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ABSTRACT 

 

Hanif, N. Discovery of New Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors 

Through Virtual Screening, Hacettepe University Graduate School of Health 

Sciences Program of Pharmaceutical Chemistry Master Thesis, Ankara, 2024. 

Cancer, a leading global cause of deaths, utilizes mechanisms and pathways to evade 

the immune system, one of which is the kynurenine (Kyn) pathway, responsible for 

degrading amino acid L-tryptophan (Trp). Overexpression of indolamine 2,3-

dioxygenase 1 (IDO1), the rate-limiting enzyme of Kyn pathway, in certain cancers 

makes it a target of interest. In this study, virtual screening was conducted to discover 

new apo-IDO1 small molecule inhibitors. In the virtual screening process, 

encompassing both ligand-based and structure-based approaches, three compounds 

were successfully identified from a commercial library of 555,557 compounds. The 

library compounds underwent an initial filtering based on drug-likeness parameters to 

remove those with potentially undesired pharmacokinetic attributes and reactive 

functional groups. The refined library then underwent parallel ligand-based virtual 

screening, employing both shape similarity and pharmacophore modeling screening 

with the involvement of five different known apo-IDO1 inhibitors. The screened 

library was subsequently docked to the selcted cystallographic human apo-IDO1 

structure (PDB ID: 6wjy), which exhibited the best validation results, utilizing 

standard and then extra precision modes. The top 500 compounds with their three best 

poses were selected to calculate their MM-GBSA free binding energy (ΔG) values. 

Fingerprint similarity analysis was performed and similar entities were removed to 

ensure structural diversity for the selected hits. Among the top scoring 10 compounds 

regarding MM-GBSA ΔG values, three hits namely STOCK2S-34127, STOCK3S-

69016, and STOCK2S-94986, were better than the reference inhibitor. In MD 

simulations, apo-IDO1 complexes of these hits displayed favorable outcomes, 

regarding structural conformation and stability, residue fluctuations, compactness, salt 

bridge formations, and binding free energy. Lastly, the three hits were predicted to 

show low oral toxicity, moderate toxicity to Daphnia magna, low bioaccumulation in 

aquatic environments, and be inactive in both nuclear receptor signaling and stress 

response pathways of toxicity. As a result, STOCK2S-34127, STOCK3S-69016, 

STOCK2S-94986 were predicted as potent, selective, and safe apo-IDO1 inhibitors, 

which need to be confirmed via in vitro and in vivo assays. 

 

Keywords : IDO1, virtual screening, shape similarity, pharmacophore modeling, 

molecular docking, MD simulations
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ÖZET 

 

Hanif, N. Virtual Tarama Yoluyla Yeni İndolamin 2,3-Dioksijenaz 1 (IDO1) 

İnhibitörlerinin Keşfi, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü, 

Eczacılık Kimyası Ana Bilim Dalı Yüksek Lisans Tezi, Ankara, 2024. Kanser, 

dünya genelinde ölümlerin önde gelen nedenlerinden biri olarak, bağışıklık sistemini 

atlatmak için çeşitli mekanizma ve yollar kullanır. Bunlardan biri de amino asit L-

triptofan'ın (Trp) parçalandığı kinürenin (Kyn) yoludur. Belirli kanser tiplerinde 

kinürenin yolunun hız sınırlayıcı basamağını katalize eden indolamin 2,3-

dioksiyoksijenaz 1'in (IDO1) aşırı ifadesi, bu enzimi ilgi odağı haline getirmiştir. Bu 

çalışmada, apo-IDO1’in küçük molekül inhibitörlerinin keşfi için sanal tarama 

gerçekleştirildi. Hem ligand- hem de yapı-temelli yaklaşımları içeren sanal tarama 

sürecinde, ticari bir kütüphanede yer alan 555,557 bileşik arasından üçü aday bileşikler 

olarak başarıyla tanımlanmıştır. Kütüphane bileşikleri potansiyel olarak istenmeyen 

farmakokinetik özelliklere ve reaktif gruplara sahip olan moleküllerin elenmesi 

amacıyla ilaç benzerlik parametrelerine dayalı olarak filtreleme işlemine tabi tutuldu. 

Daha sonra, fitrelenmiş bileşik kütüphanesi, beş farklı apo-IDO1 inhibitörünün 

referans bileşik olarak dahil olduğu, hem şekil benzerliği hem de farmakofor 

modelleme taramasının kullanıldığı paralel ligand-temelli sanal taramaya tabi 

tutulmuştur. Seçilen kütüphane bileşikleri daha sonra, validasyon çalışmalarında en iyi 

sonucu veren 6wjy PDB kodlu insan apo-IDO1 kristal yapısına önce standart ve 

ardından ekstra kesinlik kipleri kullanılarak kenetlenmiştir. En iyi üç bağlanma pozu 

ile birlikte en yüksek skorlu 500 bileşik, MM-GBSA serbest bağlanma enerjisi (ΔG) 

hesaplamaları için seçilmiştir. Seçilen bileşiklerin yapısal çeşitlilik gösterdiğinden 

emin olmak için parmak izi benzerlik analizi gerçekleştirilerek benzer bileşikler 

elenmiştir. MM-GBSA ΔG değerleri açısından en iyi 10 bileşik arasından STOCK2S-

34127, STOCK3S-69016 ve STOCK2S-94986 olmak üzere üçü, referans inhibitörden 

daha iyi bulunmuştur. Bu üç bileşiğin apo-IDO1 kompleksleri MD simulasyonlarında 

yapısal konformasyon ve stabilite, aminoasit dalgalanmaları, bütünlük, tuz köprüsü 

oluşturma ve ligand-reseptör serbest bağlanma enerjileri açısından olumlu sonuçlar 

göstermiştir. Son olarak, bu üç bileşik için düşük oral toksisite, Daphnia magna'ya 

karşı orta düzeyde toksisite gösterdiler, ve sucul ortamlarda düşük biyobirikim 

öngörülmüş, toksisite yolaklarından hem nükleer reseptör sinyalizasyonunda hem de 

stres yanıt yollarında etkisiz oldukları tahmin edilmiştir. Sonuç olarak, STOCK2S-

34127, STOCK3S-69016 ve STOCK2S-94986, güçlü, spesifik, ve güvenli apo-IDO1 

inhibitörleri olarak öngörülmüştür; bu öngörülerin in vitro ve in vivo deneyler ile teyit 

edilmesi gerekmektedir. 

Anahtar kelimeler: IDO1, sanal tarama, şekil benzerliği, farmakofor modelleme, 

moleküler kenetleme, MD simülasyonları 
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1. INTRODUCTION 

 

According to World Health Organization (WHO), cancer is one of the leading causes 

of death, responsible for approximately 9.9 million deaths, with 19.3 million new cases 

in 2020 alone. Among all cancers, breast cancer ranked at the top with 2.2 million new 

cases (11.7%), while lung cancer, held the top position as the leading cause of death 

among all cancers accounting for 1.8 million deaths (18%). There have been several 

therapeutic approaches to cure this deadly disease, such as chemotherapy, 

radiotherapy, immunotherapy, and cancer surgery. The primary method of treating 

cancer to far has been chemotherapy; however, the majority of chemotherapeutic 

medications have severe side effects. These medications also impact proliferative non-

cancerous cells like stem cells, hair follicle cells, and gastrointestinal (GI) epithelial 

cells (1) and develop resistance rapidly (2). Additionally, many chemotherapeutic 

medications lack an oral form and have sensitive pharmacokinetics, making them 

challenging to administer (1,3). In contrast to chemotherapy, which eradicates cancer 

through cytotoxic qualities, immunotherapy uses the host immune system to target 

tumor cells in general (4). 

Cancer immunotherapies aim to utilize the immune system to eliminate cancerous cells 

and halt the growth of tumors. The success of these therapies, exemplified by immune 

checkpoint inhibitors (ICIs), is demonstrated by the US FDA-approved biologic 

medicines targeting the programmed death receptor/ligand 1 (PD-1/PD-L1) and 

cytotoxic T lymphocyte-associated protein 4 (CTLA-4) antibodies (5). Examples of 

PD-1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results 

in numerous cancer types, including non-small-cell lung cancer (NSCLC), Hodgkin 

lymphoma, and melanoma. Similarly, ipilimumab, a CTLA-4 inhibitor, has also 

demonstrated efficacy in melanoma (6). However, ICIs are also responsible for 

triggering autoimmunity. Combining ipilimumab with nivolumab, for instance, has 

shown a marginal improvement in survival but with a more than twofold increase in 

the incidence of serious immune-related adverse events (IRAEs) (7). To enhance the 

outcome while minimizing the risk of autoimmunity, it is necessary to identify a 

partner for ICIs that can enhance the immune system's recognition of the tumor prior 

to treatment.  
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Focusing on the modified metabolism of tumors is a newly developing approach in the 

field of cancer therapy. Cancer cells exhibit significant differences compared to normal 

cells. The primary metabolic dependence of cancer cells is known as the “Warburg 

effect”, which distinguishes cancer cell metabolism from that of normal cells. It is 

characterized by their tendency to consume glucose and produce lactate even in the 

presence of oxygen (8,9). For instance, binding to PD-L1 can trigger glycolysis in 

cancer cells, facilitating tumor growth and metastasis (10). Consequently, this 

phenomenon can significantly influence the metabolic balance within the tumor 

microenvironment (TME). In addition to glycolysis, amino acid catabolism plays a 

significant role in regulating immune function within the TME (11). Thus, directing 

attention towards these specific amino acids and their associated metabolic pathways 

in cancer treatment emerges as a promising approach in the development of novel 

therapeutic agents. 

One such example of an amino acid is tryptophan, which plays essential roles in both 

tumor progression and immune responses. Its metabolic pathway, the kynurenine 

(Kyn) pathway, is responsible for the degradation of L-tryptophan amino acid (Trp) 

(12). The first and rate-limiting stage of the Kyn metabolic pathway, which generates 

the endogenous aryl hydrocarbon receptor (AhR) agonist Kyn, is catalyzed by 

indoleamine 2,3-dioxygenase 1 and 2 (IDO1 and IDO2), and tryptophan 2,3-

dioxygenase 2 (TDO2). The degradation of tryptophan by IDO1, IDO2, and TDO2 

can produce several tryptophan metabolites, such as kynurenic acid, 3-

hydroxykynurenine, and 3-hydroxyanthranilic acid, which are then transformed into 

quinolinic acid and picolinic acid by non-enzymatic process. Quinolinic acid is further 

metabolized to nicotinamide by quinolinate phosphoribosyl transferase (13).  

The degradation of tryptophan has two main impacts: (i) induction of the general 

control nonderepressible 2 (GCN2), causing the inhibition of CD4+ T cells 

differentiation into T helper cells (14), as well as cell cycle arrest in CD8+ T cells (15), 

and (ii) suppression of the mammalian target of rapamycin (mTOR) (16), which results 

in immunosuppression by regulating regulatory T cells (Tregs) and effector T cells 

(Teffs) (17). Furthermore, accumulation of tryptophan metabolites, like Kyn, can 

stimulate the AhR. The presence of AhR has effects similar to the suppression of 
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mTOR, leading to immunosuppression. This activity encourages the differentiation of 

forkhead box p3+ (Foxp3) T regulatory cells (18).  

T cells play an essential role in the immune response as protectors and fighters against 

xenobiotics, including cancer cells. Failure of T cells to carry out their functions is one 

of the triggers for the development of cancer. In this case, IDO1 behaves as the 

frontliner against the attacks of T cells (19).  

Numerous inhibitors that specifically target IDO1 have been developed in the last 

decade. Some of the IDO1 inhibitors that have entered clinical trials include 

indoximod, epacadostat, navoximod, PF-06840003, and BMS-986205. Indoximod 

belongs to type 1 inhibitors, which selectively focus on the holo-IDO1 form bound to 

molecular oxygen. Its mechanism of action involves stimulating mTOR kinase to 

decrease T cell autophagy (16). On the other hand, epacadostat belongs to type II 

inhibitor and its mechanism of action is competitive inhibition of IDO1 (20,21), along 

with β-carboline (22). In contrast to epacadostat, navoximod is a noncompetitive 

inhibitor of IDO1 (type III inhibitor) (23). PF-06840003 exhibits a different binding 

type without relying on coordination with the heme iron and demonstrates a novel 

binding mode (24). Lastly, BMS-986205 belongs to type IV inhibitors, which have an 

irreversible inhibition mechanism of IDO1, which means that it binds covalently to the 

enzyme (25,26) and permanently inactivates the apo-IDO1 form (27).  

The last-mentioned approach demonstrated remarkable potency and a suicidal 

mechanism. According to Pham and Yeh’s report (2018), BMS-986205 does not 

exclusively target the apo-form of IDO1. Initially, it binds to a solvent-exposed surface 

cleft near the active site of holo-IDO1, leading to partial heme release and inducing 

various conformational changes that ultimately result in the formation of an apo-IDO1 

inhibitor complex. They suggested that this unique interaction presents an innovative 

approach that can be utilized in drug development targeting IDO1 (25). Due to the 

limited number of inhibitors that have entered clinical trials, such as BMS-986205, 

efforts are needed to increase the number of candidate compounds with similar 

activity. One approach to achieve this is virtual screening. 

Finding appropriate small compounds that exhibit specific biological effects is a 

significant challenge in the field of Pharmaceutical Chemistry. Over the past three 
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decades, computational methods, particularly molecular modeling techniques, have 

increasingly been employed as a logical solution to this issue. Among these techniques, 

virtual screening is the most widely utilized approach, enabling prediction or 

identification of entities with desired properties within a set of potential molecules 

through diverse molecular modeling methods (28). In the context of virtual screening, 

molecular modeling techniques can be categorized into two main groups: ligand-based 

and structure-based methods. Ligand-based virtual screening (LBVS) depends solely 

on ligand data and aims to identify molecules that resemble known active compounds. 

This approach operates on the assumption that similar molecules are likely to exhibit 

similar biological effects (29). In LBVS, several techniques are employed, including 

Quantitative Structure-Activity Relationship (QSAR), which utilizes physicochemical 

parameters and descriptors of molecules; fingerprint methods, which encode two-

dimensional structures; shape similarity analysis, which is based on three-dimensional 

structures; and pharmacophore modeling, which involves identifying common 

pharmacophore groups and their spatial orientations (30). Additionally, scaffold 

hopping is commonly used strategy in drug discovery, specifically in virtual screening, 

to enhance the diversity of the compounds considered when searching for new lead 

compounds or optimizing existing ones (31,32). 

The advancements in structural biology and structure elucidation techniques have 

significantly expedited studies on the structure elucidation of biological 

macromolecules targeted by drugs. As a result, the development of structure-based 

virtual screening (SBVS) has emerged, utilizing structural data of target receptors. 

Molecular docking has emerged as the predominant approach for investigating the 

interactions between small organic molecules and biological macromolecules. This 

method facilitates prediction of the optimal positioning of a ligand within a receptor 

binding site (33). Aside from molecular docking, continuous solvation models, such 

as molecular mechanics with Generalised Born surface area solvation (MM-GBSA) 

and molecular mechanics with Poisson−Boltzmann surface area solvation (MM-

PBSA) offer more precise prediction of ligand-receptor affinity. Additionally, the free 

energy perturbation (FEP) technique, involving molecular chelation simulations for 

predicting ligand-receptor interactions and affinities, as well as molecular dynamics 

(MD) simulations for modeling dynamic changes in ligand-receptor complexes, is 
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employed in this context. These methods enable accurate evaluation of ligand-receptor 

affinity, exploration of structural modifications, and analysis of the dynamic behavior 

of ligand-receptor complexes (29,34–36). 

There are only a few studies in the literature where IDO1 inhibitors were discovered 

through virtual screening methods. Thus, this study aimed to identify structurally 

diverse potential IDO1 inhibitor compounds that are commercially available, 

theoretically drug-like, safe, and selective to the apo form of IDO1. In order to achieve 

this aim, a comprehensive virtual screening process using both ligand-based and 

structure-based approaches was applied. The ligand-based methods included shape 

similarity screening and pharmacophore modeling, while the structure-based methods 

included molecular docking, MD simulations, and MM-GBSA binding free energy 

analysis. To enhance the screening process, sequential, parallel, and hybrid approaches 

were utilized. The compound search was conducted within a ligand library comprising 

more than 550,000 small molecules. MD simulations were performed to predict the 

conformational changes, compactness, and stability of the selected ligand-IDO1 

complexes over the timeframe. Additionally, binding free energy analysis was 

conducted using the MD simulations trajectories. In the final section, toxicity was 

assessed for all the selected compounds to predict the safety and toxicity class of each 

compound. 
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2. LITERATURE REVIEW 

 

2.1. Cancer Immunotherapy 

2.1.1. The History and Development of Cancer Immunotherapy 

• In 1777, the initial approach involved introduction of various pathogens to 

stimulate an immune response against cancerous growth (37). 

• In 1891, William "Father of Immunotherapy" Coley conducted studies in which 

he administered streptococcal species to individuals with metastatic soft tissue 

sarcomas. He observed tumor regression following these injections, leading to 

the term "Coley's toxins". His hypothesis suggested that a robust infection could 

trigger the immune system to combat malignancies (38,39).  

• During 1950s, the concept of immunosurveillance, initially proposed by Burnet 

and Thomas, emphasized that the immune system actively identifies and 

eliminates neoplasms by recognizing tumor-associated antigens (TAAs) (40).  

• In the 1970s, Bacillus Calmette-Guérin (BCG) was approved as a therapeutic 

vaccine for the treatment of non-muscle invasive bladder cancer (NMIBC) and 

has remained the standard approach to prevent the progression or recurrence of 

high-risk disease (41,42). 

• In 1974, the understanding of cytokines’ role in cancer immunotherapy 

commenced with the identification of IL-2, a substance produced by various 

cells, including CD4+ and CD8+ T cells. IL-2 plays a vital role in the 

differentiation and proliferation of T cells, the formation of immune memory, 

and the regulation of Tregs to prevent autoimmune reactions (43). In 1992, the 

FDA granted approval for the use of IL-2 in the treatment of metastatic renal cell 

carcinoma, marking it as the pioneering cancer immunotherapeutic administered 

to humans (44).  

• In 1992, Ishida and colleagues made the discovery of both programmed death-1 

and programmed death ligand-1 (PD-1/PDL-1) (45). 

• In 1997, rituximab, originally approved for CD20+ Non Hodgkin’s lymphoma, 

achieved the distinction by being the first monoclonal antibody included in its 

composition. Subsequently, it obtained additional approvals for chronic 



7 

 

 

lymphocytic leukemia, rheumatoid arthritis, and specific autoimmune conditions 

like pemphigus vulgaris (46,47). 

• In 1998, the monoclonal antibody trastuzumab was developed to specifically 

target breast cancer with human epidermal growth factor receptor 2 (HER2) 

overexpression. HER2 is characterized as a transmembrane receptor tyrosine 

kinase and is classified as a proto-oncogene (48,49). 

• In the early 2000s, two oncolytic viruses, ECHO-7 (from Latvia, 2004) and H101 

(from China, 2005), received initially approvals. However, both of these 

treatments had negative effects on healthy tissues. It wasn’t until 2015 that 

talimogene laherparepvec became the first oncolytic virus to gain approval in the 

United States (50).   

• In 2011, ipilimumab, which directly binds to CTLA-4, was approved as the first 

checkpoint inhibitor for cancer treatment, specifically metastatic melanoma. 

This discovery was made by James Allison. The blockade of CTLA-4 stimulates 

T cell activation, proliferation, and ultimately results in the destruction of tumor 

(51,52).  

• In 2014, blinatumomab was initially developed as a bispecific antibody, notable 

for having two distinct antigen-binding sites. One of these binding sites is 

designed to activate T cells (CD3), while the other binds to a tumor-specific 

antigen (CD19 found in B cells). This therapy has been employed in the 

treatment of relapsed or refractory B cell acute lymphoblastic leukemia in 

patients without the Philadelphia chromosome (Ph-negative) (53). 

• In 2017, the first CD-19-directed CAR-T (chimeric antigen receptor T) cells, 

known as tisagenlecleucel, received approval for treating relapsed and refractory 

acute lymphoblastic leukemia (54). 

 

2.1.2. The Cancer Immunity Cycle 

Chen and Mellman presented the concepts of the cancer-immunity cycle in their 

review, which consists of seven sore stages as depicted in Figure 2.1 below. 
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Figure 2.1. The concept of the cancer-immunity cycle (adapted from the work by 

Chen and Mellman (55)) 

 

The initial phase involves the release of neoantigens generated by oncogenesis, which 

are then captured by dendritic cells (DCs). For an effective anticancer T cell response 

to occur, this stage must be followed by the provision of immune-activating signals. 

Without these signals, there is a risk of developing peripheral tolerance to tumor 

antigens. Examples of such immunogenic signals include proinflammatory cytokines 

(e.g., TNF-α IL-1, IFN-α) and substances produced by either tumor cells or the gut 

microbiota.  

In the second stage, T cells are presented with the antigens on MHC I and MHC II 

molecules by DCs. The third phase involves initiating and activating Teffs to mount 

an immune response against cancer-specific antigens that are recognized as foreign or 

not effectively controlled by central tolerance mechanisms. The nature of the immune 
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response is determined during this step, with a crucial factor being the balance between 

Teffs and Tregs, which significantly influences the ultimate outcome.  

In the fourth stage, the activated Teffs travel through the bloodstream within the body. 

In the fifth stage, they infiltrate the tissue where the tumor cells are located. In the sixth 

stage, these T cells identify and bind to cancerous cells through the interaction between 

their T cell receptor (TCR) and the specific antigen presented by MHC I molecules. In 

the final stage, the Teffs carry out the critical task of killing and eliminating the 

targeted cancer cells (55). 

For the final stage, additional cancer antigens are released, initiating a self-sustaining 

cycle. It is important to note that within the cancer-immunity cycle, there are 

checkpoints that can either stimulate or hinder various processes. Cancer cells may 

exploit these checkpoints to evade immune surveillance. Furthermore, there are 

instances where tumor antigens might not be accurately recognized, causing DCs and 

T cells to perceive these antigens as part of the body’s own rather than foreign entities. 

Consequently, this can lead to the development of Tregs responses instead of Teffs 

responses. As a result, an imbalance where Tregs significantly outnumber Teffs lead 

to immunosuppression, impeding the immune system’s ability to mount robust and 

efficient immune responses (56). 

 

2.1.3. How Tumor Cells Evade the Immune System 

In the outline context, tumor cells employ two primary strategies to evade immune 

responses, namely (a) avoiding the immune recognition, and (b) creating an 

immunosuppressive environment within the tumor. To execute the first strategy, 

cancer cells employ various tactics to escape immune detection. One of these tactics 

involves mimicking peripheral tolerance, where cancer cells develop mechanisms that 

imitate peripheral immune tolerance. This enables them to evade immune responses 

and prevent local cytotoxic response from Teffs such as tumor-associated 

macrophages (TAMs), natural killer (NK) cells, and tumor-associated neutrophils 

(TANs) (57,58). Immune tolerance mechanisms encompass pro-tumoral macrophages, 

Tregs, immature dendritic cells, and pro-metastatic neutrophils (57). In various cancer 
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types, including breast cancer, Tregs play a role in suppressing the activation of 

cytotoxic T lymphocytes (CTLs). Recent observations indicate that the presence of 

Tregs within breast cancer is associated with a poorer prognosis for patient.  

Another tactic involves manipulating the presence of immunogenic antigens. As 

previously discussed in the context of the cancer-immunity cycle, under normal 

circumstances, CD8+ T cells differentiate into CTLs after being primed and activated 

by antigen-presenting cells (APCs). CTLs then mount an effective anti-tumor 

response, leading to the destruction of target cells. This scenario remains valid as long 

as neoplastic cells express highly immunogenic antigens, which are recognized and 

eliminated during the early stages of tumor development (Matsushita et al., 2012). 

However, when less immunogenic antigens are expressed, cancer cells can evade T 

cell-mediated immune control, giving rise to a phenomenon known as cancer 

immunoediting (59).  

The second strategy involves cancer cells releasing factors that promote an immune-

tolerant TME. This is achieved through several means: (a) the secretion of suppressive 

molecules like IL-10, TGF-β, prostaglandin E2, and VEGF (60,61), (b) the expression 

of inhibitory checkpoint molecules such as PD-L1, CTLA-4 and V domain 

immunoglobulin suppressor of T cell activation (VISTA) (62–64). The presence of 

immune checkpoints like CTLA-4 and PD-1 further contributes to immune evasion, 

as both function as negative regulators of T cell activity. In particular, the interaction 

of PD-1 with its co-receptor PD-L1 results in the downregulation of T cell activity, 

leading to the inhibition of T cell migration, proliferation, the release of cytotoxic 

substances, and the restriction of cell killing (65). Moreover, (c) the recruitment of 

TAMs, myeloid-derived suppressor cells (MDSCs), and Tregs is induced by tumor-

derived chemokines such as CCL2, CSF1, CCL5, CCL22, CXCL5, CXCL8, and 

CXCL12 also promote immune-tolerant TME (66–68). The induction of MDSCs and 

Tregs could also be facilitated by IDO1 in the TME (69–71). Hence, inhibition of 

IDO1 and the potential use of IDO1 inhibitors as adjuvant in cancer immunotherapy 

are being explored. 
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2.2. Mechanism of Kynurenine Pathway 

Tryptophan is an essential amino acid in our body, and its catabolism follows two 

distinct pathways: the serotonin and Kyn pathways. The serotonin pathway is 

responsible for only 5% of tryptophan catabolism and plays a crucial role in regulating 

mood and gut peristalsis. The majority of tryptophan catabolism occurs through the 

Kyn pathway (about 95%), which is less well-understood than serotonin pathway (71). 

In this process, IDO1, along with IDO2 and TDO2, play a significant role in 

controlling the initial rate-limiting step of tryptophan catabolism by converting L-Trp 

to N-formyl kynurenine (NFK). Subsequently, NFK is transformed into L-Kyn with 

the assistance of kynurenine formamidase. L-Kyn undergoes further conversions into 

three different substances, namely, kynurenic acid produced by kynurenine-

oxoglutarate transaminase (KYAT), 3-hidroxykynurenine generated by kynurenine 3-

monooxygenase, and anthranilic acid formed by kynureninase.  

Both 3-hydroxykynurenine and anthranilic acid are combined to create 3-

hydroxyanthranilic acid with the help of kynureninase and a non-specific hydroxylase. 

3-hydroxyanthranilic acid is then converted into 2-amino-3-carboxy-mucconate-6-

semialdehyde by 3-hydroxyanthranilic acid dioxygenase (HAD). This compound can 

follow two different paths:  

(i) It is converted first to 2-aminomucconate acid semialdehyde through 2-amino-

3-carboxymucconate-6-semialdehyde decarboxylase, and then to picolinic acid 

through non-enzymatic process. 

(ii) It is converted to quinolinic acid through non-enzymatic process and ultimately 

to nicotinamide via quinolinate phosphoribosyl transferase (QPRT) (Figure 2.2).  
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Figure 2.2. Kynurenine Pathway. (a) IDO1, IDO2, TDO2; (b) kynurenine 

formamidase; (c) kynurenine-oxoglutarate transaminase (KYAT) (d) 

kynurenine 3-monooxygenase; (e) kynureninase; (f) non-specific 

hydroxylase; (g) 3-hydroxyanthranilic acid dioxygenase (HAD); (h) 2-

amino-3-carboxymucconate-6-semialdehyde decarboxylase; (i) non-

enzymatic; (j) quinolinate phosphoribosyl transferase (QPRT). 

 

2.3. Indoleamine 2,3-dioxygenase 1  

IDO1 is the heme-containing protein with a pivotal role in catalyzing the conversion 

of L-Trp into NFK, which is subsequently metabolized into Kyn (26,72). The 

reduction in tryptophan levels negatively affects the proliferation of Teffs, while, 

conversely, the accumulation of kynurenine metabolites encourages the differentiation 

of Tregs. Both of these processes contribute to the suppression of anti-tumor immunity, 

ultimately facilitating tumor progression (18,73,74). Consequently, the search for 

IDO1 inhibitors remains critical in restoring the elimination of cancer cells through 

immune mechanisms.  

2.3.1. Structure of Indoleamine 2,3-dioxygenase 1 

IDO1, a cytosolic and monomeric enzyme (75), possesses multiple crucial binding 

pockets that play an important role in establishing interactions with its inhibitors and 

the heme. According to Röhrig et al., (2021), IDO1 receptor has five distinct pockets, 

including pocket A, B, C, D, and the heme-binding pocket (Figure 2.3) (76).  
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1. Pocket A: Located on the opposite side of the heme cofactor and characterized 

by its hydrophobic nature. Pocket A primarily forms hydrogen bonds via 

SER167. This pocket is vital for inhibitor binding, as all known inhibitors 

occupy this space in their binding mode.  

2. Pocket B: Positioned at the entrance of the active site, pocket B can only be 

accessed when the flexible JK-Loop is in an open state. The JK-Loop, composed 

of two segments known as JK-LoopC and JK-LoopN, is situated in proximity to 

the distal heme pocket of the enzyme. JK-LoopN is unique to IDO1 and is absent 

in TDO2 (77). The impact of pocket B on inhibitor binding affinity appears to 

be less significant compared to that of pocket A.  

3. Pocket C (Sa site): This pocket is blocked off by the closure of the JK-loop and 

has been suggested to interact with specific ligands, such as Trp and epacadostat 

(77). 

 

Figure 2.3.  The 3D-structure of IDO1 and its pocket (76) 
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4. Pocket D (Si Site): A compact small binding site located on the side of the heme 

and close to the active site. It becomes accessible through a structural alteration 

involving PHE270. In its natural state within holo-IDO1, pocket D is isolated 

from all the other binding sites due to the presence of the heme cofactor and 

serves as an additional site for small molecules to bind. In apo-IDO1, it becomes 

linked to the adjacent pockets due to the absence of heme cofactor and is 

typically occupied by the majority of type IV inhibitors or apo-IDO1 inhibitors.  

5. In addition to pockets A, B, C, and D, there is an additional pocket known as the 

heme-binding pocket. This pocket comprises several key residues, including 

VAL170, PHE214, ILE217, and HIS346. In holo-IDO1, these residues interact 

with the heme cofactor, while in the case of apo-IDO1, they engage with the 

central components of the apo-IDO1 inhibitors (76).  

 

2.3.2. Holo- and Apo-Form IDO1, Their Inhibition and Clinically Tested IDO1 

Inhibitors 

A fundamental distinction exists between the holo-form and apo-form of IDO1, 

hinging on the presence of the heme cofactor within the IDO1 binding site. Holo-IDO1 

contains this heme cofactor, which plays a vital role in redox changes, transitioning to 

the inactive ferric state (Fe3+) during turnover (78). The presence of the heme cofactor 

significantly impacts the inhibition of this enzyme. According to Röhrig et al., (2019), 

there are four types of IDO1 inhibitors, specifically: (i) tryptophan-competitive 

inhibitors binding to oxygen-bound holo-IDO1, (ii) oxygen-competitive inhibitors 

binding to free ferrous holo-IDO1, (iii) inhibitors binding to free ferric holo-IDO1, and 

(iv) inhibitors binding to apo-IDO1 (23). It is noteworthy that three of these inhibitor 

types pertain to holo-IDO1, while only one type of inhibition relates to apo-IDO1.  

Until now, eleven IDO1 inhibitors have been clinically tested with different 

mechanisms, including (a) indoximod (D-1MT), (b) epacadostat (INCB024360), (c) 

navoximod (NLG-919), (d) PF-06840003 (EOS200271), (e) BMS-986205 

(linrodostat), (f) LY3381916, (g) NLG-802, (h) KHK2455, (i) RiMO-301, (j) DN-

1406131 and (k) SHR9146 (HTI-1090) (79–81). Additionally, there are IDO1 

inhibitors in the form of vaccines, such as IDO1 peptide vaccine (82,83) and the 
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IO102-IO103 vaccine (84). However, in this literature review, only IDO1 inhibitors 

(a) to (e) are discussed, representing each inhibitor type (Figure 2.4).  

 

Figure 2.4. The structures of five IDO1 inhibitors that have entered clinical trials 
 

a. Indoximod 

1-Methyl-D,L-tryptophan (1MT) consists of two isomers, each displaying different 

inhibitory effects. The L isomer of 1MT exhibits weak inhibitory activity, while the D 

isomer, also known as D-1MT or indoximod, demonstrates potent anticancer activity 

and has the ability to alleviate T cell suppression induced by IDO1-positive dendritic 

cells from both mouse and human sources (85). Numerous studies have investigated 

the impact of indoximod, a type I IDO1 inhibitor, on IDO1 through several 

mechanisms. As outlined by Fox et al., (2018), the cellular mechanisms of action of 

indoximod have been elucidated. These mechanisms encompass the relief of 

suppression on Teffs in tumors, limitations on the generation of Tregs, and the 

transformation of Tregs into Th17 helper cells in draining lymph nodes (86–89). In 

2021, Zakharia and colleagues conducted a phase II clinical trial involving the 

combination of indoximod and one immune checkpoint inhibitors, pembrolizumab, for 

the treatment of advanced melanoma patients. The results from this study indicated 

that the combination of indoximod and pembrolizumab was well-tolerated and 

demonstrated antitumor efficacy in specific individuals with advanced melanoma (90).  
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b. Epacadostat (INCB024360) 

Epacadostat functions by binding to the tryptophan binding site and inhibiting IDO1 

through its attachment to the heme iron in its ferrous form, also known as ferrous 

IDO1, via the oxygen atom of the hydroxyamidine moiety. As a result, it is classified 

as a type II inhibitor (23). Despite facing a significant setback in a phase III trial for 

melanoma (ECHO-301/KEYNOTE-252), where it failed to demonstrate an 

improvement in progression-free survival in combination with pembrolizumab  

compared to pembrolizumab alone (91), epacadostat continues to be a prominent 

candidate. It is currently the most advanced IDO1 inhibitor in development with 

ongoing phase III clinical trials enrolling patients with locally advanced or metastatic 

renal cell carcinoma (RCC) (ClinicalTrials.gov ID: NCT03260894). Additionally, 

research has shown that epacadostat can hinder the growth of Tregs induced by human 

DCs when these cells are exposed to IFN-γ and lipopolysaccharide (LPS), both of 

which trigger IDO1 expression. T cells stimulated with DCs treated with epacadostat 

exhibit notably increased levels of IFN-γ and display enhanced effectiveness in in vitro 

assays for lysing tumor cells (92). 

c. Navoximod (NLG-919) 

Navoximod, also recognized as NLG-919, functions as an inhibitor of IDO1. Its mode 

of action is noncompetitive inhibition and it demonstrates a preference for binding to 

the ferric oxidative state (Fe3+) of heme iron, categorizing it as a type III inhibitor. In 

the structure of navoximod, a 4-phenylimidazole (4PI) structural moiety is present 

(93). Although 4PI alone is a relatively weak inhibitor of active IDO1, when 

incorporated into navoximod’s fused tricyclic ring system, it adopts a conformation 

that optimizes its binding to the IDO1 receptor. Navoximod also demonstrates 

substantial potency as a dual inhibitor of both IDO1 and TDO2 and has undergone 

clinical trials for the treatment of recurrent advanced solid tumors (94,95). It has been 

shown that novoximod is a potent dual inhibitor of IDO1 and TDO2 with an IC50 value 

of 79 nM and 247 nM, respectively (96). In A172 cells derived from the brain tissue 

of a 53-year-old male patient with glioblastoma, it exerted inhibitory effects with an 

IC50 of 0.45 μM for IDO1 and 2 μM for TDO2 (97). 
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d. PF-06840003 (EOS200271) 

PF-06840003, also known as EOS200271, has been observed to interact with the IDO1 

enzyme without directly binding to the heme iron (24). This highly selective IDO1 

inhibitor, which distinguishes itself from TDO2 and IDO2, has advanced to phase I 

clinical trials for brain tumors (98,99). According to the review from Gomes et al., 

(2018), PF-06840003 effectively inhibits IDO1 and hinders the production of L-

kynurenine, both in vitro and in vivo. In in vitro studies, PF-06840003 promotes T cell 

proliferation when co-cultured with immunosuppressive tumor cells, exhibiting EC50 

values ranging from 60 to 74 nmol/L at serum concentrations between 10% and 50%. 

In in vivo studies, PF-06840003 treatment significantly reduces plasma L-kynurenine 

levels in non-tumor-bearing BALB/c mice. Furthermore, when combined with an anti 

PD-L1 antibody, PF-06840003 enhances the proportion of IFNγ-secreting T cells, 

correlating with improved treatment efficacy (99). Given that PF-06840003 has 

entered a phase I clinical trial for brain tumors, its physicochemical properties suggest 

its potential for brain penetration. These properties include a low molecular weight, 

moderate polar surface area, and a low number of hydrogen bond donors or acceptors 

(98).   

e. BMS-986205 

BMS-986205 (27) competes effectively with iron by binding to the apo-form of the 

enzyme, especially when the heme cofactor is unstable (100). As indicated by Nelp’s 

findings, BMS-986205 initially binds to a solvent-exposed surface cleft located near 

the active site of holo-IDO1. This interaction leads to the release of heme and the 

formation of an apo-IDO1-inhibitor complex, which involves a series of 

conformational changes. On the other hand, within cells, in the apo-IDO1 form, 

compounds like BMS-986205, which compete with the heme, hinder the enzyme’s 

ability to bind to heme, effectively preventing the formation of holo-IDO1 and the 

execution of IDO1 activity. However, it is essential to recognize that these heme-

competitive inhibitors are less effective at lower temperatures in suppressing IDO1 

activity. Even under optimal conditions, the dissociation of heme and the subsequent 

generation of apo-IDO1 in vitro are gradual and reversible processes (27,101). Apo-

IDO1 inhibitors have demonstrated encouraging results in early clinical studies. 
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However, the future of this type of inhibitors largely depends on the outcomes of phase 

III clinical trials for BMS-986205 (102). While BMS-986205 has made progress in 

clinical trials, there is an ongoing quest to identify an alternative apo-IDO1 inhibitor. 

In fact, there are several compounds that hold promises as potential apo-IDO1 

inhibitors, including those listed in Table 2.1. 

 

Table 2.1. Examples of selective apo-IDO1 inhibitors from the literature 
 

No Structure Effect Ref. 

1. 

 

The newly developed GSK5628, which targets apo-

IDO1 is potent with a biochemical efficacy of 39 

nM and a cellular potency of 5.9 nM. Due to its 

unique mechanism and high performance, further in 

vivo profiling is warranted. 

(101) 

2. 

 

Compound A shows robust binding to apo-IDO1 and 

displays substantial effectiveness in HeLa cells, with 

an IC50 of 9 nM.  

(103) 

3.  

 

Adding a fluorophenyl group to compound A boosts 

IDO1 potency in compound B. Incorporating a polar 

2-pyridyl oxetane component notably improves its 

pharmacokinetic profile. As a result, compound B 

shows an IDO1 IC50 of 3.2 nM in HeLa cells. 

(103) 

4. 

 

By substituting the carbamate segment from t-Bu to 

ethyl, compound C, a Spirochromane derivative, 

exhibited a substantial enhancement in potency as an 

apo-IDO1 inhibitor. 

(104) 

5.  

 

Compound D, with an (S)-configuration, shows a 

significant IC50 of 5.4 nM. It interacts with apo-IDO1 

but not ferrous IDO1. However, it has limited 

bioavailability 

(104) 

6.  

 

A prodrug of compound E, designed to improve 

solubility, achieved over 1 mg/mL solubility in 

fasted stated stimulated intestinal fluid (FaSSIF). In 

initial human pharmacokinetic studies, 

administering this compound at 60 mg twice daily 

(equivalent to 35 mg of the parent compound twice 

daily) resulted in an average of 90% IDO1 inhibition 

over 24 hours. 

(104) 
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2.4. Virtual Screening for Drug Design 

Virtual screening plays a pivotal role in drug discovery pipeline. It circumvents the 

challenges associated with extensive searches in chemical space by focusing on 

libraries containing specific and readily available compounds, often those that are 

easily procurable. This approach helps avoid expensive syntheses, decreases the 

number of in vitro or in vivo assays, and narrows the search to compounds with 

established biological interest. Even if initially synthesized for a different purpose, this 

strategy thereby reduces time and enhances cost-effectiveness in the development of 

novel drugs. Filters can be applied to ensure that the library aligns with predefined 

standards of biological relevance or “drug-likeness” (28,105–107). 

A widely used and straightforward method for assessing drug-likeness involves 

property-based filters or rules, which set acceptable limits on specific molecular 

physicochemical properties or molecular descriptors for drugs or drug candidates.  One 

of the most well-known rules in this regard is the “Rule of Five” introduced by Lipinski 

et al. This rule establishes thresholds for four basic molecular descriptors deemed 

suitable for orally active compounds. These molecular descriptors include a molecular 

weight (MW) of ≤ 500, an octanol/water partition coefficient (logP) of ≤ 5, a maximum 

of 5 hydrogen bond donors (HBD), and a maximum of 10 hydrogen bond acceptors 

(HBA). If a compound violates two or more of these rules, it may exhibit unfavorable 

ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles (106).  

In addition to these rules, a multitude of molecular descriptors and various machine 

learning techniques have been applied, such as support vector machine (SVM) (108), 

neural networks (NN) (109), genetic algorithm (GA) (110), recursive partitioning (RP) 

(111), and others. Importantly, many prediction models for drug-likeness developed 

using machine learning approaches demonstrate effective capabilities in distinguishing 

between molecules with drug-like and non-drug-like characteristics (112). 

Principally, there are two main approaches in virtual screening. First if the 

macromolecule target is unknown, LBVS should be used. Second, on the other hand, 

if the information of the structural target is known and available on protein database, 

then SBVS can be employed. 
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2.4.1. Ligand-Based Virtual Screening 

LBVS relies on the structural information and physicochemical characteristics of the 

chemical scaffold found in known active and inactive molecules. This screening 

method operates on the principle of molecular similarity, where relationships between 

compounds in a given library and one or more known active compounds are assessed 

through similarity measurements using appropriate molecular descriptors. These 

measurements typically involve 1D and 2D descriptors, which encode information 

about the chemical nature and topological features of compounds (113,114). 

Additionally, 3D descriptors related to molecular fields (115), shape and volume 

(116,117), and pharmacophores (118) can be utilized.  

a. Shape Similarity 

Molecular shape similarity holds significant importance within drug discovery, 

particularly in the context of virtual screening. A prevailing assumption suggests that 

molecules exhibiting structural resemblance are likely to share similarities in both 

physical attributes and biological functionalities. Concerning shape similarity, it 

involves the utilization of structural representations and quantitative measurements to 

gauge the similarity between two structural representations (119). There exist various 

techniques for quantifying the similarity between two structural representations, which 

encompass metrics like the Tanimoto coefficient, cosine coefficient, Euclidean 

distance, Tversky index, and others. Among these, the Tanimoto coefficient, 

established by Rogers and Tanimoto in 1960,  stands out as the most commonly used 

and popular method for measuring similarity (120).  

Molecular similarity can be categorized into two main groups: 2D and 3D similarity 

approaches. The 2D similarity approach exclusively relies on 2D information, 

encompassing methods like substructure search, fingerprint similarity search and 2D 

descriptor-based techniques. While 2D information can capture the connectivity of 

atoms and allow for scaffold hopping, it still lacks the spatial orientation details 

provided by 3D structures. The limitation lies in the inability of fully represent the 

three-dimensional arrangement of atoms in space. In recent times, researchers have 

increasingly adopted the 3D approach for various applications, such as pharmacophore 

modelling, shape similarity, molecular field-based methods, and 3D fingerprinting. 
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Notably, the use of 3D shape-based similarity has gained prominence in virtual 

screening, demonstrating numerous successful instances (121–125). There are three 

different types of 3D shape similarity methods, namely atomic-distance based method, 

Gaussian overlay-based method, and surface-based methods (Figure 2.5). In this study, 

we used Gaussian overlay-based methods. 

 
 

Figure 2.5. A diagrammatic representation of the process for calculating similarity 

between a query molecule and molecules within a database (119). 

 

Gaussian sphere and hard sphere are the most widely adopted models among many 

methods of describing the molecular shape of a molecule. Both of these models 
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describe the shape in terms of the volume of a molecule. Two molecules will possess 

similar shape if they have similar volume. Gaussian sphere model represents a 

molecule using a set of overlapping Gaussian spheres and measures the integral 

volume of overall overlapping Gaussians. In this model, each intersection is expressed 

as the integral of a set of overlapping atom-centered Gaussian spheres and the volume 

of a molecule is described based on the inclusion-exclusion principle (126).  

Several methods based on Gaussian overlays were developed to measure the shape 

similarity between two molecules, such as ROCS developed by OpenEye Scientific 

Software (116,127), PAPER developed by Stanford University (128), MolShaCS 

developed by University of Sao Paulo (129), Phase Shape developed by Schrödinger 

LLC (117), and WEGA developed by Research Center for Drug Discovery, Sun Yat-

sen University, China (130).  

b. Pharmacophore Modelling 

In addition to shape similarity, another method for conducting virtual screening is 

pharmacophore modeling. While shape similarity focuses on the structural likeness 

between a known active ligand and the screened library, pharmacophore modeling 

focuses on crucial chemical features that are pivotal in demonstrating a specific 

biological activity.  

The concept of “pharmacophore” was introduced by Ehrlich in 1909. It was defined 

as a molecular framework that carries (phoros) the essential features responsible for a 

drug’s (pharmakon) biological activity (131). Günd later refined this definition by 

stating that pharmacophore is a set of structural features within a molecule that is 

recognized at a receptor site and is responsible for that molecule’s biological activity 

(132). According to the International Union of Pure and Applied Chemistry (IUPAC), 

a pharmacophore is described as “the ensemble of steric and electronic features 

necessary to ensure optimal supramolecular interactions with a specific biological 

target structure and to trigger (or block) its biological response” (133–135). Therefore, 

the molecular features responsible for a particular biological effect play a crucial role 

in pharmacophore modeling. These pharmacophoric features include various types 

such as HBA, HBD, hydrophobic areas (H), positively and negatively ionizable groups 

(PI/NI), aromatic groups (AR), and metal coordinating areas. Moreover, the exclusion 
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volume corresponds to restricted regions that define the size and the shape of binding 

pocket (Figure 2.6). 

 
 

Figure 2.6. Pharmacophoric features. The primary types of pharmacophoric features 

are depicted using geometric shapes and encompass the following 

categories: (1) HBA, (2) HBD, (3) negatively ionizable (NI), (4) 

positively ionizable (PI), (5) hydrophobic (H), (6) aromatic (AR), and (7) 

exclusion volume (XVOL) (136). 

 

In fact, there are two distinct approaches to pharmacophore modeling, comprising 

ligand-based and structure-based approaches. The choice of which approach to employ 

depends on the availability of data and information about the target receptor. When 

structural details of the target proteins, such as enzymes or receptors, are accessible, 

applying structure-based pharmacophore modeling, which is based on ligand-receptor 

interactions is possible. Conversely, when there is no information about the structural 

features of the target, opting for the alternative approach named ligand-based 

pharmacophore modeling is preferable. This approach relies on the common 

physicochemical properties of known ligand molecules (136). 
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2.4.2. Structure-Based Virtual Screening 

The term “structure-based” pertains to virtual screening that concentrates on the 

structural information of target receptors. In this method, compound databases are 

subjected to docking with the chosen target binding site (137). The predominant 

approach in SBVS is molecular docking, which exploits the structural and chemical 

complementarity arising from the interaction between drug-like compounds and their 

targets. This method predicts the preferred orientation of ligands in the binding site by 

employing scoring functions (138,139). Other SBVS techniques frequently involve 

examining the stability and conformational changes at the atomic level of ligand-

protein complexes through molecular dynamics (MD) simulations (140). Additionally, 

binding free energy trajectory analysis is commonly performed using methods such as 

MM-GBSA or MM-PBSA (34). 

a. Molecular Docking 

The molecular docking scoring is employed to rank these compounds in the database. 

Researchers can then use this ranking as a foundation for selecting potential hit 

compounds. Additionally, visual inspection is utilized to assess the intermolecular 

interactions within the ligand-receptor complex (141). Hit compounds are typically 

subjected to in vitro evaluation to validate and determine their biological activity 

against the molecular target being investigated (142). 

To carry out the SBVS method, there are primarily four essential steps involved. These 

steps encompass (i) preparing the target protein, (ii) selecting and preparing the 

compound database, (iii) conducting molecular docking and scoring, and (iv) 

analyzing the docking results. It is crucial to consider the selection of both the 

conformational search algorithm and scoring function. These two elements are of 

significant importance in molecular docking as they serve separate but interrelated 

roles.  

Conformational search algorithms are responsible for exploring the numerous 

potential orientations and conformations of a ligand within the binding site of a 

receptor. They can be approached in two different ways, namely systematic and 

stochastic search methods (143,144). Systematic search methods entail making 
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incremental adjustments to the structural characteristics, gradually modifying the 

ligand’s conformation (145). During the conformational search, systematic search 

methods may converge towards a local minimum instead of the global minimum (146). 

Examples of systematic search methods include DOCK (147), GLIDE (148), FRED 

(149), and FlexX (150).  

In contrast, stochastic search methods perform the conformational search by randomly 

altering the structural parameters of the ligands. Consequently, the algorithm generates 

sets of molecular conformations and explores a broad range of the energy landscape, 

increasing the likelihood of discovering a global minimum rather than getting trapped 

in a local minimum (151). Examples of stochastic search methods include AutoDock 

(152), PLANTS (153), MOE_Dock (154), and LigandFit (155).  

Regardless of the particularities of each method, every conformational search 

algorithm should possess the ability to efficiently explore a wide range of the energy 

landscape within a reasonable time frame. Ideally, the assessment of a small set of 

molecules should be completed in just a few minutes (156). 

On the other hand, scoring functions play a pivotal role in estimating the binding 

affinity of the predicted ligand-receptor complexes. The energy change resulting from 

the formation of the ligand-receptor structure is described by the binding constant (Kd) 

and the Gibbs free energy (ΔG). When it comes to predicting and assessing binding 

energy, the critical physicochemical phenomena include intermolecular interactions, 

desolvation, and entropic effects. It is worth noting that the more physicochemical 

parameters are taken into account, the greater the accuracy of the scoring functions 

(156).  

There are three categories of scoring functions, specifically forcefield-based, 

empirical, and knowledge-based functions (157). The first group, forcefield-based 

functions, determine the binding energy by combining the impacts of both bonded 

interactions (like bond stretching, angle bending, and dihedral variations) and non-

bonded interactions (including electrostatic and van der Waals (vdW) forces) within a 

comprehensive equation (158). In contrast, empirical scoring functions focus on 

individual types of physical events involved in ligand-receptor complex formation, 

including hydrogen-bonding, ionic interactions, nonpolar interactions, desolvation and 
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entropic effects (159). Different with the previous two, knowledge-based scoring 

functions employ pairwise energy potentials derived from known ligand-receptor 

complexes to create a general function (160). As knowledge-based functions do not 

rely on replicating binding affinities like empirical methods or ab initio calculations 

as in forcefield methods, they strike a balance between accuracy and swiftness (161). 

Each scoring function has its strengths and weaknesses. Consequently, the 

simultaneous use of multiple scoring approaches has become increasingly common as 

a way to establish a consensus score (162). Detailed examples of these scoring 

functions in various molecular docking software are provided in Table 2.2.   

 

Table 2.2. Here are the following examples of molecular docking programs with their 

scoring functions 
 

Forcefield-

based 
References Empirical References 

Knowledge-

based 
References 

DOCK (147) GlideScore (148) SMoG (163) 

AutoDock (152) ChemScore (164) DrugScore (161) 

LigandFit (155) Fresno (165) PMF_Score (166) 

ICM (167) LUDI (168) PoseScore (169) 

 

b. Molecular Dynamics Simulations 

MD simulations, as a structural bioinformatic technique, delves into the behavior of 

molecules by scrutinizing their dynamic characteristics and movements at the atomic 

level (170,171). Through this approach, it becomes possible to extract kinetic and 

thermodynamic information about biomolecular structures. For instance, it enables the 

(i) evaluation of macromolecular stability, (ii) identification of allosteric sites, (iii) 

understanding of enzymatic activity mechanisms, (iv) exploration of molecular 

recognition and properties of complexes involving small molecules, (v) investigation 

of protein associations, and (vi) scrutiny of protein folding and its hydration (172). 

Furthermore, MD simulations support a wide range of research endeavors, including 

molecular design (extensively applied in drug design), as well as determination and 

refinement of structures using techniques like X-ray, NMR, and protein modeling. 

When conducting MD simulations (a flowchart of MD simulations is depicted by 

Figure 2.7), one crucial aspect that researchers need to take into account is the choice 
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of forcefield. A forcefield can be defined as the potential energy function employed to 

calculate the energy associated with each atom based on its coordinates and structural 

data (173). There exist several forcefields suitable for describing both proteins and 

ligands or candidate compounds. For proteins, available options include the AMBER 

forcefield (174), CHARMM forcefield (175,176), and the OPLS forcefield (177). 

While for ligands, researchers can select one of the available forcefield, such as the 

GAFF forcefield (178), CHARMM general forcefield (CGenFF) (179), and OPLS-AA 

which is designed for all atom simulations including ligand parameters (180).  

The choice of forcefield is of paramount importance because the influence of each 

forcefield varies depending on the specific system or molecules under investigation. 

Selecting the appropriate forcefield and ensuring that it is well-parameterized for the 

specific application is a critical consideration in MD simulations. It is also essential to 

understand the advantages and limitations of each forcefield. For instance, CGenFF 

has demonstrated relatively good performance in modeling ligands containing halogen 

atoms (179). 
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Figure 2.7. The flowchart of molecular dynamics simulation (181) 

 

c. MM-GBSA 

Determination of ligand binding free energy is accomplished by employing molecular 

mechanics in conjunction with the Generalized Born surface area method, commonly 

known as MM-GBSA. In the MM-GBSA calculations, implicit solvation models offer 

a computationally efficient means of describing the solvation free energy of protein-

ligand complexes (182). These models are utilized to calculate the free energy of 

binding for ligands to proteins, involving MD simulations with an explicit solvent for 

the protein-ligand complex to generate a set of snapshots. Subsequently, energies are 
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calculated using an implicit solvent for these snapshots (183). Implicit solvation 

methods are widely accepted for assessing protein-ligand binding free energy, 

especially in the context of relative binding free energy calculations (184). 

 

2.4.3. Combination Approach of Ligand- and Structure-Based Virtual Screening 

In recent years, it has become a common practice to integrate ligand-based and 

structure-based methods in various ways, leveraging available data to the fullest extent 

(185). This approach harnesses the strengths of both structural and chemical data from 

ligand-receptor complexes and bioactive precursor compounds, aiming to enhance the 

success rate and mitigate the drawbacks associated with these two fundamental 

approaches. For instance, in ligand-based methods, there can be an excessive emphasis 

on the reference molecule’s template, or the chemical properties of compounds 

forming the pharmacophore model may dominate the selection. Conversely, the 

molecular docking utilized in structure-based methods often overlooks receptor 

flexibility (186). Typically, there are three primary strategies for combining ligand and 

structure-based methods: sequential approaches, parallel approaches, and hybrid 

approaches (187).  

In sequential approaches, ligand-based and structure-based methods are typically 

employed in a step-by-step manner with the ligand library being refined and reduced 

at each stage. This strategy is commonly favored, particularly when dealing with 

extensive ligand libraries, as it permits utilization of techniques that demand fewer 

resources and a shorter time frame to initially shrink the library size. Subsequently, 

more advanced and computationally intensive methods can be used to further refine 

the selection (186). For instance, Khan and colleagues (2019) successfully identified 

active and selective G protein-coupled estrogen receptor-1 antagonists at the 

micromolar level through a multi-step sequential screening approach that integrated 

ligand- and structure-based methods (188). Likewise, Dawood et al. (2018) discovered 

human aromatase inhibitors by conducting a virtual screening study on an in-house 

natural compound library, with ligand-based approaches following structure-based 

approaches (189). 
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In parallel approaches, the same library or multiple libraries are simultaneously 

screened using different methods. Each method assigns different scores to the 

molecules within the library. This approach offers the advantage of not relying solely 

on a single method, allowing for the identification of a more diverse set of candidate 

molecules (190). Additionally, in parallel strategies that involve structure-based 

methods, consensus scoring techniques can be employed to amalgamate the strengths 

of various scoring algorithms or protein structures (191). Over the recent years, parallel 

methods have been utilized in numerous research studies (192,193). 

The hybrid approach involves the simultaneous utilization of structural data from 

reference ligands and data from ligand-receptor interactions for virtual screening, both 

ligand-based and structure-based methods. These approaches can be implemented 

either through interaction-based or similarity-docking mechanisms (194). In 

interaction-based hybrid methods, templates of ligand-receptor interactions are 

extracted from crystallographic structures and transformed into fingerprint or 

pharmacophore models. These models are then used to virtually screen ligand libraries 

against the established interaction patterns. Alternatively, in similarity-docking 

methods, the measurement of similarity to a reference molecule aids in scoring the 

molecular binding poses and ranking compounds based on these scores. In similarity 

screening, binding patterns of active molecules derived from crystallographic 

structures in target receptors serve as a reference, and higher precision in binding 

patterns and coupling scores is achieved by docking similar molecules to the receptor 

(186). Hybrid strategies that combine shape similarity and molecular docking 

techniques have gained popularity in recent years due to their high accuracy. They 

have even led to the development of software tools like HomDock (195) and Hybrid 

(149). 

 

2.5. Previous Studies on IDO1 Inhibitor Through Virtual Screening 

There are limited studies in the literature that have utilized virtual screening techniques 

to discover IDO1 inhibitors. In 2017, Coletti et al. conducted a study in which they 

screened a library of 30,000 fragments using molecular docking. Subsequently, they 

tested the identified candidate molecules in vitro, successfully identifying several 
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potent IDO1 inhibitors (196). In 2018, Zhang et al. also employed structure-based 

virtual screening to identify a series of candidate molecules, which they further 

confirmed through enzymatic experiments (19). In the same year, another study 

utilized machine learning to detect 50 potential candidate molecules, and three of them 

exhibited strong activity against IDO1 in vitro (197).  

In 2019, Xu et al. conducted a study that combined shape similarity and molecular 

docking. They not only identified a promising molecule but also improved its 

effectiveness through a structure-activity relationship (SAR) study (198). In another 

2019 study by Zhou et al., a comprehensive approach involving ligand and structure-

based methods was employed. They used a sequential process, which included a drug 

similarity filter, molecular docking, pharmacophore modeling, and 3D-QSAR 

methods to identify six potential IDO1 inhibitors (199).  

Moving on to 2020, Serafini et al. employed a molecular docking method for virtual 

screening and identified 50 molecules. Subsequent in vitro testing revealed the activity 

of some of these molecules. They then conducted a study, the SAR study, to develop 

selective and anticancer derivatives based on the most active molecule (200). 
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3. MATERIALS AND METHODS 

 

All the molecular modelling studies, calculations, and analyses in this study were 

performed on a Windows machine with an Intel(R) Core(TM) i7-9700K CPU 

@3.60GHz (8 CPUs), ~3.6GHz with 64GB RAM and a NVIDIA GeForce RTX 2070 

GPU.  

3.1. Ligand preparation 

Ligand databases from InterBioScreen (IBS) (https://www.ibscreen.com/) were 

retrieved as of March 7th, 2023. These databases consist of four distinct files: (i) 

natural compounds (NC) (69,064 compounds), (ii) synthetic compounds 1 (SC1) 

(192,714 compounds), (iii) synthetic compounds 2 (SC2) (118,512 compounds), and 

(iv) synthetic compounds 3 (SC3) (170,267 compounds).  

All ligands, including library ligands, query molecules, and active and decoy 

compounds for the enrichment study, were prepared using LigPrep (2023-1, 

Schrödinger LLC, New York, NY, USA). Subsequently, energy minimization for all 

ligands was performed according to the OPLS_2005 forcefield and default parameters 

using MacroModel (2023-1, Schrödinger LLC, New York, NY, USA). The library 

ligands were modeled while maintaining ionization states, desalting, avoiding 

generation of tautomers, and determining chiralities from 3D structures. Only one 

ligand per compound was generated. On the other hand, the selected IBS compounds 

for molecular docking as well as the active and decoy compounds modelled for 

enrichment studies, were prepared to generate stereoisomers and tautomers. 

Additionally, Epik (2023-1, Schrödinger LLC, New York, NY, USA) was employed 

to generate protonation states of the ligands at pH 7.0 ± 2.0 (201). 

Molecular descriptors were calculated using QikProp (2023-1, Schrödinger LLC, New 

York, NY, USA). The followings descriptors were used to apply drug-likeness filter 

to the database: molecular weight (MW) (reference values: 130.0 – 725.0 Da), HBD 

count (reference values: ≤6.0), HBA count (reference values: 2.0 – 20.0), predicted 

octanol/water partition coefficient (logP) (reference values between -2.0 – 6.5), 

number of rotatable bonds (RB) (reference values: ≤15), topological polar surface area 

https://www.ibscreen.com/
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(tPSA) (reference values: 7.0 – 200.0 Å2), and the number of reactive functional groups 

(rtvFG) (reference value: 0). 

 

3.2. Ligand-Based Virtual Screening 

3.2.1. Shape Screening 

In this study, Phase (2023-1, Schrödinger LLC, New York, NY, USA) was utilized for 

shape similarity screening by the help of Shape Screening panel of Maestro. Phase 

Shape utilizes sets of three atoms (atom triplets), and the process generates initial 

alignments, which are further improved through Gaussian overlay techniques (117). 

In the first step, query models were constructed using various compounds, namely 3-

chloro-N-{4-[1-(propylcarbamoyl)cyclobutyl]phenyl}benzamide (QPV), 3-chloro-N-

(3-{(2S)-1-[(4-fluorophenyl)amino]-1-oxopropan-2-yl}bicyclo[1.1.1]pentan-1-

yl)benzamide (U41), 4-chloro-N-{[1-(3-chlorobenzene-1-carbonyl)-1,2,3,4-

tetrahydroquinolin-6-yl]methyl}benzamide (U6G), 4-chloranyl-N-[(1R)-1-[(1S,5R)-

3-quinolin-4-yloxy-6-bicyclo[3.1.0]hexanyl]propyl]benzamide (SLW), and N-(4-

fluorophenyl)-3-{4-[4-(hydroxymethyl)-6-(trifluoromethyl)pyridin-3-

yl]phenyl}oxetane-3-carboxamide (6RI), which were proven to be apo-IDO1 

inhibitors through X-ray crystallography found co-crystallized with apo-IDO1 

structure in the protein data bank (PDB ID: 6v52 (103), 6wjy (202), 6wpe (203), 7b1o 

(204), and 7rrc (205), respectively). 

In this research, the 3D perspective was employed for shape screening. The 

fundamental principle of this method is that molecules with comparable volumes may 

possess the ability to efficiently bind to spaces of comparable or identical size within 

the active pockets of proteins (206,207). Within the volume scoring options, typed 

pharmacophore option was selected to treat each structure as a set of pharmacophoric 

sites, with their positions determined by applying Phase pharmacophore feature 

definitions. The calculation of overlapping volume is restricted to sites of the same 

feature type, with each site being represented by a sphere with a radius of 2 Å. The 

similarity of the descriptors in 3D methods was assessed using the Tanimoto 

coefficient, indicating the ratio of the union to the intersection of the shapes of two 

molecules (208). 
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3.2.2. Pharmacophore Screening 

Pharmacophore modeling involved two main steps: generating pharmacophore models 

and conducting pharmacophore screening of a ligand database. For this process, Phase 

(2023-1, Schrödinger LLC, New York, NY, USA) was utilized. 

The process of generating pharmacophore models began with the formulation of a 

pharmacophore hypothesis derived from a protein-ligand complex. For this purpose 

apo-IDO1 structures with PDB ID 6v52, 6wjy, 6wpe, 7b1o, and 7rrc, and their co-

crystallized inhibitors, namely QPV, U41, U6G, SLW, and 6RI, were used, 

respectively. Upon importing the protein-ligand complex into the Maestro window, 

the next step involved navigating to the “Develop Pharmacophore Hypothesis” panel. 

Within this panel, the “Create pharmacophore model using” menu was accessed, and 

the option was switched to “Receptor-ligand complex”, initiating the automatic 

progression through the receptor ligand complex workflow. This method was executed 

manually, involving manual selection and adjustment of features. Prior to feature 

selection, the interactions pane was activated to identify which features held 

significance for binding. Subsequently, each feature deemed critical for binding was 

carefully chosen in the process.  

Then the “Hypothesis Settings” menu was opened, which included two submenus: 

Features and Excluded Volumes. In the Features submenu, the settings were kept the 

same as the default, maintaining a minimum feature-feature distance of 2.0 Å and a 

minimum feature-feature distance for features of the same type of 4.0 Å. Meanwhile, 

in the Excluded Volumes submenu, the option to create receptor-based excluded 

volume shell was activated to confine regions that define and mimic the size and shape 

of the binding pocket. The radii sizes, radii scaling factors, and other options were left 

as default settings. The hypothesis was then ready to be used in screening.  

Each pharmacophore model was represented by one pharmacophore hypothesis. Thus, 

five models were generated, each originating from a distinct complex, namely 6v52-

QPV, 6wjy-U41, 6wpe-U6G, 7b1o-SLW, and 7rrc-6RI, involving the apo-IDO1 

inhibitors used in the shape screening study above. These models were employed to 

calculate the Phase screen score for filtered databases, covering both natural and 

synthetic compounds. 
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3.3. Structure-Based Virtual Screening 

3.3.1. Protein Preparation 

From the Protein Data Bank (PDB) (https://www.rcsb.org/) (209), selected five apo-

IDO1 enzyme structures with co-crystallized ligands were retrieved (PDB ID: 6wjy, 

resolution: 1.91 Å; PDB ID: 6wpe, resolution: 2.43 Å; PDB ID: 6v52, resolution: 1.78 

Å; PDB ID: 7b1o, resolution: 2.58 Å; and PDB ID: 7rrc, resolution: 2.18 Å). Protein 

complexes were prepared using the Protein Preparation Wizard (2023-1, Schrödinger 

LLC, New York, NY, USA). Utilizing the pre-process feature involved several steps: 

assigning bond orders using the CCD database, adding hydrogen atoms, and creating 

disulfide bonds. After addressing structural defects, the next stage following the pre-

process step entails scrutinizing the structure and making necessary adjustments, 

which may include the removal of undesirable elements such as the chain, cofactor 

and co-crystallized ligand. This procedure is carried out within the Review and Modify 

tab.  

Within the Refine tab, three sections are present including H-bond assignment, 

removal of waters, and restrained minimization. The optimization of H-bonds includes 

activating the option to sample water orientations and employing PROPKA at pH 7.0. 

In the subsequent section, waters positioned beyond 3 Å from het groups are 

eliminated. In order to realign side-chain hydroxyl groups and avoid steric clashes, a 

controlled forcefield minimization was conducted on the protein structures. This 

process utilized restrained minimization option settings with an RMSD cut-off value 

of 0.30 Å.  

 

3.3.2. Molecular Docking 

Receptor grids were generated using Glide (2023-1, Schrödinger LLC, New York, NY, 

USA), specifically in the Receptor Grid Generation panel for molecular docking. 

There are five tabs available for the receptor grid generation process: receptor, site, 

constraints, rotatable groups, and excluded volumes. In the receptor settings, the co-

crystallized ligand of each protein structure was identified to be excluded from the grid 

generation and to define its centroid for docking coordinates. Additionally, the scaling 

factor and partial charge cutoff for Van der Waals radius scaling remained the same, 

which were 1.0 and 0.25, respectively. In the Site settings, the enclosing box was set 

https://www.rcsb.org/
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to the centroid of workspace ligand with the volume of 20x20x20 Å, and the 

coordinates for each protein was displayed in Table 3.1. The settings for constraints, 

rotatable groups and excluded volumes remained the same as the default settings. 

Table 3.1.The central coordinates of the grid box for each protein 
 

PDB ID 
Coordinates 

X  Y Z 

6v52 -14.02 33.29 -29.00 

6wjy 62.05 50.18 14.97 

6wpe 71.88 13.01 28.32 

7b1o 61.96 50.73 15.21 

7rrc 61.58 50.46 15.37 

 

Molecular docking was conducted against the apo-IDO1 structures using Glide (2023-

1, Schrödinger LLC, New York, NY, USA) in both standard precision (SP) and extra 

precision (XP) modes. Ligands were allowed flexibility in both modes, and Epik state 

penalties were factored into the docking scores. Advanced docking settings, including 

sampling parameters for nitrogen inversions and ring conformation, were enabled. 

Torsion bias sampling was configured for all predefined functional groups, while 

docking and scoring for atoms with more than 500 atoms and 100 rotatable bonds were 

restricted. To mitigate the nonpolar aspects of the ligand, the vdW radius of ligand 

atoms with less than 0.15 partial charges was scaled by 0.8, maintaining the default 

scaling parameter. Constraints in the Constraints tab were remained unchanged. In the 

Output tab, the number of poses per ligand included was set to 50 for SP mode and 

100 for XP mode. 

 

3.3.3. Validation Studies 

In order to validate the molecular docking method and select the ideal protein 

structures, validation studies were conducted with two different approaches; i.e., 

redocking and enrichment analysis, applied to the five apo-IDO1 in Table 3.1.  

a. Redocking Study 

The redocking study was performed using the molecular docking method at SP mode 

as described above. The co-crystallized inhibitor in each protein structure was 

redocked to their respective active site and the binding poses of each inhibitor were 
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compared with their original conformation by calculating root-mean-square deviation 

(RMSD) values in formula (3.1).  

RMSD = √∑ (𝑋𝑒,𝑖−𝑋𝑜,𝑖)
2𝑁

𝑖=1

𝑁
        (3.1) 

Where: 

Xe,i is the coordinates of the ith atom in the reference structure;  

Xo,i is the coordinates of the ith atom in the predicted structure; and  

N is the number of atom pairs (or heavy atoms) in the molecules being compared. 

 

b. Enrichment Study 

The active compounds used in the enrichment study were retrieved from the literature 

(103,202,204). Decoys were generated from these active compounds using DUD-E 

(https://dude.docking.org/) (210). Both the active (Table 3.2) and decoy compounds 

were prepared as defined above. Subsequently, all the active and decoy compounds 

were docked to the selected protein structures according to the settings described above 

at SP mode. To assess the receptor’s ability to distinguish between active and inactive 

compounds, the enrichment factor (EF), the area under the receiver operating 

characteristic curve (AUC-ROC), and robust initial enhancement (RIE) were 

calculated using the following formula 3.2, 3.3, and 3.4, respectively: 

𝐸𝐹 =

𝐻𝑖𝑡𝑠 𝑠𝑒𝑡

𝑛
𝐻𝑖𝑡𝑠 𝑎𝑙𝑙

𝑁

⁄           (3.2) 

Where: 

Hitsset is the number of actives in the selected subset n of the ranked database and 

Hitsall is the total number of actives in the database of N compounds.  

 

Formula AUC-ROC 

 𝐴𝑈𝐶 − 𝑅𝑂𝐶 =
1

𝑀
∑ (𝑋𝑗 −  𝑋𝑗−1) 𝑥 𝑌𝑗

𝑀

𝑗=1
      (3.3) 

Where: 

https://dude.docking.org/
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M is the total number of data points (usually, the number of compounds in the dataset) 

Xj is the false positive rate at the j-th data point 

Xj-1 is the false positive rate at the (j-1)-th data point 

Yj is the true positive rate at the j-th data point 

 

Formula of RIE 

𝑅𝐼𝐸 =
1

𝑛
∑ 𝑒−𝑎𝑥𝑖𝑛

𝑖=1

1

𝑁
(

1−𝑒−𝑎

𝑒𝑎 𝑁⁄ −1
)

         (3.4) 

Where: 

N is the total number of data points (usually, the number of compounds in the dataset) 

n is the number of actives 

a is an early recognition parameter 

xi is the relative rank where xi = ri/N (ri , represents its ranking position in the full list 

for i-th active molecule) 
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Table 3.2. Active apo-IDO1 inhibitors used to generate decoys 
 

No. Compound No. Compound No. Compound 

1. 

 
N2U (211) 

2. 

 
N39 (211) 

3. 

 
QPV (103) 

4. 

 
SLW (204) 

5. 

 
U6G (203) 

6. 

 
U41 (202) 

7. 

 
6RI (205) 

8. 

 
BMS-986205 (27) 

9. 

 
PF-06840003 - (24,212) 

10. 

 
GSK5628 (101) 

11. 

 
Compound D (104) 

12. 

 
B37 (213) 

13. 

 
URJ (214) 

14. 

 
C51 (27) 

15. 

 
C4V/ BMS-978587 (27) 

16. 

 
YRP (204) 

17. 

 
6ZI (205) 

18. 

 
6IZ (205) 
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3.3.4. Molecular Dynamics Simulations 

MD simulations were performed using NAMD (2.13, University of Illinois and 

Beckman Institute, Urbana, USA)  (215) and VMD (1.9.3, University of Illinois and 

Beckman Institute, Urbana, USA) (216). The preparation of the proteins and ligands 

was carried out using CHARMM36m (Forcefield option) and CGenFF, both 

accessible through the CHARMM-GUI web server (217). To initiate solvation and 

neutralization, a rectangular water box with a distance of 10.0 Å was incorporated, K+ 

and Cl- ions were introduced using the Monte-Carlo ion placing method. NAMD was 

employed for both equilibration and production processes, incorporating a 20 ps 

minimization step. Equilibration simulations were conducted to achieve a stable state 

prior to the commencement of data collection. These simulations were executed within 

the NPT ensemble comditions, with a constant pressure of 1 atm and a temperature of 

303 K. Following the successful equilibration, the production phase was simulated for 

a duration of 100 ns, representing the concluding phases of the MD simulations. 

The visualization of MD simulations trajectories involved the use of VMD, assessing 

the RMSD of the protein backbone atoms for the trajectories, which was measured by 

formula (3.1), and the root-mean-square fluctuation (RMSF) to evaluate the 

fluctuations of carbon alpha (Cα) atoms measured by formula (3.5). Furthermore, the 

compactness of the systems was evaluated through the calculation of the radius of 

gyration (RoG) using formula (3.6). The RoG values refer to the distribution of atoms 

in the molecular structure with respect to its center of mass.  

𝑅𝑀𝑆𝐹 = √
∑ ||𝑟𝑖𝑗− (𝑟𝑖)||2𝑁

𝑗=1

𝑁
       (3.5) 

Where: 

N is the total number of frames or snapshots in the simulation, 

𝑟𝑖𝑗 is the position vector of atom or residue i in frame j, 

(𝑟𝑖) is the average position of atom or residue i over all frames. 

𝑅𝑜𝐺 = √
∑ 𝑚𝑖 (𝑟𝑖− 𝑟𝐶𝑀)2𝑁

𝑖=1

∑ 𝑚𝑖 
𝑁
𝑖=1

        (3.6) 



41 

 

 

Where :  

N is the total number of particles (atoms or mass elements) 

𝑚𝑖  is the mass of particle i 

𝑟𝑖 is the distance of particle i from the axis of rotation 

𝑟𝐶𝑀 is the distance of center of mass 

The RMSD, RMSF, and RoG values were calculated using the script (see attachment), 

while the formation of salt bridges was conducted through Salt Bridges panel in VMD, 

which required importing the psf and dcd trajectory files to the window. The selection 

column was filled with “protein”, and frames with “all”. The oxygen-nitrogen distance 

remained the same with a cut-off value of 3.2 Å, while side-chain COM distance had 

no cut-off. Alternatively, salt bridge formation could be generated using the script (see 

attachment). 

 

3.3.5. Binding Free Energy Calculations using MM-GBSA 

In this study, the free binding energies between the receptor and the selected ligands 

were analyzed using MM-GBSA twice: first following molecular docking and then 

after MD simulations. For the first stage, the Prime MM-GBSA (2023-1, Schrödinger 

LLC, New York, NY, USA) was employed. The free binding energies were calculated 

using the all-atom optimized potential for liquid simulation (OPLS-AA) and the 

GB/SA method. The calculation involved the top 500 compounds, with three best 

poses for each compound. In the solvation model, the VSGB (218) solvation model 

was employed. Other options, including input ligand partial charges, implicit 

membrane, and constraints on flexible residues, were not selected. No adjustments 

were made to protein flexibility, and the distance from the ligand was maintained at 

0.0 Å. 

For the second analysis, MolAICal, a freely available software at 

https://molaical.github.io, was utilized to analyze binding free energies from the MD 

simulations trajectories. Through this tool, MM-GBSA values that capture the 

https://molaical.github.io/
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variations of ligand-receptor affinity throughout the MD simulations were computed 

(219). The underlying methodology can be summarized by the following equation: 

ΔG = Gcomplex – Gprotein – Gligand      (3.7) 

ΔG = ΔH - TΔS ≈ ΔEMM + ΔGsol - TΔS      (3.8) 

ΔEMM = ΔEinternal + ΔEelectrostatic + ΔEvdw      (3.9) 

ΔGsol = ΔGGB + ΔGSA        (3.10) 

 

The binding free energy (ΔG) is defined as the energy of the complex subtracted by 

the sum of energies of the receptor and the ligand (as expressed in formula 3.7). Each 

component in formula (3.7) can be computed using the equations presented in formula 

(3.8). In the formula (3.9), ΔEMM represents the alterations in gas-phase molecular 

mechanics energy, which encompasses ΔEinternal (bond, angle, and dihedral energies), 

ΔEelectrostatic (electrostatic energy), and ΔEvdw (van der Waals energy). ΔGsol is the 

summation of the solvation free energy including electronic or polar contribution 

(ΔGGB) and non-electronic or nonpolar contribution (ΔGSA) as shown in formula 

(3.10). The term -TΔS accounts for the conformational entropy change upon binding. 

Typically, a series of conformational snapshots obtained from MD simulations were 

subjected to normal-mode analysis to compute the conformational entropy change (- 

TΔS) (219,220). 

 

3.4. Fingerprint Similarity 

Fingerprint similarity was conducted using Canvas Similarity and Clustering (2023-1, 

Schrödinger LLC, New York, NY, USA). In this menu, there were three submenus: 

Fingerprints, Similarity and Cluster. In the Fingerprint settings, the precision was set 

to 64-bit, the fingerprint type to linear, and the atom typing scheme to “Daylight 

invariant atom types; bonds were distinguished by bond order”. In the Similarity 

submenu, default settings were kept. In the Cluster submenu, the linkage method was 

set to average for calculating clustering, and duplicate entries were grouped into a new 

group for each cluster. Each cluster had a different scaffold and was structurally 

diverse from the others. 
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3.5. Toxicity Prediction 

The toxicity parameters were predicted using the ProTox-II web-server (https://tox-

new.charite.de/protox_II/index.php?site=home), and Toxicity Estimation Software 

Tool (TEST) v.5.1.2. These tools determined potential adverse effects of the 

compounds by analyzing their molecular structures. The ProTox-II web-server 

provided several toxicity parameters including predicted toxicity class, organ toxicity, 

toxicity end points covering carcinogenicity, immunotoxicity, mutagenicity, 

cytotoxicity, and also 21st Century toxicology (Tox21) which covered two pathways: 

nuclear receptor signaling pathways and stress response pathways. The TEST software 

evaluated various factors, including 48-hr Daphnia magna LC50, oral rat LD50, and 

bioconcentration factor. Daphnia magna, an aquatic organism, was used to assess the 

potential toxicity of the candidates  in aquatic settings (221,222). The Bioconcentration 

Factor (BCF), on the other hand, quantifies a substance’s capacity to accumulate in an 

organism’s tissues from its external surroundings (223).  

 

https://tox-new.charite.de/protox_II/index.php?site=home
https://tox-new.charite.de/protox_II/index.php?site=home
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4. RESULTS 

 

The workflow of the whole virtual screening study was outlined in Figure 4.1. A total 

of 550,557 compounds (both natural and synthetic) imported from IBS were virtually 

screened using a series of methods, including drug-likeness analysis, shape similarity, 

pharmacophore modeling, molecular docking, MM-GBSA analysis, MD simulations, 

and toxicity analysis in parallel, sequential, and hybrid fashions.  

 

Figure 4.1. Workflow of this study 
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The ligand library was composed of four databases: natural compounds (NC, 69,064 

compounds), synthetic compounds 1 (SC1, 192,714 compounds), synthetic 

compounds 2 (SC2, 118,512 compounds), and synthetic compounds 3 (SC3, 170,267 

compounds). Ligands that met the initial drug-likeness filtration criteria underwent 

subsequent shape similarity and pharmacophore modeling screening. The query 

structures employed in this study were derived from previously published molecules 

known for their potent inhibition of apo-IDO1 and the models used in pharmacophore 

screening were derived from their receptor interactions. Following LBVS, the top 

2.5% of ligands were chosen for further evaluation through SBVS.  

Prior to molecular docking, validation studies were conducted, using redocking and 

enrichment analyses. The protein structure with PDB ID 6wjy was selected upon these 

validation studies. Compounds selected through LBVS were docked to the apo-IDO1 

structure at SP and then XP mode. The top-scoring 500 compounds, with three 

different conformations each, underwent binding free energy calculations using MM-

GBSA. 54 compounds with high free binding energy, ideal receptor interactions and 

structural diversity were identified. Among them top three compounds were selected 

for MD simulations. Trajectory analysis for the MD simulations included RMSD, 

RMSF, RoG, salt bridges formation, and MM-GBSA free binding energy. In the final 

stage, all the selected compounds were assessed for potential toxicity characteristics 

using a combination of a free web server and dedicated software.  

 

4.1. Calculation of Molecular Descriptors and Drug-likeness Filtering 

A number descriptors relevant to druglike chemical space (106,224–227) were 

calculated for the IBS library compounds to apply drug-likeness filter. The compounds 

outside the reference values defined by the software were filtered off (Table 4.1). 

These values apply for the 95% of the known drug molecules according to the 

software. The compounds that met these criteria were retained, resulting in a database 

of 33,874 constituents for natural and 360,735 constituents for synthetic compounds, 

respectively (Table 4.1). 
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Table 4.1. Molecular descriptors and drug-likeness filtering of the IBS libraries 
 

Descriptors Reference Value 
NC 

69,064a 

SC 1 

192,714a 

SC 2 

118,512a 

SC 3 

170,267a 

MW 130.0 – 725.0 -1,328 -1,959 -704 -725 

HBD 0.0 – 6.0 -135 -27 -6 -17 

HBA 2.0 – 20.0 -556 -2,546 -398 -659 

logP -2.0 – 6.5 -1,659 -10,390 -4,465 -4,819 

RB 0 – 15 -178 -201 -17 -87 

tPSA 7.0 – 200.0 -691 -277 -296 -150 

rtvFG 0 -30,643 -41,952 -22,065 -28,998 

#remaining 

ligands 
 33,874 b 135,362 b 90,561 b 134,812 b 

 

a The initial number for each database 
b The number of remaining ligands after filtering based on the molecular descriptors 

 

4.2. Ligand-Based Virtual Screening 

4.2.1. Shape Screening 

Shape screening was performed by 3D aligning all the compound in the refined 

databases with each query compound, known to be potent and selective apo-IDO1 

inhibitors. Each alignment was scored accounting for matching of the volumes and 

pharmacophoric groups, denoted as similarity score, and the database compounds were 

ranked according to their similarity scores with each query compound (Table 4.2). The 

top 2.5% of the ligands from each database according to their similarity scores were 

passed on to the subsequent steps. As shown in Table 4.3, the NC database had a range 

of similarity scores between 0.41 and 0.66, compiling from five different queries. 

Similarly, ligands in the SC databases exhibited values ranging from a minimum of 

0.42 to a maximum of 0.70. Afterwards, all the selected compounds were aggregated 

for each database, and duplicate entries within each database were removed. The 

remaining number of compounds for each database amounted to 3,243; 13,751; 8,740; 

and 14,364 for NC, SC1, SC2, and SC3, respectively (Table 4.3).  
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Table 4.2. Query structures as references for shape screening 
 

Query 

structures 
IDO1 HeLa IC50 (nM) LSQAa Molecular structureb 

QPV 9.0 Better 

 

SLW 9.9 Better 

 

U6G 9.0 Better 

 

U41 3.1 Better 

 

6RI 2.0 Better 

 

 

a LSQA (Ligand Structure Quality Assessment), to evaluate the quality of ligand structures concerning 

their fit to experimental data for each specific ligand of interest;  
b Hydrogen-bond acceptors were denoted in red (A), hydrogen-bond donors in blue (D), hydrophobic in 

green (H), negative ionic centers in dark red (N), positive ionic centers in dark blue (P), and aromatic 

rings in orange (R). 
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Table 4.3. Number of selected compoundsa from each query of each method from each 

library and the score rangesb obtained through shape similarity screening 

Query 

structures 

NC SC1 SC2 SC3 

#
se

le
ct

ed
 

co
m

p
o
u

n
d

s 
Range 

#
se

le
ct

ed
 

co
m

p
o
u

n
d

s 

Range 

#
se

le
ct

ed
 

co
m

p
o
u

n
d

s 

Range 

#
se

le
ct

ed
 

co
m

p
o
u

n
d

s 

Range 

QPV 847 
0.45 – 

0.66 
3384 

0.47 – 

0.68 
2264 

0.45 – 

0.68 
3370 

0.49 – 

0.66 

SLW 847 
0.46 – 

0.62 
3384 

0.48 – 

0.64 
2264 

0.48 – 

0.65 
3370 

0.47 – 

0.63 

U6G 847 
0.43 – 

0.61 
3384 

0.45 – 

0.63 
2264 

0.43 – 

0.59 
3370 

0.46 – 

0.63 

U41 847 
0.46 – 

0.62 
3384 

0.47 – 

0.70 
2264 

0.48 – 

0.64 
3370 

0.47 – 

0.63 

6RI 847 
0.41 – 

0.53 
3384 

0.42 – 

0.54 
2264 

0.42 – 

0.56 
3370 

0.44 – 

0.59 

Total 4235 16,920 11,320 16,850 

Non-duplicate 3243 13,751 8740 14,364 
 

a #selected compounds refer to the number of selected compounds in each database for every query 

structure or pharmacophore model with a cut-off 2.5% from the top. 
b The range refers to the Phase score, spanning from the top rank to the lower limit each database. 

 

4.2.2. Pharmacophore Screening 

Five inhibitor-apo-IDO1 crystallographic complexes were used to generate 

pharmacophore hypotheses, as mentioned in the methodology section. Regarding 

receptor-ligand complexes settings, one pharmacophore hypothesis was generated for 

each ligand-receptor complex. Each pharmacophore hypothesis comprised of 

pharmacophores such as hydrophobic regions, hydrogen bond acceptors and donors, 

aromatic features, positive and negative ionizable regions. Notably, among the 

selected models, 7b1o-SLW model exhibited the most comprehensive feature set, 

comprising one hydrogen-bond acceptor (A), one hydrogen-bond donor (D), two 

hydrophobic regions (H), and three aromatic rings (R), denoted as ADHHRRR (Table 

4.4).  
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Table 4.4. Pharmacophore models of the study and their features 
 

Pharmacophore 

model 

No. of 

Features 
Feature Seta Feature Visualizationb 

6v52-QPV 5 DHHRR 

 

6wjy-U41 5 DHHRR 

 

6wpe-U6G 5 DHRRR 

 

7b1o-SLW 7 ADHHRRR 

 

7rrc-6RI 6 DDHRRR 

 
 

a Feature abbreviation A for hydrogen-bond acceptor, D for hydrogen-bond donor, H for hydrophobic, 

R for aromatic ring. 
b Feature visualization included the representation of A as red balls, D as blue ball, H as green ball, and 

R as orange rings. Feature tolerance cut-off represented as gray transparent spheres around the features 

and excluded volumes as blur transparent spheres. 

 

The refined ligand databases were screened against each pharmacophore model in 

parallel. As resumed in Table 4.5, top-scoring 2.5% compounds of each library 
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according to the Phase screen score from each model were selected. When compared 

with each other, the results from 7b1o-SLW model exhibited low scores in all 

databases with the lowest Phase screen score of 0.76 in NC, 0.72 in SC1, 0.79 in SC2, 

and 0.82 in SC3. The remaining compounds were then retrieved from each database 

and duplicate compounds were removed. The remaining ligands for each database 

amounted to 3,556; 13,575; 9,079; and 14,152 ligands for NC, SC1, SC2, and SC3, 

respectively (Table 4.5).  

 

Table 4.5. Number of selected compoundsa from each pharmacophore model of each 

method from each library and the score rangesb obtained through 

pharmacophore screening 
 

Pharmacophore 

model 

NC SC1 SC2 SC3 

#
se

le
ct

ed
 

co
m

p
o
u

n
d

s 

Range 

#
se

le
ct

ed
 

co
m

p
o
u

n
d

s 

Range 

#
se

le
ct

ed
 

co
m

p
o
u

n
d

s 

Range 

#
se

le
ct

ed
 

co
m

p
o
u

n
d

s 

Range 

6v52-QPV 847 
0.93 – 

1.16 
3384 

0.92 – 

1.45 
2264 

0.94 – 

1.44 
3370 

0.95 – 

1.24 

7b1o-SLW 847 
0.76 – 

1.14 
3384 

0.72 – 

1.11 
2264 

0.79 – 

1.17 
3370 

0.82 – 

1.17 

6wpe-U6G 847 
0.88 – 

1.24 
3384 

0.88 – 

1.43 
2264 

0.87 – 

1.23 
3370 

0.92 – 

1.36 

6wjy-U41 847 
0.87 – 

1.24 
3384 

0.89 – 

1.25 
2264 

0.95 – 

1.34 
3370 

0.92 – 

1.36 

7rrc-6RI 847 
0.85 – 

1.09 
3384 

0.87 – 

1.20 
2264 

0.92 – 

1.23 
3370 

0.92 – 

1.23 

Total 4235  16,920  11,320  16,850  

Non-duplicate 3556  13,575  9079  14,152  
 

a #selected compounds refer to the number of selected compounds in each database for every query 

structure or pharmacophore model with a cut-off 2.5% from the top. 
b The range refers to the Phase score, spanning from the top rank to the lower limit each database. 

 

For the last step in ligand-base virtual screening, the filtered compounds were 

combined from shape similarity and pharmacophore modelling, then also checked for 

and cleared from any duplicate compounds. The number of remaining ligands for each 

database were 6287; 24,267; 15,340; and 25,347 ligands for NC, SC 1, SC 2, and SC 

3, respectively (Table 4.6). 



51 

 

 

Table 4.6. Number of total selected compounds from each library obtained through 

both shape similarity and pharmacophore screening 
 

LBVS Screening NC SC1 SC2 SC3 

Shape similaritya 3243 13,751 8,740 14,364 

Pharmacophoreb  3556 13,575 9,079 14,152 

Total 6799 27,326 17,819 28,516 

#selected compoundsc 6287 24,267 15,340 25,347 
 

a selected compounds from shape similarity screening 
b selected compounds from pharmacophore screening 
c selected compounds from both screening and after removed the non-duplicate compounds 

 

4.3. Structure-based virtual screening 

4.3.1. Validation Studies 

a. Redocking Study 

In the self-docking process, RMSD values for the five protein complexes yielded good 

results, specifically 0.26; 0.46; 0.30; 0.39; 0.16 Å for complexes 6v52, 6wjy, 6wpe, 

7b1o, and 7rrc, respectively. These results indicated that all the docked pose coincided 

with the original ligand in the binding site of apo-IDO1 receptor (Figure 4.2), 

confirming that the molecular docking process can reproduce poses similar to 

experimental binding modes.  
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Figure 4.2. The alignment of the docked poses and the original co-crystallized poses 

of (A) QPV, (B) U41, (C) U6G, (D) SLW, and (E) 6RI in the active site of 

apo-IDO1 structures with PDB IDs 6v52, 6wjy, 6wpe, 7b1o, and 7rrc, 

respectively. Ligands are shown in blue stick-and-ball representations for 

the predicted poses and in green stick-and-ball representations for the co-

crystallized poses. The protein backbones are presented in green ribbons. 
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b. Enrichment Studies 

To validate the molecular docking methodology and select an appropriate crystal 

structure for structure-based virtual screening part of the study, molecular docking of 

active and decoy molecules to the selected five apo-IDO1 structures was performed. 

The ability of each protein structure to enrich known active compounds among the top 

scored compounds was assessed. 18 previously published apo-IDO1 inhibitors were 

collected from various literature sources (Table 4.7), and 50 decoy compounds for each 

were generated using DUD-E web server, resulting in a total of 900 decoy compounds. 

Active and decoy compounds were docked to each apo-IDO1 crystal structure and the 

enrichment was analyses by calculating EF, AUC-ROC, and RIE (Table 4.7 and Figure 

4.3). The apo-IDO1 structure with PDB ID 6wjy exhibited the most promising results 

achieving an AUC-ROC of 0.90, RIE of 12.73, and an EF 20% of 4.2. Based on these 

favorable performance metrics, the 6wjy crystal structure was selected for subsequent 

virtual screening (Figure 4.3). 

 

Table 4.7.The enrichment study for five different complexes 
 

PDB ID AUC-ROC RIE 
EFa 

1% 

EFa 

2% 

EFa 

5% 

EFa 

10% 

EFa 

20% 

6v52 0.80 10.59 49.0 27.0 13.0 6.4 3.2 

7b1o 0.71 9.01 33.0 21.0 10.0 5.3 2.9 

6wpe 0.81 4.39 12.0 6.4 3.7 3.8 2.8 

6wjy 0.90 12.73 39.0 35.0 14.0 8.5 4.2 

7rrc 0.85 11.48 42.0 29.0 14.0 6.7 3.7 
 

a Enrichment Factors with respect to the sample size indicated as N% (1, 2, 5, 10, and 20%) 
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Figure 4.3. ROC curves for (a) 6v52, (b) 7b1o, (c) 6wpe, (d) 6wjy, and (e) 7rrc 

 

4.3.2. Molecular Docking 

Molecular docking was performed for the library compounds selected through LBVS. 

The compounds were docked the selected protein structure, 6wjy (Figure 4.4), at SP 

mode and subsequently XP mode. In the initial SP run, compounds with docking 

scores lower than -10.00 kcal/mol were removed. Within the NC database, 387 

compounds remained with docking scores ranging from -10.00 to -12.96 kcal/mol, 

while in the SC database, 7646 compounds remained with docking scores ranging from 
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-10.00 to -13.28 kcal/mol. Subsequently, the total 8033 compounds from both natural 

and synthetic compounds were redocked and rescored at the XP mode, which provides 

higher precision but requires more time to complete compared to the SP mode. Similar 

to SP, a cut-off docking score value of -10.00 kcal/mol was applied. The top-scoring 

500 compounds, each with their three best poses, were selected for MM-GBSA 

calculations. 

 

Figure 4.4. Apo-IDO1 structure complexed with small-molecule inhibitor U41 (PDB 

ID 6wjy)  

 

4.3.3. Binding Free Energy Calculations and Fingerprint Similarity  

MM-GBSA method was used to calculate binding free energy (ΔG) values for the top 

500 compounds with their three best poses, adding up to 1500 ligand-receptor 

complexes. In addition, the compounds were clustered according to structural 

similarity using fingerprint method to eliminate structurally similar compounds and 

provide structural diversity among the shortlisted compounds. There were 54 clusters 

with clustering strain of 1.083 from fingerprint similarity evaluation (Figure 4.5). 

According to the binding free energy calculations, top 10 compounds with structural 

diversity are provided in Table 4.8.  
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Table 4.8. Selected 10 compounds with best MM-GBSA ΔG values and structural 

diversity and U41 
 

No. Compound Molecular structure 
Docking score 

(kcal/mol) 

MM-GBSA ΔG 

(kcal/mol) 

1. STOCK2S-34127 

 

-12.223 -128.684 

2. STOCK3S-69016 

 

-11.527 -120.993 

3. STOCK2S-94986 

 

-12.462 -119.968 

4. STOCK7S-27591 

 

-12.037 -119.475 

5. STOCK7S-17282 

 

-12.470 -118.681 

6. STOCK6S-24185 

 

-12.301 -118.109 

7. STOCK3S-41956 

 

-12.417 -116.696 

8. STOCK1N-68588 

 

-12.659 -113.960 

9. STOCK6S-48507 

 

-11.583 -113.392 

10. STOCK6S-09214 

 

-12.361 -111.537 

11. U41 

 

-12.208 -119.780 
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Figure 4.5. Fingerprint similarity prediction for the top 500 compounds. After the 

evaluation, there were 54 clusters with a clustering strain of 1.083. 
 

 

Among the top 10 selected compounds, ΔG values of STOCK2S-34127, STOCK3S-

69016, and STOCK2S-94986 were -128.684, -120.993, and -119.968 kcal/mol, 

respectively, better than that of the co-crystallized ligand, U41 (-119.780 kcal/mol) 

(Table 4.8). These compounds were predicted to bind to the IDO1 active site, forming 

hydrogen bond interactions with SER167, ARG343, HIS346, and π-π stacking 

interactions with TYR126, PHE214 (Table 4.9). These compounds were selected for 

further MD simulations study. 

 

 

 

 

 

 

 

 

 

 



58 

 

 

Table 4.9. Amino acids interactions of the top three compounds predicted by 

molecular docking and those of U41 identified experimentally 
 

No. Ligand Amino acid 
Type of 

interaction 
Distance (Å) 

1. STOCK2S-34127 

SER167 

ARG343 

HIS346 

H-bond 

H-bond 

H-bond 

1.90 

2.26 

2.14 

2. STOCK3S-69016 

TYR126 

SER167 

PHE214 

ARG343 

HIS346 

π-π stacking 

H-bond 

π-π stacking 

H-bond 

H-bond 

4.83 

2.03 

4.91 

2.26 

2.14 

3. STOCK2S-94986 

TYR126 

SER167 

PHE214 

HIS346 

π-π stacking 

H-bond 

π-π stacking 

π-π stacking 

5.04 

1.97; 2.19 

4.32 

4.48 

4. U41 

TYR126 

SER167 

ARG343 

HIS346 

π-π stacking 

H-bond 

H-bond 

H-bond 

4.84 

1.93 

2.26 

2.14 

 

4.3.4. Molecular Dynamics Simulations 

MD simulations were performed for four complexes including the top three selected 

compounds (STOCK2S-34127, STOCK3S-69016, and STOCK2S-94986) and the co-

crystallized ligand (U41), as well as for the ligand-free protein, for 100 ns, to evaluate 

stability of the predicted binding of the selected compounds to IDO1, as well as 

structural evolution of IDO1 upon inhibitor binding. The dynamic stability and 

behavior of each complex were evaluated by analyzing conformational changes, 

residue fluctuations, and compactness in protein-ligand complexes calculating RMSD, 

RMSF, and RoG values, respectively. Furthermore, the presence of salt bridges in each 

of the five complexes was analyzed. The trajectory analyses showed that all of the 

systems maintained good stability through 100 ns with the average RMSD values of 
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protein backbone atoms below 2.00 Å (Figure 4.6A). The RMSD value of the ligand-

free system was 1.43 Å, followed by IDO1-U41 complex (1.44 Å), IDO1-STOCK2S-

94986 complex (1.64 Å), IDO1-STOCK2S-34127 complex (1.68 Å), and IDO1-

STOCK3S-69016 complex (1.76 Å).  

The RMSF values were analyzed to assess the degree of residue fluctuations of Cα 

atoms in each complex, and four high fluctuating regions were identified: (i) MET10, 

(ii) the region between GLY284 and ALA288, (iii) the region between SER359 and 

PRO362 and between GLY380 and THR382, and (iv) the region between LEU400 

and LYS401 (Figure 4.6B). 

The compactness of the systems was evaluated by analysis of RoG values for the whole 

protein. As shown in the Figure 4.6C, all the complexes exhibited good compactness 

from the beginning to the end of the simulation since the differences between the 

highest and the lowest RoG values were quite low, which were calculated as 0.352 Å 

(IDO1-STOCK2S-34127 complex); 0.488 Å (IDO1-STOCK3S-69016 complex); 

0.386 Å (IDO1-STOCK2S-94986 complex); 0.476 Å (IDO1-U41 complex); and 0.549 

Å (ligand-free IDO1).  
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Figure 4.6. The MD simulations trajectories for the ligand-free and ligand-bound 

IDO1 structures with a duration of 100 ns depicting (A) RMSD values, (B) 

average RMSF values for each amino acid residue, and (C) RoG values 

over time. 
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The complex with co-crystallized ligand (U41) exhibited the highest number of salt 

bridges, totaling 49 electrostatic interactions. It was followed by the ligand-free IDO1 

(47 salt bridges), the IDO1-STOCK2S-34127 complex (45 salt bridges), and both the 

IDO1-STOCK3S-69016 and IDO1-STOCK2S-94986 complexes (44 salt bridges). All 

the systems shared the same 33 salt bridges. However, three salt bridges—ASP149-

LYS135, GLU119-ARG304, and GLU14-LYS13—were common to all systems 

except the IDO1- STOCK2S-94986 complex. Additionally, each complex had unique 

salt bridges exclusive to that complex. For example, in the IDO1-STOCK2S-34127 

complex, there were ASP245-LYS238 and ASP98-LYS94 salt bridges. In the IDO1- 

STOCK3S-69016 complex, there were ASP158-LYS161, ASP383-LYS238, and 

GLU202-LYS179 salt bridges. In the IDO1-STOCK2S-94986 complex there was the 

unique GLU396-LYS401 salt bridge. The IDO1-U41 complex exhibited three unique 

salt bridges (ASP98-LYS101, GLU146-LYS141, and GLU30-LYS136). Lastly, 

ligand-free IDO1 had two unique salt bridges: ASP18-LYS179 and ASP38-ARG58. 

All systems exhibited combinations such as ASP-/ARG+, ASP-/LYS+, GLU-/ARG+, 

and GLU-/LYS+ in their salt bridge interactions. Notably, the number of salt bridges 

containing LYS+ exceeded those containing ARG+ (Figure 4.7). 

 

Figure 4.7. Salt bridges formed in each system throughout the MD simulations and 

their % distribution according to the types indicated as ASP-/ARG+ (dark 

gray bar), ASP-/LYS+ (dark blue bar), GLU-/ARG+ (light gray bar), and 

GLU-/LYS+ (light blue bar). 
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MM-GBSA ΔG was calculated for each frame for the MD simulation trajectories. The 

average binding free energy impacts of the energy components in protein-ligand 

interactions were obtained from each calculated trajectory frame for the co-crystallized 

ligand and top three hit compounds as presented in Table 4.10 and Figure 4.8.  

 

Table 4.10. Minimum, maximum, average binding free energy values of the top three 

ligands, and U41 
 

 Binding free energy (kcal/mol) 

 STOCK2S-34127 STOCK3S-69016 STOCK2S-94986 U41 

Minimum -56.12 -56.90 -54.75 -47.60 

Maximum -33.28 -45.98 -23.16 -35.10 

Average -47.90 -51.53 -43.37 -42.46 

Standard 

deviation 
±3.55 ±2.51 ±5.16 ±2.64 

 

Figure 4.8. ΔG variation over time for ligand-bound IDO1 structures 

 

All complexes showed favorable binding with good binding free energy during the 

100 ns MD simulations. Among them, the IDO1- STOCK3S-69016 complex tended 

to have the highest relative binding affinity (average ΔG = -51.55 kcal/mol), followed 

by the IDO1-STOCK2S-34127 complex and IDO1-STOCK2S-94986 complex, with 

average ΔG values of -47.90 and -43.31 kcal/mol, respectively. The IDO1-U41 

complex displayed the lowest binding affinity with the average ΔG value of  -42.51 

kcal/mol. It is worth noting that these total binding free energies were calculated 
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without considering entropic considerations, as obtaining a converged value for 

conformational entropy is challenging (219). 

 

4.4. Toxicity Prediction 

The findings indicated that all the candidate compounds were categorized into toxicity 

class 5. This classification aligns with the predicted oral LD50 values, where 

STOCK2S-34127, STOCK3S-69016, and STOCK2S-94986 had values of 2580, 

2500, 2580 mg/kg, respectively. Concerning hepatotoxicity prediction, STOCK3S-

69016 and STOCK2S-94986 exhibited a tendency toward hepatotoxicity, while 

STOCK2S-34127 was considered non-hepatotoxic since the prediction was inactive. 

Regarding various toxicity endpoints, STOCK2S-34127 was anticipated to be a 

carcinogen, whereas STOCK2S-94986 was deemed potentially immunotoxic. 

Additionally, all compounds exhibited 48-hour LC50 values for Daphnia magna of 

2.43, 2.65, and 0.79 mg/L for STOCK2S-34127, STOCK3S-69016 and STOCK2S-

94986, respectively. All compounds also showed very low BCF values, with the values 

of 4.53, 11.42, 18.16 for STOCK2S-34127, STOCK3S-69016 and STOCK2S-94986, 

respectively. Moreover, within the realm of 21st Century toxicology, known as Tox21, 

the two distinct pathways, namely the nuclear receptor signaling pathways and the 

stress response pathways, were shown inactive in all compounds (Table 4.11).  
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Table 4.11. Toxicity Prediction of top three candidate compounds 
 

Toxicity Parameters 
STOCK2S-

34127 

STOCK3S-

69016 

STOCK2S-

94986 

Predicted Toxicity Class 5 5 5 

Organ toxicity    

Hepatotoxicity Inactive Active Active 

Toxicity end points    

Carcinogenicity Active Inactive Inactive 

Immunotoxicity Inactive Inactive Active 

Mutagenicity Inactive Inactive Inactive 

Cytotoxicity Inactive Inactive Inactive 

Daphnia magna LC50 (48hr) 

(mg/L) 
2.43 2.65 0.79 

Predicted LD50 (mg/kg) 2580 2500 2580 

Bioconcentration factor 4.53 11.42 18.16 

Tox21-Nuclear receptor signaling 

pathways 
   

Aryl hydrocarbon Receptor (AhR) Inactive Inactive Inactive 

Androgen Receptor (AndR) Inactive Inactive Inactive 

Androgen Receptor Ligand 

Binding Domain (AR-LBD) 
Inactive Inactive Inactive 

Aromatase Inactive Inactive Inactive 

Estrogen Receptor Alpha (ER) Inactive Inactive Inactive 

Estrogen Receptor Ligand Binding 

Domain (ER-LBD) 
Inactive Inactive Inactive 

Peroxisome Proliferator Activated 

Receptor Gamma (PPAR-Gamma) 
Inactive Inactive Inactive 

Tox21-Stress response pathways    

Nuclear factor (erythroid-derived 

2)-like 2/antioxidant responsive 

element (nrf2/ARE) 

Inactive Inactive Inactive 

Heat shock factor response element 

(HSE) 
Inactive Inactive Inactive 

Mitochondrial Membrane Potential 

(MMP) 
Inactive Inactive Inactive 

Phosphoprotein (Tumor 

Suppressor) p53 
Inactive Inactive Inactive 

ATPase family AAA domain-

containing protein 5 (ATAD5) 
Inactive Inactive Inactive 
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5. DISCUSSION 

 

The study aims to propose new small-molecule inhibitors specifically targeting apo-

IDO1 through virtual screening, including both ligand- and structure-based 

approaches. Exploring the inhibition of apo-IDO1, or type IV IDO1 inhibition, offers 

an alternative strategy to reduce the conversion of tryptophan, specifically targeting 

the heme-free form of IDO1 enzyme. Heme is included as cofactor in many enzymes 

prevalent in the body, thus heme-binding inhibitors risk interacting off-targets. 

According to Nelp et al. (2018), heme cofactor of IDO1 is labile, dynamic, and 

reversible (27). Additionally, a communication link exists between IDO1 and heme 

catabolism facilitated by heme oxygenase 1, resulting in reduced IDO1 activity due to 

heme starvation (228). Heme oxygenase belongs to a group of heme-sparing agents 

crucial in creating the apo-form of IDO1. Consequently, focusing on the apo-IDO1 

provides a unique approach to counteracting immunosuppression.  

So far, only BMS-986205, a type IV IDO1 inhibitor, has progressed to phase III 

clinical trials. On the other hand, several compounds have been identified as inhibitors 

of apo-IDO1, with GSK5628 being one of them. GSK5628 can effectively compete 

with the IDO1 heme cofactor, enabling it to bind to apo-IDO1 (101). However, given 

that only one compound has reached clinical trials, there is a need to explore and 

identify new compounds that are structurally diverse and have the potential to inhibit 

the apo-form of IDO1. 

This study commenced by obtaining a commercial database of 69,064 natural and 

481,493 synthetic compounds from the IBS. Initially, these database compounds were 

modelled and geometrically optimized. The first filtering step of the database 

compounds in the virtual screening process involved the calculation of molecular 

descriptors for drug-likeness. Utilizing drug-likeness filters in drug discovery provides 

a significant benefit by directing the overall chemical space toward the desired 

chemical space. Since compounds with similarities tend to share a comparable 

chemical space, and similar compounds generally exhibit similar activity, narrowing 

down the chemical space through drug-likeness filtering theoretically enhances the 

likelihood of identifying potential drugs (229,230). 
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The criteria for filtering included MW, HBD and HBA counts, and predicted logP. The 

first four criteria mentioned are commonly associated with the Lipinski’s Rule of Five, 

widely used in medicinal chemistry to assess the likelihood of small molecules in terms 

of its oral bioavailability and permeability (106). However, for this study, we followed 

the reference values specified by the utilized software, which provides recommended 

values based on the properties of 95% of known drugs. Additional criteria included 

number of rotatable bonds and tPSA (231). Moreover, taking into account the presence 

of reactive functional groups (rtvFG), as their presence could lead to false positives in 

high-throughput screening assays (232), thus, compounds containing any rtvFG were 

excluded from consideration. As a result, a total of 394,609 compounds were selected 

for LBVS. 

The ligands that passed through the drug-likeness filtering process were subsequently 

subjected to ligand-based virtual screening, which included shape similarity and 

pharmacophore modeling. In this study, five query structures, namely QPV, U41, 

U6G, SLW, and 6RI, which have been reported for their potent and selective inhibitory 

effects on apo-IDO1, were utilized. These structures were elucidated as apo-IDO1 

binders within the IDO1 PDB structures, specifically 6v52, 6wjy, 6wpe, 7b1o, and 

7rrc, respectively.  

During the shape screening step, the five small inhibitors mentioned above served as 

query compounds. Shape screening was performed via a Gaussian overlay technique 

which defines a molecule’s shape based on its volume, determined using a formula 

that combines various sets and their intersections. The Gaussian sphere model is used 

to represent a molecule by utilizing a collection of overlapping Gaussian spheres and 

computing the integral volume across all these overlapping Gaussians. To represent 

the molecular shape of a reference molecule, a Gaussian function is utilized. This 

function is employed to create a 3D volumetric map that characterizes the shape of the 

molecule. To compare the shape of a group of ligands to the reference molecule, a 

similar representation based on Gaussian functions is generated for the target 

molecules. The similarity between the shapes of these two molecules is evaluated by 

superimposing these Gaussian functions and calculating a similarity score. The greater  

the resemblance between the shapes of the two molecules, the higher the resulting 

similarity score (126,233). In this study, the preference was to select the top 2.5% to 
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pass on to the SBVS step rather than defining a similarity score cut-off since similarity 

score ranges vary depending on the query structures. 

Conversely, in pharmacophore-based virtual screening, the process initiated with the 

creation of pharmacophore hypotheses, which served as templates or pharmacophore 

models. Unlike shape similarity, which exclusively employed query ligand structures, 

the pharmacophore models utilized ligand-enzyme complexes as templates. This 

approach has the potential to uncover the essential interactions within the binding 

active site of protein. The primary objective of this screening was to identify molecules 

that possess chemical features mimicking the ligand-receptor interactions featured by 

the pharmacophore model. The initial step involved the establishment of 

pharmacophore sites for each model. Pharmacophore sites represent the shared 

structural features or specific spatial arrangements of atoms or functional groups 

within a molecule that are essential for its interaction with a biological target, 

specifically in the context of apo-IDO1 enzymes. These sites, also referred to as 

pharmacophoric features, are fundamental elements that contribute to the molecule’s 

capacity to bind to and influence the target or enzyme. These sites encompass 

characteristics such as hydrogen bond acceptor or donor (A or D), aromatic rings (R), 

hydrophobic regions (H), negatively charged group (N), and positively charged group 

(P). Subsequently, the refined ligand library was screened against the five 

pharmacophore models and the ligands were ranked according to their Phase screen 

scores. 

Similar as shape screening, the preference was to select the top 2.5% of the screened 

libraries according to Phase screen scores and filter off the rest since for each 

pharmacophore model the Phase screen score ranges vary like in the case of similarity 

scores.  While some of these hits may resemble known active compounds, others could 

introduce entirely new structural frameworks (131). The quest for compounds with 

different structural backbones, while maintaining a shared biological activity, is 

commonly known as scaffold hopping (31). This aspect represents a fundamental 

contrast between pharmacophore modeling and shape similarity. While shape 

similarity focuses on the functional groups present in the screened ligands compared 

to the reference ligand, pharmacophore screening places significant emphasis on the 

types of possible interactions, such as hydrogen bonds, charged interaction, metal 
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interactions, hydrophobic, and aromatic interactions (136). Consequently, the 

pharmacophore screening has the potential to yield structurally diverse compounds 

that align with the template in terms of interaction types. 

Following the two ligand-based virtual screening approaches, the selection process 

involved choosing the top 2.5% of the most promising ligands from each approach for 

further assessment in the context of structure-based virtual screening. Subsequently, 

all the filtered ligands from each database were combined, eliminating any duplicate 

entries, adding up to 71,241 compounds. 

Before advancing to the structure-based virtual screening phase, validation studies 

including redocking and enrichment studies were conducted to ensure that the 

molecular docking protocol works and to determine which PDB structure should be 

utilized in subsequent steps. First redocking of each co-crystallized inhibitor of the 

five apo-IDO1 structures to its respective receptor was performed. Typically, the 

predictive quality of the docking procedure was assessed by comparing the predicted 

binding poses with the original poses of the co-crystallized inhibitors. This was 

achieved by measuring the RMSD value which should ideally be lower than 2.0 Å. 

The outcomes suggest that the docked poses align closely with the original ligand 

within the binding site of the apo-IDO1 enzyme (Figure 4.2) with RMSD values below 

0.5 Å, indicating reliability of the molecular docking process. 

Enrichment capacity of a molecular docking model, in this context, serves as a measure 

of the virtual screening method’s performance in distinguishing known active 

compounds from decoys or inactive compounds. True positives, which are the known 

active compounds correctly identified by the virtual screening method, play a crucial 

role in this calculation. The higher the number of true positives identified during the 

enrichment calculation, the greater the enrichment factor. This, in turn, signifies the 

effectiveness of the virtual screening method in identifying active compounds within 

the database and enriching the dataset with such active compounds, surpassing what 

would be expected by random selection. In this study, PDB ID 6wjy demonstrated the 

most favorable enrichment factor, as indicated by metrics such as AUC-ROC of 0.90, 

RIE of 12.73, and EF of 39.0, 35.0, 14.0, 8.5, and 4.2 at 1%, 2%, 5%, 10%, and 20%, 

respectively. 
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In the subsequent step, molecular docking studies were conducted for all the filtered 

ligands using the apo-IDO1 structure with PDB ID 6wjy. Firstly, the ligands were 

docked at the SP mode and those with docking scores lower than -10.00 kcal/mol were 

selected, which added up to of 8033 compounds. These compounds were redocked and 

rescored at XP mode and the top-scoring 500 compounds with three best poses for 

each were selected. The XP mode involves a more thorough sampling process 

compared to the SP mode. It initiates with SP sampling before implementing its unique 

anchor-and-grow procedure. The XP mode also utilizes a more advanced scoring 

function, which is more stringent than the SP mode. This stricter scoring function 

places higher demands on the shape compatibility between the ligand and the receptor, 

effectively eliminating false positives that might be allowed through by SP (148). 

For the 500 selected compounds with three poses each, ΔG was calculated using MM-

GBSA method. In addition, a fingerprint similarity clustering was performed to ensure 

structural diversity among the candidate compounds, which resulted a clustering strain 

of 1.083. The clustering strain expresses the ratio between the total distances of 

neighboring pairs in the dendrogram and the total distances between the nearest 

neighbors in all pairs. A lower strain value (minimum 1.0) indicates a more precise 

alignment of the dendrogram’s order with the actual distances between objects. 

Furthermore, the fingerprint similarity yielded 54 clusters, consisting of eight natural 

and 46 synthetic compounds. 

Compounds with the best MM-GBSA ΔG values, listed sequentially, included 

STOCK2S-34127, STOCK3S-69016, STOCK2S-94986, STOCK7S-27591, 

STOCK7S-17282, STOCK6S-24185, STOCK3S-41956, STOCK1N-68588, 

STOCK6S-48507, and STOCK6S-09214. Within the top 10 chosen compounds, only 

three (STOCK2S-34127, STOCK3S-69016, and STOCK2S-94986) exhibited better 

MM-GBSA ΔG values than U41 and demonstrated structural diversity. These three 

hits, along with U41, were then visually inspected to reveal the involved residues, 

interaction types, and the binding location of the residues. 

According to Röhrig et.al. (2021), the structure of apo-IDO1 inhibitors comprises three 

different moieties binding to different pockets. The central moiety binds to the heme-

binding pocket, while the two side moieties bind to pocket A and D (76). Different 
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compounds exhibited distinct interaction patterns. As shown in the Figure 5.1, each 

compound can be divided into three moieties that bind to different pocket. The central 

moieties for each compound consist of 3-(3-oxobutyl)-2-thioxothiazolidin-4-one, N-

(5-(methylthio)-1,3,4-thiadiazol-2-yl)acetamide, 1,3,4-thiadiazol, and (S)-3-(3-

(methylamino)bicyclo[1.1.1]pentan-1-yl)butan-2-one, which occupied the heme-

binding pocket for STOCK2S-34127, STOCK3S-69016, STOCK2S-94986, and U41, 

respectively.  

The moieties occupying pocket A include 5-ethyl-N-methyl-1,3,4-thiadiazol-2-amine, 

N-(4-chlorophenyl)acetamide, 1-(2-fluorophenyl)-3-methylurea, and 4-fluoro-N-

methylaniline from STOCK2S-34127, STOCK3S-69016, STOCK2S-94986, and U41, 

respectively. On the other side, the moieties occupying pocket D consist of 1-bromo-

3-vinylbenzene, 1-chloro-2-methylbenzene, (2,4-dichlorobenzyl)(methyl)sulfane, and 

1-(3-chlorophenyl)ethan-1-one for STOCK2S-34127, STOCK3S-69016, STOCK2S-

94986, and U41, respectively. Each compound was then visually inspected to reveal 

the interaction type of each moiety for each compound (Figure 5.1). 

 

 

Figure 5.1. The selected hits from virtual screening along with U41, and their three 

moieties concerning apo-IDO1 are illustrated. The brown-dashed regions 

fit in pocket A, the purple-dashed regions in heme-binding pocket, and the 

green-dashed regions in pocket D of the apo-IDO1 active site. 
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Receptor interactions of the three hits, along with U41, were visually inspected, 

revealing a common hydrogen bond interaction with SER167 among all compounds. 

Compound STOCK2S-94986 formed two distinct hydrogen bonds with SER167 at 

distances of 1.97 Å and 2.19 Å (Table 4.9 and Figure 5.2). These interactions align 

with the finding by White et al. (2020), indicating that U41 formed a hydrogen bond 

with the side chain of SER167 in the pocket A region via its amide NH (103).  

With the exception of compound STOCK2S-94986, all compounds exhibited water-

mediated hydrogen bond interactions with ARG343 and HIS346. The water molecules 

play as mediator between the amide carbonyl oxygen and the side chain of HIS346. 

Differently, STOCK2S-94986 exhibited a different type of interaction with HIS346, 

forming π-π stacking since there was no water molecule. Almost all compounds 

exhibited π-π stacking interactions with TYR126, except for compound STOCK2S-

34127. Furthermore, π-π stacking was also observed with PHE214 in the case of 

compounds STOCK3S-69016 and STOCK2S-94986 (Figure 5.2).  

The following stage was MD simulations of the apo-IDO1 structure in complex with 

the selected three hits and U41, as well as at ligand-free state. In recent years, there 

has been a significant increase in research related to MD simulations, as evidenced by 

the growing number of published papers on the subject (140). This surge in interest is 

primarily attributed to the valuable insights provided by MD simulations, which offer 

a detailed understanding of the dynamic evolution of the molecules within complex 

systems through a limited time scale. These insights are often challenging to obtain 

through experimental techniques alone. Moreover, MD simulations shed light on the 

dynamic behavior of water molecules and salt ions within the system. This information 

is essential for understanding the critical roles these elements play in protein function 

and ligand binding (234–236). In the context of drug discovery, MD simulations offer 

several advantages. It is possible to monitor stability of key ligand-receptor 

interactions at atomic level and predict any structural rearrangements induced by the 

ligand (237). Importantly, these simulations can provide more accurate estimates of 

ligand binding affinities compared to traditional molecular docking methods (238). 
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Figure 5.2. The 3D and 2D interaction visualizations of (A) STOCK2S-34127, (B) 

STOCK3S-69016, (C) STOCK2S-94986, and (D) U41 were presented. 

The docked ligands were depicted as green stick-and-ball representations, 

the involved residues shown in yellow stick-and-ball representations, and 

the protein backbones are presented in green ribbons. 
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In this study, MD simulations were performed to assess structural/conformational 

changes and stability (as indicated by RMSD values), residue fluctuations (as indicated 

by RMSF values), compactness in protein-ligand complexes (as indicated by RoG 

values), salt bridge formation, and variation of ligand-receptor affinity (as indicated 

by MM-GBSA ΔG). A set of five IDO1 systems was employed, including the 

complexes with the three hit compounds and the co-crystallized ligand, U41, and one 

ligand-free system. The ligand-free system served as a reference state to investigate 

the response of the biomolecular system to perturbations in the absence of a ligand, a 

concept supported by prior studies (239,240). The ligand-free system allowed us to 

detect atomic level conformational changes and compare them to the complex with 

ligands. The average protein backbone atoms RMSD values of the five systems 

through 100 ns were very close to each other ranging from 1.44 Å to1.76 Å, showing 

that the stability of IDO1 was maintained when bound to the inhibitors. It strengthened 

with the total energy of each complex basically in a stable state, with average total 

energies of -209,232, -209,380, -209,297, -209,020, and -209,204 kcal/mol for 

complexes with STOCK2S-34127, STOCK3S-69016, STOCK2S-94986, U41, and 

ligand-free, respectively (Figure 5.3). 

 

Figure 5.3. Total energy plots of the protein complexes with ligand-bound states and 

the ligand-free state during 100 ns of MD simulations. 

Residue fluctuations were analyzed to discern the flexibility or rigidity of individual 

residue and pinpoint the significant interactions between the ligand and the protein 

receptor. In this study, there were four distinct regions that exhibited sharp fluctuations 
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as indicated by the RMSF values of Cα atoms: (i) MET10, the first N terminal residue, 

(ii) the region between GLY284 and ALA288, (iii) the region between SER359 and 

PRO362, and (iv) the final region in the terminal sequence between LEU400 and 

LYS401. The region (i) belongs to the N-terminus domain (NTD), while regions (ii), 

(iii), and (iv) belong to the C-terminus domain (CTD). Compared to the NTD (residues 

1-154), the CTD has larger residues (residues 155-403), and comprises 13 α-helices 

(G-S) and two 310 helices (81,241). In this RMSF assessment, the marked residues, 

particularly residues in region (ii) such as HIS287 and ALA288 in the F helix and 

SER359 in the I helix from region (iii), show fluctuations. The observed fluctuations 

in these residues suggest reduced stability, leading to their exclusion as key residue 

interactions in the apo-IDO1 complex. These four regions were far from the active site, 

as depicted in Figure 5.4. 

 

Figure 5.4. The four regions that experienced the most fluctuation according to RMSF 

values are highlighted. The active site is represented by the red-dashed 

box, and residues are depicted using yellow stick-and-ball representations. 
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Another aspect of evaluation is the compactness of the system, which is indicated by 

the RoG values of all protein atoms. All complexes demonstrated good compactness, 

with the differences between the maximum and minimum RoG values for each 

complex remaining below 1.0 Å throughout the simulations. The IDO1-STOCK2S-

34127 complex displayed the smallest difference, with the value of 0.352 Å, 

suggesting that it was the most compact system among all the complexes. 

Additionally, the creation of salt bridges in MD simulations is a significant factor in 

increasing the stability of complex systems at elevated temperatures when contrasted 

with standard room temperature conditions (242). Salt bridges, in essence, represent 

the electrostatic interactions occurring between positively charged amino acids like 

lysine, arginine, and histidine, and negatively charged amino acids such as aspartic 

acid and glutamic acid within a biomolecular system (243). Several salt bridges were 

observed to form throughout 100 ns of MD simulations from each complex. Each 

complex exhibited these salt bridge interactions, and a total of 33 identical salt bridges 

were formed across all complexes. When considering various combinations of salt 

bridge interaction, such as ASP-/ARG+, ASP-/LYS+, GLU-/ARG+, and GLU-/LYS+, 

it was observed that salt bridges containing LYS+ were more prevalent than those 

containing ARG+. This finding contrasts with the previous research, which suggested 

that ARG+ containing salt bridges were dominant over LYS+ containing salt bridges 

due to the guanidinium group’s resonance stabilization (244,245). However, this result 

could be influenced by several factors, including the distance between interacting 

residues, the presence of other charged residues nearby, and the orientation of each 

side chain. 

Precise theoretical calculations of binding free energies using numerical simulation 

have gained increasing importance in various research areas, including rational drug 

design, protein folding, protein-protein interactions (PPIs) and drug design (246). In 

the context of drug design, binding free energy is frequently employed to assess the 

strength of interaction between a receptor and a drug molecule, as finding the most 

potent ligand toward certain receptor is a key objective (247). Several approaches have 

been successfully employed for theoretical free energy calculations. Molecular 

docking and alchemical free energy (AFE) techniques play crucial roles in estimating 

binding free energy affinities for such complexes. Molecular docking offers 
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advantages in virtual screening by providing efficient and cost-effective predictions of 

binding affinity. However, it has shortcomings in terms of accuracy (248,249). On the 

other hand, AFE methods, such as FEP and thermodynamic integration (TI), which are 

theoretically accurate and rigorous but suffer from slower execution, have substantial 

environmental reorganization and high computational cost. In the quest for an 

appropriate binding free energy method that combines accuracy and efficiency, it is 

recommended to utilize the widely recognized end-point binding free energy method 

developed by Kollman, known as MM-GBSA (250). The main distinction, beside 

accuracy and efficiency, lies in its incorporation of implicit solvent and entropic effects 

in MM-GBSA calculations, which are not included in molecular docking and AFE 

methods (247).  

The stability of five complexes exhibited good results after MD simulations for 100 

ns. These results confirmed that the binding of all ligands in the binding site of apo-

IDO1 were firm and steady. However, the trajectories of all complexes should be 

analyzed in terms of changes in ΔG to further measure how stable ligand-receptor 

complexes were. As explained in the previous section, the formula for calculating ΔG 

primarily comprises enthalpy energy (ΔH) and conformational entropy associated with 

ligand binding (-TΔS). ΔH can be computed by summing the molecular mechanics 

energy in the gas phase (ΔEMM) and solvation free energy (ΔGsol). ΔEMM encompasses 

changes in the internal energies (ΔEint, including bond, angle, and dihedral angles), 

electrostatic energies (ΔEele), and the van der Waals energies (ΔEvdW). Conversely, 

ΔGsol consists of the electrostatic polar contribution, including ΔGGB, and the nonpolar 

contribution, encompassing ΔGSA. It is worth noting that conformational entropy 

related to ligand binding is often omitted due to its substantial computational demands 

(247). In this study, all complex systems exhibited favorable outcome, as evidenced 

by the average ΔG values. The complex involving STOCK3S-69016 displayed the 

most favorable binding free energy with a ΔG value of -51.55 kcal/mol, followed by 

the IDO1- STOCK2S-34127 complex, IDO1- STOCK2S-94986 complex, and IDO1-

U41 complex with ΔG values of -47.90, -43.31, and -42.51 kcal/mol, respectively. The 

complex with STOCK3S-69016 also showed the lowest standard deviation at 2.51 

kcal/mol, within the range of -56.90 to -45.98 kcal/mol, indicating that variability in 

ΔG values was relatively limited. In contrast, the IDO1-STOCK2S-94986 complex 
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appeared to be the most unstable, exhibiting a standard deviation value of 5.16 

kcal/mol within the range of -54.75 to -23.16 kcal/mol. This instability of the binding 

affinity in the IDO1-STOCK2S-94986 complex was visually represented in grey, 

indicating the most fluctuated binding free energy among the other complexes, as 

illustrated in Figure 4.8. Based on these results, it can be concluded that MM-GBSA 

ΔG values align with the results of molecular docking prior to MD simulations. 

In summary, all the complexes displayed favorable outcomes, which encompassed 

changes in structural conformation and stability, variations in residue fluctuations, 

good compactness, the formation of salt bridges, and favorable binding free energy as 

represented by RMSD, RMSF, RoG values, salt bridge interaction, and MM-GBSA 

ΔG values.  

In the last evaluation, toxicity predictions using various parameters were conducted. 

This predictive analysis plays a crucial role in assisting researchers in identifying and 

prioritizing compounds that exhibit both safety and efficacy for human use. As noted 

by Vo et.al. (2020), it is estimated that more than 30% of drug candidates are rejected 

due to toxicity concerns (251,252). The integration of in silico computational methods 

for toxicity prediction offers a cost-effective and rapid means of obtaining data, 

potentially expediting drug development in the absence of expensive, time-consuming 

and labor-intensive animal testing (in vivo) or cell studies (in vitro) (253). This study 

employed ProTox-II and TEST, both AI-based tools, to assess the toxicity of chemicals 

and considered a combination of parameters from two different tools encompassing 

predicted toxicity class, organ toxicity (hepatotoxicity), and various toxicity end points 

including carcinogenicity, immunotoxicity, mutagenicity, cytotoxicity, Daphnia 

magna LC50 (48hr), predicted oral LD50, and bioconcentration factor. The top three 

compounds were identified as relatively safe with a predicted toxicity class of 5, 

corresponding to LD50 value in the range between 2000 and 5000 mg/kg (254). 

Compounds STOCK3S-69016, and STOCK2S-94986 showed potential activity as 

hepatotoxic agent, while STOCK2S-34127 exhibited potential activity as carcinogenic 

agent, indicating its potential to cause cancer. STOCK2S-94986 was predicted to have 

immunotoxic effects, with possible adverse effects on the immune system. 

Assessments using an aquatic organism, specifically Daphnia magna, was also 

conducted to evaluate the toxicity of the candidate compounds in an aquatic 
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environment (221,222). All compounds demonstrated moderate concern towards 

Daphnia magna within the concentration range of 0.1 to 10 mg/L (221,255). On the 

other hand, all compounds also had very low BCF values, making them less likely to 

bioaccumulate in aquatic organisms (223). However, organ toxicity should be 

validated both in vitro and in vivo to ensure the accurate assessment of the toxic effects 

of these compounds. In this study Tox21 assay end point predictions were also 

conducted. Tox21 itself is an abbreviation from the toxicology in the twenty-first 

century program. This program is a collaboration between the National Institutes of 

Health, the Environmental Protection Agency, and the FDA, aims to improve toxicity 

evaluation methods (253,256). In recent years, there has been notable advancement in 

creating robust AI models for predicting toxicity, particularly utilizing the Tox21 

dataset. One of them accommodated by ProTox-II web server. There are two pathways 

to take into account: the nuclear receptor signaling pathways and the stress response 

pathways. In the nuclear receptor signaling pathways, all the compounds displayed 

inactivity across all seven target-pathways encompassing the aryl hydrocarbon 

receptor (AhR), androgen receptor (AndR), androgen receptor ligand binding domain 

(AR-LBD), aromatase, estrogen receptor alpha (ER), estrogen receptor ligand binding 

domain (ER-LBD), and peroxisome proliferator activated receptor gamma (PPAR-

Gamma). Similar with the previous signaling pathway, the stress response pathways 

also exhibited inactive in all five pathways encompassing the nuclear factor (erythroid-

derived 2)-like 2/antioxidant responsive element (nrf2/ARE), heat shock factor 

response element (HSE), mitochondrial membrane potential (MMP), phosphoprotein 

(tumor suppressor) p53, and ATPase family AAA domain-containing protein 5 

(ATAD5). Both pathways were shown inactive in all compounds. This assessment and 

predictive analysis suggest that all the compounds yielded favorable outcomes across 

multiple parameters (Table 4.7).
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6. CONCLUSION AND RECOMMENDATION 

 

6.1. Conclusion 

In summary, three compounds were identified as potential and elective apo-IDO1 

inhibitors through virtual screening of a commercial ligand database. Below are 

several key findings of this study. 

1. From a total of 550,557 compounds, about 394,609 compounds were met the 

criteria and reference values of drug-likeness parameters. 

2. Using a combination of parallel ligand-based approaches from both shape 

similarity and pharmacophore modelling screening, the study successfully 

eleminated compounds, leaving 71,241 compounds. 

3. The molecular docking method was validated with the RMSD values below 2.0 

Å, and PDB ID 6wjy was selected due to the best result in enrichment study. 

4. In molecular docking study, the top-scoring 500 compounds were successfully 

screened, and their MM-GBSA ΔG were calculated and ranked accordingly. The 

study resulted in the identification of the top 10 compounds with structural 

diversity after fingerprint similarity evaluation. 

5. STOCK2S-34127, STOCK3S-69016, and STOCK2S-94986 were evaluated for 

conformational changes and atomic behavior through MD simulations, resulting 

in favorable stability, compactness, identification of several unstable residues, 

and the formation of salt bridges. Additionally, STOCK3S-69016 displayed the 

most favorable binding free energy with ΔG value of -51.55 kcal/mol. 

6. The three hits were predicted to show low oral toxicity, moderate toxicity to 

Daphnia magna, low bioaccumulation in aquatic environments, and be inactive 

in both nuclear receptor signaling and stress response pathways of toxicity. 
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6.2. Recommendation 

The identified virtual hits hold promise as a starting point to identify potential 

candidates as adjunct therapeutics to immune checkpoint inhibitors for cancer. These 

candidates are presumed to possess potent apo-IDO1 inhibition, along with qualities 

such as safety, good pharmacokinetics, and the ability to spare off-targets. However, 

further studies, including in vitro and in vivo experiments, are necessary to confirm 

their activity, selectivity, and potential as preclinical candidates for apo-IDO1 

inhibitors. 
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APPENDIX-2 Digital Turnitin Originality Report 
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APPENDIX-3 NAMD script 

 

RMSD calculation script 

 

mol new  step3_input.psf type psf 

mol addfile step5_production.dcd type dcd first 0 last -1 step 1 waitfor all 

 

# wrap a trajectory to avoid RMSD calculation errors 

 

pbc wrap -centersel "protein" -center com -compound residue -all 

 

## Align to first frame 

 

# the frame being compared 

 

set reference [atomselect top "protein and backbone" frame 0] 

   

# the frame to be  compared 

set compare [atomselect top "protein and backbone"] 

 

#get the number of frames of the trajectory  

 

set num_steps [molinfo top get numframes] 

 

# get the correct num as the trajectory start from zero 

 

set outfile [open rmsd.dat w] 

 

for {set frame 0} {$frame < $num_steps} {incr frame} { 

  # get the correct frame 

  $compare frame $frame 

  # compute the 4*4 matrix transformation that takes one set of 

coordinates onto the other  

  set trans_mat [measure fit $compare $reference] 

   

  # do the alignment 

  $compare move $trans_mat 

  # compute the RMSD 

  set rmsd [measure rmsd $compare $reference ] 

  # print the RMSD 

   puts $outfile "$frame    $rmsd" 

} 

close $outfile 
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RMSF calculation script 

 

set num [expr {$num_steps - 1}] 

# RMSF calculation 

set outfile [open rmsf.dat w] 

set sel [atomselect top "protein and name CA"] 

set rmsf [measure rmsf $sel first 0 last $num step 1] 

for {set i 0} {$i < [$sel num]} {incr i} { 

  puts $outfile "[expr {$i+1}] [lindex $rmsf $i]" 

}  

close $outfile 

 

 

 

Salt bridge formation script 

 

# Salt bridges 

file mkdir saltbridges 

package require saltbr 

 

saltbr -sel [atomselect top protein] -frames all -log saltbridges.log -outdir 

./saltbridges 

 

 

SASA calculation script 

 

## SASA  

# selection 

set sel [atomselect top "protein"] 

set n [molinfo top get numframes] 

set output [open "SASA.dat" w] 

# sasa calculation loop 

for {set i 0} {$i < $n} {incr i} { 

 molinfo top set frame $i 

 set sasa [measure sasa 1.4 $sel -restrict $sel] 

 puts "\t \t progress: $i/$n" 

 puts $output "$i $sasa" 

} 

puts "\t \t progress: $n/$n" 

puts "Done."  

puts "output file: SASA.dat" 

close $output   
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Radius of gyration (RoG) calculation script 

 

For calculating center of mass 

proc center_of_mass {selection} { 

        # some error checking 

        if {[$selection num] <= 0} { 

                error "center_of_mass: needs a selection with atoms" 

        } 

        # set the center of mass to 0 

        set com [veczero] 

        # set the total mass to 0 

        set mass 0 

        # [$selection get {x y z}] returns the coordinates {x y z}  

        # [$selection get {mass}] returns the masses 

        # so the following says "for each pair of {coordinates} and masses, 

 #  do the computation ..." 

        foreach coord [$selection get {x y z}] m [$selection get mass] { 

           # sum of the masses 

           set mass [expr $mass + $m] 

           # sum up the product of mass and coordinate 

           set com [vecadd $com [vecscale $m $coord]] 

        } 

        # and scale by the inverse of the number of atoms 

        if {$mass == 0} { 

                error "center_of_mass: total mass is zero" 

        } 

        # The "1.0" can't be "1", since otherwise integer division is done 

        return [vecscale [expr 1.0/$mass] $com] 

} 

 

 

For calculating radius of gyration 

proc gyr_radius {sel} { 

  # make sure this is a proper selection and has atoms 

  if {[$sel num] <= 0} { 

    error "gyr_radius: must have at least one atom in selection" 

  } 

  # gyration is sqrt( sum((r(i) - r(center_of_mass))^2) / N) 

  set com [center_of_mass $sel] 

  set sum 0 

  foreach coord [$sel get {x y z}] { 

    set sum [vecadd $sum [veclength2 [vecsub $coord $com]]] 

  } 

  return [expr sqrt($sum / ([$sel num] + 0.0))] 

} 
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For loop trajectories 

# load necessary tcl functions  (Ref : http://www.ks.uiuc.edu/Research/vmd/vmd-

1.7.1/ug/node182.html ) 

source gyr_radius.tcl 

source center_of_mass.tcl 

 

set outfile [open rg.dat w] 

puts $outfile "i rad_of_gyr" 

set nf [molinfo top get numframes]  

set i 0 

 

set prot [atomselect top "protein"]  

while {$i < $nf} { 

 

    $prot frame $i 

    $prot update 

 

    set i [expr {$i + 1}] 

    set rog [gyr_radius $prot] 

 

    puts $outfile "$i $rog" 

 

}  

 

close $outfile 

exit 
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