&!	
()

(*" δ. 𝑦!%( + 𝜀!             (1) 

where 𝑦!	is the price of an asset, μ, δ and ϕ are parameters measured applying OLS. The 

null hypothesis of the typical ADF test is 𝐻+:	𝛿 = 1 and alternative hypothesis is 𝐻"	:	𝛿 >

1.  The number of observations taken into the consideration in the classic ADF is 𝑇$ =

[	𝑟$𝑇]	where [. ] demonstrates the integer section. The ADF statistic denominated by 

𝐴𝐷𝐹&"
&# . 

A backward sup ADF test codified by Phillips et al. (2014). Specific fraction 𝑟# is an 

endpoint of the entire sample, and the window size is widened from a beginning fraction 

𝑟+  to 𝑟#. The backward sup ADF statistic can be represented as follows: 

𝑆𝐴𝐷𝐹&#(𝑟+) = 	 𝑠𝑢𝑝&"∈	[+,&#%	&$]𝐴𝐷𝐹&"
&#                 (2) 
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The generalized sup ADF (GSADF) is converted by continuously applying the SADF test 

process for each 𝑟# ∈ [𝑟+, 1]	.  Then, the GSADF defined as: 

𝐺𝑆𝐴𝐷𝐹	(𝑟+) = 	 𝑠𝑢𝑝&#	∈	[&$,"]𝑆𝐴𝐷𝐹&#(𝑟+)             (3) 

The procedure is a recursive regression technique determined by equation (1), starting 

with the initial fraction 𝑟$ = 𝑟+ and after extending the sample window advances up to 

𝑟$ = 𝑟" = 1 which equals to the entire sample. The initial minimum fraction is chosen 

randomly, following that this procedure is applied continuously for any potential fraction. 

ADF statistics are estimated as 𝐴𝐷𝐹&& for all values of ∈ (𝑟+, 𝑟"). Results of this procedure 

are a sequence of ADF statistics. Figure 1.1 shows the comparative sample sequences 

used in the recursive GSADF. 

 
Source: Phillips et al. (2015, p.1049). 

Figure 1. The Sample Sequences and Window Widths of the GSADF Test 

If the comparison between the supremum value of this sequence (SADF) to its 

corresponding critical values are significant which is indicated by 𝛿&",&# > 1, we could 

denote it as a bubble period. To detect multiple bubble periods in the sample, the GSADF 

test employs a variable window width approach which changes both starting and ending 
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points within a specified range [𝑟+, 1]. The GSADF test, following the detection of bubble 

periods, determines the beginning and ending time of this (these) bubble(s) which is 

adhered as date-stamping.  When the backward sup ADF sequence exceeds the respective 

critical value from below, it is determined as beginning time (𝑇&') . However, when the 

backward sup ADF sequence exceeds the respective critical value from above, it is 

defined as ending time (𝑇&(). 

GSADF test depends on the bubble periods shown as: 

r̂0 = inf1#	∈	[1$,"]{r#: BSADF1# >	 cv1#
2)             (4) 

r̂3 = inf1#∈	[14*	,"]	{r#: BSADF1# >	 cv1#
2) 

In the model, the critical value of the sup ADF statistic shown as cv1#
2+	 calculated 

100	(1 − 𝛽!	) % based on 𝑇&#observations. In this model, 𝛽!	 is applied as 5%, which is a 

constant value, instead of appointing 𝛽5	 → 0  as 𝑇 → 0 due to eliminating asymptotically 

type 1 errors. Finally, the GSADF test statistic is denoted as follows: 

GSADF(r+) = sup1#	∈	[1$,"]UBSADF1#(r+)V             (5) 

1.3.2 The Log Periodic Law Singularity Model 

Johansen et al. (2000) established a method that defines the bubble regime as the faster-

than-exponential price acceleration with a rising frequency of volatility movements. The 

original method (see, Johansen et al., 2000) has three linear parameters  (𝐴, 𝐵, 𝐶) and four 

nonlinear parameters (β, ω, 𝑡6 , φ).  A, B, C are “slaved” in the fitting algorithm calculated 

from the derived values of the nonlinear parameters β, ω, tc, and φ. The estimation 

technique for the model is the nonlinear multivariate least squares. To diminish the 

complication of the fitting process and to obtain more stable results, Filimonov and 

Sornette (2013) transformed three linear	(𝐴, 𝐵, 𝐶) and four nonlinear	(β, ω, 𝑡6 , φ)  
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parameters in the LPPLS model into four linear (𝐴, 𝐵, 𝐶", 𝐶#)	and three nonlinear  

(𝑚,ω, 𝑡6) parameters. The main idea is to specify bubbles based on two common 

characteristics. The first one is the faster than exponential growth of the asset price 

throughout the bubble duration, which terminates when the bubble burst. The second one 

detects the critical time  (𝑡6) which is the most possible time for end of bubble or regime 

changing.2 

We use the LPPLS approach to determine both the development stage and the end time 

of bubbles in European gas prices. The method can be shown as follows: 

ln 𝐸`𝑃(𝑡)b = 𝐴 + 𝐵(𝑡6 − 𝑡)7 + 𝐶"(𝑡6 − 𝑡)7𝑐𝑜𝑠(w	ln[𝑡6 − 𝑡])

+ 𝐶#(𝑡6 − 𝑡)7𝑠𝑖𝑛(w	ln[𝑡6 − 𝑡]) 
(6) 

In the equation, lnE(P(t)) is the natural logarithm of the asset price at time t, 𝑡6 represents 

the critical time. A, which is the expected maximum logarithmic price, must be positive 

at the critical point of time  𝑡6.  Parameter B determines growth amplitude and 𝑚 ∈ [0,1] 

detects the level of the faster-than-exponential growth. To check for the amplitude of log-

periodic oscillations and the log-periodic angular frequency, C1 and C2 are used as extra 

control variables (Geuder et al., 2019). 

The positive bubbles are specified by 𝐵 < 0, while negative bubbles are determined by 

𝐵 > 0. We apply the following restrictions proposed by Filimonov and Sornette (2013) 

to get more accurate results: 

0.1 ≤ 𝑚 ≤ 0.9, 6 ≤ w ≤ 13, 𝐶"#+𝐶## < 1. 

  

 
2 Regime changing refers as an alteration from exponential growth to a lower growth (Balcilar et. al, 2018). 
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1.4 DATA 

There are several numbers of natural gas hubs in Europe. Due to structural differences 

and data availability considerations, we use natural logarithm of day ahead gas prices for 

TTF, NBP, PSV, NCG, and VTP for the period between 03.01.2011 and 30.06.2020. The 

day-ahead natural gas prices are the most commonly traded contracts, and they reflect the 

demand and supply changes in Europe the best (Petrovich, 2016; ACER, 2020). The NCG 

gas prices are collected from European Energy Exchange (EEX)3 database. The NBP and 

TTF gas price series are gathered from Thomson Reuters database. PSV gas prices are 

obtained from S&P Global Platts4. VTP prices are retrieved from Central European Gas 

Hub AG (CEGH)5. All price series are Mwh/Euro except NBP, which is in pence/therm. 

1.5 EMPIRICAL RESULTS 

1.5.1 Identifying Explosive Price Movements  

The GSADF test was employed using the R package PSYmonitor consisting of the 

bootstrap algorithm developed by Harvey et al. (2016) to overcome heteroskedasticity 

and multiplicity in recursive methods.   The price movement is accepted as a bubble when 

the PSY test statistics surpass the 95% bootstrapped critical value. The bubble period is 

assumed to end when PSY statistics fall below 95% of the bootstrapped critical value. 

The lag order is chosen as six depend on the Bayesian information criteria (BIC). The 

initial window size is formulated depending on a calculation that considers total 

observations.6 

  

 
3 Source: European Energy Exchange https://www.eex.com/en/market-data/natural-gas 
4 Source: S&P Global Platts https://www.spglobal.com/commodityinsights/en/commodities/natural-gas 
5 Source: Central European Gas Hub AG https://www.cegh.at/en/exchange-market/market-data/ 
6Initial window size calculated as 𝑟, = 0.01 + 1.8/√𝑇	 
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Table 1. Results of GSADF Tests for Natural Gas Prices in Europe 

 TTF NBP PSV NCG VTP 
Statistical Value 2.04 2.45 3.64 1.89 1.50 
Critical Value      
%90 0.60 0.43 0.27 0.24 0.24 
%95 1.03 0.81 0.56 0.79 0.63 
%99 1.81 1.36 2.06 1.33 1.80 

Notes: TTF: Title Transfer Facility, NBP: National Balancing Point, NCG: NetConnect Germany, PSV: 
Punto di Scambio Virtuale, VTP: Virtual Trading Point 

Table 1 presents the values of GSADF method statistics along with the critical values 

obtained by bootstrap replication by 199 times. For each hub, the values of GSADF test 

statistics exceed 95% of critical values, which shows that there are indeed some bubble 

periods in the European hubs. 

The price bubbles found for each hub are illustrated with a yellow shaded area in Figures 

1-5 and summarized in Table 2. 

Table 2. Bubble Periods: GSADF Test Results  

 

TTF
Start End Start End Start End Start End Start End
6.06.2014 9.06.2014 12.03.2013 13.03.2013 8.02.2012 8.02.2012 13.03.2013 13.03.2013 8.02.2012 8.02.2012
21.12.2015 24.12.2015 20.03.2013 27.03.2013 27.11.2013 29.11.2013 26.03.2013 26.03.2013 27.03.2013 27.03.2013
27.02.2018 1.03.2018 2.04.2014 4.04.2014 30.05.2014 30.05.2014 6.06.2014 9.06.2014 6.02.2014 6.02.2014
30.05.2019 3.06.2019 16.05.2014 16.05.2014 6.06.2014 6.06.2014 17.12.2015 28.12.2015 17.02.2014 17.02.2014
5.06.2019 6.06.2019 30.05.2014 2.06.2014 4.07.2014 4.07.2014 15.01.2016 15.01.2016 24.02.2014 27.02.2014
24.06.2019 28.06.2019 4.06.2014 12.06.2014 10.01.2017 10.01.2017 20.01.2016 21.01.2016 21.03.2014 21.03.2014
3.09.2019 3.09.2019 19.06.2014 24.06.2014 24.11.2017 24.11.2017 25.01.2016 26.01.2016 25.03.2014 8.04.2014
20.05.2020 21.05.2020 26.06.2014 26.06.2014 1.12.2017 6.12.2017 2.02.2016 2.02.2016 11.04.2014 11.04.2014
28.05.2020 28.05.2020 30.06.2014 30.06.2014 12.12.2017 12.12.2017 4.02.2016 12.02.2016 24.04.2014 28.04.2014

3.07.2014 11.07.2014 28.06.2019 28.06.2019 16.02.2016 17.02.2016 30.04.2014 2.05.2014
15.06.2017 16.06.2017 16.07.2019 16.07.2019 19.02.2016 19.02.2016 8.05.2014 9.05.2014
28.02.2018 1.03.2018 18.07.2019 18.07.2019 4.04.2016 14.04.2016 28.05.2014 29.05.2014
25.03.2019 25.03.2019 22.07.2019 22.07.2019 12.12.2017 12.12.2017 2.06.2014 16.06.2014
1.04.2019 3.04.2019 25.07.2019 25.07.2019 26.02.2018 1.03.2018 18.06.2014 18.07.2014
23.04.2019 23.04.2019 29.07.2019 29.07.2019 31.05.2019 3.06.2019 22.07.2014 24.07.2014
20.04.2020 21.04.2020 14.08.2019 19.08.2019 6.06.2019 6.06.2019 5.10.2015 5.10.2015

21.05.2020 21.05.2020 20.06.2019 20.06.2019 15.10.2015 15.10.2015
29.05.2020 1.06.2020 25.06.2019 25.06.2019 10.11.2015 10.11.2015

28.06.2019 28.06.2019 12.11.2015 16.11.2015
18.05.2020 22.05.2020 15.12.2015 21.04.2016
27.05.2020 1.06.2020 27.11.2017 29.11.2017

4.12.2017 11.12.2017
13.12.2017 13.12.2017
26.02.2018 26.02.2018
28.02.2018 2.03.2018
7.09.2018 13.09.2018
21.09.2018 21.09.2018
25.09.2018 26.09.2018
14.03.2019 4.04.2019
28.05.2019 28.05.2019
30.05.2019 10.06.2019
12.06.2019 15.07.2019
17.07.2019 2.08.2019
6.08.2019 30.08.2019
3.09.2019 6.09.2019
2.10.2019 2.10.2019
10.10.2019 14.10.2019
13.05.2020 14.05.2020
18.05.2020 21.05.2020
26.05.2020 1.06.2020

Number of Bubbles 9 16 18 21 40

NBP PSV NCG VTP
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Next, we look more closely at the bubble dates in Table 2. In February 2012, 

unpredictable cold snap increased the demand.  Prices were relatively volatile as gas 

deliveries from Russia decreased around 30% created a bubble at PSV and VTP 

(European Commission, 2012). In March 2013, cold weather boosted gas demand, but 

the market could not meet increasing demand due to tight supply, low LNG import and 

storage level (European Commission, 2013). In the second quarter of 2014, the main 

factors behind the low prices were warm winter and spring climate across Europe. 

Consequently, there was less demand for storage injection. Moreover, weak demand and 

low gas prices in Asia caused LNG cargoes to divert into European hubs, leading to 

diversification of supply sources in Europe (European Commission, 2014a). Since mid-

2014, oil prices were on a downward trend due to worldwide supply surplus. Also, in 

January 2016, Iranian sanctions led to a fall in Brent oil prices to its lowest level since 

2003. Oil price variations reflect to the oil-indexed gas contracts formula after 6 to 9 

months (European Commission, 2016). As a result, gas price bubbles occurred from the 

last quarter of 2015 to the first quarter of 2016 in Germany and Austria. On the 12th of 

December, the explosion of Baumgarten forced the system operator to halt the gas flow 

from Russia and led to the price bubble in Germany, Italy, and Austria (European 

Commission, 2017). In March 2018, hub prices peaked dramatically to their highest levels 

in our sample period due to the extremely cold weather (European Commission, 2018). 

Also, in the third quarter of 2018, European hub prices increased approximately by 50-

60 % compared to the previous year. The upward trend in oil, coal along with carbon 

prices also supported the high prices in the European gas market (European Commission, 

2018). In 2019, there was a high level of LNG flow to Europe. Thus, prices revealed a 

declining trend (European Commission, 2019). In the second quarter of 2020, gas prices 

dropped in every hub due to the Covid-19 pandemic lockdowns addressing mitigating 

demand. Besides, European gas consumption fell by 10% compared to the previous year 

due to the low demand in industry and electricity generation also high-level capacity of 

storage (European Commission, 2020). Thus, overall, it can be argued that the natural gas 

prices are reflections of the market fundamentals as also argued in Stern (2014) and Zhang 

et al. (2018). Next, we summarize our findings and discuss the main characteristics of 

each European hub. 
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1.6 THE NETHERLANDS – TTF 

The Dutch TTF has the least number of price bubbles. As shown in Figure 1, most of 

these bubbles occurred in 2019 due to the excessive flow of LNG, which led to low prices 

and the highest traded volume (European Commission, 2020). TTF is a specific location 

for LNG market actors to hedge global LNG portfolios.  LNG actors use new contracts 

formula changing from 'Henry Hub cost plus' to TTF as a netback price (ACER, 2020). 

Moreover, TTF is the dominant hub in Europe, surpassing the NBP since 2016 (European 

Commission, 2016). Thanks to its significant geographic position within other important 

natural gas markets, various interconnection capacities with its nearby countries, 

abundant LNG terminals, multiple storage facilities, Netherland is the third-largest gas 

producer on the continent (IEA, 2020a). As reported by the AGTM market health metrics, 

which shows the number and concentration of supplies and the potential of hubs to cover 

the demand, the Netherlands has nine supply sources. Besides, domestic production and 

the import from Norway covers 80% of supply (ACER, 2020). There are two other market 

health indicators. The first one is Herfindahl-Hirschmann Index (HHI) which measures 

the upstream companies' supply ratio at hubs. The second one is the residual supply index 

(RSI), and it assesses the dependency on the countries' largest gas suppliers. The RSI ratio 

for the Netherlands is approximately 200%, which is well above the required level 

(110%), and it is the highest ratio among the hubs. In addition, the market concentration 

index HHI is well below the benchmark level of 2000. 

As stated before, to establish market-based price transition, political willingness, market 

liberalization, cultural effects, and regulations are the most significant factors (Shi, 2016). 

The Dutch market is fully liberalized, providing easy access to market participants to 

perform transactions (IEA, 2020a).  Moreover, the leading companies in the Netherlands, 

such as GasTerra, Exxon, and Shell encourage gas trading at TTF (Franza, 2014). Also, 

Heather (2020) states that TTF is the leader, supreme hub of all European hubs, and 

ranked first according to the trading metrics. Based on these characteristics of the TFF, 

which position it differently among all other major hubs, it is not surprising to observe 

the lowest number of price bubbles out there. 
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Notes: The blue line represents the price series, and the yellow segments indicate the periods during which 
the PSY statistic surpasses its 95% bootstrapped critical value. 

Figure 2. Bubble Periods of the Netherlands – Title Transfer Facility (TTF) 

The United Kingdom – National Balancing Point (NBP) 

In the British NBP, the number of explosive price movements is found as slightly higher 

than TTF. In Figure 2, the explosive price movements mainly occurred in the second 

quarter of 2014 and lasted longer because of the competitive advantage of coal over gas 

to produce electricity (European Commission, 2014a). Like the Netherlands, the UK has 

diversified its instruments to control the supply and demand balance. More specifically, 

domestic production has a significant share in both countries' gas supplies. In the ACER 

(2020) report, the number of supply sources states twelve for the UK. The gas supply 

mainly includes domestic production and the import from Norway. The UK RSI ratio is 

close to 150%, modestly above the required level (110%). The market upstream 

concentration index (HHI) has the lowest level among other hubs. Its supply sources are 

from Norway, the Netherlands, and Belgium.  Although the British NBP had been the 

benchmark hub until 2016, it is currently the second most advanced hub in Europe (IEA, 

2019). The reason behind the NBP's loss of leadership to TTF is that trading is carried 

out in pence/therm in NBP. Thus, it causes a currency risk for market actors. In 2009, 

Germany and Russia agreed on using TTF prices in contracts while negotiating the long-

term contract prices. Although NBP had higher liquidity and was the most advanced hub 

in Europe, it conducted trade activities in pence/therm different from Germany. This 

situation would have caused German companies using the Euro/MWh to be exposed to 
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currency risk. Due to its neutrality, the acceptability of TTF increased, and it was started 

to be used as a hedging tool in the European natural gas market (Shi, 2016). 

 
Notes: The blue line represents the price series, and the yellow segments indicate the periods during which 
the PSY statistic surpasses its 95% bootstrapped critical value. 

Figure 3. Bubble Periods of United Kingdom - NBP  

Italy- Punto di Scambio Virtuale (PSV) 

As shown in Table 2 and Figure 3, 18 price bubbles were observed in the Italian gas 

market. A closer look at the dates shows that the price bubbles occurred mostly at the end 

of 2017. More specifically, on 12th December 2017, Russian transit gas flows to Italy 

were interrupted due to an explosion at Baumgarten facility in Austria, and the day-ahead 

price reached 80 Euro/MWh. Due to the strong demand and the reduction in import 

capacity through Switzerland, the Italian gas supply-demand balance struggled at the 

beginning of the month. As a result, the Italian government announced an early warning 

(European Commission, 2017). However, later in 2019, the EU benefited from a large 

LNG influx due to the low spot prices, leading to the highest number of price bubbles in 

Italy (European Commission, 2019). 

In Italy, there are multiple gas supply sources compared to other EU countries.  Natural 

gas is imported from Russia, Algeria, Libya, Norway, Qatar, Azerbaijan, the Netherlands, 

and other countries. There are also LNG and storage facilities in Italy. Nevertheless, 
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natural gas prices at PSV are high due to the structure of gas import contracts and the lack 

of liquidity in the wholesale market. The reasons for illiquidity at this hub can be the 

challenge of approaching the capacity of pipelines, the complication of system rules, and 

the existence of multiple long-term contracts. 

Moreover, the Italian gas market is heavily concentrated. Therefore, market actors 

hesitate that dominant traders can manage the prices at the exchange, which creates a 

wrong price signal discouraging them from becoming a player at the hub (IEA, 2016). As 

stated in Heather (2020), the churn rate, which shows the ratio of how much physical 

volume of gas is traded at PSV before the actual delivery, is considerably low in Italy. 

 

Notes: The blue line represents the price series, and the yellow segments indicate the periods during which 
the PSY statistic surpasses its 95% bootstrapped critical value. 

Figure 4. Bubble Periods of Italy - PSV  

Although Italy has the highest supply sources (13), it still depends mainly on Russian gas 

(ACER, 2020). Looking more closely at the results, price bubbles occurred immediately 

when a supply interruption from the Russian route (e.g., 08.02.2012 and 12.12.2017 

bubbles). Besides, Italy complies with the criteria of 110% RSI benchmark level, while 

its upstream market competition index (HHI) is  between 2000 and 3000 and higher than 

the criterion (ACER, 2019). 

 



25 

 

Germany- Netconnect Germany (NCG) 

The results of the GSADF analysis show that in Germany, 21 price bubbles were 

experienced. Germany heavily relies on natural gas imports, accounting for 92% of its 

supply sources. The largest proportion of the import comes from Russia, which is around 

57%, followed by the Netherlands with 35%, and Norway with 5% (IEA, 2020b). Two 

primary factors had a significant effect on price bubbles. Firstly, as presented in Figure 

4, the bubbles occurred mainly in the last quarter of 2015 and in the first quarter of 2016. 

Because low oil prices in these periods affected both the domestic prices in Germany and 

the prices in the leading supplier Russia. Moreover, apart from the period affected by the 

low oil prices, the price bubbles in TTF and NCG appear to have occurred in the same 

period. It is clear that gas prices in these hubs interact with each other frequently as TTF 

is the second-largest supply source for Germany, and there is a high level of 

interconnection between them. 

 
Notes: The blue line represents the price series, and the yellow segments indicate the periods during which 
the PSY statistic surpasses its 95% bootstrapped critical value. 

Figure 5. Bubble Periods of Germany - NCG 

Germany does not have an LNG terminal, and it benefits from global LNG prices through 

interconnection with the Netherlands, which explains the negative price bubbles caused 

by excess LNG supply in 2019. Also, Germany has 49 natural gas storage facilities, which 

are the largest storage capacities in the EU, and they fulfill the country's 47 days of peak 
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demand. German gas market area is divided between NCG and Gaspool, which leads 

trade activities to share. Hereafter, Germany aims to merge these two market zones to 

create a single market in 2021 to increase liquidity (IEA, 2020b). For Germany, RSI is 

slightly below the benchmark level, while the HHI is between 3000 and 4000 (ACER, 

2020). 

Austria- Virtual Trading Point (VTP) 

Austr�a d�str�butes gas from Russ�a to Eastern and Southern European countr�es as a v�tal 

trans�t�on road, �mply�ng a h�gh degree of �nterconnectedness. In 2018, Austr�a's domest�c 

product�on accounted for 12% of the total gas supply and �mported the rema�n�ng 

predom�nantly from Russ�a. Wh�le Austr�a has no LNG term�nal, the ga�n from mult�ple 

gas storage fac�l�t�es covers almost �ts yearly consumpt�on. The challenges for further 

development of Austr�an VTP are the two-t�er balanc�ng reg�me, dependency on a s�ngle 

country and s�ngle company, and the degree of market concentrat�on level (IEA, 2020c). 

Austr�a has the lowest number of supply sources, and more than 60% of �ts supply 

depends on Russ�an �mports. When we look at �ts market health metr�cs, �ts HHI �s well 

above 6000, wh�ch �s the h�ghest level �n our sample. However, �ts RSI meets the 

benchmark level of 110. 

 
Notes: The blue line represents the price series, and the yellow segments indicate the periods during which 
the PSY statistic surpasses its 95% bootstrapped critical value. 

Figure 6. Bubble Periods of Austria - VTP 
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The Austrian VTP has the highest number of price bubbles in our sample. Figure 6 shows 

that since 2012, in each year, gas price bubbles with different durations have emerged at 

VTP. The price bubble with the longest duration appeared in 2016 because of the 

plummeted oil price. Oil prices dramatically decreased from $112 in June 2014 to $31 in 

January 2016, and the total decline was more than 70% (Prest, 2018). The sharp increase 

in supply resulted mainly from shale oil production in the US, and the decline in demand, 

especially in China, led to the decline in the oil price (Su et al., 2017). Taken together, 

the decline in oil prices affected gas prices with a 6 to 9 months lag due to the contracts' 

structure and led to gas price bubbles (European Commission, 2016). The second most 

prolonged bubble period was observed in 2014 on account of extreme warm weather in 

both winter and spring. However, on 12th December 2017, an explosion at the 

Baumgarten facility led to a lack of Russian gas supply to the country. The prices 

increased to 33 Euro/MWh, although gas demand was covered by storage withdrawals 

and supply outages solved within a day (European Commission, 2017). In 2019, the 

second largest increase in the traded volume occurred in VTP, after TTF. As a 

consequence, the bubble with the third-longest duration burst in this period. 

Austria has been exposed to a higher number of price bubbles. For a country to reduce 

price bubbles, it must have various supply and demand instruments. However, Austria is 

highly dependent on Russian gas imports; if there is a problem in supply flow from 

Russia, it directly affects the Austrian gas market and will reflect on to the price. Yet, 

when there are multiple gas supply sources and other instruments, it would be easier for 

the country to compensate supply disruption problems. Regarding the degree of market 

concentration, Austria’s HHI levels were always quite higher than the benchmark level 

and two times higher than the HHI levels of other advanced hubs during our sample 

period. In this respect, the challenges for further development of Austrian VTP are the 

two-tier balancing regime, dependency on a single country and a single company, and the 

degree of market concentration level (IEA, 2020c). Given Austria has the lowest number 

of supply sources and its high levels of HHI, it is not surprising that Austria has been 

subject to expose more price bubbles compared to the other hubs. 
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To summarize the results up to this point, the findings of the GSADF test help us to 

understand whether countries using the exact hub price mechanism differ significantly in 

the number and duration of price bubbles. The empirical evidence shows that explosive 

price changes, ranked from least to most, are seen in the Netherlands, the United 

Kingdom, Italy, Germany, and Austria, respectively. These substantial differences in the 

number of price bubbles across the European hubs support the fact that more efficient 

markets constitute fewer price bubbles. These empirical findings are also in line with 

ACER’s (2020) market participants’ needs metrics, which states that both the TTF and 

NBP are the established hubs due to the extreme level of liquidity, generating a 

benchmark price for other hubs as well as for long term contracts. TTF has the best results, 

followed by NBP (ACER, 2020). Besides, both TTF and NBP are the only hubs that 

confront all criteria of the AGTM market health metrics (ACER, 2020).  TTF and NBP 

were also stated as benchmark hubs by Shi (2016) since they have significant elements 

of the hub price mechanism. The results for both TTF and NBP in our study support the 

findings of Shi (2016), which argue that domestic production is a crucial element in 

providing the gas on gas price transition. Shi (2016) lists the primary factors for enabling 

hub price mechanism as market liberalization and competition, price transition, political 

will and regulations, domestic production, and culture. The requirements for transition 

hub pricing are a large number of suppliers and customers, LNG terminal to benefit from 

global prices, storage facility to balance supply and demand, and interconnection with 

neighboring countries. Based on the results of the average bid-ask spread7, trading 

frequency, and market concentration on both the buying and selling sides, PSV; NCG; 

and VTP are listed as advanced hubs in ACER (2020). While the related scores of these 

three hubs are relatively close to each other, those of Austria are the lowest.  However, as 

discussed before, there are distinct differences among them according to the AGTM 

market health metrics. The empirical results of our analysis support the market health 

metrics. Although Italy has the highest number of supply sources, which is a crucial 

element for price transition, its upstream market competition index is higher than those 

of TTF and NBP. This might be the reason why PSV is not effective as much as TTF and 

NBP. Even though Germany is in better condition than Italy in terms of market 

 
7 Average bid-ask spread is defined as measuring the average delta among the lowest ask price and the 
highest bid price that is explained as a percentage term of the highest bid‐price throughout the day 
(ACER, 2017). 
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participants’ needs metrics and HHI, its number of supply sources is lower than Italy. 

Furthermore, there are no LNG facilities in Germany, and it benefits from global LNG 

prices via interconnections. This situation limits the flexibility of divergence of supply 

(IEA, 2020b). Well-functioning hubs with low HHI values can be achieved by virtue of 

flexible sources such as domestic production and LNG (ACER, 2020). In the case of 

Austria, there is a strong willingness to trade at the hub by market actors. Still, due to the 

dependence on a single country and single company, Austria suffers the most explosive 

price changes experience. According to AGTM health market results, Austria shows the 

lowest performance in terms of supply divergence, HHI ratio, which measures the 

concentration of upstream companies and dependency level on the largest supplier. 

1.6.1 The Log Periodic Power Law Singularity (LPPLS) Model  

As a robustness check, we employ the LPPLS methodology. Here, we apply the Epsilon 

Drawdown Method proposed by Johansen and Sornette (2001) to identify the peak dates 

of each price series and set the end time of the bubble as the peak time (t2). Using the 

shrinking window approach with fixed t2, we also determine the beginning time of the 

bubble (t1) by going from t2-29 to t2-719 trading days, with windows abbreviated for 

iteration of five trading days. We employ the LPPLS method by applying a Covariance 

Matrix Adaption Evolution Strategy (CMAES) for optimizing the variables. The results 

of the analysis for each hub are summarized in Table 3 and shown in Figure 6. The LPPLS 

approach detects the least number of price bubbles in TTF and NBP, followed by PSV, 

NCG and VTP with the highest number of explosive price movements. Since the LLPLS 

test counts the duration of bubbles as at least 30 trading days, the number of explosive 

attitudes can differ between GSADF and LPPLS. However, the timing of intense price 

movement periods found in the GSADF test is similar to that diagnosed by the LPPLS 

test as a price bubble. In TTF and NBP, several price bubbles detected in 2014, 2019 and 

2020 with the GSADF test were also determined by the LPPLS method. Both tests show 

that TTF and NBP are efficient markets, which produce the least number of price bubbles. 

NCG and PSV come after TTF and NBP in LPPLS test, and the highest number of price 

bubbles is observed in VTP in both tests. Thus, we conclude that Austria is the most 

inefficient market across the countries in our sample. 



30 

 

Table 3. Bubble Periods: LPPLS Test Results  

 TTF NBP NCG PSV VTP 

 Bubble         
Period 

Bubble 
Period 

Bubble 
Period 

Bubble 
Period 

Bubble 
Period 

      

 10/02/2014-
07/07/2014 

05/04/2014-
11/07/2014 

24/01/2014-
11/07/2014 

24/10/2013-
03/12/2013 

30/01/2014-
14/07/2014 

 03/11/2016-
03/02/2017 

05/11/2016-
03/02/2017 

15/12/2015-
14/04/2016 

05/04/2014-
04/07/2014 

19/09/2015-
16/11/2015 

 20/07/2019-
21/05/2020 

01/09/2019-
01/06/2020 

01/11/2016-
06/02/2017 

05/01/2019-
16/08/2019 

02/02/2016-
12/04/2016 

   26/07/2019-
22/05/2020 

25/09/2019-
01/06/2020 

28/10/2016-
06/02/2017 

     07/11/2017-
31/01/2018 

     01/03/2019-
21/05/2020 

Number 
of Bubbles 3 3 4 5 6 

The LPPLS test discovers bubble periods between early November 2016 and early 

February 2017 in each country except for Italy. However, this price bubble period is not 

identified by the GSADF test for any country in our sample. Some possible reasons which 

might lead the bubbles in that period are strong gas demand in power generation, 

abnormally cold weather, diminishing storage levels, weak LNG delivery, and ambiguity 

about the UK’s Rough storage site.  In that period, any price bubble was not found for 

Italy due to a revised long-term contract between Italy and Algeria, which enormously 

increased its import volume (European Commission, 2017). Despite the methodological 

differences among the LPPLS and the GSADF techniques, both approaches confirm that 

more efficient markets are subject to less extreme price behavior. 
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Netherlands- TTF 

 
United Kingdom – NBP 

Italy – PSV 

Figure 7. LPPLS Test Results for European Natural Gas Price Series 
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Germany - NCG 

 
Austria – VTP 

Figure 7. (continued) LPPLS Test Results for European Natural Gas Price Series 

1.6.2 Discussion 

The central quest�on of our study �s whether the number of pr�ce bubbles d�ffers �n 

countr�es us�ng the same pr�ce methodology due to the�r spec�f�c cond�t�ons. We are also 

�nterested �n exam�n�ng the val�d�ty of the eff�c�ent market hypothes�s �n the European 

natural gas markets. To �nvest�gate these quest�ons, we apply the GSADF test for 5 

European natural gas hubs: TTF, NBP, PSV, NCG, and VTP. To summar�ze the results 

up to th�s po�nt, the f�nd�ngs of the GSADF test help us to understand whether countr�es 

us�ng the exact hub pr�ce mechan�sm d�ffer �n the number and durat�on of pr�ce bubbles. 

The emp�r�cal ev�dence shows that explos�ve pr�ce changes, ranked from least to most, 

are seen �n the Netherlands, the Un�ted K�ngdom, Italy, Germany, and Austr�a, 

respect�vely. These substant�al d�fferences �n the number of pr�ce bubbles across the 

European hubs support the fact that more establ�shed markets const�tute fewer pr�ce 

bubbles. These emp�r�cal f�nd�ngs are also �n l�ne w�th ACER’s (2020) market 

part�c�pants’ needs metr�cs, wh�ch states that both the TTF and NBP are the establ�shed 
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hubs due to the extreme level of l�qu�d�ty, generat�ng a benchmark pr�ce for other hubs as 

well as for long term contracts and �n our sample TTF has the best results, followed by 

NBP. Bes�des, both TTF and NBP are the only hubs that confront all cr�ter�a of the AGTM 

market health metr�cs (ACER, 2020). TTF and NBP were also stated as benchmark hubs 

by Sh� (2016) s�nce they have s�gn�f�cant elements of the hub pr�ce mechan�sm. The 

results we prov�ded for both TTF and NBP support the f�nd�ngs of Sh� (2016), wh�ch 

argue that domest�c product�on �s a cruc�al element �n prov�d�ng the gas on gas pr�ce 

trans�t�on. The requ�rements for a trans�t�on hub pr�c�ng are a large number of suppl�ers 

and customers, LNG term�nal to benef�t from global pr�ces, storage fac�l�ty to balance 

supply and demand, and �nterconnect�on w�th ne�ghbor�ng countr�es. In 2014, the TTF 

surpassed the UK NBP as the most l�qu�d hub w�th traded volumes at the Dutch hub 

�ncreas�ng by a robust 59% compared to 2013 (European Comm�ss�on, 2014b).  As �n 

other markets, h�gher l�qu�d�ty �n a hub �mpl�es r�se �n pr�ce transparency and fall �n 

transact�on costs. L�qu�d�ty and market transparency �n turn assure rel�ab�l�ty of hubs for 

portfol�o management and opt�m�sat�on �ncreases and lead to h�gher volumes at the hub 

European Comm�ss�on (2014a) �mply�ng less bubbles �n pr�ces at hub. Not supr�s�ngly, 

we observe TTF has exper�enced less pr�ce bubbles s�nce 2014 compared to the other 

establ�shed hub, NBP. 

Based on the results of the average b�d-ask spread8, trad�ng frequency, and market 

concentrat�on on both the buy�ng and sell�ng s�des, PSV; NCG; and VTP are l�sted as 

advanced hubs �n ACER (2020). Wh�le the related scores of these three hubs are relat�vely 

close to each other, those of Austr�a are the lowest. Among the advanced hubs, Austr�a 

has the h�ghest number of pr�ce bubbles. Austr�a has no LNG term�nal due to no access 

to the sea, has the lowest number of supply sources, and more than 60% of �ts supply 

depends on a s�ngle country- Russ�a. Regard�ng the degree of market concentrat�on, �ts 

HHI levels were always qu�te h�gher than the benchmark level and two t�mes h�gher than 

the HHI levels of other advanced hubs dur�ng our sample per�od. When we compare the 

other two advanced hubs, Italy has the h�ghest number of supply sources wh�le Germany 

 
8 Average bid-ask spread is defined as measuring the average delta among the lowest ask price and the 
highest bid price that is explained as a percentage term of the highest bid‐price throughout the day 
(ACER, 2017). 



34 

 

�s ma�nly dependent on gas suppl�es from Russ�a. Furthermore, there are no LNG fac�l�t�es 

�n Germany, and �t benef�ts from global LNG pr�ces v�a �nterconnect�ons. Th�s s�tuat�on 

l�m�ts the flex�b�l�ty of d�vergence of supply (IEA, 2020b). 

When cons�der�ng pol�cy �mpl�cat�ons, the results suggest that pol�cymakers should focus 

more on �mprov�ng gas supply d�vergence, LNG fac�l�t�es to connect to global markets, 

var�ous �nterconnect�on po�nts w�th d�fferent countr�es, and mult�ple supply/demand 

�nstruments as storage fac�l�t�es. Add�t�onally, pol�cymakers should take several 

precaut�ons as �ncreas�ng pol�t�cal w�ll�ngness to trade at hubs, prov�d�ng a low level of 

market concentrat�on, and support�ng the h�gh compet�t�on. 

The results from our research make several contr�but�ons to the current l�terature. F�rst, 

th�s �s the f�rst study exam�n�ng explos�ve pr�ce behav�or and �ts poss�ble reasons �n 

European hubs.  Second, th�s study prov�des add�t�onal ev�dence of �ntegrat�on across the 

European gas market and supports the co�ntegrat�on stud�es (see Neumann and Cullmann, 

2012; Asche et al., 2013; G�anfreda et al., 2012; Broadstock et al., 2020).  Th�rd, �n l�ne 

w�th the eff�c�ent market hypothes�s, the benchmark hubs TTF and NBP are found to be 

more res�stant to pr�ce dev�at�ons from fundamental values and exper�ence fewer bubbles 

compared to other hubs. Last, th�s study also lays the foundat�on for future stud�es that 

w�ll focus on decarbon�zed gas market by enhanc�ng the understand�ng of the European 

natural gas market dynam�cs more comprehens�vely. 

1.7 CONCLUSIONS  

This paper applies GSADF and LPPLS methods to examine the number and period of 

price bubble action in the gas markets in Europe (TTF, NBP, PSV, NCG, and VTP) 

between 03.01.2011 and 30.06.2020. We choose to investigate the price bubbles in these 

hubs because although they are using the same pricing methodology, they are quite 

different in terms of their market characteristics. Unlike Zhang et al. (2018) and Li et al. 

(2020) which study gas price bubbles in different geographic locations having different 

pricing methodologies, we analyze the spot contracts determined by the same pricing 

methodology at the countries located on the same continent. In this study, we examine 
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whether having different development levels at these hubs affects the number of 

speculative bubbles. Indeed, our results provide a clear idea that benchmark hubs are more 

efficient, and they are subject to fewer price bubbles. Furthermore, our findings on bubble 

formation in European hubs are in line with the AGTM metrics. 

The empirical evidence from both tests shows that benchmark hubs as TTF and NBP 

experienced less explosive price fluctuations during the sample period. According to 

ACER’s (2020) market participants’ needs metrics; TTF and NBP are referred to as 

established hubs as they generate a benchmark price for other hubs as well as for long-

term contracts. TTF has the best scores, followed by NBP. Moreover, both TTF and NBP 

compromise all criteria of the AGTM market health metrics (ACER, 2020). Although 

PSV, NCG, and VTP are listed as advanced hubs in ACER (2020), there are significant 

differences between them based on market health metrics and these differences are 

reflected in our results. The highest number of price bubbles is observed in VTP due to 

its dependence mainly on one country (Russia), its oil-indexed contracts, and its high 

HHI.  To sum up, our empirical evidence significantly supports the hypothesis that the 

more developed the hub, the less exposed it is to price bubbles. 

Price bubbles are undesirable phenomena for both market actors and for industries, and 

they affect market risks, speculation, financialization, cash flows, and investment 

projects. The primary factors that lead to price bubbles in European hubs are unexpected 

weather conditions, level of economic development, supply disruptions, oversupply, oil 

indexation, cross commodity prices, and extraordinary occasions as Covid-19.9 

Moreover, we observe that the timings of the price bubbles are close to each other in these 

hubs. This result can be seen as an indicator of integration in the EU gas market also 

supports Broadstock et al. (2020), who argue the European gas market is not fully 

integrated, but the level of integration has been increasing as a result of the (European 

Parliament and Council of the European Union, 2009). 

 
9 Stern and Roger (2014) also show that European hub prices are determined by the supply-demand related 
issues like abnormal weather and supply disruptions and global market dynamics.  
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Given our empirical results, some policy implications can be drawn. First, establishing a 

hub is not enough to obtain an effective gas on gas price mechanism. Further conditions 

are essential for becoming a benchmarking hub.  Zhang et al. (2018) claim that as 

information spreads very accurately in an effective market, as well as the market actors 

react to new information quickly. Hence, price bubbles are seen less frequently in 

effective markets. Our empirical findings reveal that the established hubs in Europe are 

TTF and NBP. Therefore, each country must comply with characteristic elements in NBP 

and TTF to be subject to less speculative price movements. Many of the elements required 

to become a benchmarking hub are listed in previous hub review techniques (e.g., in 

ACER, 2020; Shi, 2016). However, the criteria we focused on in our study are supply 

divergence, LNG facilities to connect to global markets, various interconnection points 

with different countries, and multiple supply/demand instruments as storage facilities, 

political willingness to trade at hubs, low level of market concentration and high 

competition. Second, when natural gas price is not determined by its own value but 

depends on oil price in the long-term contracts, natural gas price will inevitably display 

similar explosive movements whenever the oil price creates a bubble. For instance, 

Fantazzini (2016) states that plummeted oil prices of 2014/2015 led to a negative oil price 

bubble, affected gas prices by a 6 to 9-month lag, and thereby contributed to the natural 

gas price bubbles observed in Germany and Austria. This implies that the actors in both 

industrial and financial sectors should carefully watch the factors that constitute the value 

of gas and oil to reduce the risks and uncertainty in the natural gas market. It is essential 

to facilitate gas on gas price mechanism to increase the effectiveness in natural gas 

markets. 
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CHAPTER 2 

TIME VARYING CAUSAL RELATIONSHIP BETWEEN CARBON 

PRICE AND ENERGY PRICES  

2.1 INTRODUCTION 

Coping with climate change, Emission Trading Scheme (ETS) initiated in 2005, the first 

also still the most extensive cap-and-trade mechanism as a cost practical instrument 

mitigating greenhouse gas emissions in European Union. EU ETS retrain the amount of 

CO2 allowances put into circulation from companies and can be subject to trade with each 

other.   

Cap-and-trade mechanism, aims to systematically decrease pollution by providing 

companies with motivation to allocate resources towards cleaner alternatives. The 

government allocates a specific number of allowances to companies, establishing a limit 

on permissible carbon dioxide emissions. Firms exceeding the emission cap face penalty, 

whereas those reducing their emissions have the option to sell or trade surplus credits in 

the ETS. 

Carbon trade is formed by companies' decision about the expenses of descending 

emissions is less or equal to the carbon price, actors invest in mitigating carbon emissions; 

otherwise, they can buy additional emission allowances. The EU ETS is in Phase 4 (2021 

to 2030) at present, which has gradually transformed into a more restrictive tool over the 

years. Since 2009, there are boost of emissions mainly because of immense volume of 

international credits and the economic crisis that caused lower carbon prices and weak 

motivation to decrease the amount of emissions in the ETS. The surplus risk weakens the 

proper operation in the short term while altering the strength of ETS's cost-effective 

emission decline target for long period. Therefore, the European Commission revised the 

ETS procedure in 2018 to facilitate the 2030 emission mitigation goal of 43% in contrast 

to 2005 standards. In Phase 4, the cap on emission allowances was determined to reduce 



38 

 

accelerated annually according to a linear reduction factor of 2.2%, whereas 1.74% 

throughout Phase 3 (2013 – 2020) (Barnes, 2021). Uncertainty and volatility in prices of 

energy directly affect the request of fossil sources, consequently altering the emissions 

stemming from fossil fuel usage. These changes in emissions, alongside shifts in the 

demand for carbon emission permits, subsequently influence carbon prices. Thus, 

fluctuations in energy prices create an impact on carbon prices to arrange both the supply 

and demand drivers (Li et al., 2022). More specifically, implementing greenhouse gas 

policies and regulations aims to mitigate carbon footprints, which leads to manufacturing 

firms heavily performing curtailing their reliance on fossil energy sources (Jiang et al., 

2023). 

We aim to contribute literature analysing the connection among EU ETS prices of carbon 

and energy by employing a time-varying Granger causality test (TVGC) developed by 

Shi et al., (2020, 2018). It is worthwhile to examine this issue for many reasons: first, 

there is a powerful connection among carbon and energy due to fossil energy is driven 

mainly by economic enhancement, industrial production, etc.. Fossil energy is one of the 

fundamental cause of emissions. Next, carbon allowance prices and energy prices are in 

a reciprocal cyclical relation. Although, the amount of allowance supply is stable and 

determine externally by European Commission. Initially, when carbon prices are low, the 

demand for energy use will increase due to the amount of carbon, as a consequence, the 

cost of  allowances will rise (Zhang and Sun, 2016). This is because changing the cost of 

nonrenewable energy has substitution and income effects on carbon prices. From the 

point of income effects, there is a negative reciprocal connection among energy 

consumption and allowances demand. If the prices of energy increase, actors mitigate 

their energy consumption, as follows carbon allowance demand (Lovcha et al., 2022). In 

the sense of substitution effects, market actors desire to minimize their cost of production 

for power generation; therefore, they can switch among fossil fuel sources according to 

alternative expenses (Tan and Wang, 2017). Finally, energy and carbon commodities are 

in a tight connection in the financial markets, especially when there is fluctuation and 

policy uncertainty (Fan et al., 2013). 
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We fulfill the gap in the carbon researces by applying the novel Granger causality 

technique of Shi et al. (2020, 2018) and analyze the outcomes with the technique of 

Swanson (1998) and Thoma (1994) covering the period 15 March 2010 to 29 September 

2023. TVGC (Time-Varying Granger causality test) method has several benefits that 

motivate us to use this method, determining how the causal linkages emerge over the 

specified time window.   First of all, this method examines whether the causal relationship 

occurs or not between variables. After that, it is more accurate in identifying the timing 

of the specific starting point and collapse of Granger causality. In addition, this method 

shows the timing of inconsistency relations among variables, economic instability, and, 

more precisely, a casual route of change. 

Detrending and differencing of the data are unnecessary for this method to maintain 

robust econometric tests for integration.  To control as well as compare of our outcomes, 

we add additional data, such as stock market price and geographic political risk index 

(GPR) and compare the outcome of the multivariate Granger causality framework. The 

fossil energy and carbon causality examined bivariate in the carbon literature. At the same 

time, in this research, we also expand the literature by reviewing time-varying links and 

checking the robustness of the outcomes by multivariate structure. We also change the 

window size to control the Granger causality outcomes of carbon and fossil energy 

sources. Our hypothesis is whether oil, coal, natural gas Granger cause or not plus vice 

versa.  Further, this hypothesis repeat again with by multivariate analysis, including stock 

market and GPR index variables. 

The findings of our study show that the causal association from the energy to the carbon 

has been more evident since 2016, taking precautions with the objective of diminishing 

emissions starting from the declaration of the Paris Agreement. It is seen in the results 

that fluctuations in energy prices based on LNG surplus, oil price sanctions, the COVID-

19 crisis, the Russian-Ukranian war, political declarations, high natural gas prices because 

of stocks, etc., reflect directly on carbon prices. In the context of causality, the casual 

relation carbon prices as well as oil and coal prices, is more specific after 2020. In line 

with Gong et al. (2021), Lovcha et al. (2022) along with Qiao et al. (2023) our outcomes 

indicate that the transformative pattern of the carbon market affects the increase in fossil 
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energy prices when the ETS demonstrates the characteristic of the mature commodity. 

However, we could not find any causal association among the carbon and gas prices. Qiao 

et al. (2023) state gas is a cleaner along with more reliable source compare to the other 

fossil fuels. Natural gas is more abundant, and the investment decisions such as pipelines 

or terminals are operated for the long term. 

In this study, we scrutinize the Literature Review in Section 2.2 and introduce the data 

along with the methodology in Section 2.3. We provide the empirical outcomes in Section 

2.4 also conclusion part of the study In Section 2.5. 

2.2 LITERATURE REVIEW 

Like any other financial commodity, carbon allowance prices are determined by its 

supply/demand components. The amount carbon allowances is determined by the EU 

Parliament to affect the attitude of market actors that are informed before the 

announcement. Depending on the cost of the carbon price market, actors change their 

behavior. Zhang and Sun (2016) state when the expenses of mitigating emissions is less 

compare to the carbon price, then they reduce the amount of emissions; conversely, they 

can purchase extra emission allowances (Barnes, 2021). Allowances supply is more stable 

compared to the demand side. Many studies specifically focus on determining the carbon 

market fundamentals. Lovcha et al. (2022) consider that the major determinants of carbon 

allowances price comprise the price of energy commodities, economic movements, 

institutional choice, and weather circumstances. Gong et al. (2021) state that early studies 

primarily concentrate on carbon price determinants. Mansanet Bataller et al. (2006) 

searched the link of prices among carbon as well as fossil sources and electricity by 

applying a multiple regression model the begining part of EU ETS. The model shows 

strong link carbon with fossil energy. Hintermann (2010) explains carbon allowance price 

fluctuations by examining the price of nonrenewable energy, temperatures, stock prices 

as finds the most significant carbon price determinant is fuel prices. Gronwald et al. 

(2011) use different copula models to understand the relation among European carbon 

plus finance sector to and obtain an essential positive dependence among EUA futures as 

well as coal, gas, along with electricity prices. The link amid carbon and fossil sources 
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has received enormous consideration from academic scholars since the initiation of EU 

ETS. Certain studies (Mansanet Bataller et al., 2006; Hammoudeh et al., 2015; Chen et 

al., 2022; Jiang et al., 2023) search the relation among prices of carbon energy, 

discovering that energy prices, encompassing fossil fuels effect on carbon.  However, 

when authors examine the relation among prices of carbon along with energy, they 

acquire different results (Gong et al., 2021). 

For instance Zhang and Wei (2010) show market of energy and carbon have a vital 

cointegration relation and long-term equilibrium link according to VAR model. 

Specifically, the oil price is the most vital energy sources affect carbon price, along with 

the impact of natural gas. Chevallier (2009) states that the Brent price affects carbon price 

the most, according to the result of the Markov-switching technique.  Byun and Cho 

(2013) predict the next day's carbon price volatility by using fossil fuels and electricity 

by applying GARCH models. Liu and Chen (2013) show there is a dynamic interrelation 

and also has long memory impact between the future returns of carbon and energy. The 

findings of the DDC-GARCH and BEKK GARCH tests show that European carbon as 

well as non renewable energy prices affect positively as well as there is powerful volatility 

coal price to carbon price along with carbon price to gas price, while no crucial volatility 

relation among price of carbon along with oil in EU ETS phase II. Reboredo and Ugando 

(2015) observed the dynamic effect and leverage effect among EUA and oil in Phase II, 

whereas they could not observe any significant volatility spillover effect among these 

markets. Furthermore, Balcilar et al. (2016) scrutinize the risk spillover impact among 

contracts of energy and carbon according to MS-DCC-GARCH model. The reason why 

energy prices affect carbon is the the heavy usage of fossil fuels. These fuels are 

enormously consumed in different kinds of human activities like transportation, energy 

generation, and industrial manufacturing, as things stand the primary subscribers to the 

carbon market (Chen et al., 2022). Furthermore, many scholars (see, among others, 

Dowds et al., 2013 and Duan et al., 2021) search for the influence on converting prices 

of conventional energy into carbon within power enterprises, examining both the effect 

of fuel switch. 
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Gong et al. (2021) state that the ETS’s objective is to diminish emissions by virtue of 

affecting the conventional energy market. Lin and Li (2015) examine that the production 

of fossil energy market is much more sensitive to carbon prices compared to other 

markets. The interlinkage connection among carbon and energy prices may offer a 

comprehensive understanding of carbon market dynamics. 

Various GARCH methods were applied in the literature to examine volatility relations 

between carbon and energy prices (Byun and Cho, 2013; Hammoudeh et al., 2015; Ji et 

al., 2018; An et al., 2020). Byun and Cho (2013) apply three methods for forecasting 

volatility. When comparing the findings of the methods, the GARCH-type method 

outperforms the others for estimating carbon volatility. Moreover, according to the 

outcome of the methods, Brent oil, coal as well as electricity serve as signals for 

predicting carbon price. Balcilar et al. (2016) search risk transmission among the energy 

align with carbon market by employing the Markov regime-switching dynamic 

correlation method, aiming to determine time periods and structural breaks in these risk 

transmissions. The outcomes of their study demonstrate there is a critical volatility from 

energy contracts to carbon contracts. 

Yu et al. (2015) investigate the volatility mechanism among the carbon price along with 

the oil price and find that there is a noteworthy connection among the EUA along with 

oilmarkets and this connection is affected from crucial economic situations such as 

financial crises etc.  Duan et al. (2021) investigate how fluctuations affect price of energy 

along with carbon within ETS Phase III whom find asymmetric and adverse effects of 

energy contracts on carbon contracts. Further, their findings support the studies in the 

literature, which show energy prices influence carbon prices through the effect of the fuel 

conversion. Li et al. (2022) determine link among clean energy, carbon together with 

green bonds and indicate that these three commodities have strong connections, 

specifically during the COVID-19 period. Tan and Wang (2017) search the connectivity 

among the EUA and its determining factors, such as energy contracts plus 

macroeconomic uncertainty determinants of the EU ETS and finding of carbon sector risk 

applying by Value at Risk is primarily affecting by energy contracts. Chen et al. (2022) 

investigate the interconnections among energy, metal, and carbon commodities by using 
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a quantile-based connectedness model and reveal that the dynamic connectedness in these 

commodities differs between severe ascending as well as descending movements, which 

means there are disparate spillover dynamics during upward and downward market 

periods. Zhang and Sun (2016) examine the dependence of European allowances align 

with fossil fuels which exist a crucial spillover both from coal to carbon. This relation 

could not be observed amid the price of carbon and oil. Notably, coal contracts have 

enourmous effect on carbon, pursuid by gas together with Brent oil contracts, over the 

sample period. Hammoudeh et al. (2015) investigate how asymmetry affected by the 

alteration of fossil contracts plus electricity on carbon prices by employing the NARDL 

technique and display essential findings. First, Brent oil prices have an asymmetrical 

along with long-term negative impact on carbon futures. Even though, gas prices also 

electricity prices affect carbon prices symmetrically, their impacts are different in that 

natural gas prices influence negatively, while electricity prices have a positive one. Jiang 

et al. (2023) address the interaction of fossil energy besides the carbon futures under 

diverse circumstances by employing the Granger causality method at quartiles, 

understanding the causality relation at median and tail levels in the period between June 

1, 2015, and October 31, 2022. 

We address the carbon research gap by employing the innovative Granger causality 

technique developed by Shi et al. (2020, 2018) and examining the outcomes using 

Swanson's (1998) and Thoma's (1994) analytical techniques. Our analysis spans the 

period from March 15, 2010, to September 29, 2023. The utilization of the TVGC method 

is motivated by its distinct advantages. This approach allows us to explore how causal 

connections evolve over a specified time frame. We examine casual relation between 

carbon and energy contracts and how it evolves with time, and precautions taken by 

European Commission.  
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2.3 DATA AND EMPIRICAL METHODOLOGY 

2.3.1 Data 

In line with the literature, we apply our test to fossil energy sources, which consist of ICE 

Brent crude oil futures prices, ICE the Title Transfer Facility (TTF) natural gas futures 

prices, ICE Rotterdam Coal futures prices are collected from the 

website investing.com10. Spot EU ETS allowances data is from European Energy 

Exchange (EEX)11. The time period for the analysis is between March 15, 2010 and 

September 29, 2023. To eliminate the currency fluctuations we deflate to the currencies12. 

Phase I, there was a surplus of allowances because of this carbon prices traded close to 

zero. In addition, because of the data avaliability of TTF prices, we conduct our analysis 

starting from March 15, 2010. 

Moreover to investigate the multivariate causality we use the stock market of the EU 

which is Stoxx 60013 with daily global Geopolitical Risk Index (GPR)14 proposed by 

Caldara and Iacoviello, (2018). We choose GPR as the prices of energy are very sensitive 

to the geopolitical risks and affect investment desicions (Su et al., 2019). 

Table 4. Descriptive Statistics 

 

 
10 Source:  investing.com 
11 Source:  https://icapcarbonaction.com/en/ets-prices 
12 Source: https://www.investing.com/currencies/eur-usd-historical-data 
13 Source: https://finance.yahoo.com/quote/%5ESTOXX/ 
14 Source: https://www.matteoiacoviello.com/gpr.htm 

Date: 11/17/23   Time: 15:29
Sample: 3/15/2010 9/29/2023

CARBON BRENT COAL TTF STOXX GPR
 Mean  24.29455  64.66291  86.17114  31.23738  356.6990  108.2113
 Median  13.02000  62.89522  68.93788  21.60100  364.0700  99.56850
 Maximum  97.58000  117.4769  402.7892  339.1960  494.3500  542.6571
 Minimum  2.680000  17.80582  34.69094  3.509000  214.8900  9.491598
 Std. Dev.  26.59052  18.42692  63.26074  35.38030  65.82579  48.24478
 Skewness  1.480231  0.073114  3.000983  3.652919 -0.089135  2.292607
 Kurtosis  3.752677  2.342904  12.04593  18.61132  2.161102  14.54937
 Jarque-Bera  1285.715  62.44141  16239.09  40936.34  101.3501  21276.71
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
 Sum  80342.09  213840.3  284968.0  103302.0  1179603.  357854.7

http://investing.com/
http://investing.com/
https://icapcarbonaction.com/en/ets-prices
https://finance.yahoo.com/quote/%5ESTOXX/
https://www.matteoiacoviello.com/gpr.htm
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In above the descriptive statistics of data are shown. Table 4 reports the main descriptive 

statistics for the time series of interest. The standard deviations of the coal price are 

greater than carbon, oil and gas prices. Data demonstrates positive kurtosis as well as a 

removal from normality corresponded to the Jarque-Bera method. 

2.3.2 Empirical Methodology 

It is important to determine the interactivity among financial variables.  The approach of 

Granger causality reveals the casual impact between time series (Wang and Fu, 2022). In 

this study, the causality link among coal, Brent oil, naural gas, carbon prices are examined 

by applying the TVGC technique introduced by Shi et al. (2020, 2018)  identifying to 

possibility of causality in various time frequency. 

When we compare the TVGC approach to earlier approaches, it is superior to earlier 

causality estimation techniques in many aspects Primarily, the results of earlier studies 

are very vulnerable to the history of time series. Additionally, TVGC approach determine 

specifically the begining and ending point of casual relation between variables. Therefore 

this model contribute to well understanding of causality link among variables. 

Furthermore, the lag-augmented VAR (LA-VAR) technique proposed by Toda and 

Yamamoto is employed in TVGC to guarantee the predominance of control range and 

accurate the capability of conventional asymptotic tests also prevent the question of 

hypothesis examination failing in the existence of unit roots (Jiang et al., 2023). 

The causality link among coal, Brent oil, natural gas along with carbon prices are 

analyzed by implementing  the TVGC technique introduced by Shi et al. (2020, 2018). 

For the comparison, purpose, we apply forward expanding technique by Thoma (1994) 

and rolling window approach introduced by Swanson (1998). Dolado and Lütkepohl 

(1996) offer the lag augmented VAR approach conducting for a Granger causality method 

to apply 𝑒! as potential integrated variable is shown as in the method: 
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We employ the theoratical approach of the LA-VAR technique established by Dolado 

and Lütkepohl (1996) besides Toda and Yamamoto (1995) shown as in the model: 

𝑌 = 	𝜏Γ8 + 𝑋Θ8 + 𝐵Φ8 + 𝜀               (1) 

where 𝑌 = (𝑦", … . . … . . , 𝑦5)59:-	,	𝜏 = (𝜏", … . . … . . , 𝜏5)59#-	,	𝑋 = 

(𝑥", … . . … . . , 𝑥5)59:)-	,     𝑥! = (𝑦!%"′, … . . … . . , 𝑦!%)′):)9"-	,	Θ = (𝑐", … . . … . . , 𝑐)):9:)-	, 

𝐵 = (𝑏", … . . … . . , 𝑏))59:;-	, 𝑏! = (𝑦!%)%"′, … . . … . . , 𝑦!%) − 𝑑′):;9"-	,	Φ = 

(𝑐)<", … . . … . . , 𝑐<;)):9:;-	,  𝜀 = (𝜀", … . . … . . , 𝜀5)59:-		 (2) 

and d is the extreme degree of integration for 	𝑦! 

The Wald method establish on constraints by 𝐻+: 𝑅𝜃 = 0	represents as: 

𝑤 = {𝑅𝜃|}8{𝑅(𝛺| ⊗ (𝑋8𝑄𝑋)%"))	𝑅′}%"{𝑅𝜃|} 

Where 𝜃| = 𝑣𝑒𝑐	`Θ�b represents the row vectorization with Θ�  demonstrate a least-squares 

estimator of type Θ�=𝑌8𝑄𝑋	(𝑋8𝑄𝑋)%"𝛺	� = 𝑇%"𝜀̂8𝜀̂ and R is a m × n2p matrix where m 

shows the constraint' unit. 

TVGC method apply supremum (sup) Wald statistic sequences denoted as 𝑊=#(𝑓")	the 

Wald statistic over [𝑓", 𝑓#] that the model’s sample size fraction is demonstrated by 𝑓$ =

𝑓# − 𝑓" ≥ 𝑓+. The sup Wald statistic is illustrated as: 

𝑆𝑊=(𝑓+) =
>?)

(=",=#)∈B$,=#*=
 U𝑊=#(𝑓")V 

where, for abbreviated sample magnitude 𝑓+𝜖, 𝜆+ = {(𝑓", 𝑓#) ∶ 0 < 	𝑓+ + 𝑓" ≤ 𝑓# ≤

1, 𝑎𝑛𝑑	0 ≤ 𝑓" ≤ 1 − 𝑓+} and shown the minimum data range f0 ∈(0,1) in the model. In 
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this approach flexible of f1, provides the adjustable implication of reinitialisation for 

individual piece of data. 

Recursive evolving: 𝑓�C =	
(:=

=∈[=$,"]
	U𝑓: 𝑆𝑊=(𝑓+) > 𝑠𝑐𝑣V, 𝑎𝑛𝑑	𝑓�= =	

(:=
=∈D=E',"F

	U𝑓: 𝑆𝑊=(𝑓+) <

𝑠𝑐𝑣V 

Rolling window: 

𝑓�C =	
𝑖𝑛𝑓

𝑓 ∈ [𝑓+, 1]
	U𝑓:𝑊=(𝑓 − 𝑓+) > 𝑐𝑣V, 𝑎𝑛𝑑	𝑓�= =	

𝑖𝑛𝑓
𝑓 ∈ {𝑓�C , 1}

	U𝑓:𝑊=(𝑓 − 𝑓+) < 𝑐𝑣V 

forward expanding:  

𝑓�C =	
𝑖𝑛𝑓

𝑓 ∈ [𝑓+, 1]
	U𝑓:𝑊=(0) > 𝑐𝑣V, 𝑎𝑛𝑑	𝑓�= =	

𝑖𝑛𝑓
𝑓 ∈ {𝑓�C , 1}

	U𝑓:𝑊=(0) < 𝑐𝑣V 

2.4 EMPIRICAL RESULTS 

We first demonstrate the casual relation among carbon emission prices with fossil energy 

prices. In addition we present the factors that affect the causality relation across the entire 

time frame. After we regress multivariate TVGC integrating two additional data: stock 

market price and geopolitical risk index. We would like to compare bivariate TVGC 

findings with multivariate findings. Moreover, as a robustness check, we change the 

window size to understand whether it has a significant effect on findings or not. 

2.4.1 Unit Root Test  

As a first step in our analysis, we begin by analyzing the stationarity and nonlinearity 

characteristics of the data by applying Dickey and Fuller (1979) and Perron and Phillips 

(1988) techniques. Table 5 displays that coal, carbon and Brent oil prices exhibit 
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stationarity when considering their first-order differences whereas natural gas, 

geopolitical risk index (GPR) and stock market prices demonstrate stationarity at their 

levels. This technique allows to conduct under the assumption that the order of integration 

lies between one and two, denoted as d = 1, 2 , (Baum et al., 2021). These findings directly 

guide the specification of TVGC, we set d = 1. 

Table 5. Findings of Unit Root Test 

Variables Levels 1st Difference Outcome 
 ADF PP ADF PP  

Crude Oil -1,724599 -1,795247 -24,75661 -57,23423 I(1) 
Coal -2,138314 -2,480329 -12,79854 -58,80607 I(1) 
Natural Gas -3,168502 -3,492768 -11,44307 -51,35633 I(0) 
Carbon -1,226366 -1,43052 -14,03831 -60,67323 I(1) 
Stoxx 600 -3,954023 -3,918437 -21,47124 -56,45474 I(0) 
GPR -6,539784 -49,11187 -15,51014 -490,2569 I(0) 

2.4.2 Findings of Carbon and Coal Causal Relation  

In this section, we start with the brief history of the EU ETS scheme, which consists of 

four different phases; phase I was an experimental stage aimed at determining a price for 

carbon to institutions that were mainly allocated their allowances without charge. Further, 

in Phase II, the auctioning of EU Allowances (EUAs) was announced which initiated in 

2008. In addition, considerable allowances in this period led to highly volatile carbon 

prices. Since 2009, an excess of emission allowances has accumulated within the ETS. 

The European Commission (EC) has taken steps to solve this surplus through both 

immediate and enduring measures. Allowances surplus primarily stems from the 

economic crisis, which resulted in mitigating emissions beyond initial expectations. 

Consequently, this surplus has contributed to the decreased carbon prices, thereby, 

institutions were unwilling to curb emissions. This surplus poses a risk to the 

effectiveness of the carbon market, potentially disrupting its stability. The possibility of 

this surplus might affect ETS's capability to meet more stringent emission reduction goals 

efficiently in the long run. Phase III covers the years between 2013 and 2020 that 

witnessed a surge in carbon prices, reaching to dramatic high levels by the period's end 
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in 2019. The reason behind that is that EU members decided to change the unbalanced 

market fluctuations with comprehensive market reforms, primarily the implementation of 

the Market Stability Reserve (MSR). 

The creation of the MSR initiated as a lasting solution to address the accumulation of 

excess allowances that was explained to the public in 2015, underwent amendments and 

ratification in June 2018, and became operational in 2019. The MSR was planned with 

the intention to diminish the surplus of allowances in the short period slightly along with 

dynamically regulate the amount of carbon in reaction to possible shocks of the future 

and was initiated in January 2019 (Barnes, 2021). 

   
*The horizontal axis represents years. 

i)Recursive Evolving  ii)Rolling Window             iii)Forward Expanding 

Figure 8. TVGC Results of Coal to Carbon  

Further, based on outcomes depicted in Figure 8, it becomes evident there is a strong 

casual link amongcoal and carbon prices. The Granger causality test results can be 

examined in detail in Table 6. 

In Figure 8 (column 1), one distinct period (01.03.2017-29.09.2023) exhibits notable 

instances of Granger causal association from coal to carbon, evidenced by the test statistic 

surpassing the 5% critical level. Notably, both the rolling and forward techniques yield 

consistent outcomes that causality relation emerges from 2017 to 2023. Several vital 

circumstances in the coal market can affect the causality relation in this period. In 2017, 

the European coal market experienced a resurgence, benefiting both lignite producers and 



50 

 

hard coal importers, primarily supported by a strong beginning to the year. Since 2012, 

coal prices had a downward trend in Europe. Unfavorable weather conditions, reduced 

electricity generation from renewable sources, and substantial system outages collectively 

contributed to heightened coal usage and production. This positive upturn was attributed 

to decreased output from renewable energy sources, reaffirming coal's significance in 

maintaining the balance of the electricity grid (EURACOAL, 2017). In 2018, coal prices 

surged due to low cost of gas due to liquefied natural gas (LNG) being at times lower 

than coal prices when evaluated on an energy basis, leading to a massive volume of LNG 

imports. This situation prompted many countries to engage in coal-to-gas switching 

(EURACOAL, 2019). Carbon emission prices rose in 2018 and continued to increase in 

2019 due to the amendments to the EU ETS Directive that concluded earlier of 2018. 

Power entities, these high levels of carbon prices equal the expense of mining a tonne of 

lignite to the carbon expense of using a tonne of lignite to produce electricity, causing 

financial challenges for entities due to the significant increase in input expenses 

(EURACOAL, 2019). Coal prices declined and fell below the marginal supply costs to 

produce coal because of the Covid-19 pandemic which led to lower demand for power 

and industrial producers in Europe. Another reason for high carbon emission prices is the 

political decision of the EC, which will to mitigate emissions by 55% by 2030 

(EURACOAL, 2022).The COVID-19 crisis in 2020 has additionally driven down coal 

prices, dipping below the marginal supply costs for numerous producers (EURACOAL, 

2019). The sky gas prices across Europe valued coal's significance in the energy mix, 

particularly in power generation. Market dynamics have witnessed a shift from gas to coal 

due to favorable clean-dark spreads since June (EURACOAL, 2023). 

Further, in 2021, initiating the Emission Trading System phase 4 regulated new rules with 

stricter caps and revised allocations of free quantities, triggering steeper carbon prices. 

Investors exhibit strong confidence for phase 4, fostering the aim of the ongoing energy 

transformation to clean energy. This mechanism compels a carbon price as an evolving 

investment commodity, increasing liquidity thanks to market actors for hedging purposes 

and contributing to the steep carbon price. The coal industry was affected by Russia-

Ukraine war in 2022. This sustained conflict has drastically disrupted energy markets, 

notably within the EU, where bans on Russian coal imports and promptly evolving energy 
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policies have enormously affected all energy commodities. Coal prices have reached 

dramatic peaks, and it is possible to take a couple of months before the coal price 

stabilizes (EURACOAL, 2022). 

Table 6. TVGC Results of Coal to Carbon 

TVGC from Coal to Carbon 
Recursive Evolving Rolling Window Forward Expanding 

17Mar01-23Sep29' '17Sep12-17Nov07' '16May09-16Aug02'  
'17Nov24' '16Nov10'  
'18Jan17' '16Nov14-16Dec06'  
'18Jan19-18Jan22' '17Jan12-23Sep29'  
'18Jan24' 

 
 

'18Mar05-18Mar07' 
 

 
'18Mar14' 

 
 

'18Mar20' 
 

 
'18Jun01' 

 
 

'18Jun15-18Jun19' 
 

 
'18Jul03-19Jan22' 

 
 

'19Feb04' 
 

 
'19Mar06-19Mar07' 

 
 

'19Mar13-19Apr01' 
 

 
'19Apr04-19Apr08' 

 
 

'19Apr11-19Apr18' 
 

 
'19Apr25-19May02' 

 
 

'19May06-19May09' 
 

 
'19May13' 

 
 

'19May15-19Jul05' 
 

 
'19Jul09-19Aug05' 

 
 

'19Aug23-19Oct14' 
 

 
'19Oct28-19Oct29' 

 
 

'19Dec09' 
 

 
'19Dec13-19Dec16' 

 
 

'20Jan13-20Feb12' 
 

 
'20Mar16-20Jun15' 

 
 

'20Dec02-20Dec04' 
 

 
'20Dec08-20Dec10' 

 
 

'21Jan06-21Jan12' 
 

 
'20Dec16-20Dec17' 

 
 

'20Dec21' 
 

 
'20Dec29' 

 
 

'21Jan22' 
 

 
'21Jan27' 

 
 

'21Feb02-21Feb05' 
 

 
'21Sep30' 
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These conclusions align with Tan and Wang (2017), Duan et al. (2021), Gong et al. 

(2021), Lovcha et al. (2022) and Jiang et al. (2023) which show that coal contracts 

crucially affect carbon contracts. Gong et al. (2021) highlighted that coal price shocks 

contribute notably to the frequent fluctuations in carbon pricing, particularly from 2017 

onward. During this period, alongside escalating carbon prices, other climate policies 

further motivate the shift away from coal. 

Moreover, as coal prices increase, there's a stronger motivation to replace coal with 

natural gas or vice versa low gas prices also led to use of more gas in the energy mix. 

Because of aforemention situation in high gas prices from 2021, support the usage of coal 

in the energy mix, and led to high coal prices and therefore high carbon prices. Chevallier 

(2009) consider as coal contracts volatility may affects substantially carbon contracts. 

The carbon futures and the coal futures news spillover is powerful in comparison with the 

oil align with gas contracts (Wu et al., 2018). 

   
 

*The horizontal axis represents years. 
i)Bivariate           ii)Multivariate Stoxx         iii)Multivariate GPR 

Figure 9. Comparison of Bivariate and Multivariate Results 

Figure 9 illustrate that the outcome of the bivariate test and the multivariate consisting 

two additional variables as stock market prices and GPR are consisted. When look into 

detail in the Table 7 it can be seen that the periods of causality relations are similar to 

bivariate calculations. 
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Table 7. TVGC Results of Coal to Carbon 

TVGC from Coal to Carbon 
Bivariate Multivariate Stoxx Multivariate GPR 

17Mar01-23Sep29' '16Jun29-16Jun30' '17Feb27' 
 '17Feb01-17Feb10' '17Apr05-17May02' 
 '17Feb28-23Sep29' '17May31-17Sep05' 
  '17Sep07-18Mar20' 
  '18Mar27-18Apr04' 
  '18Apr19-23Sep29' 

  
*The horizontal axis represents years. 

i)Windows 0.2     ii)Windows 0.25 

Figure 10. Comparison of Window Size 

Table 8. Comparison of Window Size 

TVGC from Coal to Carbon 
 Windows 0.2  Windows 0.25 

'17Mar01-23Sep29' '17Mar01-23Sep29' 

In Table 8, it is clearly obvious that changing window size has not any affect on casual 

relation from coal prices to carbon allowances prices. 
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*The horizontal axis represents years.  
         i) Recursive Evolving           ii)Rolling Window       iii)Forward Expanding 

Figure 11. TVGC Tests Between Carbon to Coal 

Figure 11 present the outcome of the recursive evolving test, rolling window test and 

forward expanding test illustrate that coal prices significantly affect from carbon prices. 

Recursive evolving test covered the most wide period (27 June 2016 to -27 January 2017 

and 02 March 2022- 29 September 2023) compare to the rolling window test and forward 

expanding test. Besides, both rolling window and forward estimation techniques display 

the causality relation form carbon to coal in 2022. However both approaches could not 

identify any casual relation for 2023. The reason might be why carbon prices affected 

from coal prices in 27 June 2016 to - 27 January 2017, the regulation of The Paris 

Agreement which oblige to member states mitigate greenhouse gas emissions 

(EURACOAL, 2017). In EURACOAL (2022) stated that after the initation of the MSR, 

hedging operations have started in the carbon market. 

Table 9. TVGC Tests From Carbon to Coal 

TVGC Tests from Carbon to Coal 
Recursive Evolving Rolling Window Forward Expanding 
'16Jun27-17Jan27' '16Jun27-16Dec12' '22Mar10-22Apr07' 
'22Mar02-23Sep29' '22Mar02' '22Apr12-22May03' 

 '22Mar09-22Oct05' '22May05-22May18' 
 '22Oct11-22Oct28' '22May30-22Sep06' 
 '22Nov02-22Nov04'  
 '22Dec27'  
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When looking at the details, financial players hedge future operations by using the amount 

of allowances, which means hedgers withdraw allowances from the carbon market. This 

situation causes that there is an allowance surplus in the market; therefore, via the MSR, 

fewer allowances are permitted to circulate in the system through auctions to achieve 

present demand. Because of fewer allowances in the system, carbon prices increase, and 

emission demand can not be met. Hedgers uses the gap in the MSR system that a long 

period of hedging induces all the time in the future, showing there is an excess allowance 

in the market. As a result, coal industries are exposed to compensate for the high carbon 

fee (EURACOAL, 2022). Jiang et al. (2023) also find a Granger causality link from 

carbon emission contracts to coal contracts in quantiles. Gong et al. (2021) emphasize as 

coal is the primary supply of electricity production, carbon allowances are mainly 

specified by the charge of electricity production; therefore, carbon prices affect coal 

prices. In addition, if the carbon futures hike and the conversion price of producing 

electricity from gas is cheaper compare to coal, then the demand for coal diminishes. 

Carbon contracts’ impact on the coal contracts hit record levels in 2020 because of the 

low amount of allowances due to “carbon neutrality.” COVID-19’s impact of contagion 

risk was brought to both markets after the covid increase demand as an accelerated 

demand for economic revival (Qiao et al., 2023). 

   
*The horizontal axis represents years.           

    i)Bivariate    ii)Multivariate Stoxx                 iii)Multivariate GPR 

Figure 12. Comparison of Bivariate and Multivariate Results 
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Table 10. TVGC Tests From Coal to Carbon 

TVGC Tests from Carbon to Coal 
Bivariate Multivariate Stoxx Multivariate GPR 

'16Jun27-17Jan27' '16Jun30-17Jan27' '16Aug04-17Jan27' 
'22Mar02-23Sep29' '22Mar02-23May26' '17Mar08' 

  '23Jun02-23Sep29' 
 

In the Table 10 it is shown that the results of bivariate causality and multivariate causality 

are robust we when add a control variable, stock market. However, when add the control 

variable, GPR, the causality relation only exist the year between 2016 and 2017. This 

suggest that GPR may be a less crucial determinant factor for coal because it is more local 

compare to the oil plus gas. 

  
                *The horizontal axis represents years.   

i)Windows 0.2          ii)Windows 0.25 

Figure 13. Comparison of Window Size 

Table 11. Comparison of Window Size 

TVGC Tests from Carbon to Coal 
Windows 0.2 Windows 0.25 

'17Jan04-17Jan06' '16Jun27-17Jan27' 
'22Mar02-23Sep29' '22Mar02-23Sep29' 

In Table 11, both window size detect the casual relation from carbon to coal the period 

between March 2022 and September 2023.  
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2.4.3 Findings of Carbon and Crude Oil Causal Relation 

The causal link from oil price to carbon price is illustrated in Figure 14. Both recursive 

evolving methods and forward method determine the causality relationship from February 

2016 till September 2023. However, the rolling window approach identifies causality 

relations in several dates covering February 2016 to July 2019. The oil price affected the 

carbon contracts, in 2016, because the oil price crashed as a result of Iranian sanctions 

(European Commission, 2016). Because of COVID-19, there was huge amount of oil in 

economy that hit the oil prices (EURACOAL, 2019). In 2021, it is the first time after 

2014 oil contracts arrived the top level, and just as in 2022 since 2008, due to the 

economic rebound effect after the pandemic and the expectation of inflation, an increasing 

trend in oil prices was triggered (European Commission, 2022). If positive oil shock 

emerges, carbon price will increase. 

Lovcha et al. (2022) also obtained similar results to ours: from 2015-2016, there was an 

increased association amid prices of oil and carbon. Additionally, the oil contracts affect 

carbon allowances in long period. Qiao et al. (2023) specify that the oil price has been 

positively and negatively affected the carbon market, and compared to the other fossil 

fuels, its impact has the most. 

   
*The horizontal axis represents years.  

 i)Recursive Evolving            ii)Rolling Window         iii)Forward Expanding 

Figure 14. TVGC Tests Between Crude Oil to Carbon  
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Table 12. TVGC Tests From Crude Oil to Carbon 

TVGC Tests from Crude Oil to Carbon 
Recursive Evolving Rolling Window Forward Expanding 
'16Feb16-23Sep29' '16Feb16-16Feb17' '16Feb16-23Sep29' 

 '16Feb23-17Dec04' '16Feb01-16Feb02' 
 '17Dec07-18Jan23'  
 '18Feb08-18Apr03'  
 '18Apr19-18May09'  
 18May31-19Jan22'  
 '19Jan29-19Feb11'  
 '19Jan29-19Feb11'  
 '19Feb26-19Jul09'  

     
*The horizontal axis represents years.  

      i)Bivariate                         ii)Multivariate Stoxx                  iii)Multivariate GPR 

Figure 15. Comparison of Bivariate and Multivariate Results 

Table 13. TVGC Tests From Crude Oil to Carbon  

TVGC Tests from Crude Oil to Carbon 
Bivariate Multivariate Stoxx Multivariate GPR 

'16Feb16-23Sep29' '16Jan28-16Feb09' '16May18' 
 '16Feb16-20Apr09' '16Jun06-16Jun15' 
 '20Apr16-20Apr20' '16Jun29-16Jul14' 
 '20Apr22-20Jun15' '16Oct03-23Sep29' 
 '20Jun18-20Jun22'  
 '20Jul10'  
 '20Jul14-20Jul17'  
 '20Aug10-21Jul19'  
 '21Jul30'  
 '21Aug12-21Aug18'  
 '21Aug23'  
 '21Sep28-21Sep29'  
 '21Oct06-21Oct19'  
 '21Dec02-21Dec06'  
 '22Mar01-23Sep29'  
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It is clearly seen both in above Figure 15 and Table 13, both bivariate and multivariate 

approaches detect casual link from crude oil to carbon in a similar dates. 

  
*The horizontal axis represents years.  

i)Windows 0.2      ii)Windows 0.25 

Figure 16. Comparison of Window Size 

Table 14. Comparison of Window Size 

TVGC Tests from Crude Oil to Carbon 
Windows 0.2 Windows 0.25 

'16Feb16-23Sep29' '16Feb16-23Sep29' 

In Table 14, it is seen that TVGC from crude oil to carbon is not affected by changing the 

window size. 

In Fig 17 display the casual spillover link from carbon futures to oil futures, recursive 

algorithm determined the causality link in more wide period May 2020, November-

December 2021, March 2022-September 2023), while rolling approach just specify from 

2022 to 2023.Although forward identify casual relation just for 10 March 2022. Känzig 

and Konradt (2023) point out that when carbon futures increase oil futures increase more 

significantly because carbon market includes oil entities. 
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*The horizontal axis represents years.   
i)Recursive Evolving   ii)Rolling Window           iii)Forward Expanding 

Figure 17. TVGC Tests Between Carbon to Crude Oil 

Table 15. TVGC Tests from Carbon to Crude Oil 

TVGC Tests from Carbon to Crude Oil 
Recursive Evolving Rolling Window Forward Expanding 

'20May05' '22Mar09-22Apr21' '22Mar10' 
'20May07' '22Apr25-22Jul29'  

'21Nov26-21Dec17' '22Aug03-22Aug30'  

'22Mar02-23Sep29' '22Nov04'  
 '22Nov08'  
 '22Nov10-22Nov14'  
 '23May04-23May05'  
 '23May11-23May25'  

In addition, Lovcha et al. (2022) considers that oil contracts are crucial for determining 

carbon prices because of their tied link with natural gas and as a reference price on the 

worldwide energy system. Moreover, oil-related merchandise generally prefer 

transportation, which leads to emission and oil refinery entities. Jiang et al. (2023) found 

a Granger causality relation from carbon to oil at lower also upper quantiles while could 

not identify at the middle quantile. As can seen from Figure 17 and Table 15, the causality 

relationship has increased since 2020 from the carbon contracts to the oil contracts. A 

possible explanation for this relationship considered by Qiao et al. (2023) might be the 

restriction of carbon allowances as a phenomenon of “carbon neutrality” due to Market 

Stability Reserve. COVID-19’s effect of possible contagion risk came into appear in both 

markets after the covid increase accelerated demand as a result of economic revival. 
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*The horizontal axis represents years.  

     i)Bivariate                                ii)Multivariate Stoxx          iii)Multivariate GPR 

Figure 18. Comparison of Bivariate and Multivariate Results 

Table 16. TVGC Tests from Carbon to Crude Oil 

TVGC Tests from Carbon to Crude Oil 
Bivariate Multivariate Stoxx Multivariate GPR 
'20May05' '22Mar08-23Sep29' '20Apr21' 
'20May07'  '20May05' 

'21Nov26-21Dec17'  '21Mar24-21Apr06' 
'22Mar02-23Sep29'  '21Apr14-21May03' 

  '21May06-21May20' 
  '21May25-21Nov26' 
  '22Mar04-23Sep29' 

Both bivariate and multivariate test results from carbon allowances to crude oil prices are 

robust.  

  
*The horizontal axis represents years.  

i)Windows 0.2      ii)Windows 0.25 

Figure 19. Comparison of Window Size 
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Table 17. Comparison of Window Size 

TVGC Tests from Carbon Crude Oil 
Windows 0.2 Windows 0.25 

'20May05' '20May05' 
'20May07' '22Mar02' 

'21Nov26-21Dec17' '22Mar04-23Sep29' 
'22Mar02-23Sep29'  

In Table 17, both window size confirm the there is a crucial causal relation among carbon 

prices with oil prices especially the period between March 2022 and September 2023. 

2.4.4 Findings of Carbon and Natural Gas Causal Relation 

Figure 20 illustrates the causality link among the natural gas and carbon contracts. All 

approaches identify the causality from November 2012 to January 2013. Further, both 

recursive algorithms and forward-expanding approaches capture the causal link from 

natural gas to carbon from 2017 until 2023. Although the rolling window approach just 

recognizes the causality period between 2017 and 2022, however, it is not observed after 

2022. Low gas prices in Europe occur because of the surplus of shale gas in the US, which 

creates an import flow via LNG to Europe. Because of the LNG glut in Europe, the power 

generation market, actors chose natural gas instead of coal, which led to a coal surplus as 

well, which is a commodity of choice for electricity production. Due to low coal prices 

also cause low carbon prices (European Commission, 2013). In 2019, there was a LNG 

wave from the US to Europe. 

Similarly, in 2013, it led to low gas prices together with made gas favorable to coal; the 

demand for coal decreased crucially as the stock of coal boosted in Europe. Also, high 

carbon prices led to coal being unprefered for power generation (European Commission, 

2019). In 2020, because of COVID-19, natural gas prices experienced the historical 

lowest price level. Nevertheless, in 2021, because of low stock levels in winter time and 

also high prices of oil, carbon, and coal prices, less Russian gas flow than in the past, 

harsh winter, outage of a nuclear plant in France, lower wind electricity generation, 

Nordstream declaration motivate the boost in gas prices. Because the high gas prices, 
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market actors prefer coal-fired generation to produce electricity, which leads to gas-to-

coal switches higher carbon emission amounts, and higher carbon prices. Even though 

much LNG is imported to Europe, the European gas market will still experience volatile 

gas prices and high prices in 2022 because the Russian-Ukraine war plus political 

declarations and sanctions until high gas prices (European Commission, 2022). 

   
*The horizontal axis represents years.    
   i)Recursive Evolving   ii)Rolling Window        iii)Forward Expanding 

Figure 20. TVGC Tests Between Natural Gas to Carbon 

Lovcha et al. (2022) consider gas together with coal as substitute fuels; therefore, market 

actors prefer to substitute coal for power generation when there is a price hike in natural 

gas. Compared to coal, natural gas is a more clean energy that emits less CO2; therefore, 

high demand for coal leads to more emissions and higher carbon price. According to their 

result, natural gas prices interpreted carbon prices more in the period between 2011 and 

2015, while oil prices disclosed more between 2015 and 2016. 
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Table 18. TVGC Tests From Natural Gas to Carbon 

TVGC Tests from Natural Gas to Carbon 
Recursive Evolving Rolling Window Forward Expanding 
'12Nov30-13Jan22' '12Nov30-13Jan15' '12Nov30-13Jan31' 
'13Jan24-13Jan25' '18Feb27-18Mar14' '17Mar01-17Mar24' 

'17Dec19-20May29' '18Mar27-18Sep12' '17Mar28-17Mar29' 
'20Jun12' '18Sep25-18Sep27' '17Apr03-17Apr04' 

'20Jul24-20Aug03' '18Oct15-18Oct25' '17May05-17May17' 
'20Aug31-23Sep29' '18Nov14' '17May31-17Jun09' 

 '18Nov20-18Dec04' '17Jun13-17Jun15' 
 '18Dec07-18Dec11' '17Jul10' 
 '19Jan08-19Jan30' '17Jul12-17Jul17' 
 '19Feb04-19Feb11' '17Jul21-23Sep29' 
 '19Feb21-19Mar28'  
 '19Apr03'  
 '19Apr09-19Apr15'  
 '19Apr18-19May02'  
 '19Jun26'  
 '21Oct06-21Oct07'  
 '22Jan03-22Jan07'  

Gong et al. (2021) clarify the importance of gas contracts in determining carbon contracts 

in the ETS phase III. They summarize the connection among fossil fuels and carbon. On 

the one hand, an escalation in carbon futures accelerates the future of conventional energy 

sources, primarily boosting the amount of emissions for producing electricity. On the 

other hand, an escalation in conventional energy sources causes a hike in electricity 

production costs and carbon futures. 

   
*The horizontal axis represents years.  

         i)Bivariate                    ii)Multivariate Stoxx          iii)Multivariate GPR 

Figure 21. TVGC Tests Between Natural Gas to Carbon 
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Table 19. TVGC Tests From Natural Gas to Carbon 

TVGC Tests from Natural Gas to Carbon 
Bivariate Multivariate Stoxx Multivariate GPR 

'12Nov30-13Jan22' '12Nov30-13Jan22' '21Feb12-21May18' 
'13Jan24-13Jan25' '13Jan24-13Jan31' '21May20-21May26' 

'17Dec19-20May29' '17Dec20-18Jan12' '21May28-21Jul08' 
'20Jun12' '18Jan17-20May29' '21Jul12-21Jul23' 

'20Jul24-20Aug03' '20Jul27-20Aug03' '21Jul30' 
'20Aug31-23Sep29' '20Aug31-23Sep29' '21Aug03-21Aug04' 

  '21Aug10-21Nov15' 
  '21Nov17' 
  '21Dec14' 
  '21Dec17-22Dec20' 
  '23Mar24-23Mar27' 

For bivariate analysis and multivariate analysis, including stock market prices, it is clear 

that casual links from natural gas prices to carbon prices occur; however, while we include 

GPR in the multivariate analysis, casual links from natural gas prices to carbon prices 

occur after 2021. 

   
*The horizontal axis represents years.  

i)Windows 0.2      ii)Windows 0.25 

Figure 22. Comparison of Window Size 
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Table 20. Comparison of Window Size 

TVGC Tests from Natural Gas to Carbon 
Windows 0.2 Windows 0.25 

'12Nov30-13Jan22' '17Dec19-18Jan12' 
'13Jan24-13Jan25' '18Jan17-20Jun30' 

'17Dec19-20May29' '20Jul17-20Aug12' 
'20Jun12' '20Aug24' 

'20Jul24-20Aug03' '20Aug31-23Sep29' 
'20Aug31-23Sep29'  

In addition, it is seen in table 20, when we change the window size, it also shows that 

casual links are more powerful after 2020. 

From the outcomes of Granger causality relations, regardless of the estimation methods, 

there is no evidence that a causality relation exists from the carbon contracts to the gas 

contracts as displayed in Figure 23. As explained by Qiao et al. (2023) due to natural gas 

being referred to as a clean source compared to other fossil fuels and also regulations that 

support the transition to low carbon and green and more environmentally friendly 

economy, manufacturing firms which omit high emissions prefer to consume more 

natural gas. Further, there is an ample amount of reserves, ongoing development studies 

in natural gas production, extended processes, and infrastructure to expedite the boost of 

gas consumption along with diminishing gas prices. Different from the natural gas 

contract response, both coal and crude oil contracts markets show an upward and 

affirmative reaction to shocks stemming from the carbon contract, reaching the highest 

point around the year 2020. Jiang et al. (2023) state that there is no confirmation of a 

causality relation among carbon futures and natural gas futures in the middle quantile; 

however, they identify casual link from carbon to natural gas at the lower and upper 

quantiles. 
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*The horizontal axis represents years.  
i)Recursive Evolving   ii)Rolling Window           iii)Forward Expanding 

Figure 23. TVGC Tests Between Natural Gas to Carbon 

TVGC relationship among prices of carbon and natural gas does not exist in all examined 

periods. This situation may be because natural gas is a cleaner fossil source than coal. In 

addition, Qiao et al. (2023) also state that natural gas pipelines and expenses depend on 

long-term investment decisions and are more abundant regarding reserves. Therefore, the 

reason why carbon prices do not affect natural gas prices may depend on long-term 

investment (such as pipelines and LNG terminals) and bilateral country agreements. 

   
*The horizontal axis represents years.   

    i)Bivariate             ii)Multivariate Stoxx                   iii)Multivariate GPR 

Figure 24. TVGC Tests Between Natural Gas to Carbon 
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*The horizontal axis represents years.  

i)Windows 0.2      ii)Windows 0.25 

Figure 25. Comparison of Window Size 

To sum up, based on these findings, we identify a causality relation between fossil energy 

contracts and carbon contracts, especially after 2016, followed by the declaration of the 

Paris Agreement. The volatility in energy prices affect carbon prices because of LNG 

surplus, oil price sanctions, the Covid-19 crisis, economic recovery after Covid, Russian-

Ukranian war, political declarations. Therefore, these circumstances affect carbon prices. 

The causality relation from carbon price to fossil price, is more substantial after 2020. 

Our findings support Qiao et al. (2023) who explain the conclusion on the carbon 

contracts also coal along with oil contracts, is vital because after the economic revival 

and risk for contagion effect and low allowances in MSR system, the target of "carbon 

neutrality” also boost in energy demand. Our results also support Duan et al. (2021) who 

show that when the carbon evolves as a more mature market, the impact of energy prices 

is more prominent, allowing us to capture carbon market formation and fundamental 

factors better and state that this situation is more evident with Phase III. 

2.5 CONCLUSIONS 

With the initiation of the EU ETS, the European Commission has a great motivation to 

mitigate carbon emissions, mainly from fossil energy sources, and accelerate the 

regulation for supporting green energy transition that may impact the emergence of a 

unidirectional causal relation between carbon and fossil energy market. Assessing this 

relation will contribute to evaluating the functionality of the ETS and its role in fossil 



69 

 

energy. Besides, this study figures out how causality relations are affected by fossil 

energy prices, carbon prices, or vice versa under various market situations. In that vein, 

this paper aims to apply TVGC approach to determine a dynamic casual link and identify 

the reasons behind this association among energy along with the carbon market. 

This paper presents and extends the carbon studies by applying the TVGC among carbon 

and fossil energy sources proposed by Shi et al. (2018) and Shi et al. (2020) from 10 

March 2010 until 29 September 2023. We also compare the results using the methods of 

Thoma (1994) and Swanson (1998) who employ forward-expanding and rolling window 

approaches. Our results prove that the recursive system captures and detects more casual 

relations. Thus, the recursive approach surpasses the forward and rolling procedures over 

the examined period. In that regard, we also check our results for robustness purposes 

amid bivariate and multivariate structures consisting of additional data such as stock 

market prices and geopolitical risk index and also alter the window size whether the 

results change. 

Based on the findings, we identify a causality relation between fossil energy contracts 

and carbon contracts, especially after 2016, followed by the declaration of the Paris 

Agreement. The reason behind the volatility in energy prices depends on LNG surplus, 

oil price sanctions, the Covid-19, boost in economy after Covid, the Russian-Ukranian 

war, political declarations, high natural gas prices because of stocks. Therefore, these 

circumstances affect carbon prices. The causal relation from carbon price to the coal and 

crude oil market, this casual relation is more substantial after 2020. Our result also support 

Qiao et al. 2023 that the carbon contract's impact on the coal and crude contracts is more 

substantial after the economic revival and risk for the contagion effect and low allowances 

in the MSR system. Also, they clarify that gas is a more abundant resource of investment 

decisions in the long period, which is a cleaner fossil source compared to coal and oil; 

therefore, it is normal that the carbon price effect is insignificant. According to our results, 

initiating the Emission Trading System phase 4 led to a stricter cap and revised allocations 

of free quantities. Also, market actors who use the carbon market as a hedging instrument 

trigger a steep carbon price, and therefore, it influences coal and oil refinery entities to 

manage emission amounts. Our findings are still robust when we add control variables 
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and change the window size. The findings display the efficient level of the carbon market 

has increased in recent years, thanks to regulations, that it has an impact on fossil fuels 

with correct pricing, thus affecting the decisions of energy actors for power generation 

decisions and contributing to the aim of reducing carbon emissions. The effect of carbon 

contracts on conventional energy contracts differs in individual periods, which can 

present as a valuable benchmark for policymakers and also for market actors. 

Furthermore, politicians should cautiously follow and understand the mechanism of 

carbon besides conventional energy commodities to promote a more effective carbon 

market. Our results show that more effective carbon markets give correct market signals, 

and thus, energy actors allocate power generation decisions, accustom energy 

consumption formation, and decide their positions to mitigate emissions according to the 

carbon prices. 

Moreover, the aim of more efficient carbon market policymakers should constitute a 

system to observe fluctuations in price via risk monitoring tools or an early warning 

system to prevent the adverse influence on carbon market on the conventional energy 

market to boost the transition of low carbon emissions via changing structure of energy 

in the power generation. Future studies could also use clean energy indices and macro 

and micro variables to evaluate the carbon market more comprehensively. 
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CHAPTER 3 

OIL PRICE SHOCKS AND SECTORAL UNEMPLOYMENT IN 

THE UNITED STATES 

3.1 INTRODUCTION 

From the beginning point of the oil crisis in the 1970s, a remarkable connection has been 

determined between crucial hikes in oil prices together with recessions in the United 

States. This relationship boosts the curiosity of economists together with policymakers, 

leading them to search how shifts in oil prices influence by economic indicators. In the 

past, these hikes in oil prices were often responsible for downturns in the country's 

economy, as highlighted in Hamilton's work in 1983. Therefore, studies generally 

examine the nexus among oil prices and macroeconomic indicators, along with how oil 

price shocks influence the national economy. Kilian (2009) demonstrates oil price spikes 

may emerge from worldwide economic expansion. 

Moreover, the most studies centralize analyzing the consequence on oil price shocks, 

particularly on industrial production. A limited studies check into the survey of how oil 

prices affect shifting in the labor market. For instance, Loungani' work (1986) shows that 

oil price volatility throughout the 1970s oil crisis mitigating employment for various 

sectors, and that this was mainly because extensive labor redistribution. Lee et al. (1995) 

consider oil price volatility scenarios, state that oil price shocks considerably affect 

unemployment. Ferderer (1996) states oil price shocks present as beneficial indicators for 

forecasting employment growth rate. Recently, Alsalman (2023) searches the 

consequence of oil price shocks on aggregate U.S. unemployment as well as various 

timings of unemployment spells. The outcomes affirm negative oil supply shocks 

constitute a recessionary impact, notably elevating aggregate unemployment metrics 

aligned with the count of individuals unemployed for more or equal to five weeks. Koirala 

and Ma (2020) also search how oil price fluctuations impact both overall and sector-

specific employment growth in the U.S. regarding the switch uncertainty linked with oil 
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prices over time. Research conducted by Herrera et al. (2017) highlights substantial 

variability among industries in how they react to an unforeseen decline in the oil price, 

particularly job creation and destruction. A significant portion of the literature centers 

around searching the labor market responses to oil price shocks through aggregate 

unemployment rates (as observed in studies like Karaki (2018)). Therefore, exploring the 

relationship between sectoral unemployment and structural oil shocks can offer a more 

comprehensive insight into the intricacies of the labor market dynamics, providing 

pertinent information essential for formulating an effective policy response. In that aim, 

we investigate understanding the reactions of sectoral unemployment to structural shocks 

of the oil market together with whether there is a notable variability among different 

unemployment sectors. Compared to prior research, this study investigates the conclusion 

of oil price shocks on unemployment within diverse sectors of the U.S. economy. It 

employs a combination of theoretical simulations and empirical estimation techniques to 

address this inquiry. 

Our contribution is examining how oil specific shocks influence sectoral unemployment 

in the United States. Three shocks link to the oil determine as: “shocks to the current 

physical availability of crude oil (oil supply shocks), shocks to the current demand for 

crude oil driven by fluctuations in the global business cycle (aggregate demand shocks)', 

and shocks driven by shifts in the precautionary demand for oil (precautionary demand 

shocks). Precautionary demand arises from the uncertainty about shortfalls of expected 

supply relative to expected demand. It reflects the convenience yield from having access 

to inventory holdings of oil that can serve as insurance against an interruption of oil 

supplies” (Kilian, 2009, p. 1054). 

Therefore, structural VAR technique leads to scrutinize the shocks of oil price in detail 

along with gives more perspective about oil price shocks. This is the first study 

investigating the reaction of the labor market segments to these shocks by applying the 

structural VAR methodology by Kilian and Park (2009). First, we categorise 

unemployment into sectors such as total unemployment, nonagriculture, mining, 

quarrying, and oil and gas extraction, government, transportation and utilities, 

manufacturing, information, leisure and hospitality, education and health services, 
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financial activities. The analyze highlights the significant diversity in how sector-specific 

unemployment responds to oil price shocks in the United States. Specifically, various 

unemployment sectors may show unique responses, in the account of the direction also 

magnitude, to shocks in oil supply. For instance, the transportation and utilities 

unemployment sector display a negative response during the six months following the 

shock, albeit with a statistically insignificant outcome. Moreover, the reactions of both 

the information and non-agricultural unemployment sectors to the oil supply shock lack 

statistical significance. The unemployment in the manufacturing industry affected the 

most compare to the other sectors, responses positively to shock of oil supply, and this 

positive impact remains significant for a period of 15 months. Concerning an aggregate 

demand shock, unemployment in all sectors follow a consistent negative trend, albeit with 

variations in the magnitude of the impact. Each unemployment sector exhibits distinct 

responses, including an insignificant horizon and a combination positive and negative 

trend, along with variations in magnitude degrees. Sectoral unemployment responds 

significantly in all sectors to the aggregate demand shock. 

The diverse conclusion of an oil price shocks on sectoral unemployment could be 

attributed to the unique features of each sector. Initially, the influence of oil price 

uncertainty can vary among sectors with various degrees of oil reliance, reflecting the 

extent that whether or not oil is utilized as an input into the construction processes. Choi 

et al. (2018) state the uncertainty at the aggregate level has a more pronounced negative 

effect on growth in industries which rely significantly on exterior finance. Hence, it is 

plausible that sectors exhibiting greater reliance on external finance may experience more 

substantial effects from oil price shocks. Nonetheless, the extent of these effects differs 

across sectors, probably due to the distinct components within each sector, bringing on 

differing responses to shifts in oil prices along with shocks linked with oil prices. 

Especially, sectors that exhibit a more substantial reliance on oil seem to suffer more 

severe adverse effects. Overall, the findings indicate which the U.S. unemployment 

respond irregularly to oil price shocks establish sector-specific characteristics. Our 

research provides to the current literature by searching the impact of these three structural 

shocks to the price of oil on unemployment in the United States. 
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Given its substantial contribution to the macroeconomic inconstancy within the U.S., our 

focus lies on the labor market. The link among oil price shocks together with 

unemployment is crucial to policymakers due to its implications. This chapter 

underscores the significance of oil price shocks in influencing the dynamics of the U.S. 

labor market. 

The form of this study is as follows: Section 2 examine the prior literature briefly, Section 

3 explains data in the model, such as the global oil market variables alongside sectoral 

unemployment metrics, and Section 4 elaborates on the structural VAR model approach, 

Section 5 presents the findings regarding the reactions of diverse sectoral unemployment 

to shocks of the oil market, and Section 6 represents the conclusion. 

3.2 LITERATURE REVIEW 

From the beginning of 1970s, experiencing the dramatic influence on oil price shocks on 

macroeconomy scholars started to research this nexus. Several scholars compromise that 

boost in oil prices, the adverse conclusion on the U.S. economy shows significantly 

overbalanced compared to the positive effects caused by reductions in oil prices by the 

starting of the 2000s. These transmission channels of oil price shocks on economy, 

especially sectoral reallocation of labor, have been extensively analyzed by various 

theoretical models by  Herrera and Karaki (2015). Oil price fluctuations would activate a 

transition of labor along with assets from the sectors the most influenced to the least for 

a country that imports oil heavily (Karaki, 2018). Thus, these transition disruptions would 

deepen the harmful adverse impacts of boosted oil prices while diminishing the beneficial 

responses connected to decreased oil prices (Davis and Haltiwanger, 2001). The 

importance of a precautionary saving approach to clarify the asymmetry channel in how 

economic facilities reply to oil price variations (Edelstein and Kilian, 2009). In detail, 

when oil prices rise, it accelerates uncertainty among individuals' future income, which 

leads to saving more as a precautionary measure, resulting in less. Conversely, when oil 

prices drop, individuals still exhibit a similar behaviour pattern. 
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Moreover, Bernanke et al. (1997) include monetary procedures in theory that explain the 

asymmetries in the reaction of economic actions to oil price shocks in both ways (positive 

and negative) due to the implementation of stringent contractionary measures in reaction 

of higher oil prices, while being less persistent in reaction of decreasing oil prices. 

Bernanke (1983) and Pindyck (1991) show the irreversible investment framework 

because the asymmetry in the production reacts to oil price shocks which boosted oil 

prices together with affected consumers' habits of transferring goods away from energy-

intensive usage. 

Lately, two main concerns have emerged regarding prior empirical study on the influence 

on oil price shocks. Firstly, Kilian and Vigfusson (2011) highlighted the approaches 

employed in research formed on censored VAR techniques are prone generating irregular 

projections. They suggest the slope-based methods employed in previous papers to assess 

the symmetry of the attitude of economic actions to oil price shocks lack informative 

value. Alternatively, Kilian and Vigfusson (2011) introduced a symmetry technique on 

impulse response functions as they could not detect any proof contradicting the idea of 

symmetry concerning unemployment. Herrera et al. (2011) search the link among oil 

price shocks and industrial production employing the symmetry technique estimate by 

Kilian and Vigfusson (2011) and conclude that proof against the symmetry, particularly 

within industries that heavily rely on energy, both in their operational activities and in 

their production procedures. More analyses applying disaggregated data have revealed 

the impact of positively also negatively oil price variations on stock returns as well as job 

movements tends to display symmetry. In addition, the outcome of studies highlights the 

importance of assessing the primary pathway by which oil prices impact the economy and 

determining whether there have been alterations in the circulation system of oil prices 

across different time frames. 

Furthermore, before Kilian's study in 2009, researchers considering the economic 

influence on oil price shocks mainly centered on approaches that account for oil prices as 

externally specified or external. When treating oil prices exogenously, drawbacks 

emerge. Initially, Barsky and Kilian (2001) paper explains the rises in oil prices in the 

1970s were predominantly a reaction to economic inconsistencies activated by strategies 
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that present as proof of a contrary causality among oil prices together with the U.S. 

economy, boosting skepticism about the oil prices as externally excepted or exogenous. 

Another view is the historical ups and downs in oil prices have been primarily influenced 

by shocks in supply/demand within the oil market. Kilian and Park (2009) indicate how 

these shocks affect both the price of oil and economic activities, which vary considerably. 

When we focus on the previous studies on how oil price shocks explain the shifts in the 

labor market. The high oil prices fluctuations during the 1970s oil crisis led to mitigating 

employment and largely labor movement (Loungani, 1986).  The influence on oil price 

shocks in on unemployment are meaningful regardless of volatility level (Lee et al., 

1995). Oil price shocks serve as projection factors for predicting the employment growth 

rate (Ferderer, 1996). Herrera et al. (2017) highlight substantial variability among 

industries in how they respond to unforeseen fluctuations in oil prices, particularly in 

terms of job constitution as well as demolition. Karafaki (2018) searched oil price shocks 

association with unemployment across the U.S., when faced with an unfavorable supply 

shock, the unemployment rate hikes. Kandemir Kocaaslan (2019) affirms positive as well 

negative oil price shocks influence on unemployment rate. Michieka and Gearhart (2019) 

search oil prices affect on four employment sector mining, construction, manufacturing 

as well a service respectively counties in the U.S. which produce oil. They display if oil 

price rise one percent, employment sectors hike by 1.45 percent. 

Alsalman (2023) searched the impact of structural oil price shocks on U.S. aggregate 

unemployment rates along with the period of unemployment spells, and the findings show 

heterogeneity of each shock. Alsalman (2023), similarly to our study, follows Kilian and 

Park (2009), and analyzing oil price supply as well as demand shocks, the research 

examines their impact on unemployment spells. The results suggest that concentrating on 

aggregate variables may obscure certain variations at the individual unemployment spell 

level. We search the consequences of structural oil price shocks on different 

unemployment sectors in the United States. We find that each sector responds oil price 

shocks in various mannitude level and pace. 
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3.3 DATA 

The research, first has considered the influence of oil price shocks sectoral unemployment 

spanning from January 2000 to August 2023 in the United States. The dataset regarding 

the U.S. unemployment obtained from the FRED15 dataset sourced by the Federal Reserve 

Bank which shows unemployed persons in each sector namely unemployment, 

nonagriculture, mining, quarrying, and oil and gas extraction, government, transportation 

and utilities, manufacturing, information, leisure and hospitality, education and health 

services, financial activities. The measurement of the oil price relies on the composite 

refiner acquisition cost (RAC) of crude oil, a metric collected by the U.S. Energy 

Information Administration16 (EIA). We deflate the RAC using the U.S. CPI Consumer 

Price Index17 (CPI) from the Bureau of Labor Statistics, aiming to get real oil prices in 

our research. The monthly global oil production dataset the gathered from Energy 

Information Administration (EIA)18. For measuring world economic activity, we apply 

the monthly global economic conditions (GECON) index by Baumeister et al. (2020) 

rather than Kilian's (2009) global real economic activity index. Baumeister et al. (2020) 

propose a Global Economic Condition19 (GECON) indicator, which encompasses a 

collection of variables designed to capture crucial information about the global economy 

which include energy linked indicators consisting long period of oil price uncertainty. 

Because of its pronounced volatility post-2010 and other contributing factors, numerous 

studies now suggest that Kilian's (2009) global real economic activity index is flawed. 

(see  Baumeister et al., (2020); Baumeister and Guérin, (2021); Hamilton, (2021)). 

3.4 METHODOLOGY OF THE STRUCTURAL VAR MODEL  

Kilian (2009) highlights oil price shocks resulting from the shifts in demand and supply 

dynamics have diverse impacts on the actual economy. Therefore, we use Kilian and 

Park's (2009) theoretical method, which demonstrates three fundamental shocks, to 

 
15 Source: https://fred.stlouisfed.org/series/LNU03032238 
16 Source: https://www.eia.gov/dnav/pet/pet_pri_rac2_dcu_nus_m.htm 
17 Source: https://www.bls.gov/cpi/ 
18 Source: https://www.eia.gov/dnav/pet/PET_CRD_CRPDN_ADC_MBBL_M.htm 
19 Source: https://sites.google.com/site/cjsbaumeister/datasets 

https://fred.stlouisfed.org/series/LNU03032238
https://www.eia.gov/dnav/pet/pet_pri_rac2_dcu_nus_m.htm
https://www.bls.gov/cpi/
https://www.eia.gov/dnav/pet/PET_CRD_CRPDN_ADC_MBBL_M.htm
https://sites.google.com/site/cjsbaumeister/datasets


78 

 

evaluate how oil price shocks affect unemployment. We estimate the following structural 

VAR(p) model: 

𝐵+$.*	G$<∑ I/!.0/<J.
1
/2"

                (1) 

The vector 𝑤! comprises the log difference of the the worldwide crude oil production, the 

global economic conditions index, the logarithm of real oil price, and the log of the 

sectoral unemployment. We employ GECON index in level form. 𝐵+ demonstrates a 

matrix of contemporaneous coefficients without singularity. 𝑧+ represents the constant 

term also 𝐵( shows the autoregressive coefficient matrix. Structurally autonomous as well 

as sequentially uncorrelated shocks present as 𝜖! in the below illustrated in detail. 
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Assuming the presence of 𝐵%", we carry out to calculate the simplified interpretation of 

Equation (1) as follows: 
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                            (3) 

In the equation 𝑐 = 𝐵%"𝑧+, 𝑋( = 𝐵%"𝐵( along with the simplified interpretation present 

as 𝜀! = 𝐵%"ϵK. Initially, we proceed with the simplified outlined in Equation (3) to extract 

the inhibit structural shocks as 𝜺t. Employing a method of Kilian and Park (2009), a block-

recursive arrangement introduces the simultaneous connection among the structural 

disruptions as well as the changes within the simplified version of VAR. 
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Equation (4), includes two distinct components. In this context, the initial part 

constituting the first three equations interprets the representation of the oil market.  

Notwithstanding, the latter part contains the final equation, elucidating the characteristics 

of the U.S. sectoral employment. 

More specifically, the real oil price variations fall apart in three distinct shocks: ‘shocks 

to the global crude oil supply, shocks to the global demand for all industrial commodities 

(including crude oil), and oil-market specific demand shocks which designed to capture 

the changes in precautionary demand for crude oil in response to a possible future oil 

supply shortfall’ (Kilian, 2009, p. 1053). In Kilian’s (2009) paper, these shocks are 

referred to as the 'oil supply shock,' the 'aggregate demand shock,' along with the 'oil-

specific demand shock' yet 'precautionary demand shock.' 

It is depicted that the first row’s last three components are zero which means 𝐵%"	𝑖𝑠	0, 

suggesting that the GECON index, real oil prices, along with sectoral employment do not 

propound an immediate consequence on world oil supply. Instead, their influence on 

world oil supply with a delay (b"# = b"^ = b"_= 0). This situation emanates because oil-

exporting nations confronting challenges in promptly adapting to rapid switches in oil 

demand, principally because of substantial adjustment costs as well as considerable 

uncertainty encircling the market demand. Therefore, in a short period, variations in oil 

construction may not be expeditiously actualized by reacting to unpredictable or random 

shocks. Although, the oil market is dominated by giant producers with crucial power and 

externally govern the oil supply. Consequently, an oil export nation’s production decision 

can affect by certain external events, for instance, political or military conflicts, which 

are often infrequent at the same time, unexpectable for a short period (Wang et al., 2014). 

The imposition of the second restrain  b#^ = b#_= 0, indicates that global output 

production cannot directly reciprocate to precautionary demand shocks as well as other 

shocks in sectoral employment. Kilian (2009) highlighted that despite the compelling 

impacts of oil supply disruptions on world real economic activity, shifts in the oil price 
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over the exact duration do not stimulate a reciprocal response in world real economic 

activity.  

The third constraint, b^_= 0, considers the oil price reacts concurrently to oil-linked 

shocks although responds to shocks in sectoral employment with a delay.  

This hypothesis was determined in Kilian and Park (2009), where innovations in oil prices 

are recognized as predisposed to economic variables. 

3.5. EMPIRICAL RESULTS: EFFECTS OF OIL PRICE SHOCK ON U.S. 

UNEMPLOYMENT 

3.5.1 The Responses of Oil Prices to Three Structural Shocks 

First, we iniate our research by scrutunizing how the real oil price reacts to the three 

distinct shocks as illustrated in Figure 26. In this illustration, the solid lines demonstrate 

the responses, while the dashed lines depict the one-standard error band that three distinct 

structural shocks have diverse impacts on the real price of oil.  In our demonstration, an 

surprising hike in oil supply exhibits a notably negative although relatively mild power 

on the real oil price.  However, the real oil price hiked and affected immediately because 

of increase in global aggregate demand. In a similar vein, the real oil price increased 

rapidly along with after constantly declined due to a surprising wave in the prudent oil 

demand. 
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Figure 26. Responses of the Real Oil Prices to Three Structural Shocks 
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3.5.2 The Responses of Sectoral Unemployment to Three Structural Shocks 

  
          Total Unemployment          Education and Health Services                   Nonagriculture 

     
                   Government                     Information       Leisure and Hospitality 

   
               Manufacturing                             Financial Activities                 Transportation and Utilities 

 
Mining, Quarrying, and Oil and Gas Extraction 

Figure 27. Responses of Sectoral Unemployment Level to Oil Supply Shocks 

In Figure 27, we demonstrate the responses of U.S. unemployment level on an industrial 

basis to a positive oil supply shock. The manufacturing sector responses episodically 

significant as well as positive to oil supply shock. Transportation and utilities sector 

responds to oil supply shock negatively during five months which mitigates the number 

of unemployment. All other sectors are statistically insignificant. 
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Overall, our findings state that the diverse impacts of oil supply shock across sectors 

might stem from variations in sector-specific characteristic. As highlighted by Davis and 

Haltiwanger (2001) also Herrera and Karaki (2015), sectors characterized by greater 

energy intensity, for instance manufacturing.	
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   Government   Information       Leisure and Hospitality 

   
                  Manufacturing                           Financial Activities                Transportation and Utilities      

 
Mining, Quarrying, and Oil and Gas Extraction 

Figure 28. Responses of Sectoral Unemployment Level to Aggragate Demand Shocks 

In Figure 28, we illustrate the responses of sectoral unemployment to a positive aggregate 

demand shock. All unemployment sectors significantly and negatively respond to an 

aggregate demand shocks. The most affected sector is mining, quarrying, and oil and gas 
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extraction followed by leisure and hospitality sector, the magnitude levels are higher than 

the other sectors. It is seen that in each sector reaction trend behaviour is different. 

Result of a hike in global economic activity cause decreased unemployment, yet the 

impact degree can be differed for each sector. According to Kilian (2009), positive 

aggregate demand shocks, which boost oil prices, can lead to prompting as well as growth 

retardation impacts on economic growth. The preceding factor activates economic growth 

by amplifying the real global economic activity. In our case we notice the conclusion of 

aggregate demand shock on sectoral unemployment are negative persistently and 

significant. This phenomenon occurs because heightened economic activity leads to an 

increased demand for labor in each sector. We observe that as time passes, the conclusion 

of the aggregate demand shock become less strong and consequential for certain 

subsectors. Kilian and Park (2009) consider this issue because the first favorable effects 

on aggregate demand are partially countered by the higher oil prices brought on by rises 

in aggregate demand, which mitigate global economic activity. 

Alsalman (2023) also points out that a sudden hike in global real economic activity, 

leading to a boost in the real oil price, correlates with a temporary decrease in the 

unemployment rate (a stimulating impact) initially, followed by a subsequent rise of 

approximately 12 months after the shock (a growth-retarding impact). Our outcomes 

show the impact of higher global economic activity on sectoral unemployment tends to 

be negative and persistent. Kairola and Ma (2020) states the effects of shocks in oil prices 

can vary among sectors based on their distinct levels of oil dependence. Additionally, 

they point out the level of impact can vary depend on which sector is utilized oil as a 

production input. In this context, a boost in global economic activity led to diminished 

unemployment, yet this effect can be varied in the sector. 
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Figure 29. Responses of Sectoral Unemployment Level to oil Specific Demand Shocks 

Next, in Figure 29, we present the responses of sectoral unemployment to 'precautionary 

demand shock' which encapsulates the changes in the precautionary demand for oil in 

instances of increased uncertainty regarding potential future oil supply shortages. 

Unemployment sector reacts to the precautionary demand shock significantly negative 

between the first and fourth months after twelveth month it turns positive. Nonagriculture 

unemployment sector responses significantly negative in the short term then statistically 

insignificant, after ninth month it reacts significantly positive. 
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Moreover, government sector responses the precautionary demand shock marginally 

positively significant in the long term. Both manufacturing and leisure and hospitality 

sectors respond negatively for the first fourth months to shock of precautionary demand 

afterwards statistically insignificant. Financial activities sector is marginally positively 

significant in the long term. The period between second and sixth months, transportation 

and utilities sector response to the precautionary demand shock is significantly negative. 

Mining, quarrying, and oil and gas extraction industry reacts precautionary demand shock 

persistenly negatively between second month and tenth month also the magnitude level 

of reaction is the strongest. The responses of education and health services and 

information sectors are statistically insignificant. 

On the whole, mainly unemployment sectors respond to the precautionary demand shock 

negatively and significant in the short period, while in the long period statistically 

insignificant. Because over time, it becomes apparent when the influence on oil-specific 

shocks weaken and turn positive in certain sub-sectors. This phenomenon occurs because 

the elevated oil prices, resulting from rises in aggregate demand as well as precautionary 

demand, subsequently contribute to a downturn in global economic activity, partly 

counteracting the primary positive impacts on unemployment. 

To sum up, the findings demonstrate that US sectoral unemployment reacts very different 

to oil price shocks base on sectors. This highlights the significance of breaking down 

unemployment based on various industries and emphasizes that various oil price shocks 

affect various magnitudes also directions of the response of sectoral unemployment in 

unique ways. This heterogeneity forms because of oil dependence of each sector, if one 

sector heavily depends on oil in production, then the level and impact size getting larger 

or vice versa. 

3.6 CONCLUSION 

A substantial body of studies examines oil prices and how the shocks can fundamentally 

impact vital macroeconomic factors, for instance, investment, consumption, etc. Only a 

few studies have specifically investigated how oil price shocks affect the labor market. 



87 

 

Therefore, this research investigates how oil price shocks affect sectoral unemployment 

in the United States. We employ a structural VAR technique that divides shocks to oil 

prices into three separate fundamentals: oil supply shocks; global aggregate demand 

shocks, and precautionary demand shocks that are especially connected to the oil market, 

that is intended to monitor shifts in oil prices brought on the increased demand for 

precaution. In this context, by isolating the conclusions of aggregate demand shocks from 

the impacts of shocks to the oil supply and precautionary demand, this model allows one 

to analyze how sectoral unemployment reacts to different oil price shocks. 

Kilian (2009) highlights that alteration in oil prices, determined by shocks of oil supply 

as well as demand, bring about different impacts on the economic indicators, which are 

also probable to have various impacts on sectoral unemployment. To this end, building 

upon Kilian's work in 2009, our main aim in this study break down the real oil price into 

three distinct components: specific demand shocks within the crude oil market, global 

demand shocks along with oil supply shocks. Subsequently, we aim to figure out the 

effect of these three types of shocks on sectoral unemployment in the US. 

The findings of sectoral unemployment demonstrate important heterogeneity that various 

sectors respond differently to each oil supply shocks. The manucafturing sector responses 

episodically significant as well as positive to oil supply shock. Transportation and utilities 

sector responds to oil supply shock negatively for the first five months which mitigates 

the number of unemployment. All other sectors are statistically insignificant.  Afterwards 

unemployment of each sector responds to aggregate demand shock consistently negative, 

although the extent of its impact varies across industries. The findings of precautionary 

demand shock of each sector also demonstrate various heterogeneity behaviour. For 

instance, total unemployment reacts to the precautionary demand shock significantly 

negative between the first and fourth months after twelveth month it turns positive. 

Nonagriculture unemployment sector responses significantly negative in the short term 

then statistically insignificant, after ninth month it reacts significantly positive. 

The primary response of unemployment sectors to precautionary demand shocks is 

negative and significant in the short term. Nevertheless, over the long term, this response 
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becomes statistically insignificant. As time progresses, it becomes evident that the effects 

of oil-specific shocks diminish and exhibit positive trends in specific sub-sectors. When 

we compare to the unemployment behaviour of each sector shows heterogeneity that is a 

proof of each sector has own special character to reflect to the oil shocks. 

Briefly, this research demonstrates oil supply along with demand shocks generate 

different impacts on uneployment, depending on the sector. This states the significance 

of oil price shocks on sectoral unemployment. In comparison with other structural shocks, 

aggregate demand shocks have the most crucial influence on revealing the responses for 

both sectoral unemployment. This aligns with Kilian's (2009) perspective, highlighting 

that the impacts originating from the demand part of the oil market have greater noticeable 

presence in the tangible economy. Furthermore, it emphasizes the crucial role of the 

primary determinants of oil price shocks, particularly surprising price fluctuations, 

underlining importance in producing effective along with suitable policy considerations 

for the labor market. 
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CONCLUSION  

In the global economy, fluctuations in energy prices significantly influence both 

macroeconomic and microeconomic factors, potentially leading to economic downturns 

or overall welfare improvements. Therefore, it is essential to understand the energy 

asset’s behaviour for economists and policymakers. Starting with this motivation, this 

thesis is structured as three energy economics and finance essays exploring different 

aspects of energy commodities from various perspectives. The question of research in the 

first chapter, whether hubs with varying development levels and the same pricing 

mechanism might have significantly varied numbers of speculative gas price bubbles. Our 

findings offer a distinct insight, indicating that more developed hubs exhibit higher 

efficiency and are associated with a lower occurrence of price bubbles. In addition, the 

key contributors to gas price bubbles in European hubs include unforeseen weather 

conditions, the economic development level, supply disruptions, oversupply, oil 

indexation, cross-commodity prices, and exceptional circumstances for instance the 

Covid-19 pandemic. Moreover, this study demonstrates the evidence of integration in the 

EU gas market because the timings of the price bubbles are similar. According to our 

empirical outcomes, certain policy implications can be stated. Initially, creating a hub 

does not guarantee the establishment of an effective gas-on-gas price mechanism. 

Therefore, in well-functioning markets, occurrences of price bubbles are less common. 

Several essential elements needed to attain the status of a benchmarking hub are outlined 

in prior hub review methodologies (e.g., in ACER, 2020; Shi, 2016). In our study, we 

observe that for experiencing less price bubbles there should be need for various 

instruments such as supply divergence, LNG facilities to connect to global markets, 

various interconnection points with different countries, and multiple supply/demand 

instruments as storage facilities, political willingness to trade at hubs, low level of market 

concentration and high competition.  Therefore policy makers should focus on to facilitate 

first various supply instruments afterwards political willingness to trade at hubs, low level 

of market concentration and high competition to experience fewer gas price bubbles. 

Further, if the long-term gas contracts tie to the oil price rather than being its intrinsic 

value, whenever the oil price experiences a bubble gas price also experience as well. 
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The European Union emphasizes diversifying gas supply and trading operations in the 

realm of gaseous renewables. It actively engages in substantial investments in renewable 

gas, including blue hydrogen, biogas, and biomethane, with the aim of enhancing trading 

activities.  Therefore, through evaluations of the gas market as well as the analysis of 

price bubbles will contribute a significant role in facilitating decarbonized gas market 

transition. This, in turn, will stimulate the trading of low-carbon gas at hubs that support 

clean energy transition, fostering energy and environmental sustainability and for future 

research could investigate price bubbles after renewable gases initiated to trade at natural 

gas hubs. 

The second chapter investigates the impact of a causal association among conventional 

energy prices and carbon prices.  We proof a causal association among energy contracts 

and carbon contracts, particularly becoming evident after 2016, coinciding with the 

announcement of the Paris Agreement. The volatility in energy prices can be attributed 

to factors such as an excess of liquefied natural gas (LNG), sanctions impacting oil prices, 

the repercussions of the Covid-19 pandemic, the Russian-Ukrainian conflict, political 

announcements, and elevated natural gas prices due to stock levels. The commencement 

of Phase 4 in the Emission Trading System resulted in a more stringent cap and updated 

allocations of free quantities. Furthermore, market participants utilizing the carbon 

market as a hedging tool contribute to a significant increase in carbon prices, thereby 

influencing coal and oil refinery entities to actively manage their emission levels. A more 

efficient carbon market provides accurate market signals, leading energy stakeholders to 

adjust power generation choices, tailor energy consumption patterns, and strategically 

position themselves to reduce emissions in alignment with prevailing carbon prices, 

which should cautiously observe the impact of carbon trade in future research. Moreover, 

policymakers should attentively monitor and comprehend the dynamics of carbon along 

with conventional energy commodities, to enhance the effectiveness of the carbon 

market. Carbon markets with greater effectiveness provide accurate market signals. 

Therefore, energy stakeholders should adjust power generation decisions, tailor energy 

consumption patterns, along with formulate their positions to address emissions 

mitigation in alignment with carbon prices. Furthermore, in the pursuit of a more efficient 

carbon market, policymakers should establish a system to monitor price fluctuations 
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through risk monitoring tools or an early warning system. This is crucial to prevent 

adverse effects on the carbon market from impacting the conventional energy market 

along with to facilitate the transition to low carbon emissions by reshaping the energy 

structure in power generation. Subsequent research endeavors could employ clean energy 

indices along with macro and micro variables to conduct a more comprehensive 

evaluation of the carbon market. 

The third chapter investigates how oil price shocks influence sectoral unemployment in 

the United States. The findings demonstrate heterogeneity in each sector; in other words, 

each sector reacts differently to oil price shocks. This underlines the importance of oil 

prices in influencing sectoral unemployment. When contrasted with three structural 

shocks, it becomes evident that aggregate demand shocks had the greatest impact in 

revealing the responses of sectoral unemployment. As expected, positive demand shock 

mitigates the unemployment for each sector. 

The primary reaction of unemployment sectors to precautionary demand shocks is 

negatively significant in the short period; however, over the long period, this response 

becomes statistically insignificant. As time progresses, the impacts of precautionary 

demand shock diminish along with it become positive in specific sub-sectors. The 

decrease in unemployment could also indicate shifts in labor market reallocation, thereby 

magnifying the influence on oil price shocks. Especially for the case of precautionary 

demand shock, each industry conducts differently to the expectations of oil shock. 

Therefore, policymakers should cautiously consider the sector response to the 

unemployment when oil price shocks occur. It highlights the vital role played by the 

primary factors influencing oil price shocks, especially in unexpected price fluctuations, 

underscoring their significance in formulating practical and appropriate policy 

considerations for the labor market. 
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