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ABSTRACT

FOREST FIRE DETECTION VIA CAMERAS MOUNTED ON
UNMANNED AERIAL VEHICLES

Rahmi Arda Aral

Master of Science, Computer Engineering
Supervisor: Asst. Prof. Dr. Cemil ZALLUHOĞLU

2nd Supervisor: Prof. Dr. Ebru AKÇAPINAR SEZER
June 2023, 66 pages

Unmanned aerial vehicles(UAVs) are invaluable technologies thanks to their remote control

and monitoring capabilities. Operational forces and firefighters use UAVs in wildfire

detection missions. Due to their high pattern recognition capabilities, Convolutional Neural

Networks (CNNs) are one of the most prominent deep learning architectures, making them

proper for the task of forest fire recognition using UAVs. Deep convolutional neural

networks can perform effectively on hardware with high processing capability. While these

networks can be easily operated in unmanned aerial vehicles managed from ground control

stations with GPU-supported hardware, lightweight, small-sized, and efficient networks are

required to execute on a typical UAV’s limited computational resources. To overcome these

impediments, this thesis presents comprehensive research for performing forest fire detection

tasks using UAV vision data with deep and lightweight convolutional neural networks.

In this thesis, experiments have been carried out using well-known convolutional neural

network architectures to achieve the most successful approach. We also performed transfer
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learning on several further models. In addition, convolutional neural network architectures

have been modified by adding an attention mechanism to develop models with high accuracy.

Among the experimented models, the attention-based EfficientNetB0 backboned model

emerged as the most successful architecture.

With the test accuracy of 92.02% in the FLAME dataset and the test accuracy of 99.76%

in the infrared dataset, the addition of a layer of attention in detecting forest fire strongly

reinforces the efficiency of the EfficientNetB0 based model.

Keywords: Forest Fires, UAV Imagery, Deep Learning, Fire Detection, Wildfire

Classification, Attention, Transfer Learning
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ÖZET

İNSANSIZ HAVA ARAÇLARINDA BULUNAN KAMERALAR
KULLANILARAK ORMAN YANGINLARININ TESPİT EDİLMESİ

Rahmi Arda Aral

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Asst. Prof. Dr. Cemil ZALLUHOĞLU

Eş Danışman: Prof. Dr. Ebru AKÇAPINAR SEZER
Haziran 2023, 66 sayfa

İnsansız hava araçları (İHA’lar), uzaktan kontrol ve izleme yetenekleri sayesinde paha

biçilmez teknolojilerdir. Operasyonel kuvvetler ve itfaiyeciler, orman yangını tespit

görevlerinde İHA’ları kullanır. En popüler derin öğrenme mimarilerinden biri olan

evrişimli sinir ağları (CNN), yüksek örüntü tanıma yetenekleri nedeniyle insansız hava

araçlarında bulunan kameralar ile elde edilen görüntüler aracılığıyla orman yangını tespitinde

kullanılabilir. Derin evrişimli sinir ağları, yüksek işlem kabiliyetine sahip donanımlarda

etkin bir şekilde çalışabilir. Bu ağlar, GPU destekli donanıma sahip yer kontrol

istasyonlarından yönetilen insansız hava araçlarında kolaylıkla çalıştırılabilirken, tipik bir

İHA’nın sınırlı hesaplama kaynakları üzerinde çalıştırılabilmesi için hafif, küçük boyutlu

ve verimli ağlar gerekir. Bu engellerin üstesinden gelmek için bu tez, derin ve hafif

evrişimli sinir ağları ile İHA görüş verilerini kullanarak orman yangını algılama görevlerini

gerçekleştirmeye yönelik kapsamlı bir araştırma sunmaktadır.

Bu tezde, en başarılı yaklaşımı elde etmek için iyi bilinen evrişimli sinir ağı mimarileri

kullanılarak deneyler yapılmıştır. Ayrıca, belirlenen modellerde transfer öğrenimi
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gerçekleştirilmiştir. Ek olarak, evrişimli sinir ağı mimarileri, yüksek doğrulukta modeller

geliştirmek için bir dikkat mekanizması eklenerek modifiye edilmiştir.

Denenen modeller arasında dikkat tabanlı EfficientNetB0 omurgalı model, orman yangını

algılama konusunda en başarılı mimari olarak ortaya çıkmıştır.

FLAME veri setinde 92, 02% test doğruluğu ve kızılötesi veri setinde 99, 76% test doğruluğu

ile, orman yangınını algılamada bir dikkat katmanının eklenmesi, EfficientNetB0 tabanlı

modelin verimliliğini güçlü bir şekilde kanıtlamıştır.

Keywords: Orman Yangını, İHA’lar tarafından çekilen görüntüler, Derin Öğrenme, Yangın

Tespiti, Orman Yangını Sınıflandırması, Dikkat katmanı, Transfer Öğrenme
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1. INTRODUCTION

Forest fires are among the most devastating disasters for the environment. They not only

threaten the lives of people and other critters but also pose a threat to the ecological

balance. Wildfires cause proliferation in the number of other natural disasters such as erosion,

flooding, and air pollution besides [1]. Due to climate change and global warming, forest

fire seasons have extended, and the impact areas of wildfires have expanded [2–4]. They

have occurred more frequently in various parts of the world like the USA, Australia, and

Eastern and South-Eastern Europe [5, 7, 8]. In addition, wildfires have started to occur even

in regions where forest fires have never happened in the past [2]. Operational forces and

firefighters leverage technology to avert devastating damage from wildfires. Fire detection

systems occupy an important place among these technologies. Smoke and heat sensors

are technological devices used in detection of forest fires. However, using the sensors

unaidedly is insufficient because of the limitations, such as limited area coverage and delayed

response [9, 10]. Satellite images are also commonly used for fire detection and monitoring.

Nevertheless, the detection of wildfires in early state continues to be a challenging task

primarily due to the extended scan time and limited resolution [11, 12].

Unmanned aerial vehicles (UAVs) are valuable technologies with remote mission and

autonomous flight capabilities [13]. They are also highly suitable in the field of wildfire

detection, by dint of the cameras equipped with them [14]. Furthermore, UAVs are

able to operate effectively day and night, thanks to high-resolution cameras mounted as

payloads[15]. Progress in computer vision methods has made it probable to recognize forest

fires utilizing aerial images captured by UAV cameras [14, 16, 17]. CNNs, one of the most

effectual deep learning architectures, have been utilized for detecting wildfires using aerial

images [14]. Using the images obtained with UAV cameras, forest fires can be detected

with the benefit of CNNs, which are effectual deep learning architectures that give highly

accurate results [18–20]. However, this is a real challenge as unmanned aerial vehicles can

fly at distinct altitudes and fire has a variety of colors and textures.
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Heat-sensitive infrared cameras are particularly effective at detecting forest fires in the early

stages, where there is no visible smoke or flame [21, 22]. They provide a clear field of view

for UAVs observing day and night, even at high altitudes, even in rural areas with little or no

illumination. UAVs also perform forest fire detection tasks via these high-resolution cameras

[21, 22]. This task is usually accomplished through human observation at ground control

stations.

In the thesis. we suggest deep learning approaches to enhance forest fire detection task,

traditionally carried out via human observation. In the first part of this study, infrared

real forest fire images obtained from the MALE (medium altitude long endurance) class

Turkish Aerospace Industries AKSUNGUR UAV EO/IR cameras were used as the dataset

[6]. We conducted experimentations utilizing state-of-the-art CNNs to achieve optimal

results. ResNet101 [24], ResNet50 [24], VGG16 [26], Densenet121 [27],EfficientNetB1

[25] and EfficientNetB0 [25] based architectures experimented on the infrared dataset.

The task of fire detection with UAVs is carried out not only with EO/IR cameras but also

with RGB cameras. For this reason, experiments were carried out using convolutional neural

networks for forest fire recognition with UAVs equipped with RGB cameras.

We performed second part of our work using the FLAME dataset UAV captured RGB

images [23]. We carried out experiments with deep and lightweight convolutional neural

networks. In the experiments, EfficientNetB0 [25], EfficientNetB2 [25], EfficientNetB4

[25], XCeption [28], ResNet50 [24], VGG16 [26], NASNet Mobile [32], MobileNetV3Small

[31], and MobileNetV2 [30] networks were used as feature extractors for the architectures

we determined.

In the first part of the FLAME Dataset experimentations, we performed experiments using

the architectures. Then, we conducted experiments using ImageNet weights to improve the

wildfire recognition capability of the experimented networks. In the last part, we modified

the networks we used as feature extractors by adding the channel-based attention layer to

achieve better results.
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Among the experiments, for the FLAME dataset, test accuracy of 92.02% and test accuracy

of 99.76% for the private infrared dataset strongly support the efficiency of the attention layer

added EfficientNetB0 model in detecting wildfire from the image samples presented.

In this thesis, a comprehensive study was carried out using CNNs on images obtained from

infrared and RGB UAV cameras. We also present a lightweight and effective model that can

accurately detect forest fires using infrared and RGB images.

1.1. Contributions

This thesis addresses these constraints by presenting effective approaches. The primary

contributions of the thesis can be digested as follows:

• We propose a lightweight and efficient neural network for intelligent wildfire detection

with UAV-collected RGB and infrared images.

• We also suggest a comprehensive study of deep learning approaches and methods with

comparative results.

• Unlike most of the previous works, we made experiments with both RGB and infrared

dataset.

• For the first time, we made experimantations with real infrared forest fire images

collected by UAV.

• Our results show that in experiments on two different datasets, the proposed approach

was performed brilliantly.

1.2. Organization

The organization of the thesis is as follows:
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• Chapter 1 illustrates a piece of brief information about forest fires and their

effects, technologies used for forest fire detection, the role of UAVs in forest fire

detection, Convolutional Neural Networks and fire detection, and information about

our motivation to work.

• Chapter 2 provides background information about artificial neural networks,

convolutional neural networks, training strategies and methods we used in

experimentations.

• Chapter 3 furnishes an synopsis of the related works on wildfire detection.

• Chapter 4 provides the detailed information about utilized datasets and evaluation

metrics.

• Chapter 5 details the different techniques and approaches we operated for two different

datasets.

• Chapter 6 illustrates the experimental setup and analyzes the outcomes of the utilized

approaches and architectures.

• Chapter 7 expresses the summary of the thesis and possible future works.
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2. BACKGROUND OVERVIEW

This chapter provides a brief overview of Artificial Neural Networks (ANNs), Convolutional

Neural Networks (CNNs), and the CNN architectures that were experimented with. In

addition, we will give information about our training strategies and the datasets we used.

Lastly, we will explain the evaluation metrics that we utilized.

2.1. Artificial Neural Networks

Artificial neural networks mimic the method by which the biological neurons signal to one

another. ANNs consist of connected node layers (neurons), which include an input layer, one

or more hidden layers, and an output layer. The neurons are linked to other neurons. They

maintain an associated weight and threshold. Figure 2.1 provides an example of ANN.

Figure 2.1 Sample Architecture of Artificial Neural Network
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2.2. Convolutional Neural Networks

CNNs are specifically effective in locating patterns in images to identify objects. CNNs are

differentiated from other artificial neural networks by their superior performance in the field

of recognition of image, speech, or audio signals.

CNNs are composed of layers. The layers are named convolutional, non-linearity, fully

connected, and pooling layers. With each layer, the CNN increases in its complexity. Earlier

layers of CNN focus on straightforward features. As the image data advances via the layers

of the network, it begins to identify details of the data until it eventually recognizes the

planned object. For instance, in the realm of image classification, the initial layers of a

CNN might detect basic features such as edges or colors. As the network goes deeper into

ensuing layers, it can distinguish more complex patterns. Finally, in the later layers, CNN can

recognize complicated features that contribute to the overall understanding and classification

of the data. The most crucial inference concerning problems solved by CNN is that they

should have spatially independent features. For example, in an object detection application,

when we prepare the dataset there is no essential to pay attention to where the objects are in

the images. The only point that needs to be concerned is to detect objects regardless of their

location in the images.

Figure 2.2 Sample Architecture of Convolutional Neural Network

The convolution layer derives its name from the mathematical operation it fulfills called

convolution. The layer conducts a linear operation between matrices, allowing the network

to extract significant features.
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A CNN consists of numerous layers of neurons, where each layer executes a nonlinear

operation on the linear transformation of the outputs from the preceding layer. The major

layers in CNNs are the convolutional pooling and convolutional layers. Convolutional layers

have trainable weights that are learned during the training process, enabling the network to

capture appropriate features. On the other hand, pooling layers apply a specified function to

transform the activation within a localized part of the image. In Figure 2.2 a sample CNN is

illustrated.

2.2.1. Convolutional Layer

The convolution layers aim to detect the actuality of a set of features in images given as

input data. It includes a group of filters, known as kernels, the parameters of which are

learned throughout the training phase. Generally, the filter size is smaller than the image.

The dimension is typically 3 × 3, but can sometimes be of different sizes, such as 5 × 5 or 7

× 7. The kernel slides over the entire input image and evaluates the dot product between the

value of the input image and the weights of the kernel filters, resulting in the generation of

the activation map. Thus, the network learns a visual feature.

The outputs of the convolution process, which is a linear operation, are then passed

a non-linear activation function. This strategy is an integral part of the convolutional

layer. The rectified linear unit (ReLU) is a widely adopted nonlinear activation function in

contemporary applications. It can be mathematically represented as f(x) = max(0, x), where

it selectively passes positive values while filtering out negative values. ReLU smoothly

computes the output value as the maximum between 0 and the input value, allowing for

effective nonlinear transformations in the network. The reason for using ReLU as the

activation function is converging more adequately for gradient reduction.

To overcome this issue, a procedure called padding is employed. With padding, numbers are

added to the rows and columns on both sides of the input. This number is usually zero. In

this way, the core of the kernel maintains its in-plane size during the convolution process.
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The padding helps preserve the desired size and spatial information of the input throughout

the convolution operation.

Stride directs to the spatial displacement between two consecutive kernel positions during

the convolution. The commonly used stride value is 1.

2.2.2. Pooling Layer

Pooling layers virtually diminish the number of parameters to be learned within the

network and minimize computational needs. In this way, the dimension of feature maps is

downsampled. Unlike convolutional layers, pooling layers do not have learnable parameters.

Instead, they use parameters such as filter size, stride, and padding to control the pooling

process. By aggregating information within local areas, pooling layers extract important

features while reducing the spatial dimensions, leading to more efficient presentations.

Global average and max pooling are the most commonly utilized pooling techniques.

2.2.3. Fully Connected Layers

An array with one dimensional comes from the last pooling or convolutional layers. This

array illustrates flattened features. Afterward, These features are linked to fully connected

layers. The last fully connected layer, or dense layer, has output nodes equal to the number

of classes.

2.2.4. Last Layer Activation Function

The selection of an activation function for the dense layers’ last part should be based on the

specific characteristics of the task at hand. For binary classification, the Sigmoid activation

function is commonly chosen to classify binary classes. The Softmax activation function, on

the other hand, is often preferred for performing classification with multiple classes.
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2.3. CNN Architectures

We experimented on state-of-art architectures such as ResNet [24], EfficientNet [25], VGG16

[26], DenseNet121 [27], XCeption [28], MNASNet [32], InceptionV3 [29], MobileNetV2

[30],and MobileNetV3Small [31] as feature extractor.

2.3.1. ResNet

ResNet (Residual Network) is an Artificial Neural Network architecture designed to solve

the vanishing gradient problem using residual blocks. ResNet uses the skip connections

technique, which connects the activations of one layer to other layers, bypassing some layers

in between. ResNet networks consist of stacked residual blocks.

Figure 2.3 Residual Network [24]

ResNet50 has 50 of these layers, and ResNet101 has 101. With this Network, even networks

with many layers can be trained without raising the training error rate[24]. Figure 2.3 shows

the graphical form of Residual Network architecture. In Figure 2.3, X represents the output

value that comes from the neuron from the previous layer.

2.3.2. EfficientNet

EfficientNet uniformly scales all model dimensions with a method anointed a coefficient

compound. This technique provides EfficientNet models with more effective and accurate

results than previously published CNN models [25].
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Figure 2.4 Inverted Bottleneck Convolution 1 (MBConv1) in EfficientNet

The EfficientNet family uses mobile inverted bottleneck convolution (MB Conv) as its main

building block. MB Conv block contains depthwise convolution and squeeze and excitation

unit. The depthwise convolution operation is efficient and requires fewer resources than a

standard convolution operation. Squeeze and excitation unit brings dynamic recalibration

feature to the network. In EfficientNet models, two different MBConv types are used :

MBConv 1 and MBConv6. MBConv6 also has an inverted residual connection, unlike

MBConv1.

MBConv1 and MBConv6 layers are demonstrated in Figure 2.4 and Figure 2.5.

Conv2D stands for 2-dimensional Convolution, BN stands for Batch Normalization, and

DepthwiseConv2D stands for 2-dimensional depthwise convolution. EfficientNet models

utilize the inverted residual blocks introduced with MobileNetV2 [30]. However, unlike

MobileNetV2, the Swish activation function is used in these modules. EfficientNet family

achieves high accuracy on CIFAR-100, Flowers, and other well-known datasets [25].

2.3.3. VGG16

VGG architecture was developed to comprehend how to increase the depth of networks.

It uses a 3x3 kernel in all layers to evade too many parameter sizes and make the network
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Figure 2.5 Inverted Bottleneck Convolution 6 (MBConv6) in EfficientNet

deeper[26]. VGG is a straightforward network architecture. VGG16 is specifically composed

of 16 layers, which consist of 3 dense and 13 convolutional layers.

2.3.4. DenseNet

DenseNet was designed to improve the decreased accuracy induced by the vanishing gradient

in neural networks. DenseNet sets dense connections between each layer and all preceding

layers, resulting in a rich and various feature map set. The network is composed of multiple

Transition layers and Dense Blocks in sequence. Dense blocks in DenseNet are mainly

composed of a 1x1 and 3x3 convolution kernel. The transition layer in DenseNet is composed

of a 1x1 convolution and pooling layer. DenseNet manages the issue of feature shrinkage by

lessening the input vector dimension while possessing rich feature representations. This

reduction in dimensionality not only decreases the number of parameters in the network but

enhances feature propagation and enables feature reuse [27].
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2.3.5. XCeption

Xception is a type of CNN architecture that maintains Deeply Separable Convolutions. It is a

variation of the Inception network. The primary distinction between Inception and Xception

lies in their convolutional approach: Xception utilizes depth-wise separable convolutions

[28].

2.3.6. InceptionV3

InceptionV3 network incorporates several beneficial features. InceptionV3 architecture

comprises three main components: the convolutional block, the improved Inception module,

and the classifier. The convolutional layer is used as the feature extractor. The Improved

Inception layer executes multi-scale convolutions in parallel and combines the convolution

results of each branch [29].

2.3.7. MobileNetV2

MobileNetV2 is designed for good performance on mobile devices. The architecture uses

inverted residual blocks. Unlike traditional Residual Blocks, Inverted Residual Blocks

have a narrow, wide, narrow approach rely on the amount of channels. In these blocks,

the parameter size is reduced by first applying 1x1 convolution and then 3x3 depthwise

convolution. Then, 1x1 convolution is additionally applied to add inputs and outputs. These

blocks consist of shortcut connections between the thin bottleneck layers. The architecture

design contains MBConv blocks [30]. These blocks use the hard swish activation function

and include squeeze-and-excitation modules. The comparison of inverted and traditional

inverted residual block is showed in Figure 2.6.

12



Figure 2.6 Comparision of Residual Block and Inverted Residual Block

2.3.8. MobileNetV3-Small

MobileNetV3-Small is among the MobileNetV3 architectures along with MobileNetV3

Large [31]. It is developed to work effectively on mobile device CPUs. Its architecture design

contains MBConv blocks. These blocks use hard swish activation function and include

squeeze-and-excitation modules [31].

2.3.9. NASNet Mobile

MNASNet is a CNN architecture optimized for mobile devices and strikes a good balance

between accuracy and speed [32]. It uses the inverted residual blocks introduced with

MobileNetV2 [30, 32].
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3. RELATED WORK

Many researchers to date have handled forest fire detection rely on computer vision

approaches. Researchers aimed to develop the most effective fire detection system using

various methods. Previous forest fire detection studies relied on hand-crafted image

processing techniques based on strong discriminators of fire, such as motion and color cues

[38–45]. Among these studies, similar to this work, Dios et al. used infrared and RGB

images collected by UAV cameras to detect fire pixels [39].

Contrary to hand-crafted image processing techniques, deep learning strategies can learn

complex features [46]. Recent studies have shown that CNNs, which are deep learning

architectures that provide accurate results, have higher accuracy than conventional methods

in image and video recognition applications [47]. For this reason, most researchers have

worked in the field of fire classification tasks using CNNs to achieve higher accuracy. Kim

et al. proposed an eight-layer CNN for fire classification and used large forest fire aerial

images[48]. In this work [49], researchers experimented on well-known CNN architectures

like VGG13, AlexNet and GoogLeNet. They utilized a dataset contains UAV-captured

images [49]. However, the auhors did not utilize any benchmark fire dataset. Dunnings et al.

suggested an InceptionV1 model optimized for fire classification [50]. In this work, support

vector machine and CNN classifiers were compared using a data set consisting of infrared

images [51]. As a result of this comparison, the CNN classifier achieved higher accuracy

[51]. Chen et al. [52] performed experiments on CNNs with a private and limited dataset

captured from UAV cameras [52]. Zhao et al.[53] compared the Firen Net network they

designed in the fire classification experiments with models such as Kim et al.’s proposed

model[52], AlexNet, and an eight-layer CNN. Muhammad et al. provided a sophisticated

comparison with CNNs using benchmark datasets and proposed a lightweight modified

MobileNet-based model for fire detection tasks [54]. In another study, we found [55], the

authors presented a lightweight CNN called FireNet for IoT applications [55]. Samarth et al

[56] worked on CNN classifiers, suggested an InceptionV4 model modified for fire detection,

and outperformed FireNet [55] and InceptionV1OnFire [50]. Yuanbin et al. modified a
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CNN and applied the network to perform forest fire detection tasks, but they did not test the

model with any benchmark dataset [57]. Demirtas utilized object detection models to smoke

detection for detecting wildfires at an early state [58]. Dua et al. used CNNs with a transfer

learning method on their private dataset [59]. Arteaga et al. made experiments on deep

CNNs such as ResNet50, ResNet101, ResNet34, VGG13, and VGG16 for wildfire detection

and applied transfer learning to the models [60]. Park et al. suggested a DenseNet-based

model, experimented on the dataset for fire classification, and compared the model with

ResNet50 and VGG16 architectures(25). They also applied data augmentation with fire

images generated by CycleGAN [61]. Rahul et al. conducted transfer learning experiments

on ResNet50, VGG16,and DenseNet121 models with the SGD optimizer [62].

Shamsoshoara et al.[23] offered an open access dataset called the FLAME dataset. The

authors also performed classification and segmentation experiments on this dataset and

proposed an Xception network for the fire classification task [23]. After the Flame dataset

was published, researchers used this dataset and made experiments to perform forest fire

detection task. Treneska et al. [63] performed transfer learning experiments with the

FLAME Dataset using well-known CNNs such as ResNet50, VGG16, VGG19, InceptionV3,

and Xception. Ghali et al.[64] conducted extensive research comparing well-known deep

learning models with their suggested network. Zhang et al.[65] made experiments with

ResNet50, Inception and VGG based models using FLAME dataset. Some researchers also

performed segmentation experiments using the FLAME dataset. Wang et al. used UNet

model with ResNet50 backbone and DeepLab3 model to perform forest fire segmentation

[66]. Wang et al. proposed a semi-supervised learning model [67]. Guan et al.[68] suggested

a RCNN based method.
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4. UTILIZED DATASETS & EVALUATION METRICS

We determined different approaches and methods based on dataset characteristics. In this

section, two different datasets we experimented on are defined. Also, the evaluation metrics

that are used are explained.

4.1. Dataset

This section describes two different datasets on which we experimented. Sample images

from datasets are given below.

4.1.1. Infrared Dataset

The infrared dataset was assembled using approximately 10 hours of forest fire video data

gathered with 1920x1080 resolution. The video data contains 55 frames per second. The data

were analyzed with data engineering methods to create a data set suitable for deep learning

experiments. Firstly, the parts with and without fire in the video data were separated. Frames

were extracted from the split videos, one frame every 25 frames. Some of the images we

observed contained too many repetitions in the extracted frames and were eliminated. As a

result, we created an infrared wildfire classification dataset has 18,887 images labeled as fire

and no-fire. The dataset used in this study consists of a total of 14,556 fire images and 4,331

no-fire training image data. Fifteen percent of the dataset was used for validation, twenty

percent was utilized for testing, and the remaining portion was used as training data. This

dataset is used as private due to data privacy principles. Sample images in the dataset are

demonstrated in figure 4.1. For data privacy reasons, The black areas in the picture were

added to cover the overlay parts of the UAV-collected images.
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Figure 4.1 Infrared Dataset Samples

4.1.2. RGB Dataset

Among the Open Access datasets consisting of UAV collected images, the FLAME dataset

is a very suitable dataset for our problem, as it is a large dataset and contains images from

different points of view and various zoom levels. For these reasons, we conducted forest

fire detection experiments using RGB images with the FLAME dataset. All samples in

the dataset are images captured by multiple UAV cameras in Northern Arizona, USA. This

dataset consists of two parts, classification and segmentation. The wildfire classification

dataset we concentrate on comprises 39,375 training and 8,617 test RGB images labeled as

Fire and No Fire. This dataset consists of 25,018 fire and 14,357 no fire images. Figure 4.2

representative input data in the FLAME dataset [23].
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Figure 4.2 The FLAME Dataset Samples

4.2. Evaluation Metrics

In this thesis, the evaluation of results is conducted rely on several metrics: F1 Score, recall,

accuracy,and precision. The metrics are calculated as shown in Eq. (4), (3), (2), and (1).

All values are shown as weighted and macro average. Macro Average is calculated as

the arithmetic mean of individual per-class scores, where the value (C) illustrates the total

number of classes. The weighted average is an average resulting from the multiplication of

each element by a factor mirroring its importance. Weighted average calculation is shown in

Eq. (5), macro average calculation is shown in Eq. (6).

F1Score = 2⇥ Recall ⇤ Precision

Recall + Precision
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)
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Accuracy =
TP + TN

TP + FP + TN + FN
(4)

WeightedAverage =
nX

i=1

wixi (5)

MacroAverage =
1

C

CX

i=1

F1i (6)
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5. PROPOSED METHOD

In this thesis, experiments were performed with using two different datasets: the FLAME and

infrared datasets. In order to acquire highly accurate deep learning models, we determined

different strategies based on dataset characteristics. In this section, different approaches

determined for RGB and infrared datasets will be described.

5.1. Used Approaches

This section describes the approaches applied when developing fire detection models.

5.1.1. Inbalance Dataset Problem and Setting Class Weights

Classification with an imbalanced dataset is a challenge when experimenting with Deep

Learning models [33]. If there is a class imbalance in the training dataset, networks usually

exhibit a tendency to over classify the majority class due to its higher prior probability. In

binary classification, class weights could be defined by calculating the commonness of the

positive and negative ones and then inverting it. In this way, more weight is given to a class

with fewer instances. That means assigning a higher value to the loss function to these

samples. In this work, we enforced the setting class-weight procedure during training to

deal with the imbalanced dataset issue in our experiments using the infrared dataset. The

formula used to calculate the class weight is given in Eq. 7 and Eq. 8.

WeightFire =
1

Fire

Total

2
(7)

WeightNoFire =
1

NoFire

Total

2
(8)
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5.1.2. Transfer Learning

Transfer learning is a method used in machine learning approaches. It refers to the ability

of machine learning techniques to leverage knowledge earned from solving one problem and

apply it to another, thereby benefiting from the previously obtained information [34]. With

transfer learning, models that perform better and learn faster with fewer data are obtained

using previous knowledge. Figure 5.1 shows how transfer learning works. It aims to create

a new model and increase performance by using the weights of a model that was previously

trained with a dataset.

Figure 5.1 Principle of the Transfer Learning

5.1.3. Attention

The Attention method was developed to deal with the computational costs of deep CNNs

[35]. The primary purpose of this technique is to focus on the significant parts of the

information. It pays more attention to different regions of the input image while processing

the data and employs acquired features of separate parts of the network as weights. Thus,

the model concentrates on the relevant sections of the input data [36]. Channel attention is

one of the attention applied for image classification [37]. It recalibrates the channel feature

maps, allocates more weights to essential feature channels, and restrains unessential ones. In

this study, we applied the channel attention method, which is one of the attention methods

that gives very successful results in image classification.
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5.2. Utilized Architectures

This section describes the neural network architectures used in Infrared and RGB

image-based fire detection experiments.

5.2.1. General Architecture of ImegeNet Weighted Models and Trained From Scratch

Models

In the fire detection experiments, we employ a two-part architecture comprising a classifier

a feature extractor. In the FLAME dataset experiments, we experimented on ResNet50 [24],

EfficientNetB0 [25], EfficientNetB2 [25], EfficientNetB4 [25], VGG16 [26], XCeption [28],

NasNet Mobile [32], MobileNetV2 [30],and MobileNetV3Small [31] deep neural networks

as feature extractors. In infrared dataset experiments, we used ResNet101 [24], ResNet50

[24], VGG16 [26], EfficientNetB1 [25] and DenseNet121 [27] networks as feature extractor.

For the classifier part of our method, the classifier parts of the networks were replaced

with a global average pooling layer. Then the layer’s size of the networks was expanded

to 256x256x3. A 0.5-rated dropout layer was added to avoid overfitting. Eventually, a

dense layer with the Sigmoid function was applied. In the architecture we designed, we

first resized all layers of a state-of-art neural network according to 256x256x3 resolution.

Then we deleted the last softmax layer of the networks we used. Then we added a global

average pooling layer. The global average pooling layer was followed by a dropout and

sigmoid function. These features distinguish our architecture from other architectures such

as classical ResNet and EfficientNet.

In the FLAME dataset experiments, we also accomplished transfer-learning experiments.

The experiments were performed by keeping the ImageNet weights of the models used in

the feature extractor section.
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Figure 5.2 General Architecture of CNN Base Models

5.2.2. General Architecture of Attention Based Models

In order to improve the accuracy of the models for RGB UAV imagery-based forest fire

detection, We conducted experiments by adding an attention layer using ResNet50 [24],

EfficientNetB0 [25], EfficientNetB2 [25], EfficientNetB4 [25], VGG16 [26], XCeption [28],

NasNet Mobile [32], MobileNetV2 [30], and MobileNetV3Small [31] models as backbones.

For the attention-based network experiments, a batch normalization layer was added to

the output layer of the network used as the backbone. The batch normalization layer

was followed by an attention mechanism and global average pooling layers. Channel

based attention layer contains 32 filtered convolutional layers, 16 filtered convolutional

layers, 1 filtered convolutional layer, and 1280 filtered convolutional layers. After the

convolutional layers, a global average pooling layer is added to perform element-wise

multiplication between the output of the 1280 filtered convolutional layer and the output of

batch normalization, resulting in the same shape. Another global average pooling layer was

added to apply 2-dimensional global average pooling directly to the output of 1280 layered

convolution layer resulting in a tensor of shape. A rescale function was added to apply a

custom lambda function that rescales and concatenates the outputs of Global Average pooling

layers. This operation introduces gating or attention mechanisms by selectively emphasizing

or suppressing certain channels based on the information provided by BatchNormalization.

By multiplying the feature maps with the normalized activations from Batch Normalization,

the network can potentially enhance or attenuate the importance of specific channels or
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features during the forward propagation process. This can be seen as a form of channel-wise

attention, where the network learns to assign varying weights to different channels to

concentrate on the most pertinent information for the task at hand. The channel based

attention layer formula can be seen in Eq. 9.

attention output = conv output⇥ bn output (9)

Afterward, a fully-connected layer with the ELU activation function was added after the

global average pooling layers. Global average pooling layers fed a rescale function. The

purpose of this function is to account for missing values from the attention model. Finally,

the model was completed with a dropout layer followed by a dense layer with the Sigmoid

activation function. The detailed model architecture is presented in Figure 5.3.

Figure 5.3 General Architecture of Attention Based Models
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6. EXPERIMENTAL RESULTS

Experiments in forest fire detection studies with UAV vision data using CNNs are divided

into two main parts: the RGB dataset and infrared dataset experiments. In RGB UAV

imagery experiments, the FLAME dataset is used as the dataset. RGB dataset experiments

are divided into three sub-parts: classification without transfer learning, classification with

transfer learning, and attention-based model classification. The specified architectures

used as feature extractor are VGG16, ResNet50[24], XCeption, EfficientNetB0[25],

EfficientNetB2 [25], EfficientNetB3 [25],MobileNetV3 Small [31], MobileNetV2 [30], and

NasNetMobile [32].

In infrared dataset experiments, only classification from scratch experiments was conducted.

In the experiments, ResNet101 [24], ResNet50 [24], VGG16 [26], EfficientNetB1 [25] and

DenseNet121 [27] networks were used as feature extractor. In addition, attention-based

EfficientNetB0 model was experimented on the dataset.

These architectures are chosen based on their accuracy in the ImageNet dataset, model sizes,

and the number of trainable parameters.

6.1. Experimental Setup

For the purpose of detecting wildfires using images collected from UAVs, we utilized

TensorFlow-GPU version 2.7.0 and Python 3.7.0. The hardware environment employed for

conducting the experiments was an NVIDIA GeForce RTX 3060 Laptop GPU.

6.2. Hyperparameters

For the training phase of the experiments, the initial hyper-parameters, optimizer, and loss

function were kept alike. In our experiments, we employed input image data with a resolution

of 256⇥256⇥3 and utilized Adam as the optimizer. The learning rate was set to 0.0001.

During the training process, the early stop callback method based on validation accuracy
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was used to avoid overfitting. The hyperparameters we determined in our experiments are

shown in Table 6.1.

Table 6.1 Hyperparameters

Hyperparameter Hyperparameter Space

Input Shape 256⇥256⇥3

Learning Rate 0.0001

Optimizer Adam

Loss Binary Crossentropy

Last Layer Activation Function Sigmoid

6.3. FLAME Dataset Experimental Results

6.3.1. Train From Scratch Experimental Results

We trained classification models with the FLAME dataset consisting of UAV imagery.

Hyperparameters we determined in the experiments are shown in Table 6.1. Using the

architecture illustrated in Figure 5.2, we experimented with state of art neural networks as

feature extractors.

We carried out experiments without using any pre-trained weights. As a result of these

experiments, the determined models and the test accuracy values obtained by these models

are shown in Table 6.2. These experiments demonstrated that the model using the VGG16

architecture as a feature extractor acquired the highest test accuracy with 65.19%. However,

the test results of the models that were experimented with were not at a sufficient level.
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Table 6.2 Flame Dataset Experiments Training From Scratch

Feature Extractor Test Accuracy %

VGG16 65.19

ResNet50 63.58

Xception 59.55

EfficientNetB4 58.97

EfficientNetB0 57.64

MobileNetV3-Small 54.19

MobileNetV2 52.86

NasNetMobile 52.04

EfficientNetB2 51.03

Since the Flame dataset is imbalanced and has repetitive samples, developing models with

a high accuracy rate is a real challenge by avoiding overfitting. That’s why we worked on

various approaches and improvements.

6.3.2. Experimental Results With Transfer Learning

The fact that the FLAME dataset is imbalanced, and it has higher samples in fire class

caused the models we trained to classify non-fire images as fire. We applied transfer learning

to overwhelm this encumbrance and trained the models using the ImageNet weights. In

transfer learning experiments, we used the same network architecture, feature extractors,

and hyperparameters as we mentioned in the from-scratch experiments section. The

hyperparameters used in transfer learning experiments are shown in Table 6.1. The network

architecture used in transfer learning experiments is shown in Figure 5.2. Comparative results

between experimentations are shown in Table 6.3.
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Table 6.3 Experimental Results with Transfer Learning

Model Accuracy % Precision % Recall % F1 Score %

EfficentNetB4 90.80 91.04 90.8 90.85

XCeption 89.78 90.8 89.78 89.87

NasNetMobile 83.67 83.61 83.67 83.62

MobilenetV3Small 82.34 84.76 82.34 82.5

EfficentNetB0 82.19 84.43 82.19 82.36

ResNet50 81.06 81.38 81.06 80.57

EfficentNetB2 79.88 86.33 79.88 79.86

MobilenetV2 74.26 82.61 74.26 73.99

VGG16 68.23 68.59 68.23 65.63

Approximated with the results, we observed that all models show increased accuracy after

applying transfer learning. In transfer learning experiments, the EfficientNetB4-based model

has proved its effectiveness by achieving 90.80% test accuracy and 90.85% F1 score.

The confusion matrix obtained of the EfficientNetB4 based model is shown in Figure 6.1.

Class-based recall, precision, and F1 score results of the model are shown in Table 6.4.

Figure 6.1 EfficientNetB4 Fine Tuned Model Confusion Matrix
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Table 6.4 Detailed Experimental Results of the Model Using EfficientNetB4 as Feature Extractor

EfficentNetB4 Precision % Recall % F1 Score %

Fire 94.38 89.93 92.10

No Fire 86.10 92.09 89.00

Macro avg 90.24 91.01 90.55

Weighted avg 91.04 90.80 90.85

Accuracy % 90.80

Considering the F1 score parameters, the architecture in which EfficientNetB4 is the feature

extractor has been more successful in accurately predicting images containing the fire.

6.3.3. Experimental Results Based on Attention Based Models

Adding the attention layer is a popular approach that remarkably improves the recognition

performance of CNNs. We applied this technique for forest fire detection with UAV

vision data. For this purpose, we implemented the channel-based attention layer on

determined CNN architectures and conducted experiments. Unlike from scratch and transfer

learning experiments, we conducted attention-based experiments through the proposed

architecture shown in Figure 5.3. The hyperparameters used attention based experiments

are demonstrated in Table 6.1.
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Table 6.5 Experimental Results of Attention Based Method

Arcitecture Accuracy % Precision % Recall % F1 Score %

EfficentNetB0 Backbone 92.02 92.66 92.02 92.08

NasNet Mobile Backbone 87.11 87.7 87.11 87.2

ResNet50 Backbone 86.61 88.50 86.61 86.74

XCeption Backbone 85.51 86.02 85.51 85.61

EfficentNetB4 Backbone 85.05 87.59 85.05 85.18

EfficentNetB2 Backbone 82.75 82.70 82.75 82.57

MobileNetV2 Backbone 81.95 84.11 81.95 81.81

MobileNetV3Small Backbone 81.15 81.41 81.15 81.23

VGG16 Backbone 75.59 75.70 75.59 74.80

In the light of these experiments, the attention-based model with the EfficientNetB0

backbone has achieved the highest test accuracy with 92.02% and the highest F1 score with

92.08%. Thus, all state of art models outperformed. The confusion matrix obtained as a

result of the test of the model is shown in Figure 6.2.

Figure 6.2 Confusion Matrix of Attention Based Model with EfficientB0 Backbone
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Table 6.6 Detailed Experimental Results of Attention Based EfficientNetB0 Model

EfficentNetB0 Attention Precision % Recall % F1 Score %

Fire 97.54 88.86 93.00

No Fire 85.47 96.69 90.73

Macro avg 91.50 92.78 91.86

Weighted avg 92.66 92.02 92.08

Accuracy % 92.02

Class-based test scores of the experiments conducted with the attention-based network

with the EfficientNetB0 backbone are illustrated in Table 6.6. Based on Table 6.6, the

architecture predicted images of fire and non-fire with high accuracy, but it was more

successful at correctly predicting fire images. Figure 6.3 demonstrates the model’s class

Gradient-weighted Class Activation Mapping (Grad-CAM) results in some images from

dataset[69]. It can be seen that the model focused on the regions containing fire in the images

sampled.
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Figure 6.3 Attention Heatmap of Attention Based Model with EfficientB0 Backbone
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6.3.4. Comparison with The State-of-Art Studies On The Flame Dataset

Many researchers have carried out experiments using the FLAME dataset. Table 6.7

demonstrates results of classifications experiments of papers used the FLAME dataset.

Among the experiments using the FLAME dataset, Treneska et al.’s [63] Fine Tuned

ResNet50 model acquired the highest test accuracy score.
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Table 6.7 Classification Experiments on the Flame Dataset So Far

Paper Classification Algorithm Test Accuracy %

Shamsoshoara et al. [23] Modified Xception 76.23

Ghali et al. [64] Proposed Model 85.12

InceptionV3 80.88

DenseNet169 80.62

Xception 78.41

EfficientNet-B5 75.82

EfficientNet-B4 69.93

EfficientNet-B2 66.04

EfficientNet-B3 65.81

MobileNetV3-Large 65.10

MobileNetV3-Small 51.64

Treneska et al. [63] ResNet50 66.11

ResNet50 (Fine Tuned) 88.01

InceptionV3 67.48

Inception V3 (Fine Tuned) 87.21

VGG19 69.44

VGG19 (Fine Tuned) 83.43

Xception 71.93

Xception (Fine Tuned) 81.3

VGG16 77.89

VGG16 (Fine Tuned) 80.76
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In the experiments conducted in this study, the most successful models, as determined by test

accuracy, precision, recall, and F1 score metrics, are the Attention-Based EfficientNetB0,

fine-tuned EfficientNetB4, fine-tuned XCeption, and Attention-Based NasNet Mobile

The comparisons of the models with the highest accuracy from the experiments conducted

with the FLAME dataset are presented in Table 6.8.

Table 6.8 Flame Dataset Experiments Comparison

Paper Model Accuracy %

Shamsoshoara et al. [23] Modified XCeption 76.23

Ghali et al. [64] Proposed Model 85.12

Treneska et al. [63] ResNet50 (Fine Tuned) 88.01

Our Study EfficentNetB4 (Fine Tuned) 90.80

NasNet Mobile Based Attention Model 87.11

EfficentNetB0 Based Attention Model 92.02

Table 6.8 demonstrates that Fine tuned XCeption, Fine Tuned EfficientNetB4, and

attention-based EfficientNetB0 models have obtained the highest test accuracy values among

the experiments. In the Flame dataset pioneer paper [23], the authors achieved 76% test

accuracy using a modified Xception model. In another paper using the FLAME dataset,

Ghali et al.’s method implemented DenseNet205 and EfficientNetB5 models as backbones

and achieved 84.77% test accuracy [64]. In another study by Treneska et al., the model using

the fine-tuned ResNet50 as a backbone acquired 88.01% test accuracy with the FLAME

Dataset [63]. In our proposed method, the model using EfficientNetB4 as a feature extractor

achieved 90.80% test accuracy, the model using XCeption as a feature extractor achieved

test accuracy values of 89.78%, and the EficientNetB0 attention based network achieved

92.02% test accuracy ,attaining the highest accuracy among the experiments carried out

so far. In addition, EficientNetB0 attention based model surpassed the method using the

EfficientNetB4 and XCeption architectures pre-trained with ImageNet weights as a feature
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extractor and achieved the highest performance ever among experiments with the FLAME

dataset.

Table 6.9 Comparison of the Model and Number Of Trainable Parameters

Model Number of Trainable Parameters

ResNet50 23,536,641

Xception 20,809,001

EfficientNetB4 17,550,409

NasNet Mobile Based Attention Model 4,404,884

EfficentNetB0 Based Attention Model 4,215,742

Table 6.9 shows that the trainable parameter numbers of the attention-based EfficientNetB0

backbone architecture with the best performed model in conducted experiments. Table 6.9

illustrates that the EfficientNetB0 backboned model has the lowest number of trainable

parameters among the architectures that achieve the most successful test accuracy values.

In this way, it was proven to be a lightweight and highly accurate model.

6.4. Infrared Dataset Experiments Results

We experimented with the strategies shown in Figure 5.2, using well-known deep CNN

architectures as feature extractors for wildfire detection on infrared black hot images. The

hyperparameters chosen in these experimentations are demonstrated in Table 6.1. Since the

infrared black hot dataset is imbalanced, class weight was imposed with the formula specified

in the methods section during training. Thanks to the strategies we determined for forest

fire classification with heat-sensitive infrared images, the methods we experimented with

achieved superior performance. In experiments with Deep Neural networks, it was observed

that deeper networks provided better results among the models we used as feature extractors.
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Table 6.10 Infrared Dataset Experiments

Model Accuracy % Precision % Recall % F1 Score %

Attention Based EfficientNetB0 99.76 99.52 99.80 99.66

ResNet101 99.20 99.11 98.63 98.87

ResNet50 98.04 98.05 98.04 98.04

VGG16 98.56 98.57 98.57 98.56

EfficientNetB1 98.54 98.53 98.54 98.53

DenseNet121 97.24 97.35 97.24 97.27

The comparative test performance of the experimented models is shown in Table 6.10.

The test scores obtained by the trained models are close. In classification from scratch

experiments, The ResNet101 model attained the highest performance with 99.20% test

accuracy and 98.87% F1 score. Class-based test performance values of the ResNet 101

model are shown in Table 6.11. Based on the test accuracy, precision, recall, and F1 score

parameters, it can be observed that the model using the ResNet101 as the feature extractor

can detect fire and no-fire images with high accuracy. The confusion matrix obtained as a

result of the test of the model is shown in Figure 6.4.

Table 6.11 Experimental results of the model using ResNet101 as Feature Extractor with Infrared
Dataset

ResNet101 Precision % Recall % F1 Score %

Fire 99.28 99.69 99.48

No Fire 98.94 97.57 98.25

Macro Avg 99.11 98.63 98.87

Weighted Avg 99.20 99.20 99.20

Accuracy 99.20
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Figure 6.4 Model Using ResNet101 as Feature Extractor Confusion Matrix with Infrared Dataset

The Attention-based model with EfficientNetB0 backbone, which we developed in RGB

image based wildfire classification experiments, was also tested with the infrared blackhot

dataset. Our experiments have shown that this model surpasses other models with 99.76%

test accuracy and 99.66% F1 score.

The confusion matrix obtained as a result of the test of the attention based model is shown

in Figure 6.5. The confusion matrix indicates that the model showed high performance in

classifying fire no fire images.

Table 6.12 Attention Based Model with EfficientB0 Backbone Infrared Experiments

EfficientB0 Backbone Attention Precision % Recall % F1 Score %

Fire 99.96 99.72 99.84

No Fire 99.08 99.88 99.48

Macro Avg 99.52 99.80 99.66

Weighted Avg 99.76 99.76 99.76

Accuracy % 99.76
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Figure 6.5 Attention Based Model with EfficientB0 Backbone Confusion Matrix with Infrared
Dataset

Figure 6.6 demonstrates the model’s class Gradient-Weighted Class Activation Mapping

(Grad-CAM) results in infrared images [69]. It is observed that the Attention based model

successfully focuses on the sections containing fire. The dark areas in the picture have been

added for data privacy reasons.
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Figure 6.6 Attention Based Model with EfficientB0 Backbone Attention Heatmap with Infrared
Dataset

6.4.1. K-FOLD Cross Validation

In order to test the exactness of the scores we obtained in the infrared blackhot dataset , we

applied the 5 Fold Cross validation experiments mentioned in the Experiments section.
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Table 6.13 Infrared Dataset K-FOLD Cross Validation Experimental Results

Model Accuracy % Precision % Recall % F1 Score %

Attention Based EfficientNetB0 99.58 99.54 99.58 99.51

EfficientNetB1 98.96 98.91 98.88 98.86

ResNet50 98.81 98.82 98.80 98.81

ResNet101 98.62 98.64 98.62 98.62

VGG16 98.14 98.14 98.14 98.02

DenseNet121 97.79 97.98 97.95 97.94

As a result of these experiments, according to the several observations, the average results

of the k-fold experiment showed parallelism with the results acquired by the models

experimented on the main dataset. The EfficientNetB0 backbone attention based model

performed best on average. Table 6.13 indicates the average values of each parameter based

on 5-Folds in K-Fold cross validation experiments.
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7. CONCLUSION

This thesis addresses the problem of forest fire classification on UAV vision data using

convolutional neural networks. Our experiments involved the use of two distinct datasets,

which were obtained by capturing images from UAV cameras. The first dataset consists of

real-world infrared black hot images, while the second dataset comprises RGB images. With

the strategies and approaches we determined, we have developed models that can detect

forest fires with high accuracy in both datasets. We evaluated state-of-the-art CNNs as

feature extractors in the methods we applied. Applying transfer learning in experiments

with RGB datasets and setting class weights during training in experiments with infrared

datasets enabled models with high accuracy to be discovered. The experiments have shown

that the developed models have surpassed all previous approaches and had the highest

accuracy with two different datasets. Most deep CNN-based techniques have the major

drawback of being computationally hungry for real-time wildfire recognition. The issue

is exacerbated for UAVs performing missions with devices that have very low onboard

computational power. To overcome this problem, we made some research efforts in that

direction. Therefore, this thesis presents a lightweight and high-performance architecture

for detecting and classifying forest fires. An efficient method, combining small CNN and

channel attention, was developed to detect wildfires from UAV imagery. Of the several

lightweight models used as feature extractors explored for this problem, the EfficientNetB0

proved itself to be the most efficient alternative. The results acquired on two different

forest fire datasets with our attention-based architecture have been superior to all the current

techniques in terms of most evaluation metrics like accuracy, f-measure, recall, and precision.

Detection of forest fires is a demanding issue due to the images taken from UAV cameras

being taken from different altitudes, and the fire does not have a specific pattern. In addition,

the imbalanced datasets we used during the experiments were an additional challenge for us.

In future work, we plan to experiment with different problems, such as segmentation, and

increase the capability of our models with more real-world UAV datasets collected.
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