

A QUALITY EVALUATION META-MODEL FOR OPEN

SOURCE SOFTWARE

AÇIK KAYNAK YAZILIMLAR İÇİN KALİTE

DEĞERLENDİRME ÜST MODELİ

NEBİ YILMAZ

ASSOC. PROF. DR. AYÇA KOLUKISA TARHAN

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a partial Fulfillment to the Requirements

for the Award of Degree of Doctor of Philosophy

in Computer Engineering

June 2023

i

ABSTRACT

A QUALITY EVALUATION META-MODEL FOR OPEN SOURCE

SOFTWARE

Nebi YILMAZ

Doctor of Philosophy, Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ayça KOLUKISA TARHAN

June 2023, 224 pages

In recent years, Open Source Software (OSS) has gained an increasing attention due to

its voluntary supporters, growing community, no vendor lock-in, low total cost of

ownership, and ease of accessibility in cloud repositories. In turn, specifying and

evaluating OSS quality has become a significant challenge for OSS adoption in

organizations that are inclined to use them. Although many OSS quality models (OSS-

QMs) have been proposed in literature, the dynamic and diverse nature of OSS has caused

these models to be heterogeneous in terms of structure and content. This has adversely

affected the standardization of evaluations and led to the evaluation results obtained from

different OSS-QMs for the same purpose to be incomparable and sometimes unreliable.

Standardization in OSS quality is of vital importance as a communication vehicle for

stakeholders in identifying and selecting high-quality products. In this context, meta-

modeling can help to define a standardized language and enable to propose quality models

with comparable measurements. Therefore, in this thesis, a meta-model for OSS quality

(OSS-QMM), which employs a unified structure from existing OSS-QMs and enables the

derivation of homogeneous models, has been proposed. For this purpose, a systematic

ii

and laborious effort has been spent via step-based meta-model creation process, including

review-and-revise iterations. In order to validate the OSS-QMM, case study and expert

opinion methods have been applied to answer three research questions (RQs) targeted to

investigate results comparability, effectiveness, and practical applicability of using the

meta-model. Multiple and embedded case study design has been employed for evaluating

three real ERP systems, and 20 subject matter experts have been interviewed during the

validation process. The results of multi-faceted empirical studies have indicated that the

OSS-QMM have addressed solving problems in the OSS quality evaluation and its

adoption with high degrees of confidence.

Keywords: Software quality, Quality model, Quality evaluation, Quality measurement,

Meta-model, Open source software

iii

ÖZET

AÇIK KAYNAK YAZILIMLAR İÇİN KALİTE DEĞERLENDİRME ÜST

MODELİ

Nebi YILMAZ

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Doç. Dr. Ayça KOLUKISA TARHAN

Haziran 2023, 224 sayfa

Son yıllarda Açık Kaynak Yazılım (AKY); gönüllü destekçileri, büyüyen topluluğu, satıcı

firmaya bağımlılığının olmaması, toplam sahip olma maliyetinin düşüklüğü ve bulut

depolarında kolayca erişilebilirliği nedeniyle artan bir ilgi görmüştür. Buna karşılık, AKY

kalitesinin belirlenmesi ve değerlendirilmesi, bu yazılımları kullanmaya istekli olan

kuruluşlarda AKY’nin benimsenmesi için önemli bir zorluk haline gelmiştir. Literatürde

birçok AKY kalite modeli önerilmiş olsa da AKY’nin dinamik ve çeşitli doğası bu

modellerin yapı ve içerik açısından heterojen olmasına neden olmuştur. Bu durum

değerlendirmelerdeki standartlaşmayı olumsuz etkilemiş ve aynı amaç için farklı AKY

kalite modellerinden elde edilen değerlendirme sonuçlarının karşılaştırılamaz ve bazen

de güvenilmez olmasına yol açmıştır. AKY kalitesinde standartlaşma, yüksek kaliteli

ürünlerin belirlenmesi ve seçilmesinde paydaşlar için bir iletişim aracı olarak hayati önem

taşımaktadır. Bu bağlamda üst-modelleme, standartlaştırılmış bir dilin tanımlanmasına

iv

yardımcı olabilir ve karşılaştırılabilen ölçümler üreten kalite modellerinin önerilmesini

sağlayabilir. Bu nedenle, bu tez çalışmasında, mevcut AKY kalite modellerinden birleşik

bir yapı kullanan ve homojen modellerin türetilmesini sağlayan; AKY kalitesi için bir

üst-model önerilmiştir. Bu amaçla, gözden geçirme ve revize etme yinelemelerini içeren,

adım-tabanlı üst-model oluşturma süreci takip edilerek sistematik ve zahmetli bir yol

izlenmiştir. Üst-modeli doğrulamak için vaka çalışması ve uzman görüşü yöntemleri;

değerlendirme sonuçlarının karşılaştırılabilir olduğunu, üst-modelin etkililiğini ve

pratikte uygulanabilirliğini incelemeyi hedefleyen üç araştırma sorusunu yanıtlamak için

uygulanmıştır. Üç gerçek ERP sistemini değerlendirmek için çoklu ve gömülü vaka

çalışması tasarımı kullanılmış ve doğrulama sürecinde 20 konu uzmanıyla görüşülmüştür.

Çok yönlü deneysel çalışmaların sonuçları, önerilen üst-modelin AKY kalitesini

değerlendirmedeki ve benimsemedeki sorunları yüksek oranda çözdüğünü göstermiştir.

Anahtar Kelimeler: Yazılım kalite, Kalite modeli, Kalite değerlendirme, Kalite ölçme,

Üst-model, Açık kaynak yazılım

v

ACKNOWLEDGEMENTS

I would like to give my warmest gratitude to my supervisor Assoc. Prof. Dr. Ayça

Kolukısa Tarhan for invaluable guidance, wisdom, patience, and unlimited support since

my initial graduate studies. Her expertise and encouragement helped me to complete this

research and write this thesis. Also, I would like to thank the members of my thesis

committee Assoc. Prof. Dr. Ali Seydi Keçeli, Assoc. Prof. Dr. Ömer Özgür Tanrıöver,

Assoc. Prof. Dr. Adnan Özsoy, and Assist. Prof. Dr. Özden Özcan Top for providing

helpful feedback and suggestions. Their insights and guidance were instrumental in

helping to shape my research.

I would also like to thank my friends and colleagues Burçak Asal, Selma Dilek, Necva

Bölücü, Merve Özdeş, Bahar Gezici, and Burcu Yalçıner for the pleasant time spent

together in the office and in social settings.

I would also like to give special thanks to my wife Esra Sadi Yılmaz and my family as a

whole for their continuous support and understanding when undertaking my research and

writing my thesis. I could not keep my spirits and motivation high without their

understanding and encouragement.

Finally, I would like to thank my daughter, who will be born in October, for making me

the happiest father in the world.

vi

CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. v

CONTENTS ... vi

FIGURES .. x

TABLES ... xiii

SYMBOLS AND ABBREVIATIONS .. xvi

1. INTRODUCTION ... 1

1.1. Definition of Problem ... 1

1.2. Proposed Solution .. 3

1.3. Methodology Followed .. 6

1.3.1. Literature Search-1 (Step-1) .. 7

1.3.2. Literature Search-2 (Step-2) .. 8

1.3.3. Mapping Process (Step-3) ... 9

1.3.4. The Proposed OSS-QMM (Step-4) ... 9

1.3.5. Validation in Real Context (Step-5) .. 10

1.4. Organization of the Thesis ... 11

2. BACKGROUND AND RELATED WORKS .. 13

2.1. Open Source Software (OSS) ... 13

2.1.1. General Information and History About OSS ... 13

2.1.2. Usage of OSS .. 15

2.1.3. Reasons for Preference .. 19

2.1.4. OSS Licenses ... 23

2.2. Software Quality Models and Meta-models ... 24

2.2.1. Analyzing the Current Situation of OSS Quality Models 25

2.2.2. Analyzing the Current Situation of OSS Quality Meta-models 30

2.3. Software Measurement Models/Standards ... 34

2.4. Meta-modeling ... 38

vii

2.4.1. Basics of Modeling ... 38

2.4.2. Basics of Meta-modeling .. 39

2.4.3. Meta-Object Facility ... 43

2.4.4. Requirements/methods/criteria for Meta-model Validation 45

3. ELABORATION ON SOFTWARE QUALITY MODELS AND META-MODELS

(STEP-1 AND STEP-2) .. 48

3.1. Software Quality Meta-models (Step-1) .. 48

3.1.1. Basic Characteristics of Meta-models .. 49

3.1.2. Software Quality Models Referenced in Developing Meta-models 51

3.1.3. Basic Characteristics of SQiE as Defined in Meta-models 52

3.1.4. Structure of Meta-models ... 54

3.1.5. Development of Meta-models .. 56

3.2. Software Quality Models (Step-2) ... 57

3.2.1 The Basic Characteristics of the OSS Quality Models 60

3.2.2. The Structure of the OSS Quality Models .. 61

3.2.3. The Degree of Guidance Provided by the QEMoF....................................... 63

3.2.4. The Basic Characteristics of QEMoF for Evaluating OSS 64

3.2.5. The Challenges in Developing the OSS Quality Models 65

3.2.6. The Evidence for the Usage of OSS Quality Models 67

4. MATCHING TERMS OF QUALITY MODELS AND META-MODELS (STEP-

3) ... 70

4.1. Terms Analysis of Software Quality Meta-models ... 71

4.2. Detailed Analysis of the Structure and Content of Software Quality Models 76

4.2.1. Determination of QMs to be Taken as Reference in the Design of the OSS-

QMM ... 77

4.2.2. Classification of Quality Models to be Taken as Reference 79

4.2.3. Structure Analysis of SQMs, Including OSS Quality Models...................... 86

4.3. Mapping Process .. 88

4.3.1. Review of the Mapping Process by Experts (Step 3.1) 92

4.3.2. Performing the Mapping ... 93

5. OSS-QMM AND ITS DEVELOPMENT (STEP-4) .. 95

viii

5.1. Development Process of the OSS-QMM ... 95

5.1.1. The Sub-steps of Development ... 97

5.2. Refinement Process of the OSS-QMM .. 107

5.2.1. Refinement with Subject Matter Experts (Step 4.4) 108

5.2.2. Refinement with the Validation Process ... 110

5.3. The Proposed OSS-QMM .. 113

5.3.1. Concepts of OSS-QMM in the Specification Category 115

5.3.2. Concepts of OSS-QMM in the Measurement Category 117

5.3.3. Concepts of OSS-QMM in the Evaluation Category 119

6. VALIDATION METHODS AND THEIR IMPLEMENTATION (STEP-5) 120

6.1. Case Studies ... 122

6.1.1. Determining the OSS Products ... 123

6.1.2. Determining Quality Characteristics and Sub-characteristics 124

6.1.3. Determining Measures and Measurable Concepts 125

6.1.4. Determining Evaluation Methods to Use in the Case Studies 128

6.1.5. Exploratory Study Applied as Part of Case Studies 132

6.1.6. Performing the Case Study-1 .. 137

6.2. Expert Opinion Studies .. 142

6.2.1. Questionnaire Design and Execution .. 143

6.2.2. Part 1: Demonstrating Applicability of the OSS-QMM in Practice w.r.t

Consistency in Evaluation Results and Effectiveness in Model

Derivation .. 145

6.2.3. Part 2: Assessment of the OSS-QMM w.r.t Its Practical Applicability 150

7. DISCUSSION ... 153

7.1. RQ.1: Are Evaluation Results of the OSS-QMs Derived from the OSS-QMM

Comparable? .. 153

7.2. RQ.2: Is the OSS-QMM Effective for Deriving the OSS-QMs? 156

7.3. RQ.3: Is the OSS-QMM Applicable in Practice? .. 160

7.4. Confidence in Validity and Potential Threats .. 162

8. CONCLUSION ... 166

REFERENCES .. 170

ix

APPENDIX ... 189

APPENDIX-1 – List of Primary Studies Included in SLR Study 189

APPENDIX-2 – Development of the OSS-QMM Through Versions 191

APPENDIX-3 – The New Operationalized Quality Model Derived from OSS-

QMM ... 195

APPENDIX-4 – Detailed Information about the Background of Experts 196

APPENDIX-5 – The Screenshots Obtained After the Semi-structured Interview

conducted with Expert #10 via the Questionnaire .. 198

APPENDIX-6 – Mapping the Terms in Existing OSS-QMs (i.e., OSMM, OpenBRR,

and SQO-OSS) to the Concepts of the OSS-QMM .. 200

CURRICULUM VIATE ... 201

x

FIGURES

Figure 1.1. The relationship between OSS-QMM and OSS-QMs 4

Figure 1.2. The development process of the OSS-QMM .. 7

Figure 2.1. Change in the number of developers of GitHub over the years 15

Figure 2.2. Distribution of: (a) respondents according to company size and (b) opinion of

the respondent on the change in OSS usage compared to the previous year 16

Figure 2.3. Distribution of the reasons for users to prefer the OSS according to the survey

result .. 19

Figure 2.4. Basic and tailored quality models over the years (OSS quality models are

indicated in bold text) .. 25

Figure 2.5. Main relationships between the ISO/IEC standards of software quality and

software measurement and their relationship with the CMMI model 35

Figure 2.6. The example use of a model over the inverters manufacturer 38

Figure 2.7. Meta-model that represents a language .. 40

Figure 2.8. Meta-model that represents abstract syntax modeling language for modeling

inverter .. 40

Figure 2.9. The example representation of the mapping process between the concepts of

inverter meta-model and inverter model ... 41

Figure 2.10. Abstraction levels of models and levels of modeling languages 42

Figure 2.11. The representation of the hierarchy of Meta-Object Facility (MOF) 44

Figure 2.12. Distribution of validation methods used for SQMM 46

Figure 3.1. Basic characteristics of meta-models (RQ1): (a) Percent distribution of main

purpose, (b) Percent distribution of types of software products targeted, and (c)

Percent distribution of whether meta-models are taken as the base for tool

development .. 50

Figure 3.2. (a) Software quality model(s) taken as reference for meta-models, and the

number of studies for (b) RQ2.2, (c) RQ 2.3, and (d) RQ 2.4 52

Figure 3.3. Basic characteristics of SQiE in meta-models (RQ3): (a) Percent distribution

of subjective/objective evaluation, (b) Percent distribution of quantitative/qualitative

evaluation, (c) Numeric distribution of evaluation result types, and (d) Percent

distribution of structure of SQMMs .. 53

xi

Figure 3.4. Percent distribution of basic characteristics of QEMoF for OSS: (a) whether

represented formally (RQ 1.2), and (b) whether supported by a tool (RQ 1.4) 60

Figure 3.5. Number distribution of: (a) design structures of QEMoF, and (b) evaluation

aspect of QEMoF .. 62

Figure 3.6. Number of studies for: (a) specification of the quality evaluation procedure,

(b) demonstration of quality evaluation procedure by application 63

Figure 3.7. Distribution of: (a) subjective or objective evaluation supported (RQ 4.3), (b)

quantitative or qualitative evaluation supported (RQ 4.4), (c) aggregation techniques

used in QEMoF (RQ 4.7), and (d) how evaluation results are provided to users by

QEMoF (RQ 4.11) .. 64

Figure 3.8. Distribution of studies with respect to author affiliation type 69

Figure 4.1. Percent distribution of sources (standards and proposals) that contribute to the

terminology in SQMMs .. 73

Figure 4.2. The general structure of hierarchical SQMs ... 81

Figure 4.3. Classification w.r.t evaluation aspects and quality characteristics of: (a) OSS

quality models, and (b) basic quality models ... 86

Figure 4.4. (a) An example of correct mapping, and (b) an example of incorrect mapping

(there are unused terms and concepts) .. 90

Figure 4.5. The examples of the model development process considering the mapping

process .. 91

Figure 5.1. Corresponding parts of Figure 1.2 for developing the OSS-QMM 97

Figure 5.2. Relationship between specification, measurement, and evaluation 101

Figure. 5.3. The process of sub-steps 4.1, 4.2 and 4.3 (indicated in green color) and their

relationship with other steps ... 102

Figure 5.4. Types of relationships used in OSS-QMM .. 103

Figure 5.5. (a) Types of association relationships, and (b) an example usage of association

relationship.. 104

Figure 5.6. (a) An example of an aggregation relationship, (b) an example of a

composition relationship ... 105

Figure 5.7. The Venn diagram of the relationships between classes 105

Figure 5.8. An example of a generalization relationship .. 106

Figure 5.9. The refinement process of the OSS-QMM during the validation 111

Figure 5.10. The OSS-QMM .. 115

xii

Figure 6.1. The validation process of OSS-QMM .. 121

Figure 6.2. Multiple-embedded case study design .. 123

Figure 6.3. Integrated AHP-TOPSIS method used for quality evaluation in the case

studies .. 130

Figure 6.4. Linear utility function according to the final quality scores of ERP products

 ... 142

Figure 7.1. Linear utility function according to the final quality score of each OSS product

for case study 1-3 .. 155

xiii

TABLES

Table 2.1. The cost of Microsoft solutions ... 22

Table 2.2. The cost of OSS solutions .. 22

Table 2.3. OSS solutions savings versus Microsoft solutions .. 22

Table 2.4. The OSS license types and their authorizations .. 24

Table 2.5. Comparison of the SLR studies by year, search string, number of primary

studies, and research questions ... 26

Table 2.6. Comparison of meta-models for OSS .. 32

Table 2.7. Standards and proposals whose terminology is referenced by SQMMs 36

Table 3.1. The research question of SLR (Step-1) ... 49

Table 3.2. Concepts used in meta-models as entities with their frequencies 55

Table 3.3. Classification of challenges and the number of studies that have faced these

challenges .. 56

Table 3.4. The research question of SLR (Step-2) ... 59

Table 3.5. List and frequency of challenges faced in developing QEMoF 66

Table 3.6 List of sources that: advance the QEMoF throughout the lifetime of their

projects, expand the evaluations of the QEMoF, and provide evidence of practical

use of the QEMoF ... 68

Table 4.1. List of concepts in SQMMs and analysis of their inconsistencies 74

Table 4.2. List of Evaluation Factors (EFs) with referenced RQs and scoring rules 78

Table 4.3. Classification of SQMs w.r.t structural, behavioral, and basic/tailored

properties .. 80

Table 4.4. Description of community-related quality characteristics of OSS 85

Table 4.5. Structure comparison of SQMs (the first five are basic, and the last five are

specific to OSS) .. 87

Table 4.6. Matching terms of quality models for OSS and concept of SQMMs w.r.t levels

 .. 93

Table 5.1. List of the relationship between concepts of OSS-QMM 106

Table 5.2. The versions of OSS-QMM with refinement performed and related reference

 .. 108

xiv

Table 6.1. List of RQs, description of RQs, and validation methods related to each RQ

 ... 120

Table 6.2. List of selected OSS products used in case studies 124

Table 6.3. List of code-based measures with their description and measurable concepts

associated with each measure .. 127

Table 6.4. List of community-based measures with their equation and measurable concept

associated with each measure .. 128

Table 6.5. List of methods to use for the relevant concepts in the OSS-QMM 129

Table 6.6. Description of evaluation methods with their formulas used in case studies

 ... 130

Table 6.7. Background of industry experts participated in the case studies 133

Table 6.8. Parts of AHP process w.r.t. the Expert #10’s judgement: (a) Pair-wise

comparison, (b) Normalized decision matrix, and (c) Weight of sub-characteristics

 ... 130

Table 6.9. The weights for each sub-characteristics according to expert’s judgements, the

average of these weights, and the CR values .. 134

Table 6.10. Relationship between sub-characteristic and community-based measures

 ... 136

Table 6.11. The weights for each OSS aspect according to the expert's judgements and

the average of these weights .. 136

Table 6.12. (a) weights of sub-characteristics w.r.t importance, (b) weights of OSS

aspects w.r.t importance, and (c) final weights for sub-characteristics in the case

study-1 ... 138

Table 6.13. Final weights of sub-characteristics, impacts, measurable concepts (MC),

measures associated with MC, values of measures, and decision matrix B 139

Table 6.14. Normalized decision matrix R ... 140

Table 6.15. Weighted normalized decision matrix V .. 141

Table 6.16. Values of Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS)

 ... 141

Table 6.17. Separation measurement (S+ and S-), final quality evaluation score and rank

values for ERP products .. 141

Table 6.18. Background of experts (E1…E20) consulted during the validation process

 ... 144

xv

Table 6.19. The answers to Q1, Q2, and Q3 obtained in Part 1 of semi-structured interview

questionnaire ... 147

Table 6.20. The answers to Q4 obtained in Part 1 of semi-structured interview

questionnaire ... 147

Table 6.21. Interpretation of 5-point Likert scale w.r.t its ranges 148

Table 6.22. The answers to Q5 and Q6 obtained in Part-1 of the semi-structured interview

questionnaire ... 149

Table 6.23. The answers to Q1-12 obtained in Part-2 of the semi-structured interview

questionnaire ... 151

Table 7.1. Evaluation results obtained from case studies and expert opinions 154

Table 7.2. Degree of confidence on the validity of the OSS-QMM with respect to

empirical evaluation results .. 163

xvi

SYMBOLS AND ABBREVIATIONS

Symbols

A+ Positive ideal solution

A- Negative ideal solution

S+ Separation measures for positive ideal solution

S- Separation measures for negative ideal solution

∑ Sigma (summation notation)

[aij]mxn Pair-wise comparison matrix A

[bij]mxn Decision matrix B

[rij]mxn Normalized decision matrix R

[vij]mxn Weighted normalized matrix V

∈ Belong to/is an element of

∃ There exists

∀ For all

Abbreviations

AHP Analytic Hierarchy Process

BSI Bug Severity Index

BSSR Bug-solving Success Rate

CBO Coupling Between Object classes

CC Cyclomatic Complexity

CD Commit Density

CI Consistency Index

CMMI Capability Maturity Model Integration

COTS Commercial Off-The-Shelf

xvii

CR Consistency Ratio

DD Defect Density

DIT Depth of Inheritance Tree

ED Email Density

EF Evaluation Factors

ERP Enterprise Resource Planning

FRIS Feature Request Implementation Success

FSM Functional Size Measurement

GQM Goal Question Metric

LCOM Lack of Cohesion Of Methods

LOC Lines Of Code

MC Measurable Concept

MCDM Multi-Criteria Decision Making

MDA Model Driven Architecture

MDE Model Driven Engineering

MOF Meta-Object-Facility

MS Micro Services

NC Number of Contributors

ND Number of Document

NIS Negative Ideal Solution

NNL Number of Nested Level

NOC Number Of Children

NOS Number Of Statement

NR Number of Release

OMG Object Management Group

OpenBRR Open Business Readiness Rating

xviii

OSMM Open Source Maturity Model

OSS Open Source Software

OSS-QM Open Source Quality Model

OSS-QMM Open Source Quality Meta-model

PA Product Age

PIS Positive Ideal Solution

QEMoF Quality Evaluation Models Or Frameworks

RFC Response For a Class

RI Random Index

SLR Systematic Literature Review

SQiE Software Quality and Its Evaluation

SQM Software Quality Model

SQMM Software Quality Meta-Model

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

UML Unified Modeling Language

WMC Weighted Methods per Class

WS Web Services

 1

1. INTRODUCTION

1.1. Definition of Problem

Open-source software (OSS) has a special copyright license allowing scrutiny of source

code, free redistribution, unrestricted use, and the creation of derived works [1]. In the

last two decades, OSS and its components have been used as part of the software that

supports many activities of human life [2-4] and have attracted significant attention [5-

6]. In the past, the primary motivation for using OSS was to reuse the existing code base

by adapting it to the needs, which resulted in time and resource savings. However, in

recent years, aside from these factors, the OSS has started to be seen as safe, reliable, and

high quality, which has steadily increased the trend of using OSS and its components.

The primary reason for this assumption is that it has undergone extensive testing by many

developers from around the world and is thus considered error-free [7]. Since OSS

solutions may be utilized for free and modified as needed, adopting them can be perceived

as an easy solution. However, assuring the quality of the OSS is the biggest obstacle to

its adoption. In other words, determining and assessing OSS quality have turned into a

significant issue as the usage of OSS solutions by organizations has grown in popularity

[8-9]. The increase in the use of OSS solutions by organizations and, accordingly, the

poor quality of OSS products used in sensitive systems (e.g., real-time systems and

control systems) may also cause disasters. In other words, it may cause permanent injury,

loss of human life, dissatisfaction of the users, mission failure, financial loss or increase

in the cost of maintenance [10].

Defining the word "quality" is a difficult task in the software engineering discipline [11-

12]. Since the expectation of stakeholders (i.e., manager, user, tester, developer,

customer, etc.) are different from software products or services, the meaning of "quality"

varies among them. Even some international standards have defined software quality

differently. For example, IEEE [13] defines software quality as follows: "the degree to

which a system, component, or process meets customer or user needs or expectations".

By contrast, the ISO 9001 standard [14] defines it as follows: "the totality of

characteristics of an entity that bear on its ability to satisfy stated and implied needs".

Aside from these differences in the definition, its abstractness and relativity have made

the evaluation of software a challenging process. Despite the fact that determining and

evaluating software quality is a difficult process, as mentioned above, it is a much more

 2

challenging process in OSS products than its proprietary counterpart (i.e., commercial

software). The reason is that they are different in considering objectives, planning,

scheduling, task assignment, production, distributions, strategies, necessities, and

documentation [15].

In the OSS projects, the source code is available for scrutiny, and historical data (i.e.,

number of defects, lines of code, etc.) has been stored in several repositories since the

creation of the project. It means that several evaluation data are accessible from the code-

based aspect (e.g., number of comments, lines of code, etc.) and community-based aspect

(e.g., number of the developer, license type, mailing lists, etc.) in OSS projects. Unlike

OSS, the other types of software (e.g., commercial off-the-shelf (COTS)) have limited,

often private evaluation data. Therefore, determining and evaluating the quality of OSS

projects is a challenging process since several heterogeneous data belonging to code-

based and community-based aspects are scattered in various repositories and subject to

evaluation. In other words, OSS has a dynamic and diverse nature, and accordingly, its

quality is affected by many variables [16-18]. Since dealing with and aggregating all these

heterogeneous data are difficult tasks, it is hard to develop a situation-based method for

specifying the evaluation criteria for OSS projects [5][19-20]. Thus, performing quality

evaluation for OSS is a complicated process for the reasons mentioned above.

Several well-designed, accepted and widely used software quality models (SQMs) have

been proposed to evaluate and define software quality, such as ISO/IEC 9126 [21],

Boehm [22], McCall [23], etc. Nevertheless, these quality models have primarily adapted

to commercial software and ignored some specific properties of OSS products (e.g.,

community-based aspects) [2][24-26]. In other words, they do not provide sufficient

support for evaluating OSS product quality [5][15]. To fill this gap, a variety of quality

models or frameworks have been developed by practitioners and researchers to evaluate

the quality of OSS, such as OSMM [27], OpenBRR [28], SQO-OSS [25], etc. However,

results of some systematic literature reviews [24][29-30] and empirical studies [17][31]

have concluded that there is little or no adoption of these OSS quality models or

frameworks in practice. This is because these models have deficiencies in some aspects,

as mentioned in the rest of this paragraph. For example, they are not applicable by external

parties [9], not flexible enough to be applicable in all business domains [24], not fair in

quality validation [26], and do not cover all aspects of quality [32-33]. Apart from them,

the results of our latest SLR study [30] concluded that the quality models for OSS have

 3

generally arisen from the needs of evaluators, such as organizations and software

practitioners; and the variety in the needs and expectations of these evaluators has caused

the structure of the developed models to be heterogeneous. Also, according to the results

of a survey study [34], more than 71% of companies developed their own OSS quality

models [35-36]. This survey indicated that quality models moved away from

standardization and turned into individual models, supporting the results of our SLR

study. The majority of the models consist of a wide variety of information in their bodies

in various structures as the base for specifying and evaluating OSS quality [30][37]. All

this diversity has led to the proliferation of individual heterogeneous OSS quality models

[30][38]. As a consequence of this situation, results obtained by using different OSS

quality models for the same product with the same purpose may diverge from each other,

and it becomes impossible to have a common and consistent basis for comparing the OSS

quality in the community [30]. It means that evaluation results may become incomparable

and unreliable [30][35-36]. This negatively affects standardization, which is an important

communication vehicle for companies when interoperating with others. Standardization

assists organizations in interoperating using engineering discipline with agreed and well-

recognized practices and technologies [39-40]. As a result, the reasons mentioned above

have hampered the practical use and adoption of OSS quality models.

1.2. Proposed Solution

Due to the challenges described in Section 1.1, evaluators often choose OSS products on

the recommendations of their colleagues without using a quality model [17][42]. In this

context, in this thesis study, we have developed an Open Source Software Quality meta-

model (OSS-QMM) that aims to eliminate the problems and address the challenges in the

evaluation of OSS products. Our motivation has been to create a solid base to derive OSS

quality models with homogeneous structure and common terms by using the proposed

OSS-QMM and, accordingly, eliminate the standardization problem which is the most

important criteria in measurement and evaluation. Prior to proposing the OSS-QMM, we

conducted two separate SLR studies [30][37] analyzing OSS quality models and software

quality meta-models. According to the common result of these SLR studies, the need for

such a meta-model is emphasized. The results of these two SLR studies are explained in

detail in Section 3.

In order to increase the traceability of the thesis content on the following pages, the reader

should consider the following abbreviations. Throughout the thesis, the term "software

 4

quality meta-model (SQMM) " or "meta-model" corresponds to the quality of all types

of software, unless it is indicated that it corresponds to a specific type of software (e.g.,

OSS). The same is also true for the term "software quality model". That is, the term

"software quality model (SQM)" or "quality model" corresponds to the quality of all types

of software. An OSS quality model is indicated as OSS-QM. Specifically, the

abbreviation for our meta-model developed within the scope of this thesis study is

indicated as OSS-QMM (Open Source Software Quality Meta Model).

Meta-models are defined as "models of models with the rules needed to build specific

models" [42-43], so the models which are derived from the meta-models have

homogeneous structures and common terms [34][43]. In other words, meta-models are

important because they enable standardization of model development [34][44]. In this

context, as shown in Fig. 1.1, the OSS-QMM developed in this thesis will be an abstract

form of OSS-QMs, and each OSS-QM will be an instance of the OSS-QMM. That is,

new operationalized OSS-QMs and existing OSS-QMs with homogeneous structures and

common terms will be derived (or instantiated) from the OSS-QMM. In this way,

evaluation results obtained by using different OSS-QMs will be comparable and reliable.

In this regard, the OSS-QMM aims to address the quality of OSS, consider all possible

characteristics of the underlying areas, be flexible enough to apply for various needs of

users with modifications or minor additions, meet the needs of all the interested parties,

and serve as a standard reference for the evaluation of OSS products. After all, the OSS-

QMM aims to facilitate formalization and helps standardizing the specification,

measurement and evaluation of OSS products.

Figure 1.1. The relationship between OSS-QMM and OSS-QMs

 5

More specifically, the work done in this thesis and the proposal of the OSS-QMM

together with its validation studies contribute to the literature as follows;

 The content and structure of existing SQMMs in the literature are analyzed. This

has helped us gather available information and build a solid foundation for

developing a comprehensive OSS-QMM. Also, it has triggered us to eliminate the

inconsistency in the concepts of the SQMMs (detailed in Section 3.1).

 The content and structure of existing OSS-QMs in the literature are analyzed. This

has helped us gather available information and understand the deficiency of

current OSS-QMs. Also, it has guided us to discover the common structure of

OSS-QMs (detailed in Section 3.2).

 A comparative analysis of the concepts used in the SQMMs is presented. This has

contributed to harmonizing the concepts of different SQMMs and also formed the

basis for proposing the OSS-QMM (detailed in Section 4).

 An investigation on how the concepts used in the SQMMs are expressed in the

referenced standards is carried out. This has led to eliminating inconsistencies in

the international standards proposed so far (detailed in Section 4).

 The terminology used in the OSS-QMs is mapped with the terminology of the

SQMMs. This has contributed to the resolution of the terminology conflicts

between the OSS-QMs and the SQMMs (detailed in Section 4).

 Since the OSS-QMM is proposed considering the common structure of the

important OSS quality models, similar quality models to be proposed in the future

using the OSS-QMM will have the chance of adopting a standard structure

(detailed in Section 4 and 5).

 Unlike the meta-models proposed in the literature, the OSS-QMM has been

validated in a real-world context by employing multiple empirical research

methods, i.e., expert opinion and multiple-case study (detailed in Section 6).

 It has been validated by the empirical studies that the OSS-QMM has concepts

free of inconsistencies and enables the derivation of OSS quality models with

homogenous structures and terms (detailed in Section 6).

 6

 The validation results have indicated that the OSS-QMM has the potential to

increase the adoption of the existing OSS quality models and contributes to the

standardization of OSS quality evaluation (detailed in Section 6).

 The validation process has helped to understand the practical needs in industry by

using expert opinions and to revise the OSS-QMM by taking these needs into

account. That is, the OSS-QMM has been validated by stakeholders who are

potential users of the OSS-QMM in practice (detailed in Section 6).

 Finally, the multiple case-study applied for quality evaluation of three open-

source ERP products has become an example to guide non-experts in the use of

the OSS-QMM (detailed in Section 6).

1.3. Methodology Followed

In this section, the methodology followed in developing the OSS-QMM and the

organization of the thesis is presented. That is, the OSS-QMM development process is

briefly explained with reference to the later sections. In this thesis, the step-based process

for meta-model creation, which is described in Fig. 1.2, is followed. This process has

been adapted from Beydoun et al. [45] and Othman et al. [46] and commonly used by

many studies that proposed meta-models in literature, e.g., [47-48]. In this meta-model

development process, necessary preparations are first performed to create a solid

foundation that will enable the development of the targeted meta-model. Then, the initial

meta-model is developed based on this solid foundation. Lastly, the final version of the

meta-model is obtained with improvements during the validation phase.

An array of meta-modeling frameworks has been proposed by many researchers in

information systems, e.g., [49-51]. Among them, we have adhered to a meta-modeling

framework based on the "Meta-Object-Facility (MOF)" standard [49] offered by Object

Management Group (OMG). This is because the MOF standard, which has proven itself

in meta-model development, is widely used for meta-modeling in literature [52-53]. The

details of the MOF standard are given in Section 2.4.2. As seen in Fig. 1.2, the

development process of the OSS-QMM is iterative, with continuous refinement of new

concepts. In other words, a systematic process consisting of five main steps is followed

in the development of the OSS-QMM. In the remainder of this sub-section, the steps of

this process are explained briefly. Details of each step are given in later sections.

 7

Figure 1.2. The development process of the OSS-QMM

1.3.1. Literature Search-1 (Step-1)

The structure and content of the existing quality meta-models in literature should be well

understood in order to develop a complete and coherent Software Quality Meta-model

(SQMM). This knowledge enhances our domain awareness, as mentioned in the initial

step of the step-based meta-modeling process [45]. This step is valid for any meta-model

creation process [46]. For this purpose, an SLR study [37] has been performed, and a total

of 28 SQMMs have been analyzed. In this SLR study, the structure and content of the

existing SQMMs, including meta-models proposed for OSS, have been analyzed.

In this context, we investigated these SQMMs from various aspects such as: basic

characteristics, structure, content, referenced quality models, mapping process, data

acquisition types, methods/techniques used in evaluation, research methods, challenges

faced while developing the proposal, and validation methods. Therefore, this SLR study

provided us with information about the structure, content and deficiencies of the SQMMs.

Also, in this study, the concepts employed in the included meta-models with their

frequency of use have been elicited, and this indicated that there are inconsistencies

between the terms of the meta-models. Afterwards, a detailed analysis has been

performed to eliminate these inconsistencies. The origins of the terms have been explored,

and the terms have been analyzed based on international standards. As a result, the output

of Step 1 formed the basis for shaping the content of the OSS-QMM. The details of Step-

1 are explained in Section 3.1.

 8

1.3.2. Literature Search-2 (Step-2)

This step covers gathering the knowledge sources to be used in the development process

of the OSS-QMM, as in Step-1. In order to develop a complete and coherent SQMM, the

structure and content of the existing quality models in the literature should be analyzed

since the quality models are the instances of the SQMMs. In this context, we performed

another SLR study [30] and analyzed a total of 36 quality evaluation models or

frameworks (QEMoF) proposed for OSS. In this SLR study, we investigated these

QEMoF from various aspects such as: basic characteristics, structure, technical details of

the evaluation procedure, support for evolutionary evaluation, types of data collection,

research methods, degree of required skills for evaluation, challenges faced while

developing the proposal, evidence for practical use, and validation methods. The results

from this SLR in this study are presented together with a number of evaluation factors,

which can be used to compare the overall quality of the QEMoF to guide potential users,

as the final output.

Although this SLR study examined the QEMoF from many aspects, one of the most

important findings has been that there is little or no adoption of these models/frameworks

in practice. Other secondary studies [24][29] also support this situation. As revealed in

the SLR study [30], this is because quality models have moved away from standardization

and turned into individual models. That is, OSS quality models vary in terms of the

software aspects they evaluate, subjective and objective evaluations, quantitative and

qualitative evaluations, the aggregation techniques, the level of user skills in using the

model, the data type of the evaluation results provided to the user, etc. All this diversity

has led to the proliferation of individual and heterogeneous quality models. Therefore, in

our later study [54], a common structure of the OSS quality models has been aimed in

order to eliminate this heterogeneity. In this context, a total of 10 quality models have

been determined and analyzed, and the process of determining these quality models is

explained in Section 2.2. The results of our second SLR study [30] revealed that most of

the OSS quality models have a hierarchical structure. After the analysis of the 10 quality

models, we observed that all software quality models are based on a common structure

consisting of five levels (as explained in detail in Section 5.2). As a result, the output of

Step-2 formed the basis for shaping the structure of the OSS-QMM. The details of Step-

2 are explained in Section 3.2.

 9

1.3.3. Mapping Process (Step-3)

As a result of the analysis performed in Step-1, the inconsistencies between the

terminologies of the meta-models have been analyzed according to their meanings in the

related meta-models and international standards. This analysis provided knowledge about

the meanings of the terms to use in the OSS-QMM to be developed, in other words, its

semantics. In Step-2, the structure of the quality models has been analyzed, and this

analysis provided knowledge about the structure of the OSS-QMM to be developed, in

other words, its syntax. Then, in our third study [54], the concepts of the quality meta-

models have been matched to the terms of the quality models since models are defined as

instances of meta-models according to the MOF architecture [49]. MOF structure is

explained in Section 2.4.3. In this regard, a level-based matching process has been carried

out in iterations, as already shown in Fig. 1.2. That is, during the matching process, a

series of meetings have been held between this student and his supervisor. In this context,

a total of 11 iterations has been performed through online meetings and emails. While

performing the matching, the meanings of the terms and their intended uses have been

taken into account. Also, in Step 3.1, this mapping process and its outputs have been

reviewed by four subject matter experts on software quality models, as shown in Fig. 1.2.

That is, it has been aimed to examine the mapping process by external parties other than

the researchers involved in this thesis study. In this context, experts have been asked

questions to review our mapping process. The mapping has been revised based on

feedback from experts when necessary. As a result, the final version of the mapping has

been obtained by considering the process described above. The background of the experts

who reviewed the mapping, the questions asked to the experts, and details of the mapping

process are explained in Section 4.3.

1.3.4. The Proposed OSS-QMM (Step-4)

In this step, the Open Source Software Quality Meta-model (OSS-QMM) has been

proposed by considering the outputs of Steps 1, 2, and 3. The details of the OSS-QMM

are explained in Section 5. The content of the OSS-QMM has been determined as the

output of Step-1, and the structure of OSS-QMM has been determined as the output of

Step-2. In Step-3, the meta-model concepts corresponding to each level of the quality

models have been determined. Then, as seen in Fig. 1.2, Step-4 consists of four sub-steps,

namely 4.1, 4.2, 4.3, and 4.4. In this regard, the concepts of the OSS-QMM have been

 10

determined in Step 4.1, these concepts have been designated in Step 4.2, and the

relationships between the concepts have been determined in Step 4.3. In Step 4.4, the

OSS-QMM has been reviewed by four subject matter experts on software quality models,

as shown in Fig. 1.2. That is, it has been aimed to examine the OSS-QMM by external

parties other than the researchers involved in this thesis study. It should be noted that the

experts consulted in this Step 4.4 and the ones in Step 3.1 have been the same group of

experts. In this context, experts have been asked questions to review the OSS-QMM. The

OSS-QMM has been revised based on feedback from experts when necessary.

As shown in Fig. 1.2, a review-and-revise process has been followed while carrying out

the sub-steps. That is, a series of meetings have been held between this student and his

supervisor for the purposes of reviewing the meta-model (in Step 4) and its development

process (in Steps 1-3) and then revising the meta-model. In this context, a total of 15

iterations has been performed through online meetings and emails. Also, in these

meetings, refinements have been made as a result of the activities mentioned in Step 4.4

and Step 5. Thus, the concluding decisions have been made as the result of a series of

iterations. The background of the experts (in Step 4.4), the questions asked to these

experts, and details of the OSS-QMM and its development process are explained in

Section 5 in detail.

1.3.5. Validation in Real Context (Step-5)

In this step, the OSS-QMM has been implemented in practice and has been validated in

a real context. Before validating the meta-model in a real context, an example

implementation of the OSS-QMM has been demonstrated in an unreal OSS product with

dummy evaluation data through a toy experiment [54]. In this example implementation,

it has been understood that the OSS-QMM has been applicable in practice. Then, in Step

5, multi-faceted empirical research has been employed to validate the OSS-QMM in a

real context, as details are given in Section 6. For this purpose, case study and expert

opinion, which are the two most used empirical research methods for validating meta-

models as reported in [37], have been used. In this context, three research questions (RQs)

have been determined to investigate the validity of the OSS-QMM by using these two

validation methods. Each RQ has been aimed at validating the OSS-QMM from different

aspects such as results comparability, effectiveness in model derivation, and applicability

in practice, respectively. More specifically, the three research questions are given below:

 11

 RQ.1: Are the evaluation results of OSS quality models derived from the OSS-

QMM comparable?

 RQ.2: Is the OSS-QMM effective for deriving the OSS quality models?

 RQ.3: Is the OSS-QMM applicable in practice?

For case study research, multiple-embedded case studies have been designed, in which a

new OSS quality model has been derived and two important existing quality models (i.e.,

OSMM [27] and OpenBRR [28]) have been instantiated from the OSS-QMM. Three

widely-used and open-source ERP systems (namely; Adempiere, Compiere, and Apache

OFbiz) have been determined to evaluate quality for their maintainability.

In other words, the OSS-QMM has been validated by instantiating quality evaluation on

real OSS products with real data, as specified in Fig. 1.2. This way, the applicability of

the OSS-QMM has been demonstrated and also, it has been shown that the evaluation

results obtained by using different OSS quality models, all derived from the OSS-QMM,

are comparable. In the case studies, the integrated AHP-TOPSIS method has been used

as an evaluation method, in accordance with the steps of using the OSS-QMM in quality

evaluation. A total of 20 experts have taken into account the structure and the applicability

of the OSS-QMM in a real-world setting while providing their opinions. In addition, they

have shared their opinions about the meta-model by considering the OSS quality models

that they have used in their own companies or are well-known in practice. Throughout

this validation process, the meta-model has been reviewed to investigate whether there

has been any unmatched concept in the OSS-QMM or the derived quality models,

whether there has been a problem in the relationships between the concepts, and whether

the meta-model could be applied successfully in practice. Then, the meta-model has been

revised in case any of these situations have been encountered. Details of the validation

process are explained in Section 6.

1.4. Organization of the Thesis

The rest of this thesis is organized as follows: In Section 2, the background that forms the

basis for the development process of the OSS-QMM and an overview of related studies

are given. In other words, general information about OSS, software quality models, meta-

models, software measurement standards, meta-object facility standard, and validation

methods for meta-modeling are presented. Section 3 presents details of analyzing meta-

models (in Step-1) and quality models (in Step-2) that are taken as the basis for the

 12

development of the OSS-QMM. In this context, analyzing concepts of meta-models and

structure analysis of software quality models are presented. Section 4 elaborates the

mapping process between concepts of meta-models and terms of quality models (in Step-

3) that are also taken as the basis while developing the OSS-QMM. In Section 5, the Open

Source Software Quality Meta-model (OSS-QMM) and its development process are

presented in detail (in Step-4). In Section 6, empirical research methods employed for

validating the OSS-QMM and their implementation are presented (in Step-5). In Section

7, the results obtained from the validation process are discussed. Finally, in Section 8,

conclusions and plans for future work are presented.

 13

2. BACKGROUND AND RELATED WORKS

This section introduces the general concepts that are used throughout the thesis and the

importance of these concepts. Related work in quality modeling and meta-modeling are

also presented. In this context, first, in Section 2.1, general information about OSS and

its importance is given. In Section 2.2, the current status of the OSS quality models and

meta-models in literature are presented together with related studies. In Section 2.3,

international standards and their importance for the OSS-QMM developed in this thesis

are presented. Finally, Section 2.4 focuses on the basics of meta-modeling.

2.1. Open Source Software (OSS)

In this section, general knowledge is given about the following issues: OSS and its

history, usage of OSS, reasons for its preference, and OSS licenses. The purpose of this

section is to explain the importance of OSS to the reader.

2.1.1. General Information and History About OSS

Open Source Software (OSS) is a type of software with a special copyright license

allowing scrutiny of source code, free redistribution, unrestricted use, and the creation of

derived works [1]. In addition, the OSS makes it possible to distribute the software to

third parties for a fee or free of charge. In order for the software to be an OSS, it is not

enough to allow scrutiny of source code and offer the software free of charge. According

to the Open Source Initiative [55], the software must comply with the following criteria

to be an OSS:

 "The software should be freely redistributed "

 "Providing the source code with the software product or providing the opportunity

to obtain it free of charge"

 "The license should allow changes (derived works), but derived works should be

distributed under the original software license"

 "The license of OSS should not discriminate against any person or group and

should be valid for everyone"

 "No restrictions on the use of the software for a specific field of endeavor"

 14

 "The license should not be specific to a particular product but to the software

itself"

 "The license should not impose restrictions on other software distributed with the

licensed software"

 "The license should be valid for all persons to whom the software reaches without

any additional process"

Although the concept of OSS was mentioned in the artificial intelligence laboratories of

universities such as Massachusetts Institute of Technology, Stanford University, Carnegie

Mellon University, and California (Berkeley) University in the 1960s, the first official

step was taken in the 1970s [56]. During these years, Richard Stallman, an American

software developer, released an open-source code version of UNIX, which is an operating

system with a large number of users [57]. This version, which offers everyone the

opportunity to modify the source code freely, has attracted the attention of users.

The institutionalization of OSS was first started in 1983, again by Richard Stallman, by

resisting the closing of the source code of the driver software for the Xerox printer in the

laboratory of the Massachusetts Institute of Technology. Then, in 1989, the General

Public License (GPL) was developed to determine the boundaries of OSS and put them

on solid foundations. Another important development regarding OSS took place in 1998

[57]. The Netspace company lost market share to a large extent against Microsoft's web

browser and Internet Explorer. Then, they made a critical decision in January 1998 to

regain their lost position and opened the source codes of their web browser to the user.

This move of the company was considered an important step for the development of OSSs

[57]. The popularity of OSSs has increased day by day after these years and has increased

remarkably, especially after 2010 [57][59-60]. In Fig. 2.1, the number of developers of

GitHub is analyzed over the years according to GitHub's January Report [61]. It is easily

seen in the figure that the interest in OSS has increased rapidly. As of 2023, the number

of GitHub developers has exceeded 100 million [61]. These analyzes were obtained only

for GitHub, and considering that there are many cloud repositories (e.g., source forge,

Apache, etc.) other than GitHub, it can be seen how huge the popularity of OSS has

reached.

 15

Figure 2.1. Change in the number of developers of GitHub over the years

2.1.2. Usage of OSS

The OSS has started to be preferred by the masses as they are perceived as high quality

and reliable due to the scrutiny of many developers, and the users' dependence on vendor

companies is removed. A survey was conducted by the open source initiative in 2022 to

analyze the use of OSS in the market, and a report was published [62]. A total of 2660

respondents from all over the world participated in this survey. The distribution of these

participants according to the size of the companies they represent is given in Fig. 2.2 (a).

As seen in Fig., almost 65% of the participants represent medium and large companies.

These participants were asked whether the use of OSS has increased in the companies

they represent compared to the past year. As seen in Fig. 2.2 (b), 76% of the participants

stated that OSS use increased compared to the previous year, and 21% of them stated that

it remained the same. Only 1.63% of them declared that the use of OSS decreased

compared to the previous year. These analyses made with the real data obtained directly

from the participants in the market showed that the use of OSS is increasing day by day.

In addition, the sectoral distribution of OSS usage was examined in the survey conducted

by Synopsys, which is an American Design Automation (EDA) company [59]. As a result

of this survey, it is seen that OSS use is mostly in public institutions by governments

around the world. This is followed by the use of OSS in the field of healthcare and media.

In parallel with the results of this survey, many governments and organizations have

worked to increase the use of OSS. Europe Union governments and companies have

already noticed the potential of Open by investing over €1 billion in open-source

development in 2018 alone [63]. Also, they plan to invest over €95 billion in open-source

development between 2021-2027 years [63]. In this context, examples from around the

world are given in the following paragraphs.

0

20

40

60

80

100

120

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

N
u

m
b

er
 o

f
d

ev
el

o
p

e
(M

il
li

o
n

)

Years

 16

a b

Figure 2.2. Distribution of: (a) respondents according to company size and (b) opinion

of the respondent on the change in OSS usage compared to the previous year

European Commission: The European Commission has supported the use of OSS with

various initiatives after the establishment of the Free Software Working Group [62]. It

has supported many projects that support and spread OSSs within the scope of the 6th

and 7th Framework Programs of the European Union. A cooperation working group was

established to share experiences and good practices related to OSS with the support of the

European Commission [63]. Well-prepared practices and studies have been published on

the European Commission's website thanks to this working group. Even within the scope

of the European Commission's 2020-2023 strategies, under the theme "Think Open", they

have committed to promote the use of OSS not only in practical areas such as IT but also

in areas where it can be strategic [64].

England: England first supported the use of OSS at the political level after 2004. They

have not made the use of OSS directly obligatory in their own public institutions.

However, they have followed encouraging methods to search for open-source alternatives

to commercial software used in their public institutions. Then, with an action plan

published in 2009 [65], the use of software in England was made compulsory in their

public institutions. Detailed justifications were requested from the public institutions that

preferred the use of commercial software, and only those who provided valid reasons

were allowed. As a result, in a study by Aiven [66], 71% of England government

employees reported using more OSS products in their public institutions compared to 5

years ago [67].

% 32,16

% 39,61

% 28,23

Small (employees<100)

Medium (100 ≤ employees≤1000)

Large (employees > 1000)

% 40,56

% 36

% 21,82

1,63

Yes

Yes, significantly

Remain the same

Reduced the use of OSS

 17

Netherlands: In the Netherlands, the planning for the use of OSS is followed by the

Ministry of Finance. With an action plan (i.e., Open Standards and Open Source

Software) published in 2003, the Netherlands encouraged the use of OSS in its public

institutions. In 2007, a study was conducted within the framework of this action plan, and

it was observed that public institutions started to adopt OSS rapidly. However, the Dutch

Government found this insufficient and expanded the scope of the action plan to increase

the use of OSS after 2007. The Dutch government launched open-source incentive action

plans in 2017 and 2018, and finally published NL DIGITAAL, also referred to as the

government data agenda, in 2019. In this regard, they have recommended the use of OSS

in order to increase transparency with regard to the software that is used by the public

administration [68]. For example, in 2019, Logius, the Dutch government digital service

that is part of the Ministry of the Interior and Kingdom Relations, developed an OSS-

based data exchange service [68]. This system has been used by both private and public

organizations. As a result of these action plans on the use of OSS, more than 60% of

Dutch government public organizations have adopted the use of OSS.

Malaysia: The Malaysia Public Sector Open Source Software Master Plan [69],

consisting of three phases, was launched in 2004. Phase 1, called "Early Adoption", was

completed in 2006, Phase 2, called "Accelerated Adoption", was completed in 2010, and

Phase 3, called "Self-Reliance", started in 2011 and it continues [70]. After this action

plan, the use of ABM in public institutions in Malaysia has greatly increased, and

according to the reports of the Gartner company [71], the following gains have been

achieved; 80% savings on license costs, 58% reduction in consulting and development

work, 7% savings on software support services, and approximately 30% savings were

achieved in total.

Turkey: The use of OSS in Turkey is one of the important issues addressed in the e-

Transformation project launched in 2003 [57]. In this context, firstly, with action plan no.

7 in 2005, a report on the subject was published by the Information Society Department

of the Ministry of Development with the participation of the relevant stakeholders. In this

report, the basic features, history, usage areas and advantages of OSSs are included, and

OSSs are examined from the legal and financial aspects [57].

The best example of OSS usage in Turkey is the PARDUS operating system, which was

started to develop by TUBITAK-BILGEM in 2003 and released its first version in 2005

(Pardus 1.0) [72]. Thanks to the social effects of Pardus, versions that can also be used

 18

by individual users have started to be published, and the awareness of OSSs has increased.

In 2007, a new corporate version was published under the name "Pardus 2007", and the

first institution to use it was the Ministry of National Defense Recruitment Office (ASAL)

[58]. In 2007, ASAL started to use this operating system in a total of 625 servers and

4500 clients in all its institutions throughout Turkey. As of 2008, Radio and Television

Supreme Council (RTÜK) started to use the Pardus operating system on nearly 100

computers in the Digital Recording, Archive and Analysis System (SKAAS). During

these years, the Pardus operating system started to be used on 1700 computers at the

General Directorate of Istanbul Water and Sewerage Administration (ISKI) [57].

The Pardus project, which is Turkey's most notable OSS project, was included in the

Public Investment Programs of the Ministry of Development in 2008 and is still included

in investment programs and action plans. In the final evaluation reports of the Information

Society Strategy and Action Plan (2006-2010), it is stated that a contract was signed in

2009 for the OSS transformation in the Energy Market Regulatory Authority [57]. Also,

in the final evaluation reports of the Information Society Strategy and Action Plan (2015-

2018), it is stated that there are plans for the dissemination of OSS and Pardus in the

public sector and for the development of the private sector ecosystem [58]. According to

the plan, information, promotion and training activities will be carried out for public

institutions in order to encourage the use of Pardus and OSS, and TÜBİTAK will provide

free consultancy services and training to those institutions.

After all these efforts, many public institutions in Turkey are using OSS and Pardus

operating systems, e.g., the Ministry of Justice, National Defense Department, Ministry

of Environment, Urbanisation and Climate Change, Radio and Television Supreme

Council, Energy Market Regulatory Authority, General Directorate of Security, Ministry

of Education, Ministry of Health, Ministry of maritime transport and Communications,

General Directorate of Land Registry and Cadastre, National Lottery Administration,

Central Bank of the Republic of Turkey, General Directorate of Istanbul Water and

Sewerage Administration, and various municipalities and universities [57]. For example,

the Ministry of National Defense has planned to use it in 1 million 800 thousand

computers until the end of 2023. In this context, it is aimed to generate an annual profit

of 2.2 billion dollars from the operating system and other software licenses. Many OSS

projects are carried out by TUBITAK-ULAKBIM apart from Pardus. For example,

Octopus Integrated Cyber Security System, EnGerek Identity Management System,

 19

LiderAhenk Central Management System, Etap Interactive Board Interface Project,

ULAKBUS Integrated University System, LibreOffice, etc.

Apart from the countries mentioned above, many countries such as France, Germany,

Spain, Mexico, Brazil, Korea and India have adopted the use of OSS in their public

institutions and made it a part of their information society strategies [57].

2.1.3. Reasons for Preference

The OSS has enabled this ecosystem to be adopted as a preference rather than an option,

thanks to the opportunities they provide [73]. This software has become a business model

that reduces the costs of information systems, especially in public institutions, and

increases information security [57][74]. In a survey conducted by the open source

initiative in 2022 [62], OSS users (i.e., 2660 participants) are asked why they prefer the

OSS in their organizations. The results of the survey are shown in Fig. 2.3. It is seen that

the most frequent reason for users to use OSS is that this software has access to

innovations and the latest technologies. This is because many developers around the

world work with the OSS, and these developers are constantly intertwined with new

technologies. As shown in the figure, the second most important reason is that the OSS

does not have licensing costs, and the total cost of ownership is low. Also, more than 36%

of participants indicated that they use the OSS to modernize their technology stack. Apart

from them, as shown in Fig. 2.3, the reasons, such as offering many options for similar

technologies and low vendor lock-in, are also important reasons for users to prefer the

OSS.

Figure 2.3. Distribution of the reasons for users to prefer the OSS according to the

survey result [62].

0,17%

12,06%

20,19%

26,74%

28,82%

31,44%

35,14%

37,08%

37,53%

44,26%

0 10 20 30 40 50

Other

Makes it easier to hire engineers

To shift to cloud-native/ containerized environments

Less vendor lock-in

Constant releases and patches

Many options for similar technologies

Functionality available to improve development velocity

To modernize technology stack

No license cost, overall cost reduction

Access to innovation and latest technology

 20

Apart from this survey, many surveys (e.g., [59][75]) and studies (e.g., [57][74]) have

been conducted in the literature related to the reasons for the preference of the OSS. For

example, in a report jointly presented by Black Duck Software [59] and North Bridge

Venture [76] organizations, it is emphasized that the reasons for preferring the OSS have

changed over the years. According to the report, the primary reasons for users to prefer

the OSS were that they have no vendor lock-in and no license cost. However, these

reasons have changed in recent years, and users have started to prefer OSS software

because they are of higher quality and reliable. In the following sub-sections, the most

preferred reasons for OSS are explained according to the common results obtained from

the studies and reports in the literature.

2.1.3.1. Access to Innovation and Latest Technologies

The OSS is under the follow-up of many OSS users (e.g., developers) from all over the

world, and as a result of this follow-up, it constantly updates itself with new versions. In

other words, after technological development and need, the OSS can be easily modified

by experienced developers. This situation prevents this software from being behind the

times. Therefore, OSSs are developed open to innovative ideas. The most important

evidence of this is that huge companies such as Google, IBM, Yahoo, and Amazon have

entrusted their important business operations to OSS solutions, especially the GNU/Linux

operating system. Considering that these huge companies must constantly follow

innovations and the latest technologies, it can be concluded that OSS is successful in this

regard. Therefore, users who are constantly interacting with the OSS stated that the most

important reason for preferring the OSS is that this software is constantly supported by

new technologies.

2.1.3.2. Total Cost of Ownership

The OSS offers the opportunity to use the software freely without paying for the license.

However, only the license costs of the software products are not taken into account in the

calculation of the Total Cost of Ownership (TCO) of the software [77]. Personnel costs,

cost of equipment requirements, training costs and opportunity costs should also be

considered in calculating TCO. In addition, costs such as upgrading, technical support,

and end-user costs should not be neglected. The initial acquisition cost of OSS is very

low compared to Commercial off-the-shelf (COTS) software. It cannot be claimed that

 21

OSS is completely free of cost. Like COTS software, there are support, maintenance,

documentation and training costs for OSS.

In the study conducted by the Australian-based company Cybersource [78], it has

analyzed the cost savings that can be made as a result of using OSS that provides similar

functions instead of COTS software marketed by Microsoft in any fictional company.

The analysis of the Cybersource company has revealed the possible amount of savings by

using the license cost of the software packages. That is, the initial purchase prices were

considered in this analysis. This analysis was performed in 2002, and therefore old

versions and prices of the software were used. However, we have created Table 2.1 and

Table 2.2 using current versions and prices of this software for a fictional company

employing 50 persons. In this fictional company, it is assumed that standard office

software, e-mail, intranet and internet services and database access are provided for each

of the employees, as well as workstations for a limited number of experts and developers.

In Table 2.3, the results obtained in Table 2.1 and Table 2.2 are rearranged for two

separate companies with 100 and 250 employees. As can be seen from Table 2.1, the

initial purchase price of companies using COTS software is quite high. Moreover, as

shown in Table 2.3, these costs increase as the size of the companies increases. However,

the costs of companies using OSS are quite low, and these costs remain constant

regardless of the size of the organization, as shown in Table 2.3. This situation is accepted

as an indication that OSS has extremely high scalability.

The maintenance cost of any software package can be equal to the initial cost of

ownership and often more than the initial cost of ownership. In addition to the initial cost

of ownership, OSS also has significant advantages over COTS software in terms of

upgrade, update and maintenance costs. One of the most important reasons for this is that

the long-term pricing of the services mentioned above remains at the discretion of a single

supplier in COTS software. However, even if technical support is paid for OSS, the

market for these services is open to competition. Therefore, since there are many

companies that will provide technical support to the software, another one can always be

preferred instead of a technical support provider whose services are not liked or whose

fees are exorbitant.

 22

Table 2.1. The cost of Microsoft solutions [78]

Software Number of licenses Price

Norton Antivirus 360 50 copies $2,799.5

MS Internet Information Server 2 copies $0.00

MS Windows Server 2022 5 copies $24,478.56

Sitecore Commerce Server 1 copy $13,345.00

MS Forefront TMG 1 copy $1,499.00

MS SQL Server 1 copy $5,434.00

MS Exchange Standard Server 2019 1 copy $299.00

Windows 11 50 copies $9,950.00

MS Visual Studio Professional 3 copies $3,597.00

MS Office Standard 50 copies $13,200.00

Adobe Photoshop 2 copies $1,399.98

Total $76,002.04

Table 2.2. The cost of OSS solutions [78]

Software Number of licenses Price

GNU/Linux Distribution (Red Hat) Only 1 copy required $349.00

Apache Web Provided with distribution $0.00

Squid Proxy Server Provided with distribution $0.00

PostgreSQL Database Provided with distribution $0.00

Iptables Firewall Provided with distribution $0.00

Sendmail or Postfix (mail server) Provided with distribution $0.00

KDevelop (IDE) Provided with distribution $0.00

GIMP (graphics) Provided with distribution $0.00

OpenOffice (productivity suite) Provided with distribution $0.00

OSCommerce (e-commerce system) Only 1 copy required $0.00

Total $349.00

Table 2.3. OSS solutions savings versus Microsoft solutions [78]

Size of companies The solution of

Microsoft

The solution of

OSS

Amount of

savings

Company A (50 employees) $76,002.04 $349.00 $75,653.04

Company B (100 employees) $152,004.08 $349.00 $151,655.08

Company C (250 employees) $380,010.2 $349.00 $379,661.2

2.1.3.3. Reliability

Commercially available software products may have backdoors. A backdoor is a kind of

method that ignores the normal security functioning of computer systems, thereby leaving

the computer system open to unauthorized access and operations [79]. This is a very

critical situation, especially in companies where information security is important.

Considering that the source codes of the product used in COTS software are only accessed

by the producer, it is not possible for users to know what the software product does in the

background. No one can guarantee whether any part of the code that can harm the user,

 23

steal their information and send it to other units is included in the software [80].

Companies that develop COTS software sometimes make statements that there is no

backdoor in their software, and there are even companies that open some part of the

source code of the software for examination [57]. However, these efforts are often not

enough to remove the uneasiness about the issue. In summary, the source code of OSS

products can be completely examined, but in traditional software, it is necessary to trust

the statement of the software producer. For this reason, in institutions where information

security is considered important, there is a greater tendency towards OSS products.

2.1.3.4. Vendor Lock-in

In COTS software, manufacturers oblige users to use their own software products with

various agreements for a certain period of time; software other than the software products

of that company cannot be used. Another problem is that the COTS software products

provided by the manufacturers to the user only work in harmony with their own software

products and do not match with the software products of the competitors. This situation

restricts users. Thus, manufacturers aim to eliminate competition, set prices as they wish,

and make users dependent on them. These and similar problems have been completely

eliminated in OSS products. Since the source codes of the OSS products are accessible to

the users, the vendor lock-in is eliminated, and the users can easily change the software

products according to their own needs.

2.1.3.5. Software Quality

In recent years, OSS products have emerged as high-quality [57][74]. One of the most

important reasons for this is that OSS products are scrutinized by software developers

from all over the world and are free of errors [57][60]. Although the OSS is getting better

in terms of product quality every passing day, it has not yet reached the level of

commercial software in terms of documentation quality. The biggest reason for this is

that OSS teams are strong in terms of code development, but they are not very meticulous

about the preparation of help documentation.

2.1.4. OSS Licenses

An OSS license allows the source code, blueprint, or design to be used, modified, and/or

shared under defined conditions and terms [81]. Considering the most specific feature of

OSS is that its source code is open to users, license type is quite important as an essential

property in terms of redistributing the source code. Before making modifications to the

 24

OSS, it should be examined which type of changes the software license allows in order

not to be subject to legal sanctions. There are over 80 OSS licenses in the literature, but

they can be differentiated between permissive and restrictive (so-called copyleft) licenses.

A permissive license (e.g., Berkeley Software Distribution [BSD]) provides more

freedom for reuse, modification, and distribution [57]. A restrictive license (e.g., General

Public License [GPL]) provides the same permission as a permissive license but requires

that any derivative software be released under the same license as the original software

[82]. That is, despite the fact that all OSS licenses allow using, distributing, changing,

and redistributing the source code, the restrictions of license types are different. In Table

2.4, the most used OSS licenses in the literature are given with their authorizations. As

seen in the Table, each type of OSS license has different permissions, conditions, and

limitations that must be followed. The authorizations allowed by the licenses can be

followed from the Table 2.4.

Table 2.4. The OSS license types and their authorizations [55][82]

Type of

license
Permissions Conditions Limitations

License name /

Authorizations

P
er

m
is

si
v

e

C
o

p
y
le

ft

C
o

m
m

er
ci

al
 u

se

D
is

tr
ib

u
ti

o
n

M
o

d
if

ic
at

io
n

P
ri

v
at

e
u

se

P
at

en
t

u
se

L
ic

en
se

 a
n

d

C
o

p
y

ri
g
h

t
N

o
ti

ce

S
ta

te
 c

h
an

g
es

S
am

e
li

ce
n

se

D
is

cl
o

se
 s

o
u

rc
e

L
ia

b
il

it
y

T
ra

d
em

ar
k

 u
se

Apache License 2.0 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

MIT license ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Berkeley Software

Distribution

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Eclipse Public License ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Microsoft Public License ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Mozilla Public License 2.0 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

GNU General Public

License v3.0

 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

GNU Affero General

Public License v3.0

 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Open Software License

3.0

 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

2.2. Software Quality Models and Meta-models

In this section, the current situation of OSS evaluation in literature before the OSS-QMM

has been developed is summarized. In this context, we first discuss the current situation

of OSS quality models and then the current situation of OSS meta-models.

 25

2.2.1. Analyzing the Current Situation of OSS Quality Models

Software quality is vital for diverse types of organizations, so developing high-quality

software in a cost-effective and timely manner has become a major challenge in software

engineering [83]. This is not a current issue, and studies have been conducted on software

quality for years. As technology in the software industry is constantly evolving,

expectations of software quality are constantly changing. Therefore, an array of quality

models is observed to measure and evaluate software quality, and the evolution of them

over the years is shown in Fig. 2.4. As seen from the figure, quality models are classified

as basic quality models developed until 2001 and tailored quality models developed after

this year [2][84]. Detailed information is given in Section 4.2.2.4 for both basic and

tailored quality models.

Figure 2.4. Basic and tailored quality models over the years (OSS quality models are

indicated in bold text)

Many basic quality models, which are widely used, accepted, and well established, such

as ISO 9126, McCall, and Boehm, have been proposed to evaluate software quality. After

the emergence of OSS, it has been observed that these models do not provide sufficient

support for assessing the quality of OSS [5][15][24-26]. This is because these models

mostly have been adapted to commercial software (COTS) and have overlooked some

specific properties of OSS, for example, community-based aspects. To fill this gap,

researchers and practitioners have developed an array of quality evaluation models or

frameworks (QEMoF) that are tailored for the quality evaluation of OSS, such as SQO-

OSS, OSMM, OpenBRR, and QSOS.

 26

As the number of OSS quality models increases, secondary studies have been conducted

to see and analyze all of the OSS quality models developed in the literature, to obtain

more detailed information about these models, and to see future suggestions discussed in

these studies. In this context, a total of three SLR studies, one of which is within the scope

of this thesis by us [30] and the other two are conducted by Adewumi et al. [24] and

Lenarduzzi et al. [29], are revealed in the literature. In the following paragraphs, the

contributions of our SLR [30] that differ from the other two SLR [24][29] will be

discussed. In addition, the current status of the OSS quality models will be discussed

according to the results obtained from these SLR studies. Apart from these SLR studies,

there are comparison studies [20][102] and descriptive review studies [4][26] comparing

the strengths and weaknesses of OSS quality models in the literature. However, they

examined two or more OSS quality models comparatively from certain aspects instead of

systematically investigating the existing studies in the literature by following formally

defined SLR protocol. Therefore, since these studies do not provide an opportunity to

analyze OSS quality models in depth from a wide perspective as in SLR studies, they are

not included in the comparison below.

Table 2.5. Comparison of the SLR studies by year, search string, number of primary

studies, and research questions.

Study /Year Search string

of primary studies

RQs and Sub-RQ Models Frame

-work

Survey Lesson

learned

Total

Adewumi

et al.,

2016

[24]

"(Open Source Software OR

libre OR OSS OR FLOSS OR

FOSS) AND (model OR quality

model OR measurement model

OR evaluation model)"

19 - - - 19 Research

questions

(RQ1. key quality

characteristics,

 RQ2. selection

methods,

 RQ3. application

domain)

Lenarduzzi

et al.,

2020

[29]

"(evaluation OR selection OR

adoption OR evaluation model*

OR selection model* OR

adoption model*) AND (Open

Source Software OR OSS OR

FLOSS OR Libre Software OR

Free Software)"

35

(including

evaluation,

adoption

and

selection

models)

- 20 5 60 Research

questions

(RQ1. factors

mainly discussed,

 RQ2. common

factors considered)

Our

SLR,

2021

[30]

"(quality) AND (evaluation

model OR assessment model OR

measurement model OR

evaluation framework OR

assessment framework OR

measurement framework) AND

(OSS OR FOS OR FLOSS OR

open source software)"

26 10 - - 36 8 RQ and

23 Sub-RQ.

 27

The SLR study conducted by Adewumi et al. [24]: They conducted a systematic

literature review of the studies that proposed OSS quality models. A total of 19 quality

evaluation models for OSS were selected after searching in scientific digital libraries, as

shown in Table 2.5. After the studies were selected, the authors determined some criteria

to assess the quality of these studies. The OSS quality models were classified by using

three research questions with respect to quality characteristics, the methodology used for

the assessment, and their domain of application. The SLR results indicated that half of

the quality assessment models for OSS did not consider community-based criteria,

although these criteria make OSS different from their proprietary counterparts. Also, the

authors concluded that using hierarchical structures was found to be the most popular

selection method in the existing OSS quality assessment models [24]. Moreover, an

application domain, e.g., data-dominant, computation-dominant, and systems software,

was determined by the majority (53%) of the existing evaluation models, such as the study

conducted by Sohn et al. [100]. Aside from these OSS quality models, our SLR has also

examined quality evaluation frameworks by including up-to-date studies. Within the

scope of our study, 8 RQs and 23 sub-RQs were determined to examine QEMoF from

wider aspects such as basic characteristics, structure, evaluation procedure, support for

evolutionary evaluation, type of data collection, research method, degree of required

skills for evaluation, research method, challenges faced while developing the proposal

and validation method.

The SLR study conducted by Lenarduzzi et al. [29]: They also conducted a systematic

literature review of studies that proposed quality models for the selection, evaluation, and

adoption of OSS by focusing on criteria which affect the evaluation of OSS. A total of 60

primary studies, which consisted of 20 surveys, 5 lesson-learned studies, and 35 studies

that proposed OSS evaluation models focusing on different technical aspects, were

selected after searching in scientific digital libraries, as shown in Table 2.5. The number

of models examined in their SLR study [29] (35) is higher than the one (26) in our SLR

study because the main focus of the models in that SLR study is not "quality", as can be

understood from its search string given in the Table. The search string in their SLR study

[29] does not include the word "quality" but the terms "adoption model", "evaluation

model", and "selection model". Therefore, in addition to quality evaluation models, the

SLR study [29] also revealed different models for OSS, such as adoption cost models

[103], risk models [104], etc. Also, that SLR revealed studies that do not propose models

 28

and that are only related to software adoption, e.g., the studies [105], because of their

search string. As seen from our search string in the Table, the main focus of this SLR

study is "quality", and accordingly, we included the studies that proposed OSS models or

frameworks that were only explicitly aimed at evaluating OSS quality. In addition, as

stated in the inclusion criteria of the SLR study [29], the authors included some studies

that were not peer-reviewed (e.g., blogs, forums, etc.), which were not included as the

primary studies in our SLR study. As a result, the numbers of the studies differ between

the pools of the two SLRs.

Lenarduzzi et al. [29] identified two research questions in order to: examine the factors

that were mainly discussed by stakeholders during the selection process (RQ1) and the

factors that were actually assessed by the available evaluation, selection, and adoption

models (RQ2). Through the contributions of this study, users could get an overview of

how evaluation, selection, or adoption models work and the common criteria used by

these models. There are many differences between their SLR [29] and our SLR with

respect to RQs. In their SLR [29], the first RQ has three sub-categories that investigate:

the scope of the models (classified as quality, adoption and etc.), how they were built

(classified as case studies, interviews, and experience), and how they work (classified by

checklist and measurement). In our SLR, all proposals are only quality evaluation models

or frameworks for OSS products, as different from the first sub-category of RQ1 in their

SLR [29]. The other 2 sub-RQs in their SLR were determined to analyze the models from

a higher perspective. However, in our SLR study, we elaborated the technical details of

QEMoF, and the classification was further detailed. For example, how the models' work

was classified as "measurement" in their SLR [29], while in our study [30], details were

given such as how these measurements were made using which techniques and how the

results were provided. In their SLR [29], RQ 2 examined the attributes, measures, and

information that were evaluated in common in the quality models at a high level and

without separating them. However, in our SLR, the quality attributes, the metrics, and the

aspects of OSS used in evaluations were classified based on the attributes in the ISO

25010 quality model and other accepted studies in the literature. Apart from the RQs

mentioned above, our SLR includes additional RQs that examine QEMoF from different

aspects such as: tool support and formal representation, referenced quality models, degree

of guidance provided for evaluation, support for evolutionary evaluation, type of data

collection, degree of required skills for evaluation, research method, challenges faced

 29

while developing the proposal, validation method, and type of application used for

validation.

As a result, many inferences about OSS quality models have been obtained according to

the common outputs of all these SLR studies. In addition to these common outputs, unique

inferences related to OSS quality models were obtained in our SLR study. According to

common outputs, it is observed that there is little or no adoption of OSS quality models

in practice. This issue has been analyzed in depth in our SLR study. In this context, first

of all, evidence for the practical use of the OSS quality models proposed in the primary

studies was investigated. To access this evidence, all studies belonging to academic and

grey literature citing the OSS quality models were searched. As a result of this research,

only one study [106] was found that can be considered as evidence for the practical use

of OSS quality models (for QualipSo [107]) in the industry. In this study, they have

presented an overview of the usage of QualipSo for the evaluation of the quality of OSS

and also SCRUM as a development methodology, for addressing the development needs

of the Italian Army. Then, in our SLR study, the reasons for the little adoption of OSS

quality models in practice were investigated in detail. The reasons are that OSS has a

dynamic and diverse nature, and accordingly, its quality is affected by various data (e.g.,

the longevity of the project and the mailing list density). These data are scattered in a

variety of databases and heterogeneous sources, and defining and evaluating the quality

of OSS are considered challenging. In addition, the number of individual OSS quality

models in the literature is high, and this has caused the structure of the developed quality

models to be heterogeneous. Therefore, defining situation-based procedures for

determining evaluation criteria becomes a challenging task. Accordingly, evaluation

results obtained from different quality models for the same purpose can be incomparable

and unreliable [30][35-36]. This negatively affects standardization, which is an important

communication vehicle for companies when interoperating with others. For all these

reasons and more, in our SLR, it was concluded that a software quality meta-model is

needed to evaluate OSS quality. This is because of the ability of a meta-model to allow

the development of multiple OSS quality models with a homogeneous structure and

common terms using the same modeling language it proposes. Thus, it is aimed to provide

standardization in software quality measurement and to compare the evaluation results

obtained with different OSS quality models. Further results and their details from our

SLR study are provided in Section 3.2.

 30

2.2.2. Analyzing the Current Situation of OSS Quality Meta-models

In this section, the current situation of meta-models for OSS quality is explored based on

a literature search. The SQMMs are important because "they allow standardizing quality

models, and thus, they create a common understanding between stakeholders for proper

quality management throughout the entire life of a software product" [34]. Also, the "they

allow us to see a complete picture of software quality and to represent concepts of

software quality more formally" [34]. In this context, we carried out an SLR study for the

first step of the systematic process, as shown in Fig. 1.1. In the literature, only our

systematic literature review (SLR) study [37] is revealed, and this study addresses the

content and structure of the meta-models that were proposed for software quality and its

evaluation (SQiE). The main motivation of this SLR study is that meta-models have an

important place in the harmonization, standardization, and consistency of quality models.

Within the scope of this study, a total of 28 studies were examined, and only 2 of these

studies were classified as meta-models that allow evaluation of OSS quality.

In this SLR study, meta-models were analyzed from many aspects by using 7 RQ and 19

sub-RQ, such as basic characteristics, challenges faced in developing meta-models,

means of data acquisition as defined in the meta-model, validation method, etc. However,

the most important motivation and contribution related to our current study are that it

provided information on how the structure and content of models are organized, and also

addressed the terms used in the meta-models, and provided the frequency of use of these

terms. Our SLR study has an important contribution in shaping the meta-model to be

developed within the scope of this thesis. Also, this SLR study allowed us to explore the

shortcomings of SQMMs. Despite the fact that SQMMs are important for specifying and

evaluating the quality of software products, our SLR indicated that OSS-QMM are not at

the desired level in terms of mainly four deficiencies;

1. Few numbers of OSS-QMM and their adoption in the community,

2. Lack of depth in their content,

3. Inconsistent concepts among them, and

4. Lack of validation in a real context.

 31

In this thesis study, these deficiencies have been focused on, and a comprehensive OSS-

QMM has been developed by eliminating these deficiencies. The other findings regarding

existing SQMMs from our SLR study are given in detail in Section 3.1.

2.2.2.1. Studies Proposed the Meta-models for OSS

In our SLR study, a total of 28 studies were examined, and only 2 of these studies were

classified as meta-models that allow evaluation of OSS quality. Therefore, in this section,

these two SQMMs [108-109] that enable evaluating OSS quality from specific aspects

and their differences from the OSS-QMM developed within the scope of the thesis will

be explained. In fact, there are no proposed SQMMs to directly evaluate the quality of

the OSS in the literature. However, there are studies that adapt existing SQMMs (not

OSS-specific) to OSS quality evaluation. These SQMMs are classified as SQMMs that

evaluate OSS quality in our SLR study [37] since they enable the evaluation of OSS

products from certain aspects and use OSS products in the validation process.

Eghan et al. [108] adapted the existing SE-EQUAM ontology meta-model [110] (not

OSS-specific) to evaluate the trustworthiness of open-source external libraries and APIs.

Also, they take advantage of a unified ontological knowledge representation of different

SE-related knowledge resources [108]. OSS libraries are beneficial in many ways, such

as saving time and money, but OSS can have security risks. Therefore, it is aimed to

measure the trustworthiness (i.e., security vulnerabilities and license violations) of open-

source external libraries and APIs in this meta-model. They used adapted SQMM to

evaluate OSS external libraries in terms of trustworthiness by designing a case study.

Although Mens et al. [109] also did not propose new SQMMs for OSS quality, they

adapted the existing MoCQA meta-model [112] (not OSS-specific) to measure the quality

evolution of OSS ecosystems. Therefore, it is classified as an SQMM that evaluates OSS

quality in the SLR study [37]. In this context, they instantiated the adapted MoCQA meta-

model and, accordingly, developed the Customized Assessment Quality Model (CAQM).

This quality model was used to evaluate the quality evolution of OSS ecosystems by

designing a case study.

 32

Table 2.6. Comparison of meta-models for OSS

Comparison criteria Eghan et al.

[108]

Mens et al.

[109]

The OSS-QMM

Application domain Specific Specific General

Number of concepts 5 15 35

Covering of OSS aspect Partially No Yes

Covering the viewpoint of stakeholder No Partially Yes

Consideration of the inconsistency of terms No No Yes

Consideration of the common structure of quality models No No Yes

Consideration of the mapping terms (Section 4.3) No No Yes

These two meta-models [108-109] were not directly proposed to evaluate OSS quality,

but they were obtained as a result of adapting existing meta-models to evaluate OSS from

certain aspects. Therefore, although they are useful for the specific aspect of OSS quality,

they are not comprehensive and have a deficiency in OSS evaluation from a broad

perspective. Some of these deficiencies are listed in Table 2.6 comparatively. As shown

in the Table, the application domain of these two adapted models is limited. That is, this

adapted meta-model [108] was proposed to evaluate the trustworthiness of open-source

external libraries and APIs. Another one [109] was proposed to evaluate the evolution of

OSS ecosystem quality. However, the OSS-QMM has a flexible structure to evaluate the

quality of OSS from desired perspectives. The number of concepts covered by meta-

models supports this situation. The number of concepts in the OSS-QMM is saliently

greater than the others, as shown in the Table. This indicates that the OSS-QMM enables

an opportunity to evaluate OSS quality from a wider perspective, unlike SQMM with a

specific application domain.

The unique feature that distinguishes the OSS from other types of software is that it stores

many evaluation data belonging to the community-based aspect in various databases. The

community-based aspect is not covered by this meta-model [109] and is partially covered

by this model [108], as shown in Table 2.6. "Partially" means that the meta-model

includes the data of both aspects (i.e., code-based and community-based) in the

evaluation, but it did not specify to what extent the data belonging to each OSS aspect

will affect the evaluation result. One of the most important reasons for this is that this

meta-model [108] did not cover the viewpoint of an evaluator. For example, considering

that the evaluator is a developer and will shape the OSS product according to his own

needs, the code-based aspect may be more important for this evaluation. Thus, we added

the concept of weighting to assign weight to OSS aspects using the concept of the

 33

weighting method in the OSS-QMM. In this way, the evaluator can specify the effect of

each aspect on the evaluation result. In addition, since this meta-model [108] has a

specific application domain, it only includes data belonging to OSS aspects for evaluating

the trustworthiness of open-source libraries and APIs.

Although Mens et al. include the concept of "viewpoint" in their meta-models, and

consider it only in determining the quality factors. Therefore, this is considered as

"partially" in Table 2.6. However, Eghan et al. did not consider viewpoints in their meta-

model. Since the evaluator will shape or use the OSS products according to their own

needs, the viewpoints of the evaluators are essential and should be considered in the meta-

model. However, the meta-model should not allow heterogeneity in the structure of the

OSS quality models to be derived while considering the viewpoint. Therefore, adhering

to this rule, the "viewpoint" was taken into account in determining the importance of OSS

aspects on quality evaluation, the quality characteristics to be evaluated, the importance

of sub-attributes on quality evaluation, and the impact of the measurable concept on the

quality in the OSS-QMM. These concepts mentioned here are explained in Section 5.3.

In addition to the concepts given above, we have added many concepts different from

others, such as normalize measure, impact, evaluation aggregation, etc. (see Fig. 5.10) to

the OSS-QMM. For example, the quality of OSS is affected by heterogeneous data from

various sources. Therefore, according to SLR [30] results supporting this situation, the

important challenge for OSS quality models is that OSS has a dynamic and diverse

structure, thus aggregating heterogeneous data from different sources. In this context, we

added a "normalize measure" that allows us to normalize each metric. For another

example, we added the concept of "impact" because each heterogeneous measurable

concept will have a different impact on OSS quality. Additively, the terms of OSS-QMM

are classified as specification, measurement, and evaluation to make evaluation more

meaningful. Meta-models in the literature ignore evaluation-related concepts that enable

the interpretation of measurement results.

In this study, a systematic process was followed during the OSS-QMM development

phase. In this context, first of all, inconsistencies between the terms of the SQMM

proposed for the custom type of software and OSS were analyzed, as explained in Section

4.1. Then, the common structure of the OSS quality models was analyzed, as explained

in Section 4.2.3. Then, terms of meta-model and terms of quality models were mapped.

Finally, a level-based OSS-QMM was developed by considering the common structure

 34

of quality models. The SQMMs developed in the literature, including the SQMMs

developed by Eghan et al. and Mens et al., did not follow the aforementioned systematic

process. Therefore, there may be inconsistencies between the structure and terms of OSS

quality models derived using these SQMMs. This situation affects standardization

negatively.

2.3. Software Measurement Models/Standards

In this section, general information about the measurement standards or proposals that

were taken as the basis of the SQMMs is given, and some inferences are made about

them. This information is important for analyses to be conducted in Section 4.1 to

eliminate inconsistencies between concepts of SQMMs.

One of the main objectives of software engineering is to release high quality software

product to the market. Software measurement is at the core of software engineering since

improving the quality of software without measuring is impossible. In this context, a

number of international standards and research proposals have been released to measure

the quality of software. Standardization is essential for meaningful measurement since it

enables comparison measurement results, with the prerequisite that vocabulary in

measurement standards or proposals is consistent. The standards and research proposals

to measure the quality of software have emerged in time sequence, and some have

overwritten the others. Consequently, inconsistencies in their terminology have been

reflected in various studies that proposed the SQMMs. Software measurement is an

ongoing process, and approaches, methods, and terminologies of software measurement

continue to be defined, consolidated and agreed. Important organizations and

standardization bodies such as ISO, IEC, and IEEE have developed many international

standards for software engineering. There are a large number of international standards

developed by only ISO for measuring software processes and products, as presented in

Fig. 2.5.

 35

Figure 2.5. Main relationships between the ISO/IEC standards of software quality and

software measurement, and their relationship with the CMMI model – as adapted from

[112]

Considering also the international standards proposed by organizations other than ISO

and the research proposals related to software measurement, it is not surprising that there

is inconsistency in the concepts and terminology used in this field due to a large number

of sources. Terminology conflicts and inconsistencies appear not only among the

international standards of different organizations but also among those of the same

organization [39]. Inconsistencies, commonalities, and terminology conflicts in all these

sources are reflected in SQMMs because they are created by adopting the terminology

and concepts from international standards.

The SLR study [37] that we performed to understand the structure and content of the

meta-models for software quality and its evaluation (SQiE) has provided us with the

opportunity to investigate the content and terminology of the SQMMs. Complementary

to that, this study [54] has attempted to determine the international standards whose

terminology is largely referenced by the SQMMs that have been proposed for OSS and a

custom type of software. In accordance with this purpose, ISO/IEC 14598 (Software

Engineering-Product Evaluation) [113], ISO/IEC 15939 (Software Engineering-Software

Measurement Process) [114], and VIM (International Vocabulary of Basic and General

Terms in Metrology) [115] are determined from ISO and IEC organizations. Also, IEEE

1061 (Software Quality Metrics Methodology) [116] and IEEE 610.12 (Standard

Glossary of Software Engineering Terminology) [117] are determined by IEEE.

Descriptions of these international standards are overviewed in Table 2.7. The use of the

 36

terminology of these standards in the SQMMs and terminology conflicts among the

standards will be discussed in Section 5.1.

In addition to the standards mentioned above, some research proposals by Kitchenham

[118], Briand [119], and Kim [120], all related to software measurement, are included in

this thesis as their terminology has been adopted by some SQMMs such as [44]. Thus,

terminology conflicts among the research proposals related to software measurement are

also addressed in this work. Descriptions of these proposals are included in Table 2.7, as

the descriptions of the international standards.

Table 2.7. Standards and proposals whose terminology is referenced by SQMMs

Standard/

Proposal

C1 C2 C3 Description

IEEE

610.12

[117]

Y N N

It is a standard that is used as a glossary of Software Engineering terminology. This standard

focuses on the definition of terms only, regardless of their relation to software measurement.

VIM [115] Y N N

It is a standard that includes many terms of subjects related to software measurement. Although it

is not focused on software mainly, it is used to define software measurement concepts in literature

by many studies since terms are defined completely and in detail.

IEEE 1061

[116]
P P P

It is a standard that enables us to obtain quality requirements and also enables us to identify,

implement, analyze and validate for quality measures of software. It can be used by all types of

software in any phase of the software life cycle. It contains terms from all categories but not

completely from each category.

ISO/IEC

14598 [113]
Y P N

It is a standard that enables us to measure, assess and evaluate the quality of software products. It

enables us to perceive the evaluation process from different points of view, such as acquirers,

developers, and evaluators.

ISO/IEC

15939 [114]
P Y P

It is a standard that enables us to define the approaches needed for identifying, defining, selecting,

applying, and improving software measurement. It also defines some measurement terms that are

commonly used in the software industry. It covers two main components as software measurement

process and measurement information model. The software measurement process is established

by the information needs of the organization. The measurement information model provides a

relationship between information needs and measures. It describes how quality attributes are

measured and how decision-making is performed by using indicators.

Kim [120] N N Y

It is a measurement ontology that allows organizations to evaluate whether they comply with the

ISO/IEC 9000 standard. It is not proposed primarily for software processes and products, but it

covers many terminologies that can be used for measurement processes.

Kitchenham

[118]
N N Y

It is a conceptual model that covers the definition of many software measures and the relationships

among them. It consists of three components; first, generic components which define concepts;

second, development model components that provide the link between measures and entities; and

third, project domain components that present the metric values obtained from projects and link

them to actual instances of the entities.

Briand

[119]
N N Y

It is an approach that is based on the GQM approach [121] and defines measures of software

product attributes. The primary goal of the approach is not to define the concepts but to represent

their use in the GQM process.

*C1: software measures, C2: measurement process, and C3: target and goals. ** Y: Yes, N: No and P:

Partially

The international standards and research proposals related to software measurement and

quality can be classified under three main categories according to the particular topics

they address [39]: software measures, measurement processes, and targets and goals,

which are respectively denoted by C1, C2, and C3 in Table 2.7. The first category of

software measures (C1) focuses on main elements, such as measures, the unit of

 37

measurements, scale, etc., in the definition of software metrics. The second category of

the measurement process (C2) focuses on the definition of terminology related to software

measurement act such as measurement methods, measurement results, etc. The third

category of target and goals (C3) focuses on gathering concepts related to objectives and

the scope of the measurement process, such as attributes, measurable entities, information

needs, etc. The categories that the standards or proposals address are denoted in columns

2-4 in Table 2.7. In the Table, "Y" (yes) means that the standard or proposal covers the

majority of the terms in that category, "P" (partially) means that the standard or proposal

covers some of the terms in that category, and "N" (no) means that the standard or

proposal does not contain any of the terms in that category. It is seen from the Table that

there is no single standard or recommendation that completely covers all the categories

of C1, C2, and C3 [39]. Here, it is important to note that the terminologies of standards

or research proposals that focus on the same category are not homogeneous.

Apart from the standards and research proposals that are listed in Table 2.7 and examined

within the scope of this study, there are important models such as CMMI (Capability

Maturity Model Integration) [122] and standards such as ISO/IEC 12207 (Standard for

Software Life Cycle Processes) [123] and ISO/IEC 15504 (Standard for Software Process

Assessments) [124] which was lately revised by ISO/IEC 33000 series. The relationships

between all these ISO/IEC standards with respect to covering software quality and

measurement, and the relationships of these standards with CMMI are also represented

in Fig. 2.5. It should be noted that the standards or models other than those listed in Table

2.7 have not been analyzed in this study although some standards were withdrawn, e.g.,

ISO/IEC 14598 was replaced by ISO/IEC 25040 later. One reason for this is that the

SQMMs examined within the scope of this study have been created based on the standards

or proposals investigated in Table 2.7, as they mentioned in their studies, as required by

the years of publications. Therefore, the most important factor for a standard or proposal

to be included in this study is that its terms have been adopted by the SQMMs. Another

reason is that some of the standards or models not included in this study have been defined

using the terms of the standards or proposals examined in this study and that some of

them define only the terms specific to certain domains. For example, CMMI adopts the

terminology of the ISO/IEC 15939 standard [114], and functional size measurement

(FSM) standards (e.g., ISO/IEC 14143 [125] and ISO/IEC 19761 [126]) are totally

aligned with VIM [115] (International Vocabulary of Basic and General Terms in

 38

Metrology). Also, some standards contain terminology specific to the particular domain

that is not adopted by the SQMMs concerned in this study. For example, ISO/IEC 15504

standard includes terminology such as "software process target" and "software process

metric", which have been adopted to the process assessment domain.

2.4. Meta-modeling

In this section, the basics of meta-modeling are explained through examples to better

understand the logic of meta-modeling. In this context, first, the basics of modeling are

explained, as a model is an instance of a meta-model. Then the basics of meta-modeling

are explained.

2.4.1. Basics of Modeling

In order to understand meta-models well, it is necessary to understand the basics of

models first because meta-models are the abstract form of models. Models can be used in

many areas and, therefore, have many definitions in the literature. For example, the most

general definition was made by Benyon [127], "A model is a representation of something,

constructed and used for a particular purpose." Also, Sprinkle et al. [128] defined it as

"a powerful vehicle to explain the behavior, structure, and other features in all areas of

engineering, in mathematics, or each of hard sciences". Also, it is defined as "a

description of a system, and it must be written with a well-defined language" [44].

Modeling is the practice of creating a model. The person who creates a model is the

modeler. The person who uses a model is the interpreter. The interpreter and modeler

have a specific purpose for using and constructing the model. Every model has to

represent something in the real world.

Figure 2.6. The example use of a model over the inverters manufacturer

 39

The model alone has no meaning, and its meaning emerges with the situation and purpose

in which the model is used. This is expressed by Stachowiak as the pragmatic feature of

the model, as shown in Fig. 2.6 [129]. This is also the case for data. That is, the data itself

has no meaning, but with an interpretation, the meaning behind it can be deduced and

understood. In Fig. 2.6, the pragmatic features of the model are exemplified for better

understanding. In this example, an inverter manufacturer would like to construct an

inverter model. The truth table is a model, and it shows the case of the inverter. The

inverter is something represented by a model, and the manufacturer is the modeler who

constructs a model. It is the purpose of the modeler to explain the operation of the

inverter. This model is used by a customer who has to understand how to operate the

inverter. Here, the customer is the interpreter. It is the purpose of the interpreter to know

the operation of the inverter. The visualized example in Fig. 2.6 explains the basics of the

model, the process of its creation, and its meaning for the modeler and interpreter.

2.4.2. Basics of Meta-modeling

The "meta" is a word of Greek origin, meaning beyond or about, and is used to describe

something. Meta-model is defined by Seidewitz [130] as "a model that represents a

modeling language". Moreover, many definitions of the meta-model have been made in

the literature, all of which have almost the same meaning. Some of these definitions are

given below. A meta-model is;

 "A model of a well-defined language [44]."

 "A model of models [34]."

 "A model that defines the language for expressing a model [131]".

 "A specification model for a class of system where each system in the class is itself

a valid model expressed in a certain modeling language [132]".

As can be understood from the definitions, meta-models are an abstract form of models.

Therefore, multiple models can be derived from a meta-model. In Section 2.4.1, models

are defined as a description of a system, and they must be written with a well-defined

language. An important question arises in this context: "How do we define such a well-

defined language?". At this point, the importance of "meta-modeling" is revealed. A

meta-model must be expressed in a well-defined language, as with models, since a meta-

 40

model is also a model. This well-designed language is called meta-language, as shown in

Fig. 2.10.

The Backus Naur Form (BNF) meta-language has been used to describe the syntax of

computing notation, such as programming languages, since the 1950s. In computer

science, BNF is a meta-syntax notation format generally used to describe a programming

language by the developer of programming languages. BNF was mostly developed for

text-based languages, e.g., programming languages. Therefore, BNF can be used in

modeling languages where the modeling language is expressed in text-based terms.

However, modeling languages don't need and usually don't use text-based languages.

Since they often use a graphical syntax such as UML, a different type of mechanism is

needed to define language. Therefore, the meta-modeling mechanism has arisen to define

graphical-based modeling language.

The language consists of 5 aspects: concrete syntax, abstract syntax, syntax mapping,

semantic mapping, and semantic domain [133-134], as shown in Fig. 2.7. In this context,

the abstract syntax is represented by the meta-models.

Figure 2.7. Meta-model that represents a language

Let's continue with the same example given above to explain this further. In Section 2.4.1,

an example inverter model is constructed, as shown in Fig. 2.6. Assume that this inverter

model will be used to develop a meta-model. This meta-model will represent the

modeling language for modeling inverters and contains the abstract syntax of this

modeling language, as shown in Fig. 2.8.

Figure 2.8. Meta-model that represents abstract syntax modeling language for modeling

inverter

 41

In meta-modeling, the concept of well-designed meta-models should map the concepts of

models. Let's continue with the same example given above to explain this further. The

example inverter model shown in Fig. 2.6 represents the semantic domain. Also, the

example meta-model shown in Fig. 2.8 represents the abstract syntax. Therefore, a

semantic mapping should be performed between the semantic domain and abstract syntax,

as shown in Fig. 2.9. As shown in the figure, each concept of the meta-model is mapped

to terms of models. This figure indicates that a model is an instance of a meta-model.

Figure 2.9. The example representation of the mapping process between the concepts of

inverter meta-model and inverter model

2.4.2.1. Meta-model Hierarchy

Object Management Group (OMG), founded in 1989, has carried out laborious efforts to

define and develop meta-models and has developed various standards (e.g., UML, MOF)

in this context [134-135]. The hierarchy of modeling defined by OMG is important to

understand the relationship between OMG standards. According to the OMG, the

modeling structure consists of a four-layer architecture, as shown in Fig. 2.10. This layer

is called: M0, M1, M2 and M3. These layers are explained with an example as follows:

Layer M0: Runtime Layer (The Instances):

This layer (M0) determines what will be modeled [136]. In other words, this layer

contains the running system where the real data is present. For example, this data may

belong to a customer or order, as shown in Fig. 2.10. These examples are the customer

named "Harry Kane" living in "Manchester, UK" and the customer named "Tyler Adams"

living in "Boston, USA." There can be many customers or orders like the ones in this

example in the M0 layer. Assume that we are modeling a business; the examples of this

layer (i.e., M0) will be elements in the business itself, such as the invoices, the actual

people, or the products. Assuming that we are modeling a software, the examples of this

layer (i.e., M0) will be the software representations of real-world items such as the

 42

computerized version of the product information, the invoices or the orders, and the

personnel data [137].

Figure 2.10. Abstraction levels of models and levels of modeling languages.

Layer M1: Model Layer:

This layer (M1) covers models such as a UML model of a software system [136]. For

example, as shown in Fig. 2.10, in this layer (M1), the concept "customer" is defined by

using its name, street, and city. Layer M0 and layer M1 have a definite relationship [136].

The elements at layer M1 is a classification or categorization of terms at layer M0.

Similarly, a term at layer M0 should be an instance of a concept at layer M1. For example,

as shown in Fig. 2.10, the customer named "Harry Kane" and "Tyler Adams" at layer M0

is an instance of the concept "Customer" at layer M1. The elements of layer M1 identify

what the instances at layer M0 look like. More specifically, the UML model for the

 43

customer class at the M1 layer describes what the instance of a customer at layer M0

looks like.

Layer M2: Meta-model Layer:

The terms at layer M1 (e.g., attributes, classes, etc.) are instances of concepts at layer M2.

The concepts of layer M2 identify the terms of layer M1. In other words, the same

relationship between layers M0 and M1 exists between layers M1 and M2. The elements

at layer M2 is a classification or categorization of terms at layer M1. To explain more

concretely, layer M2 contains a model, and this model is called a meta-model. Each UML

model in layer M1 is an instance of the UML meta-model. That is, a running system

corresponds with layer M0, a model of a running system corresponds with layer M1 (i.e.,

model), and a model of a running system corresponds with layer M2 (i.e., meta-model).

To create a meta-model, it is necessary to define a language such as UML or CWM

(Common Warehouse Meta-model)

Layer M3: Meta-meta-model Layer:

As in the previous layers, the concepts at layer M2 (i.e., meta-model) are instances of

concepts at layer M3 (i.e., meta-meta-model). In other words, the same relationship

between layers M0 and M1, and between layers M1 and M2 exists between layers M2

and M3. The concepts at layer M3 are a classification or categorization of concepts at

layer M2. At this highest layer, M3, an abstract language such as UML or CWM is used

to define the meta-model at layer M2. This is the MOF (meta-object facility) language,

which is explained in Section 2.4.3 in detail. In summary, according to the information

given at each level above, elements at any level are a subset of elements at a lower level,

as shown in Fig. 2.10. For example, the elements belonging to layer M3 are a subset of

elements belonging to layer M2.

2.4.3. Meta-Object Facility

The OMG, which is a computer industry standards consortium, was founded in 1989. It

is a membership-driven, non-profit organization with members from 27 countries and

over 230 organizations. The goal of OMG is to offer a solution to reduce cost and

complexity and accelerate the release of new high-quality software products. In line with

this purpose, they developed an architectural framework together with a comprehensive

interface specification. The aim of these specifications is to obtain reusable, portable,

interoperable software components, which are based on standard OO (object-oriented)

 44

interfaces. In software engineering, the MDE (Model Driven Engineering) plays an

important role in achieving these goals. The MDE focuses on developing and utilizing

domain models that are an abstract representation of all the subjects relating to a particular

issue. In this context, OMG has proposed the Model Driven Architecture (MDA)

approach for carrying out the MDE paradigm. The OMG has proposed a set of standards

to increase the productivity of MDA. Therefore, MDA is a set of standards, such as Meta-

object facility (MOF), Unified Modeling Language (UML), and XML Metadata

Interchange (XML). Among them, the core element of MDA is MOF among these

standards [133][137]. Therefore, we decided to use the MOF standard to develop the

OSS-QMM within the scope of the thesis.

Figure 2.11. The representation of the hierarchy of Meta-Object Facility (MOF)

The MOF standard is used to define modeling languages. According to the OMG, the

meta-model hierarchy consists of four layers, as shown in Fig. 2.11. Layer M3 is the top

layer, so there is no other layer above this layer, and the MOF is located in this layer. This

means that this layer (M3) can only consist of one meta-meta-model, which is the MOF.

This layer (M3) is the abstract definition of meta-models at layer M2. For this abstract

definition, the MOF uses the MOF language consisting of MOF class and MOF

association to define meta-models. Since there is no other layer above layer M3, the MOF

is defined using the MOF itself. Therefore, the MOF located in layer M3 contains the

definition of UML or CWM and so enables the development of the UML or CWM meta-

models at layer M2. Layer M2 can have multiple meta-models, and these meta-models

are still abstract. Layer M2 is used to specify UML models at layer M1. Finally, layer M0

(runtime layer) contains objects instantiated from layer M1.

Many meta-models have been developed by OMG for different purposes using CORBA

(Common Object Request Broker Architecture) and UML at the layer M2. The UML was

 45

adopted as a standard by OMG in 1997 after its release, and this has made OMG the

market leader. Considering this situation, all OMG meta-models were developed using

the MOF meta-meta-model, which is a subset of the UML class meta-model [134][136].

This is because MOF-based meta-models have the expressive power of BNF (Backus–

Naur Form). The power of MOF-based meta-models is the visual syntax used as a

concrete syntax in representing the abstract syntax of the system to be modeled. Also,

they use modular structures and have the advantage of standard visualization. Therefore,

we developed the OSS-QMM developed within the scope of this thesis as a UML meta-

model compatible with the MOF standard. In other words, since UML meta-models are

instances of MOF meta-meta-models, the OSS-QMM is a MOF-based meta-model.

2.4.4. Requirements/methods/criteria for Meta-model Validation

In this section, the validation process of software quality meta-models developed in the

literature will be analyzed. These analyses will be used in shaping the validation process

of the OSS-QMM to be developed within the scope of this thesis. The validation process

is one of the most crucial steps in the studies to ensure that the research is correct, clean,

and valuable. The validation techniques are generally implemented after the completion

of the SQMM development process. In this context, the OSS-QMM (Step 4) has been

validated in Step 5, as shown in Fig. 1.2. While determining the validation methods at

this validation step (Step 5), the methods widely used for software quality meta-model

validation in the literature have been employed. In this regard, the validation methods

employed in the validation process of the SQMM were examined in a research question

(RQ) of the first SLR study [37]. A total of 28 meta-models were analyzed in this SLR

study, and according to the results, the validation methods used in the literature are shown

in Fig. 2.12. As shown in the figure, 13 meta-models were validated by designing case

studies and six meta-models by performing toy experiments. Also, four studies conducted

peer reviews and 1 study used a pilot project application to validate its meta-model. While

five studies did not explicitly mention the method of validation for their proposals, only

1 study did not use a validation method. A study might have been validated with peer

reviews along with a case study or toy experiment.

 46

Figure 2.12. Distribution of validation methods used for SQMMs

As can be seen in Fig. 2.12, case studies, toy experiments, and peer reviews by experts

are the most commonly used methods for validating meta-models. Therefore, these three

validation methods have been used during the validation process of the OSS-QMM. In

our study [54], which we have carried out as the output of Step 3, the application of the

initial OSS-QMM was demonstrated in the unreal OSS products with dummy evaluation

data through the designed toy experiment. In addition to the toy experiment, we have

conducted case studies and expert opinions to validate the OSS-QMM in a real-world

setting. Unlike the other meta-models, these two validation methods have been applied

by considering the application of the OSS-QMM in the real context. Some additional

efforts have been performed to apply these two validation methods in a real-world setting.

In this context, during the designing of the case study, experts in the industry have been

included in the evaluation process, and the evaluations have been performed with real

data and OSS products according to the expert viewpoint. During collecting expert

opinions, the real-world applicability of the OSS-QMM has been taken into account by

experts. Also, they have expressed their opinions by considering OSS-QMs that they used

in their own companies or are well known in practice. As a result, the most used validation

methods in the literature are taken as a basis for the validation process of the OSS-QMM.

Details of the validation process are explained in Section 6.

The purpose of the OSS-QMM is to enable the derivation of OSS quality models with a

homogeneous structure and common concepts. Thus, they give quality models the

opportunity to perform standard measurements and produce comparable results. For this

purpose, a multiple-embedded case study was designed to see if the OSS-QMM fulfills

this purpose, unlike the case studies applied in other meta-models. In this context, both a

new operationalized OSS quality model and two existing OSS quality models are derived

13

6

4

1 1

5

0

2

4

6

8

10

12

14

Case study Toy experiment Peer Review Pilot project

application

Not used Not specified

clearly

 47

from our meta-model. These derived quality models were applied in practice in

accordance with our meta-model within the scope of the case study. These models were

applied using data from real OSS repositories for the same type of OSS products, and the

results were compared. Thus, it was monitored whether standard results were obtained as

a result of applying the OSS-QMM in the real-world setting.

 48

3. ELABORATION ON SOFTWARE QUALITY MODELS AND

META-MODELS (STEP-1 AND STEP-2)

In this section, the findings obtained from the results of the SLR studies [30][37] carried

out as the outputs of Step 1 and Step 2 within the scope of the thesis are presented. In the

literature, SLR is defined as "a tool for evaluating and interpreting available research

related to a particular research hypothesis, topic area or phenomenon of interest" [138-

141]. Accordingly, in these SLR studies, software quality meta-models [37] and OSS

quality models [30] were systematically analyzed in detail with the help of research

questions from many aspects. As a result of these studies, empirical evidence and findings

were obtained to contribute to further scientific studies about the SQMMs and OSS-QMs.

However, this section does not present all the findings or evidence obtained. Rather, in

this section, results that contribute and guide the OSS-QMM development are presented.

Therefore, further details about the results of our SLR studies can be reached from these

references [30][37]. In Section 3.1, the findings of the SLR study as the outputs for Step-

1 are explained, and in Section 3.2, the findings of the SLR study as the output for Step-

2 are explained.

3.1. Software Quality Meta-models (Step-1)

The meta-models are expected to combine the isolated views to achieve a complete

picture of software quality and, in turn, to create a common understanding between

stakeholders for proper quality management throughout the entire life of a software

product. In order to examine comprehensively the content and structure of the meta-

models proposed for software quality and its evaluation (SQiE) in scientific literature, a

Systematic Literature Review (SLR) study was carried out, and its results are reported in

this study [37]. In this regard, the most-known seven academic search engines (namely

Google Scholar, ScienceDirect, Scopus, ACM, Web of Science, IEEE Xplore, and

Springer) were used to survey the literature by using the following search string;

("Meta model" OR "Meta-model") AND ("software quality") AND

("evaluation" OR "assessment" OR "measurement")

Then, primary studies were determined for the SLR of the meta-models for SQiE. In this

context, a total of 28 studies out of 114 initially selected and 6488 initially retrieved were

identified for further analysis with respect to inclusion and exclusion criteria (See the

SLR study for details of the criteria [37]). These primary studies were analyzed with

 49

respect to a number of research questions (RQs) (7 RQ and 19 sub-RQs). A list of RQs is

given in Table 3.1. The data of each primary study was extracted considering the RQs.

The data extraction sheet can be reached by the following reference [142]. This section

will not present all the findings or evidence obtained from the SLR study. That is, the

findings of the RQs that contributed to the development process of the OSS-QMM will

be categorized and synthesized in the following sub-sections. It should be noted that, to

the best of our knowledge, this is the first SLR study conducted on the meta-models for

SQiE.

Table 3.1. The research question of the SLR (Step-1)

RQ# Description

RQ.1 What are the basic characteristics of the meta-model proposed in the study?

 RQ.1.1 What is the main purpose of the meta-model proposed? (e.g. generic or specific)

 RQ.1.2 Which type of software products are targeted for SQiE? (e.g. OSS, COTS, custom)

 RQ.1.3 Is the meta-model taken as the base for tool development in the study? (yes or no)

RQ.2 Are there any software quality models taken as a reference for the proposal? If yes:

 RQ.2.1 Which software quality model(s) are taken as a reference? (e.g. ISO 25000)

 RQ.2.2 Does the meta-model serve for SQiE with respect to all the models taken as a reference?

 RQ.2.3 Is the terminology of the software quality model(s) taken as a reference mapped to the terminology

defined by the meta-model in the study?

 RQ.2.4

Is the structure of the software quality model(s) taken as a reference mapped to the structure of the

meta-model in the study?

RQ.3 What are the basic characteristics of SQiE as defined in the meta-model?

 RQ.3.1 What methods/techniques are used as a reference for SQiE? (e.g. GQM)

 RQ.3.2 Does the meta-model support subjective or objective evaluation?

 RQ.3.3 Does the meta-model support qualitative or quantitative evaluation?

 RQ.3.4 Which data analytics methods are defined for SQiE in the meta-model? (e.g. statistical, machine

learning, expert evaluation, fuzzy)

 RQ.3.5 How are the results of the evaluation provided to users? (e.g. single index, table, graphic)

 RQ.3.6 Does the meta-model support SQiE in a specific phase of software development? If yes, which

phase is it? (e.g. requirements, coding, field-use)

 RQ.3.7 Does the meta-model support SQiE at a single point or throughout software evolution?

RQ.4 How is the meta-model structured?

 RQ.4.1 Is there a specific structure of the meta-model? If yes, what is it? (e.g. hierarchical)

 RQ.4.2 What are the entities defined in the meta-model?

 RQ.4.3 Is the meta-model structured to define/include new quality models in evaluation?

RQ.5 What are the means of data acquisition as defined in the meta-model? (e.g. manual entry,

batch import, automatic transfer from other repositories)

RQ.6 Has the meta-model been validated? If yes, what was the method of validation? (e.g. case

study, literature mapping, peer review)

RQ.7 How was the meta-model developed?

 RQ.7.1 Was there a research method employed for development? If yes, what was it?

 RQ.7.2 What were the challenges faced in developing the meta-model?

3.1.1. Basic Characteristics of Meta-models

In this section, RQs related to the basic characteristics of the meta-models in the SLR

study are synthesized and explained. These basic characteristics allowed us to gather

 50

evidence about the current situation of meta-models before developing our meta-model.

In this context, according to the analysis of the results of the SLR study, 75% of the meta-

models were proposed for general purposes, as shown in Fig. 3.1 (a). These introduce the

fundamental concepts present in every single approach to fixed-quality models. They are

abstract enough to be used in several software engineering activities: specification,

design, development, certification, selection, etc. [143]. Fig. 3.1 (a) also shows that 25%

of the meta-models were proposed for a specific purpose. These are either developed for

a specific software type (e.g. web services) or proposed for a specific phase in the

software development process. It has been seen that many quality meta-models have been

proposed for general purposes but not the same for specific software, including OSS.

In addition, as shown in Fig. 3.1 (b), more than half of the meta-models were proposed to

cover all types of software. Only 2 of them were proposed for open source software

(OSS), 2 of them for commercial software (COTS), and 1 of them for microservices (MS)

software. In addition, 5 meta-models were proposed for web services (WS). These results

indicated a lack of meta-models for OSS. Therefore, within the scope of this thesis, it was

decided to develop a comprehensive meta-model for OSS quality.

a b c

Figure 3.1. Basic characteristics of meta-models (RQ1): (a) Percent distribution of main

purpose, (b) Percent distribution of types of software products targeted, and (c) Percent

distribution of whether meta-models are taken as the base for tool development.

Another basic characteristic of meta-models is whether they have tool support. Time is a

crucial factor in reducing software evaluation costs. Tools that allow automatic evaluation

and eliminate manual effort have critical importance during software quality evaluation.

As shown in Fig. 3.1 (c), less than half of the studies developed tools to reduce the effort

spent on software quality evaluation. Since the main purpose of this thesis is to develop

21;

75%

7;

25%

Generic Specific

18;

64%

5;

18%

2;

7%

2;

7%

1;

4%

C
u

st
o

m

W
S

O
S

S

C
O

T
S

M
S

12;

43%
16;

57%

Tool No tool

 51

a comprehensive quality meta-model for OSS that requires heavy effort, developing a

tool that automates the use of this meta-model is planned as a future study.

3.1.2. Software Quality Models Referenced in Developing Meta-models

In this section, the software quality models referenced in developing software quality

meta-models within the scope of the SLR study [37] are analyzed. These referenced

software quality models guide the shaping of the structure and content of our meta-model.

Existing software quality models were taken as reference in creating most of the meta-

models. As shown in Fig. 3.2 (a), more than half of the proposed meta-models took ISO

9126 as a reference. Similarly, 6 of them took ISO 25010, 8 of them took McCall’s model,

9 of them took Boehm’s model, 6 of them took Dromey’s model, 3 of them took IEEE

10610 as a reference, and 6 of them took other existing meta-models as reference. In 3

studies, the quality models referenced are not explicitly specified. It should also be noted

that some meta-models took one or more quality models as references. Earlier meta-

models were based on McCall and Boehm models, while later meta-models were based

on ISO 9126.

As shown in Fig. 3.2 (b), 11 of the meta-models serve for SQiE with respect to all models

taken as a reference, while 6 of them do not. The rest of them does not explicitly specify

if they serve for SQiE with respect to all quality models taken as reference. Also, as shown

in Fig. 3.2 (c), while 11 studies map the terminology of software quality models taken as

a reference to the terminology of the meta-models they propose, 5 studies do not perform

this mapping. Also, 7 studies do not explicitly specify whether they mapped the

terminology of the quality models they referenced, and 5 studies make this mapping only

partially. Moreover, as shown in Fig. 3.2 (d), 9 studies map the structure of the software

quality model taken as a reference to the structure of the meta-models they propose, and

6 studies do not perform this mapping. In addition, 10 studies do not explicitly specify

whether they map the structure of the quality models they referenced, and 3 studies make

this mapping only partially.

As described above, meta-models have been proposed based on one or more quality

models during development. In this respect, we developed the OSS-QMM based on well-

designed and widely referenced quality models in the literature, as details are explained

in Section 4.2. As can be seen from the results of the SLR study [37], the meta-models

have deficiencies in carrying the characteristics of the quality models they reference. This

 52

is especially valid for meta-models proposed for OSS quality. That is, as shown in Fig.

3.2 (b), no meta-model serves for software quality with respect to all the models taken as

reference. The main reason for this is that meta-models often do not provide

comprehensive terminology and structure matching during development. In this context,

terminology and structure matching were performed with the quality models referenced

during the development of the OSS-QMM. Therefore, the OSS-QMM serves for OSS

quality with respect to all the OSS quality models taken as reference.

a

b

c

d

Figure 3.2. (a) Software quality model(s) taken as reference for meta-models, and the

number of studies for (b) RQ2.2, (c) RQ2.3, and (d) RQ2.4.

3.1.3. Basic Characteristics of SQiE as Defined in Meta-models

In this section, RQs related to the basic characteristics of software quality and its

evaluation (SQiE) as defined in software quality meta-models within the scope of the

SLR study [37] are synthesized and explained. These basic characteristics of SQiE

allowed us to shape the content of our meta-model. As shown in Fig. 3.3 (a), 14 meta-

models evaluate quality objectively using only metric data. Only 1 study does not

explicitly specify whether it uses metric data or user opinion in evaluation. The rest (46%)

of studies make both objective and subjective evaluations considering both metric data

and user opinions.

15

6

9 8 7 6 3 3
0

5

10

15

20

11

6

11

0

2

4

6

8

10

12

Yes No Not specified

11

5

7

5

0

2

4

6

8

10

12

Yes No Not

specified

Partially

9

6

10

3

0

2

4

6

8

10

12

Yes No Not

specified

Partially

 53

As shown in Fig. 3.3 (b), only 1 study gives qualitative results after evaluation, and 2

studies do not explicitly specify whether they provide quantitative or qualitative results.

Also, 7 studies give both quantitative and qualitative results after evaluation. The rest of

the studies (63%) provide quantitative results only. As shown in Fig. 3.3 (c), 9 studies

provide evaluation results as an index in the range [0,1], and 2 studies provide evaluation

results as an index in the range [0, max]. Also, 3 studies provide evaluation results in the

Likert scale, and 4 studies provide results in graphical representation. However, 4 studies

do not explicitly specify how the evaluation results are provided. Overall, many studies

(64.2%) provide numerical values. It should be noted that one study might have one or

more of the result types mentioned above.

a

b

c

d

Figure 3.3. Basic characteristics of SQiE in meta-models (RQ3): (a) Percent distribution

of subjective/objective evaluation, (b) Percent distribution of quantitative/qualitative

evaluation, (c) Numeric distribution of evaluation result types, and (d) Percent

distribution of structure of SQMMs

As can be seen, half of the meta-models evaluate software quality objectively, and almost

the other half evaluate it both objectively and subjectively. As can be understood from

these results, although objectivity is important in software quality evaluation, it is also

important in subjectivity. This is because the meaning of the term "quality" is different

14; 50%

13; 46%

1; 4%

Objectively Both Not specified

17; 63%

1; 4%

7; 26%

2; 7%

Quantitative Qualitative

Both Not specified

18

9

2 3 4 4
0

5

10

15

20

12; 43%
16; 57%

Layered No specific structure

 54

for stakeholders (i.e., customer, manager, tester, user, developer, etc.) since their

expectations from software products or services are different. Thus, the OSS-QMM

developed within the scope of this thesis allows the OSS to be evaluated both subjectively

and objectively. That is, the OSS-QMM allows the evaluator to determine the importance

of the quality characteristics to be evaluated and the OSS aspect (i.e., code-based and

community-based aspects). For example, assume that the evaluator is a developer.

According to this evaluator, the quality of the OSS product on the code side may be more

important than the quality on the community side. Therefore, the OSS-QMM allows

subjectivity in evaluation. However, the rest of the evaluation in the OSS-QMM allows a

completely objective evaluation using metric data.

In addition, almost all of the meta-models proposed in the literature perform evaluation

quantitatively, as shown in Fig. 3.3 (b). This finding shows that meta-models are

generally aimed to produce quantitative values in order to see concrete results after

evaluating software quality. In this context, the OSS-QMM enables the quantitative

evaluation of OSS products. Then, as shown in Fig. 3.3 (c), the SLR study [37] analyzed

how the evaluation results are provided to the user after these quantitative evaluations are

performed. The purpose of the OSS-QMM is to derive OSS quality models that perform

standardized evaluation by producing comparable results. As shown in Fig. 3.3 (c),

although meta-models generally provide numeric values after evaluation, the fact that

these values are in different scales and units can negatively affect standardization. In this

context, the OSS-QMM developed within the scope of this thesis provides the evaluator

with results in a certain number range (e.g., between 0 and 1) to obtain comparable results.

Thus, standardization of evaluation results using different OSS quality models derived

from the OSS-QMM is ensured.

3.1.4. Structure of Meta-models

In this section, RQs related to the structure and concepts of software quality meta-models

in the SLR study [37] are synthesized and explained. These analyses guide the shaping of

the structure and content of our meta-model. Most quality models have special structures

such as hierarchical. Like quality models, considering the structure of meta-models, they

also can have special structures. For instance, the meta-model in the study [144] consists

of two layers for specification and evaluation. In another study [143], the meta-model

consists of three layers for the fundamental, metric, and context. As shown in Fig 3.3 (d),

 55

in the SLR study [37], it was observed that 12 studies propose meta-models having a

layered structure and that the remaining (57%) studies do not have any specific structure.

In addition, the concepts of software quality meta-models were analyzed and categorized

in the SLR study [37], as shown in Table 3.2. Meta-models are diagrams that contain

concepts and relationships between these concepts. Terms for SQiE were sometimes

defined by different concepts in meta-models, even though they were defined for the same

purpose. For example, a meta-model [145] uses the concept of "quality attribute", and

another meta-model [146] uses the concept of "quality characteristic" for the same

purpose. These indicated that there is inconsistency among concepts of software quality

models proposed in the literature. Also, the table indicated that "quality attribute" and

"measure" are the most commonly used concepts, while "requirement", "scale" and

"instrument" are the least frequently addressed concepts in the meta-models.

Table 3.2. Concepts used in meta-models as entities with their frequencies

Category Names of entities in different meta-models #Freq.

Data analysis Syn: Analysis model / decision criteria / interpretation rule / analysis 7

Entity Syn: Entity / component / quality artifact / measurable entity 18

Evaluation (E) Syn: Evaluation / assessment model

Agg: Formula / rule / E. result / E. aspect / E. impact

14

Instrument Syn: Tool / instrument 5

Measure Syn: Measure / metric

Agg: Base measure / base metric / derived measure / derived metric

23

Measurement

(M)

Agg: M. approach / measurable concept /

 M. method / M. function / M. data / M. result / value / indicator

13

Property Syn: Property / quality aspect / quality dimension / quality type / feature 12

Quality attribute Syn: Quality characteristic / quality attribute / quality factor /

 characteristic / attribute / factor / product factor

Agg: Sub-characteristic / sub-factor / base attribute / direct attribute /

 derived attribute / indirect attribute

27

Quality goal Syn: Quality goal / goal / quality target / purpose / target / objective 7

Quality model Syn: Quality model 9

Requirement Syn: Quality requirement / requirement / specification 3

Scale Syn: Scale / type of scale / measurement scale 4

Unit Syn: Unit / measurement unit / unit of measurement 7

View Syn: Viewpoint / view / stakeholder 6

* Syn denotes synonymous concepts for a category, while Agg denotes sub-categories or aggregated

concepts under a category.

As can be seen, the layered structure is frequently used in the structures of the software

quality meta-models. This layered structure helps in categorizing the concepts in meta-

models’ design and in increasing the understandability of the meta-models. Therefore,

while designing the OSS-QMM, we categorized the concepts of the OSS-QMM as

specification, measurement and evaluation. Then, we designed the structure of the OSS-

 56

QMM to consist of these three layers. Details of each layer are explained in Section 4.

Also, in the SLR study [37], the RQ asked to find out the frequency of concepts used in

the meta-models indicated inconsistency between the concepts, as shown in Table 3.2.

This RQ triggered us to analyze in-depth the inconsistencies between the concepts of the

meta-models. Therefore, in our other study [54], we analyzed these concepts in detail by

getting the root of their meanings and origins. Details of these analyzes are given in

Section 4.1. As a result of these analyses, the concepts were free of inconsistencies.

Therefore, the OSS-QMM within the scope of this thesis was proposed by considering

the concepts free of inconsistencies.

3.1.5. Development of Meta-models

In this section, the challenges encountered in the development of the meta-models

examined in the SLR study [37] are discussed. In Table 3.3, the challenges faced in

proposing the meta-models and the number of studies (with percent distribution) facing

these challenges are given. As seen in the table, the poor interpretation of

interdependencies and measurements was one of the most common challenges.

Inconsistency among different terminologies was another important challenge. Only four

studies reported the challenge of different expectations of stakeholders. These challenges

were classified based on the suggestions of [147].

Table 3.3. Classification of challenges and the number of studies that have faced these

challenges

Description of challenge #study

C1: Inconsistency in terminology: "Most approaches that are not based on theoretical grounds, lack a

definition for quality concepts that is precise and concise" [147].

9

(24%)

C2: Partially defined: "Most quality models are outlined but not fully developed. All define measurable

concepts, some of them also attributes, few of them include (most often partial) measures, and scarcely any

defines decision criteria or indicators" [147].

7

(18%)

C3: Lack of focus: "Most quality models provide an extensive (and mostly tangled) coverage of stakeholders

and levels of abstraction" [147].

7

(18%)

C4: Lack of clarity in interdependencies and measure interpretations: "In most quality models that are not

based on theory, the degree of influence of individual internal quality factors on the quality in the use of the

application, as well as their interdependencies, are not well established" [147]. Also, measure interpretations

of some models are not clear.

11

(30%)

C5: Different expectations of stakeholders: Stakeholders in the software process has different expectations

from meta-models

4

(10%)

In the background, according to the findings of the SLR study, these challenges arose,

especially from the quality models taken as reference. Therefore, to cope with these

challenges (i.e., C2 and C4) during the development of the OSS-QMM, we built it based

 57

on well-designed and widely referenced quality models in the literature (see Section 4.2

for details). Also, to cope with challenge C1, we analyzed the concepts of the OSS-QMM

in detail by getting the root of their meanings and origins. As a result of these analyses,

the concepts were free of inconsistencies. According to the findings of the SLR study, the

majority of the meta-models have been proposed for a custom type of software (i.e., all

types of software) in the literature. Therefore, they do not provide a comprehensive

evaluation for the specific type of software since their main focus is not clear, and they

do not analyze in detail the requirements specific to particular software. Developing a

meta-model directly for a certain software type requires knowledge and detailed analysis

of that type of software. Since the main focus was determined as OSS in this thesis, we

carried out an SLR study [30] that examined OSS quality models in detail to cope with

challenge C3. Also, taking into account that stakeholders have different expectations from

OSS quality (i.e., challenge C5), we added the concept of viewpoint to the OSS-QMM

(see Fig. 5.10). Thus, we aimed to deal with C5 and enabled evaluations to be performed

according to certain viewpoints. In summary, we followed a systematic way to develop

our meta-model, as shown in Fig. 1.2. This systematic process helped us to overcome all

the challenges encountered.

In addition to the analyzes discussed above, we analyzed validation methods in an RQ of

our SLR study. All methods employed to validate meta-models are described in both the

SLR study and Section 2.4.4. Therefore, it will not be repeated here. The findings we

obtained from this RQ guided the validation process of the OSS-QMM developed within

the scope of the thesis.

3.2. Software Quality Models (Step-2)

Software quality models are frameworks used to evaluate the quality of software and

identify areas for improvement. They provide guidelines, best practices, and assessment

criteria for software quality and can help organizations to continuously improve the

software development process. The primary motivation behind this thesis was to enable

the proposal of standardized quality models that can perform comparable measurements

for OSS. In this context, meta-models are important because they can be used to

standardize the quality models. To propose a comprehensive OSS-QMM, the structure of

the existing OSS quality models must be well understood since the quality models are the

instances of the meta-models.

 58

In this regard, we have conducted an SLR study [30] to characterize the existing QEMoF

for OSS and to comprehensively examine their content and structure for identifying the

gap between theory and practice. While conducting the SLR, primary studies of QEMoF

for OSS were determined by using the seven most-known scientific digital libraries

(namely Google Scholar, Springer, ACM, ScienceDirect, IEEE Xplore, Scopus, Web of

Science) to survey the scientific literature. In order to cover all relevant studies in

literature, a search in scientific digital libraries was performed by using various

combinations of search strings, and the following search string was determined as a result:

(“quality”) AND ("evaluation model" OR "assessment model"

OR "measurement model" OR

"evaluation framework" OR "assessment framework" OR

"measurement framework") AND

(“OSS” OR “FOSS” OR “FLOSS” OR "open source software")

In this context, a total of 36 primary studies out of 142 initially selected and 13.146

initially retrieved were identified for further analysis with respect to inclusion and

exclusion criteria. The final set of study pool is given in Appendix-1. The list of inclusion

and exclusion criteria is given in the SLR study [30]. Then, in order to examine all aspects

of these evaluation models or frameworks proposed for assessing OSS quality, the

selected primary studies were reviewed and analyzed with respect to the research

questions (RQs) that we raised. A list of RQs is given in Table 3.4. The data of each

primary study was extracted considering the RQs, and the data extraction sheet can be

reached by the following reference [152]. In this section, results from all RQs will not be

presented. In other words, only the findings of the RQs that contributed to the

development process of the OSS-QMM will be categorized and synthesized in the

following sub-sections. Further results are given in the SLR study [30].

 59

Table 3.4. The research question of SLR (Step-2)

RQ# Research Question

RQ.1 What are the basic characteristics of the quality evaluation models or frameworks (QEMoF)

proposed for OSS?

 RQ.1.1 What is the main goal of the QEMoF proposed in the study? (e.g. generic goal or a

specific goal)

 RQ.1.2 Is the QEMoF formally represented (e.g. by metamodeling) in the study? (yes or no)

 RQ.1.3 What is the contribution type of the study? (model, framework)

 RQ.1.4 Is the QEMoF supported by a tool in the study? (yes or no)

RQ.2 How is the QEMoF for OSS structured?

 RQ.2.1 Which quality model is the QEMoF based on? (e.g. ISO 25000, Dromey)

 RQ.2.2 Is there a specific structure of the QEMoF? If yes, what is it? (e.g. hierarchical, layered)

 RQ.2.3 From what aspects can OSS be evaluated by the QEMoF? (e.g. product quality, quality

in use, community-related)

RQ.3 What is the degree of guidance provided for the evaluation of OSS by the QEMoF?

 RQ.3.1 Is the evaluation procedure of the QEMoF adequately described in the study? (yes, no,

partially)

 RQ.3.2 Is a demonstration of the evaluation using the QEMoF provided in the study? (yes, no,

partially)

RQ.4 What are the basic characteristics of QEMoF for evaluating OSS?

 RQ.4.1 What methods/techniques are used as a reference for evaluation in the QEMoF? (e.g.

GQM)

 RQ.4.2 Is the license type of the OSS product used as an evaluation criterion in the QEMoF?

(yes, no)

 RQ.4.3 Does the QEMoF support subjective or objective evaluation? (e.g. user opinion, metric

data)

 RQ.4.4 Does the QEMoF support qualitative or quantitative evaluation?

 RQ.4.5 What quality attributes are used for evaluation by the QEMoF? (e.g. maintainability,

efficiency)

 RQ.4.6 What software metrics are used for evaluation by QEMoF?

 RQ.4.7 What are the aggregation methods used for evaluation by the QEMoF? (e.g. weighted

arithmetic mean, overall sum)

 RQ.4.8 Does the QEMoF support evaluation at a single point in time or throughout the

evolution of OSS?

 RQ.4.9 How is data collected for the evaluation of OSS in the proposed QEMoF? (e.g.

automatically, manually)

 RQ.4.10 What is the required skill level of users who evaluate OSS using the QEMoF? (e.g. low,

medium, high)

 RQ.4.11 How are the results of the evaluation provided to the user in the QEMoF? (e.g., ordinal

scale, nominal scale)

RQ.5 How was the QEMoF for OSS developed?

 RQ.5.1 Was there a research method employed for developing the QEMoF for OSS? If yes,

what was it? (e.g. solution proposal, weak empirical study, strong empirical study)

 RQ.5.2 What were the challenges faced while developing the QEMoF for OSS?

RQ.6 Has the QEMoF for OSS been validated?

 RQ.6.1 What was the method of validation? (e.g., case study, toy experiment, peer review,

expert opinion, industrial validation)

 RQ.6.2 What type of OSS application was subject to validation?

RQ.7 What is the evidence for the usage of QEMoF for OSS?

RQ.8 What is the overall quality of the QEMoF for OSS?

 60

3.2.1 The Basic Characteristics of the OSS Quality Models

In this section, RQs related to the basic characteristics of OSS software quality models or

frameworks (QEMoF) analyzed in the SLR study [30] are synthesized and explained.

These analyses helped us to find out whether there is a need for a meta-model in practice.

In this context, it was investigated whether the QEMoFs are represented formally in the

studies. In other words, it was investigated whether a representation containing an abstract

relationship was presented between the concepts (rules and constructs) used in the

QEMoF and whether the QEMoF was created based on this representation. Here, aside

from representing the QEMoF formally, representing the relationships between a few

concepts used in the QEMoF was also considered to classify the study as "formally

represented". As shown in Fig. 3.4 (a), the vast majority (86%) of the models are not

formally represented, and only 14% are represented as either a meta-model (3 studies) or

a conceptual model (2 studies). Also, within the scope of the SLR study, it was

investigated whether the QEMoFs are supported by a tool as a basic characteristic. As

shown in Fig. 3.4 (b), 20 (56%) of the QEMoF are not supported by a tool, while the

remaining 16 (44%) have such support.

a

b

Figure 3.4. Percent distribution of basic characteristics of QEMoF for OSS: (a) whether

represented formally (RQ1.2), and (b) whether supported by a tool (RQ1.4)

As seen above, the number of OSS quality models that are formally represented is very

small. That is, the majority of OSS quality models are not derived from a particular meta-

model. This indicates that the number of individual models proposed without adhering to

a meta-model is increasing. This leads to heterogeneity in the structure and content of the

proposed quality models, as stakeholders have different expectations of quality. In

addition, the lack of sufficient tool support for these heterogeneous OSS quality models

has a negative impact on their practical use. Because without tool support, it is difficult

31; 86%

5; 14%

Not formally represented

Formally represented

20; 56%

16;

44%

Not supported by a tool

Supported by a tool

 61

to understand and apply these individual models in practice. For the reasons described

above, this thesis aims to develop a comprehensive meta-model for OSS quality. It is

aimed that the quality models produced from this meta-model have a homogeneous

structure and produce comparable results. Thus, it is aimed to transform OSS quality

models from individual models to homogeneous models that allow evaluation according

to the needs of the stakeholders.

3.2.2. The Structure of the OSS Quality Models

In this section, RQs related to the structure and content of OSS quality models in the SLR

study [30] are synthesized and explained. In this context, the software quality models

referenced in developing OSS quality models, and the structure and evaluation aspects of

OSS quality models are synthesized and explained. These analyses guide the shaping of

the structure of our meta-model since quality models are instances of meta-models. First

of all, the software quality models referenced in developing OSS quality models are

investigated. Software structure has changed in time with respect to manufactured or

generated components. Therefore, quality models have also had to be constantly updated

and evaluating software quality has faced new challenges. Models developed until the

year 2000 are categorized as basic models (e.g. ISO 9126, McCall, or Boehm). Also, the

tailored models developed after that year generally originated from the basic models and

other tailored models [2][84]. OSS-specific models are grouped into tailored models [2].

Details of basic and tailored quality models are explained in Section 4.2. According to

the results of the SLR study, both basic and tailored quality models are referenced in

developing OSS quality models. Among these models, the most referenced quality

models are explained in Section 4.2.2 (Table 4.3), together with the reasons for

referencing them. Therefore, it is not repeated here.

In addition, the general structure of the QEMoF is investigated in the SLR study. This

analysis is intended to help researchers understand the structure of the models proposed

in the literature and to see the commonalities, if any. As shown in Fig. 3.5 (a), 19 (53%)

of the models are structured as hierarchical. That is, they are generally structured from

the characteristic features that cannot be measured directly at the top of the hierarchy and

detailed into the characteristic features that can be measured directly at the bottom. Factor,

sub-factor, and metric, in the order from top to bottom in the hierarchy, is such an

example. Also, in the figure, 6 (17%) of the models are structured as layered. For

 62

example, a model has three layers, namely basic, intermediate, and advance levels, in the

study [27]. Also, 11 (30%) of the models do not have a specific structure.

a

b

Figure 3.5. Number distribution of: (a) design structures of QEMoF, and (b) evaluation

aspect of QEMoF

In addition, the evaluation aspects of the QEMoF are investigated in the SLR study.

Unlike commercial software, numerous data is stored in OSS databases. This provides

not only source code but also data from the community aspect, so a variety of data can be

used for quality evaluation. Most significant aspects possessed by the existing QEMoF

are investigated to provide guidance for future studies. Many basic and well-structured

quality models exist, but they are mostly adopted for commercial products and overlook

some unique properties of OSS, such as its community. As shown in Fig. 3.5 (b), 17

(37%) quality models consider community-based attributes, 19 (41%) of them consider

code-based attributes, and 10 (22%) of them consider attributes from both aspects.

As described above, OSS quality models are usually developed with reference to well-

designed basic (e.g., ISO 9126, McCall, or Boehm) and tailored models (e.g., OSMM,

OpenBRR). Therefore, our meta-model developed in this thesis is based on these well-

designed quality models since quality models are instances of meta-models. The

referenced quality models are described in Section 4.2.2. In addition, the majority of the

OSS quality models have a hierarchical structure and a few of them have a layered

structure. Regarding this, we developed our meta-model by considering this hierarchical

and layered structure. The details of the hierarchical and layered structure considered in

our meta-model are described in Section 4. In addition, the main feature that distinguishes

the OSS from commercial software is that OSS contains attributes belonging to the

community-based aspect. Therefore, we developed our meta-model by considering this

specific feature of OSS. That is, our meta-model allows for community-based evaluation,

code-based evaluation, or evaluation in both aspects.

19

11

6

0

2

4

6

8

10

12

14

16

18

20

Hierarchical None Layered

19; 41%

17; 37%

10;

22%

Code-based

Community-based

Both

 63

3.2.3. The Degree of Guidance Provided by the QEMoF

In this section, the degree of guidance provided for the evaluation of OSS by the QEMoF

is synthesized and explained. These analyses helped us to find out the understandability

and applicability of QEMoFs by external parties. In Fig. 3.6 (a), it is investigated whether

the evaluation procedure of the QEMoF is adequately described in the studies. As shown

in the figure, 12 of the studies describe their evaluation procedures adequately, while 13

of them describe their procedures only partially, and 11 of them do not describe a

procedure at all. In Fig. 3.6 (b), it is investigated whether a demonstration of the

evaluation using the QEMoF is provided in the studies. As shown in the figure, by using

the proposed QEMoFs, 11 of the studies provide a demonstration of the quality evaluation

adequately, 15 of them provide a demonstration of the evaluation inadequately, and 10 of

them do not provide a demonstration at all. "Yes" means that the evaluation

procedure/demonstration is adequately described, "No" means that the evaluation

procedure/demonstration is not described, and "Partially" means that the evaluation

procedure/demonstration is described to some degree but not sufficient for an application.

a

b

Figure 3.6. Number of studies for: (a) specification of the quality evaluation procedure,

(b) demonstration of quality evaluation procedure by application

As described above, the results indicate that there is a need to take care of the evaluation

procedure and its demonstration in the studies in order to properly motivate and guide the

potential users in evaluation. Because this negatively affects the practical use of the OSS

quality models. In this context, in our recent study [54], each concept in our meta-model

is given with its definition and intended use in the meta-model for better understanding

by users. Also, a new operationalized OSS quality model and existing OSS quality models

are derived from the OSS-QMM, and the derivation of each model is explained in detail

[54]. Moreover, the practical application of these models is demonstrated step by step in

harmony with our meta-model [54].

12
11

13

0

2

4

6

8

10

12

14

16

Yes No Partially

11
10

15

0

2

4

6

8

10

12

14

16

Yes No Partially

 64

3.2.4. The Basic Characteristics of QEMoF for Evaluating OSS

In this section, RQs related to the basic characteristics of QEMoF for evaluating OSS are

synthesized and explained. These analyses guide the shaping of the content of our meta-

model since quality models are expected to be instances of a meta-model. As shown in

Fig. 3.7 (a), 20 of the studies (56%) measure OSS quality subjectively by considering the

viewpoint of the evaluator, while 16 (44%) of them use both subjective and objective

measurements in evaluation. As it can be understood from these results, both objectivity

and subjectivity are important in the evaluation of OSS. Therefore, the OSS quality

models derived from our meta-model are intended to allow for both subjective and

objective evaluation.

a

b

c

d

Figure 3.7. Distribution of: (a) subjective or objective evaluation supported (RQ 4.3),

(b) quantitative or qualitative evaluation supported (RQ 4.4), (c) aggregation techniques

used in QEMoF (RQ 4.7), and (d) how evaluation results are provided to users by

QEMoF (RQ 4.11)

As shown in Fig. 3.7 (b), the majority (28 with 78%) of the studies support quantitative

measurement with numeric values, while only 3 of them (8%) support qualitative

measurement without using numeric values, and 5 of them (14%) support both types of

measurement. This result indicated that OSS quality models generally perform a

20; 56%

16; 44%

Subjective

Both subjective and objective

28; 78%

3; 8%

5;

14%

Quantitative

Qualitative

Both

14
12

8

4 4 3 2 1

0

5

10

15

15
14

7
5 1 3

0

5

10

15

20

Index in

range

[0,max]

Ordinal

scale

Ratio

scale

Nominal

scale

Interval

scale

Not

specified

 65

quantitative evaluation to see concrete results. In this context, the OSS quality models

derived from our meta-model are aimed to produce quantitative evaluation results.

As shown in Fig. 3.7 (c), the most commonly used technique is weighted arithmetic mean

(in 14 studies), in which some measurement results contribute to the overall result more

than others. The second most commonly used technique to aggregate the results is some

mathematical equation (in 12 studies) developed by authors. This is followed by the

overall sum aggregation technique (in 8 studies) in which the measurement results

contribute equally to the overall result. Also, 4 studies employ statistical techniques, 4

use expert opinion, 3 use arithmetic mean, 2 use fuzzy logic, and 1 study employs

probabilistic methods. For the studies (e.g., [15][32][149]) that do not clearly specify

which aggregation technique they use, it was elicited from the applications of the QEMoF

in these studies. It should be stated that a study may use more than one aggregation

technique in its proposal. These results helped us determine the techniques to be used for

some concepts of our meta-model (e.g., weighting method, Measurement function, etc.).

The most commonly used techniques in Fig. 3.7 (c) were identified and used to implement

our meta-model in practice. A list of these techniques is given in Section 6.

As shown in Fig. 3.7 (d), 15 of the studies provide their results as an index in the range

[0, max], which enables the comparison between alternative OSS products. Also, 14 of

the studies provide evaluation results on the ordinal scale, e.g., the study [25] presents its

results as good, fair and poor. In addition, 7 studies provide evaluation results in ratio

scales and 5 in the nominal scale, which uses the labeling of distinct classifications. Only

3 of the studies do not clearly state how they provide their results. It should be noted that

a study may provide its results to users in more than one type of scale. The results

indicated that OSS quality models generally provide results in different scales and units.

These can affect standardization negatively. Therefore, the OSS quality models derived

from the OSS-QMM are intended to provide an index in the range (e.g., between 0 and

1) that is mostly used by quality models as a result of the evaluation. Thus, standardization

of evaluation results using different OSS quality models derived from the OSS-QMM is

ensured.

3.2.5. The Challenges in Developing the OSS Quality Models

In this section, challenges faced, as stated in the studies while developing the QEMoF for

OSS, are analyzed. These analyses are important to understand the importance of our

 66

meta-model which allows us to derive comprehensive OSS quality models with a

homogeneous structure. There are many challenges faced while developing OSS quality

models, and the most common challenges reported in the studies are classified as shown

in Table 3.5. The challenge faced with the highest frequency by the studies is C1 (in 17

studies) with a diverse and dynamic structure of OSS. Considering this structure, it is so

challenging to design situation-based procedures to determine evaluation criteria in the

studies. The challenge faced with the second highest frequency by the studies is C2 (in

14 studies), with difficulty in determining required metrics and data sources for

evaluation. The OSS repositories provide many data sources in both code-based and

community-based aspects, and many metrics are available for evaluation in these data

sources. Therefore, it is also challenging to map various metrics existing in data sources

to the properties of OSS to be evaluated.

Table 3.5. List and frequency of challenges faced in developing QEMoF

Description of challenge Frequency

C1: The diverse and dynamic structure of OSS 17

C2: It is difficult to determine the required metrics and the data sources for evaluation 14

C3: Existing quality models are insufficient for evaluating OSS 12

C4: It is difficult to aggregate heterogeneous results from different data sources 9

C5: Different expectations of stakeholders from OSS products 8

C6: It is difficult to evaluate OSS from all aspects 5

The challenge with the third highest frequency is C3 (in 12 studies), indicating the

insufficiency of the existing models for evaluating OSS. The QEMoF tailored for OSS

generally originated from well-designed models such as ISO/IEC 9126. However, the

studies face challenges in developing well-designed QEMoF for OSS since the referenced

quality models are mostly adopted for commercial products, and they overlook some

unique properties of OSS, such as its community. The challenge with the next highest

frequency is C4 (in 9 studies) with the difficulty to aggregate heterogeneous results from

different sources. Considering that OSS has various metrics for evaluation and,

accordingly, heterogeneous measurement results, aggregating these results in QEMoF is

also challenging. The next frequent challenge is C5 (in 8 studies) indicating different

expectations of stakeholders from OSS products. Since the expectations of the users from

the OSS quality are different, researchers face challenges in keeping up with all these

expectations while developing QEMoF for OSS evaluation. Finally, the lowest frequency

challenge is C6 (in 5 studies) with difficulty to evaluate OSS products from all aspects.

 67

Since OSS is open to evaluation in many aspects, it is challenging to consider every single

aspect in developing QEMoF. It should be stated that a study may report more than one

challenge.

As seen above, developing a comprehensive quality model is a complex process due to

the challenges mentioned in the table. In addition, the different expectations of users from

quality have caused quality models to move away from standardization and turn into

individual models. Therefore, the meta-model we have developed to overcome the

challenges mentioned above helps us to derive comprehensive quality models that

evaluate all aspects of software, deal with heterogeneous data, have a homogeneous

structure and are shaped according to needs.

3.2.6. The Evidence for the Usage of OSS Quality Models

In this section, evidence for the practical use of the QEMoF is investigated. This evidence

is crucial for understanding the lack of a meta-model in practice. To access this evidence,

first of all, all studies citing QEMoF examined within the scope of this SLR were

searched. Then, an additional search was conducted in the gray literature for the use of

the QEMoF examined in this study. Only English sources and studies were taken into

consideration while conducting this search. Thus, beyond the initial studies in which the

QEMoF was proposed, expansion in their evaluation and evidence of practical use were

investigated. Considering that technology is constantly evolving, it is important to

conduct these searches because the opportunities in the years when the earlier QEMoF

was proposed are not equal to the opportunities of today. As shown in Table 3.6, the

results were obtained by examining the scientific literature for the studies citing the

QEMoF and also the gray literature on the use of these QEMoF. It is noted under Table

3.6 that the sources belonging to the authors who proposed the QEMoF are marked with

(*), while the sources belonging to the authors other than the ones who proposed the

QEMoF are marked with (**). In this regard, information was obtained about only eight

QEMoF listed in the first column of the table.

 68

Table 3.6 List of sources that: advance the QEMoF throughout the lifetime of their

projects, expand the evaluations of the QEMoF, and provide evidence of practical use of

the QEMoF

Study Sources that advance the

QEMoF throughout the

lifetime of their projects

Sources that expand the

evaluations of the QEMoF

Sources that provide

evidence of practical use

of the QEMoF

OSMM - - **Tawsopar et al. [150],
**Akbari et al. [151]

QSOS - **Zarouk et al. [152] **Laaziri et al. [153]

OpenBRR - *Wasserman et al. [154] **Syahlie et al. [155],
**Marinheiro et al. [156]

SQO-OSS *Gousios et al. [157],
*Gousios et al. [158],
*Gousios et al [159]

*Spinellis et al. [160] -

Qualipso *Taibi et al. [161],
**Xu et al. [162],
**Petrinja et al. [163]

- **Cotugno et al. [106],
**Malanga et al. [164]

QualOSS *Soto et al. [165],
**Majchrowski et al. [166],
*Deprez et al. [167]

**Cortazar et al. [168],
**Cortazar et al. [169]

-

EFFORT *Aversano et al. [170],
*Aversano et al. [171],
*Aversano et al. [172]

- *Aversano et al. [173],
*Aversano et al. [174]

OSSPal - - **Leite et al. [175],
**Marques et al. [176],
**Calçada et al. [177],
**Cruz et al. [178],
**Paula et al. [179]

As seen in the second column of the table, some of the QEMoF, such as SQO-OSS,

QualOSS, Qualipso, and EFFORT, were developed within the scope of a project. Since

the projects usually progress step by step, more than one study has been found in the

lifetime of the project related to the introduction and development process of a QEMoF.

In addition, as mentioned above, considering the continuous development of technology,

some sources have expanded the evaluation of the QEMoF over the years, as shown in

the third column of the table.

As shown in the fourth column of Table 3.6, most of the QEMoF has been used by other

authors to evaluate some OSS products in case studies conducted within their own studies.

Although this situation is considered as evidence for the use of the QEMoF, it cannot be

considered as strong evidence because all the authors of these articles had academic

backgrounds and the products were evaluated in laboratory studies instead of real-world

cases. In the literature, one study [106] was found that can be considered as evidence for

the practical use of a QEMoF (for Qualipso) in the industry, and this study is marked with

 69

(**) in the fourth column of the table. The authors of this study had academia-industry

collaboration. In this study, they have presented an overview of the usage of Qualipso for

the evaluation of the quality of OSS, and also SCRUM as a development methodology

for addressing the development needs of the Italian Army.

As a result of this analysis, no strong evidence except this study [106] has been found in

the gray literature regarding the use of the QEMoF by companies in order to evaluate the

quality of OSS software used within their own development bodies. The main reason for

the little adoption of proposed OSS quality models in practice is that the models have

moved away from standardization and become individual models. In other words, the

models are heterogeneous and produce incomparable results. The meta-model developed

in this thesis is important in order to eliminate these undesirable situations and to facilitate

the practical use of the models.

Figure 3.8 Distribution of studies with respect to author affiliation type

Apart from them, as shown in Fig. 3.8, the affiliation types of the developer of the 36

OSS quality models were examined. The results indicated that 27 studies (with 75%) were

carried out with academia, 5 studies (with 14%) with industry practitioners, and the

remaining 4 (11%) with industry-academia collaboration. As a general observation, the

concentration of the proposed QEMoF in the academic domain indicates that the number

of models/frameworks accepted and/or adopted in the industry is not at the desired level.

This situation negatively affects the adoption of the OSS quality models in practice. In

order to overcome this situation, the OSS-QMM development and validation process has

been carried out in collaboration with the industry. In other words, the opinions of the

subject matter experts have been considered during the development process of our meta-

model, and it has been validated by referring to the expert opinions in the validation phase.

This means that our meta-model has been developed taking into account practical needs.

27

5 4

0

5

10

15

20

25

30

Academic (A) Industry (I) Both A&I

 70

4. MATCHING TERMS OF QUALITY MODELS AND META-

MODELS (STEP-3)

In this thesis, the systematic research process has been followed to propose a meta-model

for OSS quality. In this context, the step-based process for meta-model creation, which

is described in Fig. 1.2, has been followed. The first two steps [30][37] and their outputs

are described in Section 3. In this section, the analyses conducted in Step 3 and their

outputs are presented. The main purpose of this section is to match the concepts of meta-

models to the terms of quality models since quality models are defined as an instance of

the meta-model according to MOF architecture [180]. For this matching process, a

preliminary preparation has been performed with the two SLR studies [30][37] described

in Section 3. In this context, meta-models have been first analyzed, and then quality

models have been analyzed to create a suitable infrastructure for matching. These

analyses have helped to highlight the shortcomings of quality meta-models and models.

That is, these two SLR studies [30][37] have triggered further analyses of quality meta-

models and models to address these shortcomings. Therefore, we have conducted another

study [54] within the scope of the thesis to perform the following;

 The meanings of the terms used in SQMMs have been revealed by searching the

referenced standards (i.e., the origin of the terms).

 A comparative analysis of concepts and terms used in SQMMs has been

performed.

 The common structure of the quality models has been analyzed and revealed.

 The terminology in the quality models of OSS has been mapped with the

terminology of the SQMMs.

 The meta-model has been developed taking into account all previous processes

(subject of Section 5).

 The validation of the developed meta-model has been performed (subject of

Section 6).

The contributions of the above-mentioned efforts to the literature can be listed as follows;

 71

 Comparative analysis of concepts and terms used in SQMMs has contributed to

harmonizing the terms and concepts of different SQMMs and also has formed the

basis for proposing an OSS-QMM.

 The investigation of how the terms used in the SQMMs are expressed in the

referenced standards has also contributed to eliminating inconsistencies in the

international standards proposed so far.

 The examination of the common structure of quality models has contributed to a

better understanding of the structure of the quality models in the literature.

 The terminology in the quality models of OSS has been mapped with the

terminology of the SQMMs, which has contributed to the resolution of the

terminology conflicts between the quality models of OSS and the SQMMs.

 The OSS-QMM will allow the development of OSS quality models that are

flexible enough to apply in various business domains and that fulfill the needs of

stakeholders, allow to obtain comparable results, cover various aspects of quality

etc. (subject of Section 5).

 Since the OSS-QMM has been proposed considering the common structure of

important OSS quality models, similar quality models to be proposed in the future

using this OSS-QMM will have the chance of adopting a standard structure

(subject of Section 5).

The rest of this section is organized as follows: In Section 4.1, the inconsistencies,

commonalities, and terminology conflicts in the concepts of the SQMMs have been

investigated by exploring the origin of these concepts. In Section 4.2, the structure and

content of the determined quality models are analyzed in detail, taking into account the

results of the SLR study explained in Section 3.2. In Section 4.3, a mapping process is

performed between the terms of the quality models and the concepts of meta-models that

are free of inconsistency.

4.1. Terms Analysis of Software Quality Meta-models

In this section, the concepts of the SQMMs are analyzed in detail before the concepts of

the SQMMs are matched to the terms of the OSS quality models. An SLR study [37] has

been carried out to analyze the structure and content of quality meta-models as described

in Section 3.1. In an RQ of this study, the frequency of concepts used in the meta-models

 72

has been analyzed. These analysis has indicated that there might be inconsistencies in the

concepts of the meta-models. Therefore, this analysis has triggered us to investigate the

concepts of the meta-models in detail before the matching process.

The SQMMs create a common understanding between stakeholders for proper quality

management throughout the entire life of a software product. However, the terminology

of the SQMMs must be consistent among themselves in order for the SQMMs to serve

their purposes properly. Therefore, in this section, inconsistencies, commonalities, and

terminology conflicts in the SQMMs proposed for OSS as well as the custom type of

software, are analyzed. This is intended to explore inconsistent terminology in the

SQMMs for future proposals as well as to help us determine the terminology of the OSS-

QMM presented in Section 5.

Since the meta-models for OSS quality are seldom, they are not likely to bring sufficient

information to create the aforementioned background. Thus, meta-models proposed for

the custom type of software have also been included in the analysis since they have been

frequently taken as the base for OSS quality models and, thus, are related to OSS in some

parts. In this context, meta-models proposed for the custom type of software have been

identified from the primary studies of the SLR [37]. As specified in Section 3.1.1 (in Fig.

3.1 (b)), more than half of the meta-models (18) have been proposed to cover all types of

software, and only 2 of them have been proposed for OSS. As a result, a total of 20 meta-

models have been analyzed in this section. That is, meta-models proposed for other types

of software (e.g., commercial-of-the-shelf software (COTS) or web services) have not

been included in this analysis.

It is also necessary to analyze in detail the international standards or proposals (already

listed in Table 2.7) as references to the terminology of the SQMMs and to understand any

inconsistencies in terminology. The terms of the SQMMs have been generally derived

from these standards or proposals, and Fig. 4.1 shows the percent distributions of the

sources. This figure has been created based on the number of international standards or

proposals which have been taken as sources for the terms used in the SQMMs. These

terms are listed in Table 4.1. It should be noted that a term used in SQMMs can have

more than one source, as shown in the column entitled "source of terms" in Table 4.1.

Also, if a term does not have any source, it is considered a "new term" in the second

column of the table. Terminology conflicts and inconsistencies are not only between the

international standards of different organizations but also among those of the same

 73

organization [39]. While there are inconsistent terms among the standards considered

mature, it is perfectly normal to have inconsistent terms among the SQMMs that are not

as mature as the standards, considering especially that the meta-models have not been

validated by designing real-world cases, as previously mentioned in Section 2.4.4.

In Fig. 4.1, it is addressed to what extent the SQMMs use the concepts of the standards

or proposals in their structure. As shown in the figure, among the standards and proposals;

15 (18%) of all the terms used in the SQMMs have been directly taken from the concepts

of ISO/IEC 15939 that are followed by ISO/IEC 14598 with 11 terms (13%). Also, the

SQMMs employed the least number of terms from IEEE 610.12 (with 5%) and then from

IEEE 1061 (with 6%) and Briand (with 6%). Apart from these, a quarter (%26) of the

terms are new, which have been not transferred from any standard or proposal. It is seen

that the SQMMs employed more terms from ISO/IEC 15939 and ISO/IEC 14598 since

these are software measurement and software quality evaluation standards, respectively.

Figure 4.1. Percent distribution of sources (standards and proposals) that contribute to

the terminology in SQMMs

Despite the fact that there are studies conducted to investigate inconsistencies among the

vocabulary of international standards, no study has been found concerning the

inconsistencies among the terms of the SQMMs. Therefore, Table 4.1 has been created

to see all the terminology used in the SQMMs. In the first column of the table, the terms

of the SQMMs are categorized according to the most frequently used ones among their

synonyms. The definition of the terms in these standards or proposals is given in [181].

Also, in the first column, the aggregation (Agg) of each term in each category are listed

to denote sub-categories or aggregated concepts under that category. In the 2nd column,

the terms are classified according to their properties that address how they have been

ISO 15939

15 (18%)

ISO 14598

11 (13%)

Kitchennam

7 (8%)

VIM

7 (9%)
Kim

7 (9%)

Briand

5 (6%)

IEEE 1061

5 (6%)

IEEE 610.12

4 (5%)

New term

21 (26%)

 74

transferred from the sources. The adopted term, adapted term, and new term are used for

this classification. The terms taken directly from the sources (standards or proposals)

without any changes, including their definitions, are classified as "adopted term". The

terms borrowed from the sources either by changing their definitions or original names

are classified as "adapted term". The terms not transferred from any source are classified

as "new term". In the 3rd column of Table 4.1, synonymous terms used for each category

in different SQMMs are listed. This column is important to see the inconsistencies among

the terms of the different SQMMs. The 4th column lists the synonyms with which the

SQMM elements in each category appear in different standards or proposals. This column

is important to see the inconsistencies among the terms of the different standards or

proposals. In the 5th column, the sources (standards or proposals) from which the SQMM

terms in each category have been adapted or adopted are listed. In the 6th and last column,

the standards or proposals that differently describe the SQMM terms in each category are

listed. An important point here is that if a standard or proposal exists in the 5th column

but not in the 6th column, it means that the term has been used in the source but not defined

in that source.

Table 4.1. List of concepts in SQMMs and analysis of their inconsistencies

Category of SQMM Element Properties

of Terms

Synonyms in

Different SQMMs

Synonyms in Different

Standards

Source of Terms Standards defining

terms differently

Viewpoint New term View

Quality goal

Quality Requirement New term

Development Phase New term

Information Need Adopted

term

Need

Purpose

Target

Briand: Corporative objective

Kim: Quality requirement

ISO/IEC 15939

Briand

Kim

ISO/IEC 15939

Kim

Entity Adopted

term

Quality entity

Entity type

Measurable entity

Artifact

Component

Entity class

Software entity

Kitchenham: Project object

occurrence

ISO/IEC 15939

Briand

Kitchenham

Kim

IEEE 610.12

IEEE 610.12

ISO/IEC 15939

Agg.
Derivation New term

Behavior New term

Quality model Adapted

term

Quality framework

Quality

Kitchenham: Development

model

Kim: Enterprise quality model

IEEE 1061: Metrics framework

ISO/IEC 14598

Kitchenham

Kim

IEEE 610.12

ISO/IEC 14598

Kim

IEEE 610.12

Characteristic Adapted

term

Attribute

Factor

Property

Quality-carrying

property

Fact

Quality aspect

Quality factor

VIM: Measurable quantity

Kitchenham: Generic attribute

Kim: Measured attribute

ISO/IEC 14598

VIM

ISO/IEC 15939

IEEE 610.12

Briand

Kitchenham

Kim

IEEE 1061

IEEE 1061

IEEE 610.12

ISO/IEC 15939

ISO/IEC 14598

VIM

Kim

Agg.

Sub-characteristic New term Sub-attribute

Sub-factor

Base attribute

Derived attribute

 75

Measurable Concept Adopted

term

 ISO/IEC 15939 ISO/IEC 15939

Measure Adapted

term

Metric Kitchenham: Development

model, Element measure type

IEEE 1061: Metric

IEEE 610.12: Metric

ISO/IEC 14598: Metric

ISO/IEC 14598

IEEE 610.12

Briand

Kitchenham

IEEE 1061

ISO/IEC 14598

IEEE 1061

IEEE 610.12

Agg.

Base measure Adapted

term

Base metric IEEE 1061: Direct metric

ISO/IEC 14598: Direct measure

VIM: Base quantity

VIM

ISO/IEC 15939

ISO/IEC 14598

IEEE 1061

VIM

ISO/IEC 15939

ISO/IEC 14598

IEEE 1061

Derived measure Adapted

term

Derived metric

Composed metric

VIM: Base quantity

ISO/IEC 14598: Indirect

measure

VIM

ISO/IEC 15939

ISO/IEC 14598

VIM

ISO/IEC 15939

ISO/IEC 14598

Indicator Adopted

term

 ISO/IEC 15939

ISO/IEC 14598

ISO/IEC 15939

ISO/IEC 14598

Measurement Approach New term

Agg.

Measurement

method

Adopted

term

 VIM

ISO/IEC 15939

VIM

ISO/IEC 15939

Measurement

function

Adapted

term

 ISO/IEC 15939 ISO/IEC 15939

Analyses model Adapted

term

Analysis decision ISO/IEC 15939 ISO/IEC 15939

Measurement Results Adapted

term

 ISO/IEC 14598: Measure

ISO/IEC 15939: Measure

Kitchenham: Recorded value

Kim: Measurement point

IEEE 1061: Metric value

ISO/IEC 15939

ISO/IEC 14598

Briand

Kitchenham

Kim

IEEE 1061

ISO/IEC 15939

ISO/IEC 14598

Kim

IEEE 1061

Measurement Adapted

term

 ISO/IEC 15939

ISO/IEC 14598

VIM

Kim

IEEE 1061

ISO/IEC 15939

ISO/IEC 14598

VIM

Kim

IEEE 1061

Agg. Measurement

data

New term

Decision Criteria Adopted

term

 ISO/IEC 14598: Rating Level ISO/IEC 15939

ISO/IEC 14598

ISO/IEC 15939

ISO/IEC 14598

Agg. Interpretation

rule

New term

Instrument New term Tool

Impact New term

Measurement Scale Adopted

term

Type of scale Kitchenham: Generic scale

range

VIM: Reference-value scale

ISO/IEC 14598

VIM

ISO/IEC 15939

Kitchenham

ISO/IEC 14598

VIM

ISO/IEC 15939

Unit of measurement Adopted

term

Unit Kitchenham: Generic unit

ISO/IEC 14598: Unit

VIM

ISO/IEC 15939

ISO/IEC 14598

Kim

Kitchenham

VIM

ISO/IEC 15939

ISO/IEC 14598

Evaluation New term Evaluation method

Assessment model

Assessment type

Agg.

Text evaluation New term

Manual

evaluation

New term

Form-based

evaluation

New term

Impact evaluation New term

Quality aspect

evaluation

New term

Evaluation Result New term Quality aspect

evaluation results

Agg.

Single-measure

evaluation results

New term

Multi-measure

evaluation results

New term

Impact evaluation

results

New term

 76

A term can have more than one definition by standards or proposals, as also seen in Table

4.1. For example, the most defined terms (with their frequencies) are: "characteristic" (6),

"measurement" (5), "measurement results" (4), "base measure" (4), "measure" (3),

"derived measure" (3), "quality model" (3), "scale" (3) and "unit of measurement" (3).

These are the most essential terms of the measurement process, and the last column in

Table 4.1 shows that there is a lack of agreement even in the original sources to define

the same term. Also, it is observed that there are 24 cases of synonyms in the standards

or proposals, which confirms the lack of consensus among them in terminology.

Inconsistencies, commonalities, and terminology conflicts in all these standards or

proposals are reflected in the SQMMs, and accordingly, there are 38 cases of synonyms

for 15 terms in the SQMMs. In addition, it is observed that 17 (45%) of the terms have

been transferred from the sources directly (8 adopted terms) or with changes (9 adapted

terms), and 21 (55%) of them have been not transferred from any source (i.e., new term).

As a result, in this section, analyses are performed by going down to the origins of

concepts in meta-models proposed for custom types of software. In this way, it is aimed

to eliminate inconsistencies, commonalities, and conflicts between the concepts of the

meta-models before the matching phase. These concepts, free of these inconsistencies,

form the basis of the terminology of our meta-model that is developed within the scope

of the thesis. Apart from them, these analyses provide guidance in eliminating the

inconsistencies in international standards from the past to the present.

4.2. Detailed Analysis of the Structure and Content of Software Quality Models

In this section, OSS quality models and well-designed quality models referenced by these

models are analyzed prior to the matching process between the terms of OSS quality

models and SQMMs. As mentioned in Section 3.2, OSS quality models have been

analyzed in the SLR study [30]. Based on the outputs of this SLR study, firstly, the most

important OSS quality models and well-designed quality models referenced by these OSS

models have been identified. Then, these quality models have been classified according

to their structure, behavior and evaluation aspects. Finally, based on these classifications,

the quality models have been structurally analyzed and fitted into a common structure.

As it is well known, quality models are instances of meta-models. Therefore, these

analyses are important in shaping the structure of the OSS-QMM developed within the

scope of this thesis and in shaping the structure of SQMMs to be developed in the future.

 77

Also, they are important to understand the common structure of OSS quality models in

detail, prior to the matching process.

The rest of this section is organized as follows: In Section 4.2.1, the most important

quality models taken as reference in the design of our meta-model are identified. In

Section 4.2.2, these identified quality models are classified in detail prior to the matching.

In Section 4.2.3, a structural analysis of quality models is performed, and these models

are fitted into a common structure.

4.2.1. Determination of QMs to be Taken as Reference in the Design of the OSS-

QMM

The primary motivation behind this thesis is to enable the proposal of standardized quality

models that can perform comparable measurements for OSS. In this context, SQMMs are

important because they may be used to standardize the quality models. To propose a

comprehensive quality meta-model, the structure of existing quality models must be well

understood since the quality models are the instances of the SQMMs. In this regard, we

have conducted an SLR study [30] to characterize the existing quality evaluation models

or frameworks (QEMoF) for OSS and to comprehensively examine their content and

structure for identifying the gap between theory and practice. In this SLR study, the

results are presented together with evaluation factors (EFs), which are used to assign a

quality score for each OSS quality model. In another saying, in this SLR study, an RQ is

asked to understand the overall quality of the QEMoF, based on a number of RQs

answered so far as the evaluation criteria. In this context, among the RQs raised in this

study, those aimed at evaluating the quality of the QEMoF have been determined. The

list of all RQs is already given in Table 3.4 for this SLR study. The list of EFs used in the

evaluation is given in Table 4.2, along with the scoring rules and the RQs taken as

reference for the factors. While determining the scores, the EFs are weighted between the

points 0-2 (2 if the EF is fully satisfied, 1 if partially satisfied, and 0 if not satisfied). The

first author of the SLR study assigned a score for each EF, and then the second author

performed a peer-review for the assigned scores. Then, the conflicts among the authors

have been resolved by holding discussions.

The quality scores of each OSS quality model are given in the SLR study [30]. Among

the OSS quality models with the highest scores in this study, the most cited and used five

OSS quality models in the literature have been determined and listed in the last five rows

 78

of Table 4.3. Also, due to their importance in the community, the OSS quality models

examined within the scope of this thesis have been the subjects of systematic studies (i.e.,

systematic mappings and systematic literature reviews) such as [24][29] and the

comparison studies such as [9][182-183]. These models fall into the "tailored" quality

models category because of their construction based on the basic quality models (e.g.,

ISO/IEC 9126 [21] and Boehm [22]) and their particular application domains (e.g., a

specific quality characteristic of OSS product [27-28]). Details of tailored quality models

will be given in Section 4.2.2.3.

Table 4.2. List of Evaluation Factors (EFs) with referenced RQs and scoring rules

EF # Source Concern Scoring Rules

EF-1 RQ1.2 Formal

representation

If the QEMoF is represented formally, it is weighted as 2 points. If it is not,

weighted as 0 point. There is no partial condition.

EF-2 RQ1.4 Tool support If the QEMoF is supported by a tool, it is weighted as 2 points. If it is not,

weighted as 0 point. There is no partial condition.

EF-3 RQ2.1 Underlying

standard or

quality model

If attributes of the QEMoF are mostly derived from a known standard/model

(such as ISO 9126, ISO 25010 or CMMI), it is weighted as 2. If they are not,

weighted as 0. If only a few of attributes are derived from a known standard,

then it is weighted as 1.

EF-4 RQ2.3 OSS

evaluation

aspects

If the QEMoF covers all evaluation aspects of OSS, it is weighted as 2 points.

If it does not, weighted as 1. Since all the QEMoF are assumed to evaluate

the OSS from at least one aspect, 0 is not given as a weight.

EF-5 RQ3.1 OSS

evaluation

procedure

If the evaluation procedure of the QEMoF is adequately described, it is

weighted as 2 points. If it is not, weighted as 0 points. If it is described at

some degree but not in detail (i.e. only partially), then it is weighted as 1

point.

EF-6 RQ3.2 OSS

evaluation

demonstration

If a demonstration of the evaluation using the QEMoF is adequately

provided, it is weighted as 2 points. If it is not, weighted as 0 point. If it is

provided at some degree but not in detail, then it is weighted as 1 point.

EF-7 RQ4.5 Quality

evaluation

scope

If the QEMoF covers at least half of the quality characteristics, it is weighted

as 2 points. If it does not, weighted as 1. Since a QEMoF is considered to

cover at least one quality characteristic, 0 is not given as a weight.

EF-8 RQ4.9 Automation in

data

collection

If data is collected automatically in the QEMoF, it is weighted as 2. If data

is collected manually, it is weighted as 0. There is no partial condition.

EF-9 RQ4.10 Skill level

required for

evaluation

If the required skill level for using the QEMoF is low, it is weighted as 2. If

it is high, weighted as 0. If the required skill level is medium, then it is

weighted as 1.

Basic quality models, on the other hand, have been mostly adopted for commercial

products and therefore overlooked some specific properties of OSS. Nevertheless, the

basic quality models, in addition to the OSS-specific ones, have also been analyzed in

this research for several reasons: they have been widely studied in the literature, have

provided partial evaluation for OSS quality, and have formed the basis of the OSS quality

models thanks to their well-designed structure as specified in the SLR study [37]. In the

 79

SLR study [37], the basic models that OSS quality models refer to have been investigated

as well. The results have indicated that most of the OSS quality models are based on basic

models. Among the basic quality models, based on the results of the SLR study [37], the

models most commonly taken as basis by OSS quality models have been identified and

listed in the last five rows of Table 4.3. Also, due to their importance, they are the most

cited and used basic quality models in the literature. Consequently, a total of ten quality

models, the first five being the basic quality models and the next five being the quality

models tailored as specific to OSS, have been analyzed in this study (as already listed in

Table 4.3). Among the basic models, ISO/IEC 9126 quality model was withdrawn and

replaced by ISO/IEC 25010, which has many common quality characteristics with it.

However, within the scope of this thesis, ISO/IEC 9126 has been included rather than

ISO/IEC 25010 since the results of the SLR study have indicated that the majority of OSS

quality models have been directly derived from ISO/IEC 9126, and there has been no

model yet derived from ISO/IEC 25010.

4.2.2. Classification of Quality Models to be Taken as Reference

Many quality models have been proposed in the literature, which serves the same

application domain and even the same type of software products. As such, it has become

a challenging task to compare the results of the measurements performed by using these

quality models. Likewise, there are many quality models in the literature for evaluating

OSS. Therefore, before proposing further quality models for OSS, it is necessary to

review and classify the quality models that have been proposed in the past and whose

results cannot be currently compared. More specifically, developing a comprehensive

OSS-QMM may support the development or revision of the OSS quality models with a

standard structure, content, and terminology and, in turn, may reduce potential conflicts

and confusion in future proposals. In this context, examining the structure of the

previously proposed quality models in detail will support the validity, consistency, and

comprehensiveness of the OSS-QMM to be developed. Accordingly, in this section,

classification and analysis are performed before eliciting common structures of the

quality models that have been proposed for OSS quality or taken as the basis for their

development.

In this context, the ten quality models determined are classified in terms of their structure,

behavior, application domain (i.e., basic and tailored), and evaluation aspect. Structural

classification enables realizing the importance of the hierarchical structure used in quality

 80

models and establishing a common structure of the quality models on this basis. This

classification is important in shaping the structure of our meta-model. Behavioral

classification enables to reveal the approaches of quality models to software quality. This

classification is important in shaping the approach of our meta-model to OSS quality.

This is because a comprehensive model should include concepts for both defining and

assessing quality. Basic and tailored classification enables understanding the basics of the

OSS quality models, examining well-designed quality models as well as OSS quality

models and, thus, shaping the structure of the OSS-QMM. Classification according to the

evaluation aspect enables understanding of the OSS aspects evaluated in OSS quality

models and shaping the content of the OSS-QMM.

Table 4.3. Classification of SQMs w.r.t structural, behavioral, and basic/tailored

properties

Models/

Category

Structural Behavioral Basic and tailored

Hierarchical Dynamic Definition Assessment Basic Tailored Based on (If tailored)

McCall ✓ ✓ ✓

Boehm ✓ ✓ ✓

Dromey ✓ ✓ ✓ ✓

Furps ✓ ✓ ✓

ISO 9126 ✓ ✓ ✓

OSMM ✓ ✓ ✓ ISO 9126

QSOS ✓ ✓ ✓ ISO 9126

OpenBRR ✓ ✓ ✓ ✓ ISO 9126 and OSMM

SQO-OSS ✓ ✓ ✓ ISO 9126 and OSMM

QualOSS ✓ ✓ ✓ OSMM, OpenBRR and

QSOS

4.2.2.1. Structural Classification

In literature, each quality model is composed of a set of building blocks, including quality

objectives, factors, criteria, sub-criteria, and metrics [84][184]. The names of these

building blocks may vary in different models. For example, characteristic, attribute, or

factor can be used interchangeably. The organization of these building blocks and their

interactions with each other are examined as a structural classification [184]. In this

context, quality models examined in this thesis are classified as having hierarchical or

dynamic structures.

Hierarchical quality models are the models that build the quality of the software in a

hierarchical structure of building blocks. The main purpose of this structure is to

decompose the concept of quality into some quality attributes so that each attribute covers

a certain aspect of product quality [84]. The general structure of hierarchical models is

 81

shown in Fig. 4.2. In hierarchical quality models, quality attributes are generally quite

abstract, so it is not possible to evaluate these attributes directly. Therefore, these are

decomposed into less abstract forms known as sub-attributes, as shown in the figure. For

example, in ISO/IEC 25010 quality model, the "maintainability" attribute, which can be

defined as "the ease of change to the desired properties of the software after its delivery",

is decomposed into five sub-attributes of modifiability, reusability, testability,

analyzability, and modularity. Considering that these sub-attributes are still abstract and

cannot be measured directly, it is necessary to associate each sub-attribute with a set of

metrics that enable concrete measurements. Although these metrics provide concrete

results within the quality models, interpretation of the results obtained is not easy as they

are not fully covered in all the quality models. The list of quality models with a

hierarchical structure is included in Table 4.3.

Figure 4.2. The general structure of hierarchical SQMs

Dynamic quality models state that the quality evaluation process of each software product

is different and that dynamic development of quality attributes for the evaluation process

is required. This type of models (e.g., proposed by Boehm et al. [185]) focuses on the

relationship between attributes and sub-attributes to provide flexibility in the evaluation

of different software products [186]. Although the dynamic quality models are not as

comprehensive and abstract as the meta-models, they support the meta-modeling logic

because they provide flexibility in the evaluation process. More specifically, the dynamic

models concentrate on the relationship between building blocks such as attributes and

sub-attributes, while meta-models are comprehensive enough to create consistent quality

models and focus on a variety of building blocks covering all quality engineering tasks

[84]. The only quality model that falls into this category is Dromey's quality model [187].

 82

As also shown in Table 4.3, a quality model can fall into more than one category in

structural classification.

4.2.2.2. Behavioral Classification

Although the common purpose of software quality models is to evaluate the quality of

software products, it is a challenging process to compare these models with each other

since they have diversity in approaches to defining or evaluating quality. Some of them

are used for definition [21], and some of them are used for assessment [25] of software

quality. Therefore, under behavioral classification, the quality models are considered as

definition and assessment quality models, as also shown in Table 4.3. Despite the fact

that definition and assessment are known as different types of activities, definition models

and assessment models are dependent on each other. In other words, quality assessment

of software products without an accurate definition of software quality is not possible.

Definition quality models and assessment quality models are explained in detail in the

following paragraphs.

Definition quality models, in the most general sense, are used mainly to describe or define

quality [21][185]. They guide the use of the quality model for constructive quality

assurance [187-188]. In order to have a high-quality system, the definition models should

provide some direct suggestions and comprehensive definitions for different software

development processes. In the requirement phase, all software requirements, as well as

quality requirements and methods agreed with a customer about the concept of quality,

are identified [189]. During the design and implementation phases, they are mainly

considered a base for the identification of the designing and programming standards [185]

to obtain a quality product [84]. Also, the majority of them focus on taxonomy and

provide a guideline about the hierarchical decomposition of quality attributes. However,

generally defined guidelines are not followed for decomposition and can be arbitrary in

most of the definition models [145], which causes many critical problems. The ambiguous

decomposition can cause overlapping between different quality attributes, which in turn

causes redundancy due to multiple additions of the similar or same attributes, and makes

positioning the quality attributes challenging [189]. Therefore, the guideline documents

of the quality models, which provide communication with evaluators, play an important

role. However, the rationales behind rules that are used to decompose building blocks are

not generally explained in the guidelines, or the guidelines generally are not sufficiently

detailed and concrete. In this context, considering the above shortcomings, it is

 83

understood that there is a need within the quality models that explain the elements they

use in their guidance documents in detail. The list of quality models that fall into this

category is given in Table 4.3.

Assessment quality models are often considered as extensions of the definition models

and are used to evaluate the quality of products that are characterized and defined by the

definition models. This type of quality model is considered as the basis for the evaluation

of quality, often by using some automatic analysis tools or by performing manual reviews.

Therefore, assessment models monitor and control internal measures that can affect

external properties [189]. Also, these models are often perceived to include mathematical

models that aggregate software metrics to quality characteristics. In this way, they

determine the values of quality characteristics. In this type of model, generally, each

quality attribute is decomposed into sub-attributes, and each sub-attribute is mapped to

some quality metrics for use in the assessment process by following the guidance

provided by the definition models. Since these metrics often allow measurement directly,

results are obtained in some scale within assessments by using measurement-based

approaches. There is a considerable number of software metrics that have been proposed

in the literature. All of these software metrics are difficult to cover in the quality models,

and although some are defined, the quality models fail to give a detailed account of the

impacts that specific metrics might have on software quality [188-189]. Also, because of

the deficiency of clear semantics, the aggregation of metric values along the hierarchical

levels may become problematic [188]. In addition, some of the metrics lack clear

validation, which in turn threatens the validity of the measurement results. The list of

quality models that fall into this category is given in Table 4.3. As shown in the table, a

quality model can fall into more than one category in behavioral classification.

4.2.2.3. Basic and Tailored Classification

Basic quality models developed until 2001 are the models that mostly focus on a

comprehensive evaluation and that aim to evaluate software products from many aspects

[2]. This type of quality models is generally stand-alone, which means quality-related

aspects determined by these models are based on their approach. Accordingly, a set of

factors, criteria, and metrics are structured with the guidance of the determined aspects.

Since basic models are the first known quality models, they are mostly considered as

definition models that investigate meanings of quality for products aside from evaluating

quality. Basic models form the basis of the tailored models, thanks to their well-designed

 84

structure. However, these quality models have mostly been adopted to commercial

software (e.g., COTS) and have overlooked some specific properties of OSS (e.g.,

community-based aspects) [15][27]. Thus, they do not provide sufficient support for

assessing the quality of OSS [2][5][25]. Basic models are already shown in Fig. 2.4 and

also listed in Table 4.3.

Tailored quality models developed after 2001 are mostly specific for a particular domain

of application and focus on evaluating specific types of software products such as OSS

[2]. In general, they are derived from the basic models by making some modifications to

certain parts of the basic models. Tailored quality models have been proposed for the

needs of organizations or software practitioners to perform a specialized evaluation on

individual components [2][84]. For example, the MIDAS quality model proposed by

Siemens [190] is used to design software products in their infrastructure in the industry.

Consistent measurement results cannot be expected from such tailored models created

within the needs of users unless these kinds of models are standardized. Like the basic

models, tailored models are shown in Fig. 2.4 and also listed in Table 4.3. In addition,

Table 4.3 shows in its rightmost column, which quality models are based on which other

quality models. As also seen in that column, a tailored model could be derived from more

than one basic or tailored model.

4.2.2.4. Classification According to the Evaluation Aspect and Evaluated

Characteristics

The quality models determined within the scope of this thesis are classified according to

their evaluation aspects and key quality characteristics they possess, as shown in Fig. 4.3.

The quality characteristics used in the quality models are classified with respect to the

quality characteristics of ISO/IEC 25010, which is the latest quality model. Apart from

them, some quality characteristics such as maintenance capacity, sustainability, and

process maturity [24][30] that belong to the community side of OSS are included. The

definition of each community-related quality characteristic is given in Table 4.4. Also,

abbreviations of the quality characteristics evaluated in each quality model are given just

below the figure. As seen in Fig. 4.3 (a), in order to evaluate the quality characteristics,

the OSS quality models allow measuring the code-based aspect, the community-based

aspect, or both aspects of the OSS product. However, the situation is different in basic

quality models since they do not provide sufficient support for evaluating the quality of

OSS. This is because the basic quality models are mostly adapted for commercial

 85

products and overlook some specific properties of OSS, e.g., community properties

[5][30]. As it is not possible to obtain public information about the development details

of the commercial software, the basic models group the quality characteristics considering

the quality of the product output, as seen in Fig. 4.3 (b). For example, they group

characteristics under "quality in use" considering quality when using the product, or under

"product transition" considering adaptability of the product to new environments, etc. In

Fig. 4.3 (b), these high-level characteristics covered by the models are specified using

color-coding. Although the OSS quality models have been derived from the basic models,

they fall apart from them at this point. That is, several types of data can be accessed with

regard to the development details, such as code-based and community-based aspects, in

OSS quality evaluation since the source code is open and historical data are stored in

various cloud repositories (e.g., GitHub) belonging to the community [5][30]. Therefore,

OSS quality models have modified their content to use all these relevant data for

evaluation. We should note that the classification presented in this sub-section has served

as a base for understanding the OSS aspects evaluated by the OSS quality models and for

shaping the concepts of the OSS-QMM concerning these aspects.

Table 4.4. Description of community-related quality characteristics of OSS

Quality

characteristics of

the community side

Description

Maintenance

capacity

It is the capability of a community to provide the resources needed for the maintainability of an OSS product

over a period of time. It is mainly related to the number of contributors and to the amount of time that they

are willing/able to contribute to the development effort. Data to monitor this effort can be obtained from

databases such as mailing list, versioning logs, bug reports, and discussion forums.

Sustainability It is the capability of a community to grow in terms of new contributors and regenerate by attracting and

engaging new contributors to take the place of those leaving the community. It is also related to the

heterogeneity of the community in addition to regeneration ability. For example, if a community of a project

mainly consists of a particular company (i.e., non-heterogeneous) and the company withdraws its support, it

is highly likely that the project will be stalled. As another example, if the same group of developers has been

active for a long time as a result of monitoring the first and last contributions of the developers, this does not

reflect a significant regeneration.

Process Maturity It is the capability of a community to adopt and use standard practices in the development process, such as

peer review of changes, planned releases, submission and review of changes, and provision of a test suite.

That is, it is related to reaching development-specific goals (e.g., quality goals) in a consistent manner by

following the determined process.

 86

a b

Abbreviations: Maintainability (M), Reliability (R), Functionality (F), Performance (P), Operability (O), Security (Se),

Effectiveness (Ef), Compatibility (C), Transferability (T), Usability (U), Efficiency (Ei), Satisfaction (Sa), Safety (Sf),

Maintenance Capacity (Mc), Sustainability (Su), Process Maturity (Pm)

Figure 4.3. Classification w.r.t evaluation aspects and quality characteristics of: (a) OSS

quality models, and (b) basic quality models

4.2.3. Structure Analysis of SQMs, Including OSS Quality Models

The quality models determined within the scope of this thesis are explained together with

the reasons for their inclusion. In this context, a total of 10 quality models, five being the

basic quality models and five being the quality models tailored as specific to OSS, have

been analyzed in this thesis, as shown in Table 4.5. As shown in the table, aside from

OSS quality models, the structures of some cornerstone basic quality models have also

been examined since they provide partial evaluation opportunities for OSS as well as form

the basis of the OSS quality models. In Section 4.2.1.1, the structure of the determined

quality models is classified before their structural analysis is performed. Therefore, in this

section, guided by this classification, a structural analysis is carried out using the common

hierarchical structure of the quality models. In other words, with the purpose of defining

a common language and using it in proposing or revising the quality models in the future,

the structures of the quality models listed in Table 4.3 are investigated and compared.

This effort is important in shaping the structure of our meta-model to develop within the

scope of this thesis. That is, this way, a solid basis is formed for developing the OSS-

QMM. It may also enhance the development of individual OSS quality models.

 87

Table 4.5. Structure comparison of SQMs (the first five are basic, and the last five are

specific to OSS)

Level/

Model
McCall Boehm FURPS Dromey

ISO/IEC

9126
OSMM QSOS OpenBRR

SQO-

OSS
QualOSS

Level 1 View View View View View View View View View View

Level 2 Major

perspective

High-level

characteristic

- Product

properties

Characteristic Group Top-level-

criteria

- Evaluation

aspect

Evaluation

aspect

Level 3 Factor Intermediate-

level

characteristic

Characteristic Quality

attribute

Sub-

characteristic

Indicator Criteria Characteristic Quality

attribute

Characteristic

Level 4 Criteria Primitive

characteristic

Sub-

characteristic

Sub-attribute Quality

attribute

Sub-

indicator

Sub-

criteria

Sub-

characteristic

Sub-

attribute

Sub-

characteristic

Level 5 Metric Metric Metric Metric Metric Metric Metric Metric Metric Metric

Considering the comparison of structures of the quality models listed in Table 4.5, we

realized that all the quality models are based on a common structure consisting of five

levels. It has been observed that some quality models, from both basic and tailored models

such as FURPS and OpenBRR, respectively, do not include model elements of Level 2

in their model structures. The levels of structure applied to all the quality models are

explained below:

Level 1: Software quality is complex, multifaceted, and hard to define since the

expectations of stakeholders are different from software products. Therefore, these

stakeholders perceive software quality from their points of view. In this context, at Level

1, all quality models are shaped with their content according to a specific point of view,

such as customer, manager, developer, tester, designer, etc.

Level 2: After determining the point of view that the software quality is evaluated from,

it is determined which aspects of the product are evaluated. At Level 2, the evaluation

aspects can have some synonymous words in the quality models, such as high-level

characteristics, groups (product and application indicators), etc. Although each evaluation

aspect has an impact on overall software product quality, most of the quality models focus

on one or more aspects, such as community quality, quality in use, or service quality,

rather than on evaluating overall product quality. Among the quality models, the only

distinctions are FURPS and OpenBRR, which do not concentrate specifically on an

evaluation aspect of the software quality.

Level 3: After determining the evaluation aspects of the software product, the quality

attributes associated with these evaluation aspects are determined in the quality models

examined. At Level 3, the quality attributes can have some synonymous words in the

 88

quality models, such as factor, characteristic, criteria, or indicator. Quality attributes are

measurable or testable concepts of software quality, and they are used to control quality

and to determine how well the software product or system satisfies the needs of its

stakeholders. However, despite the fact that quality attributes are defined as measurable

concepts, they are generally quite abstract concepts that cannot be measured directly.

Level 4: After the quality attributes are associated with the evaluation aspects; at Level

4, these quality attributes are decomposed into sub-attributes in the quality models since

the quality attributes remain abstract to evaluate directly. Quality sub-attributes can have

synonymous words in the quality models, such as factor, sub-characteristic, sub-criteria,

or primitive characteristic. Sub-attributes are defined for the quality attributes that

represent a wide range of aspects of software use, in order to allow for valid

measurements of compliance [84]. However, sub-attributes are still abstract to evaluate

directly, so they can be considered as less abstract forms of quality attributes.

Level 5: After the sub-attributes are associated with the quality attributes; finally, at Level

5, sub-attributes are associated with software metrics that allow concrete measurements

directly. Generally, the quality models use analysis tools to assign values to software

metrics; however, the quality models of OSS use scoring criteria according to the rule

sets defined in the models, especially for the metrics related to the community aspect.

Since a quality sub-attribute is often associated with more than one software metric, the

values obtained for all metrics are aggregated to obtain a single value for the quality

measurement of the sub-attribute.

4.3. Mapping Process

Information systems researchers have proposed a variety of meta-modeling frameworks

(e.g., [49-50]) in the literature. In this thesis, we have followed the meta-modeling

framework based on the Meta-Object-Facility (MOF) standard in developing the OSS-

QMM. As mentioned in Section 2.4.2, according to the basics of meta-models, the quality

models are instances of a meta-model. This situation is explained in detail in the Meta-

Object Facility (MOF) standard. For more information on the MOF standard, please see

Section 2.4.3. The abstraction levels of the MOF architecture and the levels of modeling

language are given in Fig. 2.10. The MOF standard has a four-layered architecture that

includes, from the bottom to the up: M0 (run-time layer), M1 (model layer), M2 (meta-

model layer), and M3 (meta-meta-model layer). In the MOF, layer Mi contains an instance

 89

of layer Mi+1, and layer Mi+1 describes layer Mi, as shown in Fig. 2.10. That is, meta-

models are defined as models of models, and a model is an instance of a meta-model.

Accordingly, the model in level (i) is written in the modeling language described by the

model in level (i+1), as shown in Fig. 2.10. A modeling language consists of its syntax

and semantics. The syntax describes the elements and rules for creating models and is

described by grammar; the semantics describes the meaning of a modeling language and

consists of a semantic domain and semantic mapping. As a result, according to MOF

structure, the terms of the quality models of OSS (at layer M1) should be matched with

the terms of the SQMMs (at layer M2).

In the matching process, each concept of a meta-model for a given domain should match

one or more terms of the quality model for that domain. An example of the correct

mapping process is shown in Fig. 4.4 (a). In addition, as shown in Fig. 4.4 (b), there

should be no vocabulary that is not used in the concepts of the meta-model and the terms

of the quality model. In this figure, term #3 of the quality model cannot be mapped to the

SQMM and concept #2 of SQMM is unused. The matching process is exemplified in

models for different application domains, as shown in Fig. 4.5. This figure supports Fig.

2.10. That is, each model is written in the modeling language described by the meta-

model. Also, a meta-model determines the language concepts, the relationship between

these concepts, matching rules and the transformation of model terms, in order to

harmonize the domain's rules. In summary, considering Fig. 4.4 (a), at least a term in the

quality model must match a concept in the meta-model. In this sense, it is reminiscent of

surjective functions. That is, if the meta-model is represented as a domain and the quality

model as a co-domain, every element of the function's co-domain is the image of at

least one element of its domain [191]. Symbolically;

𝑖𝑓 𝑓: 𝑋 → 𝑌, 𝑡ℎ𝑒𝑛 𝑓 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑓

∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋, 𝑓(𝑥) = 𝑦

Here, f is a function, X is the domain (meta-model), x is an element of X (concept of

meta-models), Y is the co-domain (quality model), and y is an element of Y (term of the

quality model).

https://en.wikipedia.org/wiki/Codomain
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/Domain_of_a_function

 90

a

b

Figure 4.4. (a) An example of correct mapping, and (b) an example of incorrect

mapping (there are unused terms and concepts)

In this context, a systematic way has been followed prior to the mapping process. As

mentioned in Section 3.1 (Step-1), initial research has been conducted to examine the

structure of the quality meta-models proposed for OSS and for the custom type of

software. Considering the results of this research, the concepts used in these SQMMs

have been categorized together with their synonyms and aggregations, as detailed in

Section 3.1.4. As a result of the analysis performed in Step 1, the inconsistencies between

the terminologies of the meta-models have been analyzed according to their meanings in

the related meta-models and international standards. This analysis has provided

knowledge about the meanings of the terms to be used in the OSS-QMM to be developed,

in other words, its semantics. As mentioned in Section 3.2 (Step-2), research has been

conducted to investigate the structure of OSS quality models. Considering the results of

this research, it has been observed that all the quality models investigated have a common

structure consisting of five levels, as already given in Table 4.5 (Section 4.2.3). In this

way, the common structure of the quality models has been discovered, and the

inconsistencies among the terms of the SQMMs have been eliminated. The analysis

performed in Step 2 has provided knowledge about the structure of the OSS-QMM to be

developed, in other words, its syntax.

 91

Figure 4.5. The examples of the model development process considering the mapping

process

In this section (Step 3), then, the level-based matching process has been carried out

between the terms of the OSS quality models and the terms of the SQMMs, as shown in

Table 4.6, since ideally, a quality model should be an instance of a meta-model. This

matching has been performed in accordance with the MOF standard [49]. That is, the

terms of the quality models of OSS (at layer M1) are matched with the terms of the

SQMMs (at layer M2) for the categories of SQMM elements specified in the first column

of Table 4.1. This matching is an important step in that the OSS quality models to develop

or revise will have a homogeneous structure and that the measurements performed using

these quality models can be standardized. In this matching process, some accepted

standards [114][126][192] have been taken as bases in the process of determining the

terms of the SQMMs corresponding to each level. In addition, the intended usage of the

terms in the SQMMs, the classification of the terms in some SQMMs [37-38], and a

common output obtained from the definitions of these terms in the international standards

 92

have been taken as reference in this matching. Moreover, the mapping process has been

reviewed by the subject matter experts, as will be explained in Section 4.3.1 (Step 3.1).

4.3.1. Review of the Mapping Process by Experts (Step 3.1)

A mapping process has been carried out through a systematic process, taking into account

the resources given above. Apart from them, a series of meetings have been held with

subject matter experts, following an iterative process, as already shown in Fig. 1.2. In this

regard, a total of four subject matter experts have been identified. Two of these experts

have academic experience, and two of them have industrial experience. In determining

these experts, it has been ensured that they had seven or more years of experience in the

field of software quality and its evaluation. The following questions have been asked to

the experts to obtain feedback;

 Q1- Do you think that the terms of the quality models are placed at the appropriate

levels?

 Q2- Do you think the concepts of OSS quality meta-models are placed at the

appropriate levels?

 Q3- Do you think the concepts of the OSS quality meta-model are placed in

appropriate levels? (i.e., specification, measurement, and evaluation)

By considering these questions, a series of individual semi-structured interviews have

been held with the experts to discuss the mapping process and obtain an answer for each

question. Throughout these interviews, the meaning and intended use of each term in the

quality model and each concept in the meta-model have been considered. Accordingly,

the levels of each vocabulary in the matching process have been discussed with the

experts, taking into account also their personal experiences. This step has progressed

through the iterations of the review-and-revise process with respect to the suggestions of

the experts, as shown in Fig. 1.2. In another saying, the meaning and intended use of each

vocabulary has been reviewed by experts, and the mapping process has been revised in

line with their suggestions. In this context, the review-and-revise process has continued

until the experts have agreed that; each vocabulary has been placed at the appropriate

level.

 93

4.3.2. Performing the Mapping

Considering all these sources and expert opinions mentioned above, meta-model terms

have been matched with the most appropriate terms in the levels of the OSS quality

models. As a result of this process, the level-based mapping is given in Table 4.6. The

table shows which concept in the meta-model have been mapped to which level in the

quality model. It should be noted that the concepts belonging to each level in quality

models are given in Table 4.5.

Table 4.6. Matching terms of OSS quality models and concept of SQMMs w.r.t levels

Level Specification Measurement Evaluation

1 Development phase,

Quality requirement,

Viewpoint

 (Syn: View, quality goal)

 Evaluation aggregation*

2 Entity

 (Syn: Quality entity, Entity type,

Measurable entity, Artifact,

Component, Entity class,

Software entity),

Information need

 (Syn: Need, Purpose, Target),

Quality model

 (Syn: Quality framework)

 Evaluation aggregation*

3 Characteristic

 (Syn: Attribute, Factor, Property,

Quality-carrying property, Fact,

Quality aspect, Quality factor)

 Evaluation aggregation*

4 Sub-characteristic

 (Syn: Sub-attribute, Sub-factor,

Base attribute, Derived attribute)

 Evaluation aggregation*

5 Decision criteria,

Impact,

Measurable concept

Instrument (Syn: Tool),

Measure (Syn: Metric),

Measurement,

Measurement approach,

Measurement results,

Measurement scale (Syn: Type of scale),

Unit of measurement (Syn: Unit)

Evaluation (Syn:

Evaluation method,

Assessment model,

Assessment type),

Evaluation results (Syn:

Quality aspect

evaluation results)

In Table 4.6, the terms of the SQMMs for each level are categorized into three groups as

specification, measurement, and evaluation, in order to make the matching process more

systematic and comprehensible. These categories are identified in order not to put apples

and pears in the same group. The terms grouped under "specification" are used to

determine which aspect and what feature of the OSS product to measure. The viewpoint

of stakeholders is taken into account in determining these characteristics. For example,

the specification includes from which stakeholder viewpoint the product will be

 94

evaluated, which entity of the OSS product will be measured, and which characteristics

will be required to measure it. The terms under "measurement" are used to quantify some

characteristics of an OSS product. Generally, some standardized tools are required for a

consistent and meaningful measurement process. For example, software metrics such as

lines of code (LOC), depth of inheritance tree (DIT), and cyclomatic complexity (CC) are

measured, and some numerical values are obtained. These terms provide a solid base to

perform an evaluation. Finally, the terms under "evaluation" are used to seek if the OSS

is the best possible fit for the needs of evaluators by using measurement results. In other

words, the terms classified under "evaluation" are used to interpret the numeric value

obtained as a result of the measurement for any metric and to address whether this value

is satisfactory or not. The important point is that although the terms related to the

evaluation are usually considered at level 5, evaluation can be performed at any level with

respect to the aggregation needs. However, measurement-related terms are matched to

level 5 since measurement requires concrete data and takes place at the bottom-most level.

This matching process is important in shaping the structure of the meta-model developed

for OSS quality within the scope of this study as well as the ones to be developed in the

future for OSS quality or other types of software quality. It is also useful to easily

recognize the general abstract form of the quality models from the structure of the

SQMMs.

 95

5. OSS-QMM AND ITS DEVELOPMENT (STEP-4)

In this section, the OSS-QMM developed through a systematic process, which is the

primary goal of this thesis, is described. Considering this systematic process, it can be

easily understood that the meta-model developed is the result of a laborious process. In

the following sub-sections, the phases of this laborious process are mentioned. In this

context, firstly, the process of developing our meta-model is explained. Then, the

refinement process of the proposed meta-model is discussed. Finally, the latest version of

this developed OSS-QMM is presented.

5.1. Development Process of the OSS-QMM

In the process of developing the OSS-QMM, the step-based process for meta-model

creation, which is adapted from Beydoun et al. [44] and Othman et al. [45], has been

followed. Details of this step-based process are given in Fig. 1.2. This process enables a

systematic and well-founded meta-model to be proposed. Therefore, it has been widely

used in the literature [54]. According to this process, the meta-model has been proposed

based on the outputs of Steps 1, 2 and 3 and refined based on the outputs of Steps 4.1 and

5. The following paragraphs briefly summarize the OSS-QMM development process,

details of which are given in Sections 2, 3, and 4.

The content of the OSS-QMM has been determined as the outputs of Step 1. As you will

recall, in this step, the structure and content of existing SQMMs in the literature have

been analyzed in depth. In this context, we carried out an SLR study [37] and analyzed

28 studies that proposed SQMMs. The SLR study [37] enhanced our domain awareness

as recommended in [44] as an initial step for any meta-modeling process. In the SLR

study [37], the frequency of the concepts in the SQMMs has been identified, and this

indicated that there have been inconsistencies between the concepts of the SQMMs. This

finding triggered us to investigate those inconsistencies. Therefore, inconsistencies,

commonalities, and terminology conflicts in the concepts of the SQMMs have been

investigated by exploring the origin of the concepts and then, the inconsistencies or

conflicts have been eliminated. In this context, the international standards [113-117] or

proposals [118-120], which have been taken as sources for the concepts used in the

SQMMs, have been analyzed to obtain further evidence about the existence of these

concepts. The usage purposes and meanings of the concepts in the SQMMs and their

meanings in the international standards and proposals have been also analyzed. Finally,

 96

the terms of the SQMMs have been categorized according to the most frequently used

ones among their synonyms (see [181]). As a result of Step 1 (in Fig. 1.2), inconsistencies

among the concepts of the SQMMs have been eliminated, which formed the basis for

shaping the content of the OSS-QMM.

The structure of OSS-QMM has been determined as the output of Step 2. As you will

recall, in this step, the content and structure of existing SQMs in the literature have been

analyzed in detail. This is because the SQMs are the instances of the SQMMs according

to the MOF standard [49]. Step 2 is about gathering information sources to be used in

developing the OSS-QMM. In this regard, we carried out another SLR study [30] that

examined 36 OSS quality evaluation models and frameworks (QEMoF). Based on this

SLR study, a total of 10 well-designed and important quality models (i.e. five for OSS

quality and five being basic models) have been determined. Details of these quality

models and their determination are given in Section 4.2. These quality models have been

investigated in depth to obtain a common structure of the OSS quality models and

consequently to eliminate the heterogeneity in content and structure. It has been observed

that all of these determined quality models have a common structure consisting of five

levels. Details of the levels and the terms of the quality models at each level have been

explained in Section 4.2.3. Finally, this 5-level structure formed the basis of shaping the

structure of the OSS-QMM.

As a result of the analysis performed in Step 1, the inconsistencies between the

terminologies of the meta-models have been analyzed according to their meanings in the

related meta-models and international standards. This analysis has provided knowledge

about the meanings of the terms to use in the OSS-QMM to be developed, in other words,

its semantics. In Step 2, the structure of the quality models has been analyzed, and this

analysis has provided knowledge about the structure of the OSS-QMM to be developed,

in other words, its syntax. Then, the mapping process has been performed between the

concepts of the meta-models and the terms of the quality models as the output of Step 3.

A level-based mapping process has been carried out, as shown in Table 4.6. That is, the

terms at each level of the quality models have been mapped to the concepts of the meta-

models at that level. In the mapping process, several well-known standards

[114][125][192], the classification of concepts in some studies [37-38], and the intended

meaning of the concepts in the meta-models and international standards have been taken

as references. In addition, in Step 3.1, a series of meetings have been held between the

 97

subject matter experts during the mapping process, in iterations. By applying all these

processes, the concepts of the meta-models have been mapped with the most appropriate

levels in the hierarchy of the quality models. Finally, in order to make this mapping

process more comprehensive and systematic, the concepts of the SQMMs have been

classified under specification, measurement, and evaluation. The details of this

classification and the efforts described above are explained in Section 4.3.

As a result, the OSS quality meta-model development process has begun, taking into

account the steps (Steps 1, 2 and 3) mentioned above. First, an initial version of the OSS-

QMM has been proposed by applying the sub-steps described in Section 5.1.1. Then, the

refinement process has started for this proposed initial version. In this context, firstly, the

expert opinion, the details of which are given in Section 5.2.1, has been utilized. Then,

the validation process, the details of which are provided in Section 5.2.2, has been

utilized. As a result of all these processes, the final version of the OSS-QMM presented

has been proposed. Details are given in Section 5.3.

5.1.1. The Sub-steps of Development

The first three steps are summarized above. We have started Step 4 to propose the OSS

quality meta-model after the completion of the first three steps. As seen in Fig. 5.1, the

fourth step has consisted of three sub-steps, namely 4.1, 4.2, and 4.3. In order to increase

the traceability, the relevant parts of Fig 1.2 are given in Fig. 5.1. It should be noted that

in performing each sub-step, the review-and-revise process has been followed as shown

in Fig. 5.1. In order words, a series of meetings have been held between the author of this

thesis and subject matter experts to review the OSS-QMM. Then, the OSS-QMM has

been revised according to the opinions of the subject matter experts. Details of these

meetings are given in Section 5.2.1. Thus, the final decisions have been taken as the result

of a series of iterations. In the following sub-sections, the sub-steps (i.e., Steps 4.1, 4.2,

and 4.3) of Step 4 are explained.

Figure 5.1. Corresponding parts of Figure 1.2 for developing the OSS-QMM

 98

5.1.1.1. Determination of the Concepts

At this step of our OSS-QMM development process, the concepts to use in our meta-

model have been determined. As shown in Fig 5.3, the determination of these concepts is

a laborious process. In this context, first of all, the outputs of our first SLR study [37]

have been used (Step-1). This SLR study has addressed the frequency of used concepts

in the included meta-models and showed there are inconsistencies between the terms of

the meta-models. Therefore, this result from the SLR study has triggered us to examine

inconsistencies between the terms of the meta-models. In order to mitigate this deficiency,

a study [54] has been conducted to analyze inconsistencies, commonalities, and

terminology conflicts in the SQMM (Step-3). These analyses have been performed based

on international standards and proposals since the concepts of the SQMMs have been

generally derived from these standards or proposals. Details are given in Section 4.1. As

a result of these analyses, concepts of the SQMMs have been categorized according to

the most frequently used ones among their synonyms, and inconsistencies have been

eliminated. The list of all concepts used in the SQMM is given in Table 4.1 with their

origins. Also, the definition of the concepts in these standards or proposals is given in

[181].

The custom type of software has been included in the analysis since they have provided

partial evaluation for OSS quality. Then, the outputs of our second SLR study [30] have

been used (Step-2). In this study, the requirements of these quality models have been

analyzed in detail. Also, it has been observed that OSS quality models have a

heterogeneous structure. Therefore, in another study [54], we have put effort to find

commonalities in the structure of OSS quality models (Step-3). Then, it has been observed

that important OSS quality models have a common structure consisting of five levels.

Then, a series of meetings between the author of this thesis and his supervisor has been

held, and accordingly, the initial concepts of the OSS-QMM related to OSS have been

determined (Step-4.1). As can be seen in Fig. 5.3, in the process of determining these

concepts, inconsistency-free concepts, the requirements and structure of the OSS quality

models, and the common structure of OSS quality models have been taken into account.

In addition to these inconsistency-free terms, new terms have been determined according

to the requirements of the OSS quality models. These terms are grouped as "new term"

in Table 4.1.

 99

Then, the mapping process, which has an important contribution to the determination of

the concepts, has been carried out, as shown in Fig. 5.3. In the mapping process, the terms

of the determined quality models have been mapped to the determined concepts of the

meta-models. Details of the mapping process are explained in Section 4.3 (please see this

section). In the mapping process, as illustrated in Fig. 4.4, at least a term in the quality

model must match a concept in the meta-model. That is, there should be no vocabulary

that is not used in the concepts of the meta-model and the terms of the quality model. At

this point, the answer to the following question has been sought: "Are there any

unmatched terms?". As shown in Fig. 5.3, if the answer to this question is "Yes", the

concepts are reviewed and then revised. If the answer to this question is "No", the process

is continued with the designation of the concepts (i.e., Step-4.2) and then determining the

relationships between the concepts (i.e., Step-4.3). These processes are described in

Sections 5.1.1.2 and 5.1.1.3, respectively.

As shown in Fig. 5.3, then, the OSS-QMM has been refined in case there has been a

problem with the outputs of the validation process (Step-4.4 and Step-5). Detailed

information about the validation process is given in Section 6. During the validation

process, as shown in Fig. 5.3, the answer to the following question has been sought: "Is

the OSS-QMM validated?". As shown in the figure, if the answer to this question is "No",

the concepts of OSS-QMM are reviewed and then revised. If the answer to this question

is "Yes", the concept determination process is completed.

5.1.1.2. Designation of the Concepts

In the step-based meta-model creation process, it is necessary to designate the concepts

after determining them. As can be seen in Fig. 5.3, a laborious process has been followed

until the concepts of OSS-QMM have been identified. After the concepts have been

determined, a mapping process has been carried out between these concepts of OSS-

QMM and the determined quality models. If there is no problem in the mapping process,

the determined concepts are designated. Also, as shown in Fig. 5.3, the determined

concepts are revised in case of problems during the validation process. Accordingly, the

designation of the concepts has been revised according to the added and removed

concepts.

The results of our first SLR study [37] have indicated that the important meta-models

(e.g., [44][140]) in literature have a layered structure. In other words, they have grouped

 100

the terms in certain layers according to their content. Furthermore, meta-models

developed using the "step-based meta-model creation process" in other application

domains have also designated their concepts according to their needs. Because the

designation of concepts is important for better management of concepts, understanding

their differences and understanding their relationships with each other are necessary. For

example, the meta-model developed for disaster management designated their concepts

as: mitigation, preparedness, response or recovery [53]. Therefore, we have created three

layers to designate our determined concepts in our OSS-QMM as: specification,

measurement, and evaluation. Also, this classification has made the matching process in

Step 3 more meaningful.

The concepts grouped under "specification" consist of the concepts defining the scope or

objectives of the OSS evaluation process, as listed in Table 4.6. That is, these concepts

describe which features of OSS products will be evaluated. Some example questions

formed to determine the necessities to be evaluated belonging to the "specification" group

are given in Fig. 5.2. For example, these concepts belonging to the specification are used

to determine some OSS properties to be measured, such as the OSS aspect, quality

characteristic to evaluate and quality requirements. It also contains a concept for

determining the viewpoint to be taken into account in determining all these.

The terms under "measurement" are used to quantify some characteristics of an OSS

product, as listed in Table 4.6. That is, in the measurement part, the numeric values are

objectively assigned to the determined features of OSS in the specification part. Some

example questions formed to assign a value to a characteristic of OSS are given in Fig.

5.2. For example, the concepts of the "measurement" stage consist of a set of measures,

measurement functions, measurement methods and aggregating techniques. Generally,

some standardized tools are required for a consistent and meaningful measurement

process. For example, software metrics such as lines of code (LOC), depth of inheritance

tree (DIT), and cyclomatic complexity (CC) are measured, and some numerical values

are obtained. The concepts of measurement part provide a solid base to perform the

evaluation.

The terms under "evaluation" are used to judge the numeric value obtained as a result of

the measurement according to the needs of an evaluator. In another saying, these concepts

are used to address whether these measurement results are satisfactory or not. Some

example questions formed to interpret measurement results are given in Fig. 5.2. For

 101

example, these concepts of evaluation part consist of terms for aggregating and

interpreting measurement results. The interpretation determines whether the quality of

the OSS product is at the desired level and whether it fits the needs of the evaluators.

Figure 5.2. Relationship between specification, measurement, and evaluation

Among the concepts mentioned above, "measurement" and "evaluation" are often

confused. Therefore, the difference between these two concepts is briefly discussed here.

The main focus of "measurement" is being able to quantify something, such as

performance or skills. However, the main focus of "evaluation" is to determine success

or failure using data or information from "measurement". Therefore, while

"measurement" consists of observation expressed numerically, observations in

"evaluation" can be both quantitative and qualitative. Also, the content-oriented action is

performed in "measurement", whereas the objective-oriented action is performed in

"evaluation". Furthermore, "measurement" has a limited scope and requires less energy

and time than "evaluation".

Apart from these, the determined concepts have been distributed into a 5-level

hierarchical structure, as shown in Table 4.6. The results of our second SLR study [30]

have indicated that the important OSS quality models (e.g., [44][144]) in literature have

a hierarchical structure. This hierarchical structure is decomposed from abstract terms to

more concrete terms, forming a 5-level structure: viewpoint, high level-characteristic,

characteristic, sub-characteristic, and metric. Detailed information about these levels is

given in Section 4.2.3. It is important to employ this hierarchical structure since quality

models are instances of the meta-models.

 102

Figure. 5.3. The process of sub-steps 4.1, 4.2 and 4.3 (indicated in green color) and their

relationship with other steps

5.1.1.3. Relationships of the Concepts

In the third sub-step of the meta-model creation (Step 4), it is necessary to determine the

relationship between concepts after determining and designating them. As can be seen in

Fig. 5.3, a laborious process has been followed until the concepts of OSS-QMM have

been determined and designated. After the concepts have been determined, a mapping

 103

process has been performed. If there is no problem in the mapping process, the determined

concepts are designated, and then their relationship is determined. The important software

quality meta-models [34][144][193] from our first SLR study [37] have been referenced

to determine the relationship between the concepts. Furthermore, the meanings of

concepts and their intended use in our OSS-QMM have been taken into account. Apart

from them, the UML experience of the authors of this thesis has been utilized. The

developed OSS-QMM has been then validated using multiple validation methods. As

shown in Fig. 5.3, the determined concepts, their designation, and their relationship are

revised in case of problems during the validation process. As the validation process

involves expert opinion, the relationships are also reviewed by subject matter experts.

Details on expert opinion will be explained in Section 6. After all, in Step 4.3, the final

relationships between the concepts of the OSS-QMM have been determined after the

review-and-revise process described above.

In this context, a total of four types of relationships, namely association, composition,

aggregation, and generalization, have been used to link the concepts in the OSS-QMM.

A graphical representation of these relationships is shown in Fig. 5.4. Also, the following

paragraphs provide explanations of these relationships.

Figure 5.4. Types of relationships used in OSS-QMM

An association relationship is a structural relationship that links different concepts in

OSS-QMM. In this relationship, a binary relationship is exhibited between concepts of

OSS-QMM that represent an activity. Associations are characterized by a line between

two concepts in a system to be developed. In Fig. 5.5 (a), the type of association

relationship is represented. There are three types of association relationships:

unidirectional, bidirectional and self/reflexive association. The navigation direction of the

arrow specified its type. If the arrows are on both sides or no arrows, the association is

known as a bidirectional association; if the arrow is on one side, the association is known

 104

as a unidirectional association; and if a single concept is associated with itself, the

association is known as a self/reflexive association. The example usage of association

relationship is represented in Fig. 5.5 (b) for better understanding. As specified in the

figure, the multiplicity of the relationship can be indicated by adding numbers (i.e., 1 /

0..1 / 1..* / *, etc.) to the entry and exit point of the line. For example, a student can

associate with one or more instructors, as shown in the top example in Fig. 5.5 (b), or an

instructor has one or more students in the middle example in Fig. 5.5 (b). Also, the

behavior of a concept can be indicated by using some names. For example, one or more

students can learn from one or more instructors, or one or more instructors can teach one

or more students, as shown in the bottom example in Fig. 5.5 (b).

a

b

Figure 5.5. (a) Types of association relationships, and (b) an example usage of

association relationship

The aggregation relationship is used for a more specific purpose compared to the

association relationship. This relationship is considered as a part of the association

relationship. That is, there is "has-a" relationship between objects. An empty diamond at

one end of a straight line is used to symbolize this relationship. An example of an

aggregation relationship is shown in Fig. 5.6 (a). As shown in Fig. 5.7, it is considered as

a subset of the association relationship. In this type of relationship, the life cycles of

objects (i.e., child and parent) are separate from each other. That is, the child object is

independent of its parent in this relationship, as shown in Fig. 5.6 (a). In the example, a

wheel is necessary for a car to move. However, the wheel may be used independently

with any type of vehicle, including a bicycle, truck, or scooter. It is represented that there

is an aggregation relationship since the wheel (child object) can exist independently of

the car (parent object).

 105

a b

Figure 5.6. (a) An example of an aggregation relationship, (b) an example of a

composition relationship

In the composition relationship, the life cycles of child and parent objects are

interconnected. That is, the child object does not exist without its parent, which means

that there is a strong relationship between objects. Therefore, there is "is-part-of"

relationship between objects (i.e., child and parent). An example of an aggregation

relationship is shown in Fig. 5.6 (b). As shown in Fig. 5.7, it is considered as a subset of

the association relationship. A black diamond at one end of a straight line is used to

symbolize this relationship, as shown in Fig. 5.6 (b). In the example (Fig. 5.6 (b)), there

is a composition relationship between parent object (i.e., person) and child objects (i.e.,

brain, heart, and blood). This is because the brain, heart, and blood will all be wasted if

the person is destroyed. In another saying, there is a composition relationship since the

blood, heart and brain (child object) cannot exist independently of the person (parent

object).

Figure 5.7. The Venn diagram of the relationships between classes

The generalization relationship is a directed relationship between two classifiers, namely

superclass and subclass. The superclass (i.e., base class or parent) is a more general

classifier, and the subclass (i.e., derived class or child) is a more specific classifier. This

relationship put into practice the OO (i.e., Object-Oriented) concept called inheritance.

The functionality superclass is inherited by the subclass, and the subclass can access and

 106

update the superclass. Also, the subclass can add its functionality to itself in addition to

the functionality of the superclass. Therefore, there is "is-a" relationship between the

superclass and subclass. As shown in Fig. 5.4, this relationship is represented by a line

from subclass to superclass with a hollow triangle that points to the superclass. An

example of a generalization relationship is given in Fig. 5.8. In this example, there can be

two types of bank accounts as saving and credit card accounts. As you can see, a

superclass can have many subclasses, and also the subclass can have one or more

superclass. These subclasses (i.e., saving account and credit card account) inherit some

generalized functionality from the superclass (i.e., bank account), e.g., account balance

and account number. Also, the subclass can add its functionality to itself, e.g., card

verification value (CVV) number or expiry date.

Figure 5.8. An example of a generalization relationship

The use of relationships detailed above between the concepts in the OSS-QMM is given

in Table 5.1. The first column of the table shows the first concept of the relationship, the

third column shows the second concept of the relationship, and the second column shows

the type of relationship between these two concepts. The last column of the table shows

the layer with the first and second concepts, respectively.

Table 5.1. List of the relationship between concepts of OSS-QMM

Concept 1
Relationship

type
Concept 2

Layers of

concept 1/concept 2 (group)

Q. model Association Viewpoint Specification/Specification

Q. model Aggregation Q. characteristic Specification/Specification

Q. model Aggregation Measurable concept Specification/Specification

Q. requirement Association Viewpoint Specification/Specification

Q. requirement Association Impact Specification/Specification

Viewpoint Association Information need Specification/Specification

Viewpoint Association Weighting Specification/Specification

Information need Association Measurable concept Specification/Specification

Information need Association Q. characteristic Specification/Specification

Q. characteristic Association Entity Specification/Specification

Q. characteristic Association Impact Specification/Specification

Q. characteristic Association Evaluation results Specification/Evaluation

Impact Association Measurable concept Specification/Specification

Impact Association Evaluation Specification/Evaluation

https://tureng.com/tr/turkce-ingilizce/expiry%20date

 107

Measurable concept Association Entity Specification/Specification

Measurable concept Association OSS aspect Specification/Specification

Measurable concept Association Measure Specification/Measurement

Entity Association Measure Specification/Measurement

Weighting Association Sub-characteristic Specification/Specification

Weighting Composition W. aggregation method Specification/Specification

Weighting Composition Weighting method Specification/Specification

Weighting Association OSS aspect Specification/Specification

OSS aspect Generalization Code-based Specification/Specification

OSS aspect Generalization Community-based Specification/Specification

Measure Aggregation Normalize measure Measurement/Measurement

Measure Association Scale Measurement/Measurement

Measure Association Unit Measurement/Measurement

Measure Association Measurement Measurement/Measurement

Measure Association Measurement method Measurement/Measurement

Measure Association Aggregated measure Measurement/Measurement

Measure Generalization Base measure Measurement/Measurement

Measure Generalization Derive measure Measurement/Measurement

Base measure Association Measurement function Measurement/Measurement

Derive measure Association Measurement function Measurement/Measurement

Measurement method Generalization Manually Measurement/Measurement

Measurement method Generalization Automatically Measurement/Measurement

Aggregated measure Composition M. aggregation method Measurement/Measurement

Aggregated measure Association Measurement result Measurement/Measurement

Measurement Association Measurement method Measurement/Measurement

Measurement Association Measurement result Measurement/Measurement

Measurement result Association Evaluation Measurement/Evaluation

Evaluation Generalization Evaluation function Evaluation/Evaluation

Evaluation Generalization Manual evaluation Evaluation/Evaluation

Evaluation Association Evaluation aggregation Evaluation/Evaluation

Evaluation Association Evaluation result Evaluation/Evaluation

Evaluation Association weighting Evaluation/Specification

Evaluation aggregation Generalization E. aggregation method Evaluation/Evaluation

Evaluation aggregation Generalization E. aggregation function Evaluation/Evaluation

5.2. Refinement Process of the OSS-QMM

A literature-based approach has been followed in Steps 1 and 2, as shown in Fig. 1.2.

Then, during the mapping process (Step 3), both expert opinions and literature have been

utilized. Then, the Steps 4.1, 4.2, and 4.3 have been employed as explained in Section

5.1.1, and accordingly, the initial version of the OSS-QMM has been proposed.

Afterwards, the steps (4.4 and 5) related to the refinement of the initial version of the

OSS-QMM have been employed. In Step 4.4, a review-and-revise process has been

performed by subject domain experts on the initial version of the OSS-QMM. In Step 5,

multi-faceted empirical research has been employed to validate the OSS-QMM in

practice. Details of the validation process are given in Section 6. In this context, in Section

5.2.1, the refinement process performed according to the output obtained from the review

of the subject matter experts is explained. In Section 5.2.2, the refinement process carried

 108

out according to the outputs obtained from the validation process is mentioned.

Throughout these sub-sections, the refinement to the OSS-QMM is explained for each

version of the OSS-QMM. All versions of the OSS-QMM are given in Appendix-2 and

the initial version of the OSS-QMM (v1) is given in Appendix-2 (a). Also, all versions of

the OSS-QMM and the refinement performed in each version are given in Table 5.2.

Table 5.2. The versions of OSS-QMM with refinement performed and related reference

Version Refinements Reference

Initial version

(v1)

- Appendix-2 (a)

Second version

(v2)

The concept of OSS aspect and quality requirement have been

added.

Appendix-2 (b)

Third version

(v3)

The concepts of weighting, weighting method, and evaluation

aggregation have been added.

Appendix-2 (c)

Fourth version

(v4)

The concepts of weighting aggregation method, aggregated

measure, and measure aggregation method have been added.

Appendix-2 (d)

Final version

(v5)

The names of some relationships and the numbers of

multiplicities in some relationships have been changed.

Fig. 5.10

5.2.1. Refinement with Subject Matter Experts (Step 4.4)

In this step, the development process, structure and content of the OSS-QMM have been

reviewed by experts on software quality models, using the suggestions by Tanrıover et al.

[194] and Kläs et al. [195]. That is, it has been aimed to examine the OSS-QMM by

external parties other than the authors of the thesis. In this context, a total of four subject

matter experts have been determined, two being from industry and two from academia.

In determining the experts, a prerequisite has been applied that an expert would have

seven years or more experience in the field of software quality and its modeling. The first

and the second experts with industry backgrounds have had 8 and 10 years of software

quality modeling experience, respectively. The other two experts with academic

backgrounds have been researchers lecturing and consulting on information systems and

software engineering for more than 11 years. As shown in Fig. 5.3, Steps 4.1, 4.2, and

4.3, respectively, are revised in case of problems during the review of these subject matter

experts. The following questions have been prepared in order to obtain feedback from

these experts;

 109

 Q1- Do you think that the OSS-QMM development process is well-founded?

 Q2- Do you think the appreciated concepts are determined in the OSS-QMM?

(Do you think that any unnecessary concept is used in our OSS-QMM)

 Q3- Do you think that the determined concepts are constructed appropriately?

(designation – 5-level categorization)

 Q4- Do you agree that the relationship between concepts is compatible and

appropriate?

As you can see, these questions have been aimed at obtaining feedback about the

development process, structure and content of the proposed OSS-QMM. In Q1, experts

have been asked about the quality of the OSS-QMM development process. It has been

asked whether there has been anything missing in the development process. In this

context, prior to asking the question, the development process of the OSS-QMM has been

presented to the experts from Step-1 to Step-4. In Q2, considering the meaning and

intended use of the concepts used in the OSS-QMM, it has been asked whether

appropriate concepts have been determined. In other words, it has been asked whether

there has been an overused or unused concept in the OSS-QMM. In deciding this, experts

have been advised to take a well-designed OSS quality model they have been familiar

with as a basis and proceed by mapping concepts. In Q3, the experts have been asked

whether the identified concepts have been appropriately designed in our OSS-QMM. As

it is known, a 5-level hierarchy and a 3-layer structure have been used in our OSS-QMM.

In this context, it has been asked whether these structures are appropriate based on OSS

quality models. In answering this question, experts have been advised to proceed based

on the structures of well-designed OSS quality models they have been familiar with. In

Q4, the experts have been asked whether the relationships between the determined

concepts have been appropriate or compatible. In this context, experts reviewed the

relationships, taking into account the meaning and intended use of the concepts in our

OSS-QMM.

After the questions have been prepared and the experts have been determined, a series of

online meetings have been held to discuss and gather answers for each question with the

experts. Each expert has been interviewed individually. In these meetings, the

development process has been presented in order to provide preliminary information to

the experts (i.e., Steps 1-3). Also, the OSS-QMM itself, together with the concepts, their

 110

meanings and intended use, and the relationships between these concepts, have been

presented. As shown in Fig. 5.3, this step 4.4 has progressed by the iterations of the

review-and-revise process with respect to the suggestions of the experts about the OSS-

QMM. That is, the OSS-QMM and its development process have been reviewed by the

expert for each question.

In this context, the consensus of the experts has been that the concept of OSS aspect was

missing in the initial version (v1) of the OSS-QMM, although the concepts code-based

and community-based were included, as shown in Appendix-2 (b). That is, the experts

have given feedback that code-based and community-based should be child concepts and

OSS aspect should be a parent concept above them. Experts have also stated that there

should be a quality requirement concept between the concept of impact and the concept

of information need. Because quality requirements should be known to determine the

impact of measurable concept on quality characteristic.

Then, the OSS-QMM has been revised in line with the suggestions obtained from the

experts. In this context, the review-and-revise process has continued until the experts have

agreed that; the development process of the OSS-QMM is well-founded, the content of

the OSS-QMM is sufficient to apply in practice, the structure and generality of the OSS-

QMM is complete, the concepts and relationship between concepts are compatible. After

these refinements, the second version of the OSS-QMM (v2) has been obtained. This

version of the OSS-QMM is given in Appendix-2 (b). Thus, the OSS-QMM has matured

and taken its new form with the feedback obtained for each question before the validation

process.

5.2.2. Refinement with the Validation Process

In this section, the refinement process of the OSS-QMM developed in this thesis during

the validation process is explained. As described in Section 5.2.1, a refinement process

has been carried out with subject matter experts on the initial version of the OSS-QMM.

After this, based on the validation of the OSS-QMM, a review-and-revise process has

been applied to improve the OSS-QMM. The lifecycle of improving the OSS-QMM by

maturing it through the validation process is shown in Fig. 5.9.

The initial version of the OSS-QMM has been proposed based on the previous steps (i.e.,

Steps 1-3). Then, initial validation of the OSS-QMM has been provided over an example

evaluation, as shown in Fig. 5.9. In other words, the application of the initial OSS-QMM

 111

has been demonstrated in the unreal OSS products with dummy evaluation data through

the designed toy experiment. Detail of its implementation is given in our latest study [54].

In this evaluation, an example has been demonstrated to identify the OSS product that

best met the evaluator's needs among the alternatives. Quality evaluation scores have been

calculated for each alternative OSS product since one of the best ways to understand the

quality of a product has been to compare it with those of possible alternatives. All these

efforts have been targeted to demonstrate the application of the OSS-QMM, allowing it

to be visualized and better understood. Thus, the applicability of the OSS-QMM has been

monitored through an example implementation. As shown in Fig. 5.9, if there is a problem

with the implementation of the initial validation, the OSS-QMM is reviewed and then

revised. The review-and-revise process has continued until there is no problem with the

implementation of the OSS-QMM.

Figure 5.9. The refinement process of the OSS-QMM during the validation

In this context, after this initial validation, some refinements have been performed to the

OSS-QMM as given in Table 5.2. That is, the concept of weighting and weighting method

have been added to the OSS-QMM. During the initial validation process, we have realized

that the importance of the OSS aspects and sub-attributes may be different with respect

to the viewpoint of stakeholders. For example, the quality of code-based aspect may be

more important according to a developer. It is also true for OSS aspects. Therefore, the

 112

stakeholder (i.e., viewpoint) should assign the weight to them by using a weighting

method. Also, we have realized that in the evaluation phase, three inputs (i.e.,

measurement result, impact, and weight of sub-characteristic) are required to interpret the

measurement results. Therefore, we have added the concept of evaluation aggregation to

the OSS-QMM. After these refinements, the third version (v3) of the OSS-QMM has

been obtained and this version is given in Appendix-2 (c).

As shown in Fig. 5.9, if there is no problem in the implementation of the initial validation,

validation of the OSS-QMM in a real-world setting has been performed. In this context,

a multi-faced validation process has been followed to ensure that a suitable OSS-QMM

has been developed to satisfy or fit the intended use in this study. That is, a validation

process has been carried out to verify the applicability of the proposed OSS-QMM. In

this context, two validation methods have been used; multiple-embedded case studies and

expert opinion. In the multiple-embedded case studies, three case studies have been

implemented in practice to demonstrate the applicability of our OSS-QMM. In this

context, real evaluation data and OSS products have been used for quality evaluation. As

shown in Fig. 5.9, if there has been a problem with the implementation of the case studies,

the OSS-QMM has been reviewed and then revised. The review-and-revise process has

continued until there is no problem with the implementation of the OSS-QMM in real

setting.

In this context, after performing the case studies, some refinements have been performed

to the OSS-QMM as given in Table 5.2. That is, the concepts of weighting aggregation

method, aggregated measure, and measure aggregation method have been added to the

OSS-QMM. During the case studies, we have realized that the concepts of weighting

aggregation method needs to be used in order to obtain the final weights of sub-

characteristics on OSS aspects, after assigning weights to OSS aspects and sub-

characteristics. Because the weight of each sub-characteristic in each OSS aspect may be

different for diverse viewpoints (see Section 5.3). Also, we have realized that a

measurable concept can be associated with more than one measure. Therefore, these

measures should be aggregated with the concept of aggregated measure. To perform

aggregation, a measure aggregation method should be employed. Then, we have added

‘satisfy’ relationship between the concept of measurable concept and information need

since determined measurable concept should satisfy the information need. After these

 113

refinements, the fourth version (v4) of the OSS-QMM has been obtained and this version

is given in Appendix-2 (d).

In the expert opinion part, validation has been performed by experts for the real-world

application of the OSS-QMM. Details of all these validation processes are given in

Section 6. Throughout this validation process in a real context, the practical application,

structure, content, and levels of abstraction of the OSS-QMM have been observed. As

shown in Fig. 5.9, if there is a problem with the implementation of the validation in the

real setting, the OSS-QMM is reviewed and then revised as necessary. The review-and-

revise process has continued until there are no problems in the implementation of the

OSS-QMM and it has reached sufficient maturity, as implied in Fig. 5.9.

After receiving expert opinions, some refinements have been performed to the OSS-

QMM as given in Table 5.2. That is, the names of some relationship and the numbers of

multiplicities in some relationship have been changed. In this context, the relationship

between the concept of impact and quality requirement has been changed as "elicited".

Also the multiplicity of the relationship between weighting and OSS aspect, between

evaluation results and quality characteristic, and between quality model and quality

characteristic have been modified. As a result, the OSS-QMM has been refined with

iterations again, and the fifth and the final version (v5) of the OSS-QMM has been

obtained, as shown in the Fig. 5.10. That is, this step has contributed to both the validation

and further refinement of the OSS-QMM.

5.3. The Proposed OSS-QMM

The final version of the OSS-QMM, which is shown in Fig. 5.10, has been proposed by

following the step-based process for the meta-model creation process, as summarized in

Section 1.3. In line with this process, a systematic process has been followed to propose

the OSS-QMM. That is, the outputs of systematic development steps (i.e., Steps 1-3

shown in Fig. 1.2) have been considered in OSS-QMM development. In this context, first

of all, the concepts of our OSS-QMM have been determined by considering the most used

concepts of the quality meta-models proposed for OSS and the custom type of software

obtained from our first SLR study [37] (Step-1). Then, the structure of our OSS-QMM is

shaped by considering the common structure of OSS quality models obtained from the

second SLR study [30] (Step-2). Then, the level-based matching process, details of which

are explained in Section 5.3, has been carried out between the terms of the OSS quality

 114

models and the terms of the meta-models (Step-3). Then, the initial proposal for a meta-

model of OSS quality emerged as a result of this matching process. Then, the refinement

process of OSS-QMM has been started, as detailed in Section 5.2.

In the refinement process, first of all, the review-and-revise process (i.e., iterative

process) has been performed by four subject matter experts to review the content and

structure of OSS-QMM, i.e., determined concept, their designation, and their

relationships. Then, the initial validation process is implemented by using dummy data,

as represented in Fig. 5.9. Next, the validation process is employed by using real

evaluation data and OSS products in a real-world setting. All these validation processes

are aimed to show the practical applicability of the OSS-QMM. During these validation

processes, the review-and-revise (i.e., iterative process) process has been employed, and

the final version of OSS-QMM has been developed, as represented in Fig. 5.10. That is,

the OSS-QMM has been proposed by considering the concepts free of inconsistencies,

the common 5-level structure of quality models, the mapping process, the review of

subject matter experts, and the outputs of the validation process in an unreal and real-

world setting.

According to the levels in the hierarchy of quality models, the concepts of the OSS-QMM

have been demonstrated using color-coding as mapped in Table 4.6. Besides, in Fig. 5.10,

the categories (or stages, i.e., specification, measurement, and evaluation) of the concepts

in the OSS-QMM are shown. The definition of the concepts used in the OSS-QMM is

given in [181] and will not be repeated here. Instead, we will explain the purpose of using

and relationships of these concepts in the OSS-QMM supported by examples, according

to their categories, in the following sub-sections. Furthermore, an example of an

operationalized quality model for OSS, which is instantiated from the OSS-QMM, is

given in Appendix-3. This operationalized quality model may help the reader to trace and

make sense of the concepts in the OSS-QMM.

 115

Figure 5.10. The OSS-QMM

5.3.1. Concepts of OSS-QMM in the Specification Category

In the specification category, concepts are used to establish the aspects, scope, and

objectives of the OSS measurement process, as shown in Fig. 5.10. Detailed information

about concepts belonging to this category is given in Section 4.1. The purpose of using

and relationships of concepts in the OSS-QMM is explained in the following paragraph.

The concept of OSS-QMM is shown in italics to increase traceability.

 116

A quality model is a set of quality characteristics, entities, and measurable concepts

characterized by measures. Also, it is an instance of the proposed OSS-QMM.

The viewpoint is the starting point of an OSS quality model. The content of the OSS

quality model should be shaped with respect to a specific point of view, as stakeholders

can perceive OSS quality from different viewpoints, such as developer, customer,

designer, etc. For instance, an OSS product as subject to quality evaluation may be

required as component(s) of a larger project, and thus, the OSS product needs to be

interoperable; or this product may be required for constant daily use by the adopter either

in its original form or with modifications [5]. The needs of stakeholders can be different

from the measurement process. Therefore, stakeholders can have their information

needs as the insights necessary to manage goals, objectives, problems, and risks. The

request for the calculation of defect density to evaluate maintainability is an example of

an information need. An information need is related to the quality characteristic that is

generally too abstract to measure directly. Quality characteristics are used to control

quality and to determine how well the software product or system satisfies the needs of

its stakeholders. Maintainability, usability, and reliability are examples of quality

characteristics. In accordance with the structure of the quality models, quality

characteristics decompose into sub-characteristics in the OSS-QMM. Quality sub-

characteristics are used to control more specific aspects of quality. However, despite

being considered a less abstract form of quality characteristics, they are still abstract to

measure directly. For example, stability, testability, and analyzability are sub-

characteristics of maintainability as a quality characteristic. Thus, a sub-characteristic is

associated with measurable concepts which enable concrete measurements by directly

relating to one or more measures. The measurable concept composes a property of the

OSS product that is related to the quality of the product. They are always defined in such

a way that it is possible to talk about the degree to which it is present in the product.

In addition to source code, diverse types of evaluation data belonging to the community-

based aspect that is specific to OSS are stored in various databases. Therefore, measurable

concepts consist of two OSS aspects that enable the complete measurement of OSS

products. OSS aspect can be derived from code-based (e.g., comment frequency of source

code) and community-based (e.g., the activeness of the contributors) aspects. In this

regard, the concept of entity that is a part of the software product and considered during

the measurement process should be defined. For example, if the measurable concept

 117

belongs to the code-based aspect, the concept of entity can be "source code", or if the

measurable concept belongs to the code-based aspect, the concept of entity can be

"contributor". Thus, a measurable concept is usually defined together with an entity as

follows: "name" of "entity", e.g., the activity of the developer and complexity of source

code. A significant situation exists in the relationship between sub-characteristics and

measurable concepts. Different measurable concepts can have a positive or negative

effect on a sub-characteristic related to the quality of OSS. This relationship is established

with the concept of impact, which has an effect on evaluation results. If there is a direct

proportion between a measurable concept and a sub-characteristic, it is considered a

positive impact. If there is an inverse proportion between them, it is considered a negative

impact. For instance, higher complexity of source code (i.e., "measurable concept"

belonging to code-based aspect) is undesirable for maintainability and then is considered

as the negative impact. Conversely, the higher bug-solving success of the contributor (i.e.,

measurable concept belonging to community-based aspect) is desirable for

maintainability and then is considered as the positive impact. To determine the value of

impact (i.e., positive or negative), data is collected with the concept of quality

requirement by considering the viewpoint of the stakeholder. In addition, since different

viewpoints may perceive the OSS quality differently, the importance of the OSS aspects

and sub-attributes may be different with respect to the viewpoint of stakeholders.

Therefore, the concept of weighting is employed to assign weights for OSS aspects and

sub-attributes by using a weighting method (e.g., AHP). For instance, it is essential from

the viewpoint of the developer that the OSS product is easy to shape according to the

needs. Therefore, the quality of the code-based aspect may be more important than the

quality of the community-based aspect from this viewpoint. Also, considering sub-

attributes of maintainability, modifiability (i.e., easy to modify) may be more critical than

others for this viewpoint.

5.3.2. Concepts of OSS-QMM in the Measurement Category

In the measurement category, terms are used to quantify an OSS product's quality and

provide a solid base to perform the evaluation. In other words, in the measurement part,

the numeric values are objectively given to the defined properties of OSS in the

specification part. These concepts can be followed from the OSS-QMM shown in Fig.

5.10. They are shown in italics to increase traceability in the following paragraphs.

 118

In this category, after determining the measurable concept belonging to each OSS aspect,

they should be quantified by using the concept of measures to obtain concrete values. The

concept of measures can be derived from a concept of base measure or derived measure.

For example, a base measure can be "m1: line of documented source code" or "m2: effort

spent". Also, a derived measure is derived from a set of base measures using

a measurement function. For example, a derived measure can be obtained using the

measurement function (i.e., m3: m1/m2) with the two base measures given above. In this

regard, a measure must be expressed in a unit (e.g., defects, days, lines) and have

a scale (e.g., integers from zero to infinite). After measures are determined to quantify

measurable concepts belonging to OSS aspects, the numeric values should be assigned

for determined measures. In this context, the concept of measurement method is

employed to determine how to quantify a determined measure. The measurement method

can be performed in two ways, manually and automatically. For example, if the

quantification of the code-based measure (e.g., depth of inheritance tree) is performed by

a static or dynamic code analyzer tool (i.e., instrument), it means that the numeric value

is automatically assigned to a measure. If the quantification of the community-based

measure (e.g., number of contributors) is performed by counting from the website of OSS

repositories (e.g., GitHub, Sourceforge), it means that the numeric value is manually

assigned to a measure.

The quality of OSS is affected by many measurement data that are accessible from both

code-based and community-based aspects. In addition, these data are scattered in a variety

of databases and, accordingly, are heterogeneous. Regarding this, each measure must be

normalized by using the concept of normalized measure to move the measured value to

the same range before performing measurement action. Thus, the value of the measures

can be compared with other measures and converted into meaningful forms. Measurable

concepts can be associated with more than one measure, that is, a set of measures.

Therefore, after normalizing each measure, it is necessary to aggregate the set of measures

associated with a measurable concept. In this regard, the concept of aggregated

measure is employed to aggregate a set of measures. To perform aggregation, a measure

aggregation method should be used, such as calculating the weighted average of the

measures. In this way, a one-to-one relationship is established between the measurable

concept and the measure. After the infrastructure necessary for the measurement process

is determined, the concept measurement is realized, and the measurement event is

 119

performed as action. In the end, the measurement result is produced as an output of the

measurement action for the measurable concept belonging to an OSS aspect. This process

is repeated for measurable concepts belonging to each OSS aspect, and the measurement

results are obtained before the evaluation process.

5.3.3. Concepts of OSS-QMM in the Evaluation Category

In the evaluation category, terms are used to interpret the measurement results, which

provides a solid base to perform the evaluation. In other words, they are used to determine

whether the quality of the OSS product is at the desired level and fits the needs of

evaluators. These concepts can be followed from the OSS-QMM shown in Fig. 5.10.

They are shown in italics to increase traceability in the following paragraphs.

In the evaluation process, data obtained from three concepts, namely measurement

results, impact, and weights of sub-characteristics, are used as inputs. These inputs are

used in the concepts of evaluation to produce an output allowing us to determine the

quality of the OSS product. The concept of evaluation uses the concept of evaluation

aggregation for aggregating these three inputs. The aggregation of the evaluation can be

performed by using the concept of evaluation aggregation method (e.g., TOPSIS (see

Section 6)) or evaluation aggregation function (e.g., average aggregation function). After

these inputs are aggregated, the evaluation aggregation should be interpreted. The

interpretation is performed using the concepts of evaluation function or manual

evaluation. For example, an evaluation function such as the "linear utility function" can

be used to interpret values in a specified range, or manual evaluation (e.g., by taking into

account expert opinion) can be performed for interpretation. Then, after the inputs are

aggregated and interpreted by the concepts of evaluation, the evaluation result is

produced for an OSS product. For example, this evaluation result can be between 0 and

MaxPoint (e.g., range between 0 and 1). In the end, this evaluation result is associated

with the quality characteristic aimed to be evaluated at the beginning of the quality

evaluation process. In this way, the quality of the OSS product concerning its specified

quality characteristics is evaluated.

 120

6. VALIDATION METHODS AND THEIR IMPLEMENTATION

(STEP-5)

The validation process is one of the most crucial steps in the studies to ensure that the

research is correct, clean, and valuable [196]. Therefore, a multi-faced validation process

is followed to ensure that a suitable OSS-QMM is developed to satisfy or fit the intended

use in this thesis. In other words, in this section, a validation process is decided and carried

out to investigate the applicability of the proposed OSS-QMM. In this context, three

Research Questions (RQs) were prepared, as seen in Table 6.1, in accordance with the

stages of the developed OSS-QMM. The description and scope of each RQ are given in

the second column of the table. Also, the methods used to validate each RQ are listed in

the third column of the table. In this context, the validation of the proposal from both

internal and external viewpoints are considered. The case studies are organized to

evaluate validity from an internal (i.e. the authors’) perspective, while expert opinions are

taken to evaluate validity from an external perspective. Therefore, the RQs and the

answers to them using these two methods address versatility in validating the OSS-QMM.

Table 6.1. List of RQs, description of RQs, and validation methods related to each RQ

RQs Motivation (or Requirements) Validation Methods and Purposes

RQ.1: Are the

evaluation results

of OSS quality

models derived

from the OSS-

QMM

comparable?

The evaluation results of the OSS

quality models derived using the

OSS-QMM should be

comparable.

1-Case study: Demonstrate that the evaluation results

of the derived OSS quality models are comparable.

2-Expert opinion (Exploratory Study, Part-1 (Q1-3)

(See the list of Questions (Qs) in [197])):

The same OSS products used in the case studies are

evaluated by the experts with their own OSS quality

models to demonstrate that the results are consistent.

RQ.2: Is the

OSS-QMM

effective for

deriving the OSS

quality models?

The OSS-QMM should allow the

derivation of new OSS quality

models and should fit (or guide)

the structure of the existing OSS

quality models.

1-Case study: Demonstrate the effectiveness of the

OSS-QMM in deriving the OSS quality models.

2-Expert opinion (Exploratory Study, Part-1 (Q4-5)):

Experts demonstrate the effectiveness of OSS-QMM by

deriving their own OSS quality models.

RQ.3: Is the

OSS-QMM

applicable in

practice?

The OSS quality models derived

using OSS-QMM should be

applied in practice. Also, experts

should find it practical to use the

OSS-QMM in deriving the OSS

quality models.

1-Case study: Demonstrate the applicability of the

OSS-QMs derived from the OSS-QMM in practice.

2-Expert opinion (Exploratory Study, Part-2 (Q1-12)):

Experts assess the OSS-QMM with respect to its

practical applicability.

As already shown in Fig. 1, the validation process is performed iteratively by review-and-

revise activities. This iterative process is also illustrated in Fig. 6.1, which details

validation of the OSS-QMM in a real-world setting. In the figure, the beginning and end

of the process are represented by circles, input (i.e., OSS-QMM) and output (i.e.,

 121

validation of OSS-QMM) is represented by parallelograms, the validation activities (i.e.,

case studies and expert opinion) are represented by rectangles, the decision nodes (i.e.,

RQs) are represented by diamonds, and the parallel gateways are used to show the parallel

flow of the process. The decision nodes in Fig. 6.1 correspond to the RQs defined in Table

6.1, and the answers to all three decision nodes should be "yes" (i.e., as required by

parallel gateway) for the proposed OSS-QMM to be validated in the real-world setting.

Figure 6.1. The validation process of OSS-QMM

For the first decision node on the side of the case studies (entitled RQ1), three cases are

designed to demonstrate that the evaluation results are comparable. Then, on the side of

the expert opinions, the activity of evaluating OSS product with own OSS quality model

is carried out to answer RQ1. If the results of the three case studies and also the evaluation

of the experts on the stated activity are comparable, the first decision node meets its

requirements. Otherwise, the OSS-QMM needs to be reviewed and revised, and the

answer to RQ1 is further investigated.

For the second decision node on the side of the case studies (entitled RQ2), three cases

are designed to derive OSS quality models from the OSS-QMM. Then, on the side of the

expert opinions, experts are expected to derive an existing OSS quality model from the

OSS-QMM. This could be an OSS quality model they are familiar with from the literature

 122

or the OSS quality model they use in their own companies. The most important criteria

in this derivation process are that there should be no unmatched elements between their

selected quality models and the OSS-QMM. If the vast majority of experts are able to

successfully derive their quality models, the second decision node meets its requirements.

Otherwise, the OSS-QMM needs to be reviewed and revised, and the answer to RQ2 is

further investigated.

For the third decision node on the side of the case studies (entitled RQ3), three cases are

designated to check the applicability of the OSS-QMM by applying the derived OSS

quality models in practice. Then, on the side of the expert opinions, experts are expected

to assess the practical applicability of OSS-QMM considering the validation activities

carried out so far. If the vast majority of experts agree on the usability of OSS-QMM in

practice, the third decision node meets its requirements. Otherwise, the OSS-QMM needs

to be reviewed and revised, and the answer to RQ3 is further investigated.

As a result, if all three decision nodes fulfill their requirements, the OSS-QMM is

considered as validated. In this regard, the validation methods listed in Table 6.1 are

explained, and the applications of these methods are elaborated in the following sub-

sections. Accordingly, the remainder of this section is organized as follow: In sub-section

6.1, firstly, the usage of the OSS-QMM for deriving the OSS quality models in the three

case studies is demonstrated. Then, in Sub-section 6.2, the expert opinion studies are

explained. After all, in Section 7, the results obtained by the two research methods are

discussed in relation to the RQs.

6.1. Case Studies

The case study method has commonly been seen as a fruitful way to come up with

hypotheses and generate theories [196-199] since it is an in-depth, detailed examination

of a particular case (or cases) within a real-world context [200]. Also, the case study

method is the most commonly used method for validating meta-models [29]. Therefore,

in this section, the case studies are employed to investigate the validity of the proposed

OSS-QMM. The case studies are used to answer each of the three RQ, as shown in Table

6.1. In this context, a multiple-embedded case study design is employed [201].

Accordingly; reliability (in evaluation results), effectiveness (in model derivation) and

applicability (in practice) of the OSS-QMM are demonstrated by using three OSS quality

models by the three case studies, as shown in Fig. 6.2.

 123

The first one of these quality models is a new operationalized OSS quality model which

is derived from the OSS-QMM. A profile of this OSS quality model is shown in

Appendix-3, visualizing it for a better understanding. In the first case study, the new OSS

quality model is derived from the OSS-QMM and used for evaluating the quality of three

open source ERP systems. The other two OSS quality models are the most used in the

literature and also the most analyzed by the secondary studies (i.e., systematic mapping,

systematic literature review, and comparison studies). Therefore, in the second and the

third case studies, it is investigated if these two existing OSS quality models can be

derived from the OSS-QMM and if they can be used for evaluating the three ERP systems,

respectively.

Maintainability

Associated sub-characteristic

Associated measures

Case study-1 Case study-2 Case study-3

A new quality model OpenBRR OSMM

-Apache OFBiz

-Adempiere

-Compiere

-Apache OFBiz

-Adempiere

-Compiere

-Apache OFBiz

-Adempiere

-Compiere

Figure 6.2. Multiple-embedded case study design

Before performing the case studies, preparations are carried out. In this regard, the OSS

products to evaluate, the quality characteristic and the associated quality sub-

characteristics to involve, the measures to quantify the quality sub-characteristics, and the

methods (e.g., weighting method, evaluation aggregation method, etc.) to use in the

evaluation are determined. In the following sub-sections, details about these preparations

are given. Also, the enactment of the case studies is demonstrated within this section.

6.1.1. Determining the OSS Products

Numerous OSS products with different application domains have been developed in the

market, and these products have taken their place in different cloud repositories, such as

GitHub and SourceForge. Moreover, many OSS products that serve the same purpose,

which can be alternatives to each other, are available in the market. Therefore, the

evaluator must first determine the type of OSS product to evaluate, and then search for

the alternative products that will fit the purpose. For the case studies, three open-source

ERP (Enterprise Resource Planning) systems are selected since this product type (i.e.

 124

ERP) is commonly needed by industry and the number of alternative products is vast.

Companies use ERP systems to collect, manage, integrate, and store data from many

business activities [202]. These systems are an essential asset of the companies because

they help implement resource planning by integrating the processes needed to run the

business within a single system [202-203]. They are increasingly gaining acceptance,

especially by small and medium enterprises, for many reasons such that they generally

impose no licensing cost [204] and that their source code is publicly available [205].

In this context, widely-used open source ERP systems were searched using the Internet

search engines (Google, Yandex, Yahoo, etc.) and also the academic search engines (e.g.

Google Scholar). From the search results, three open source ERP systems, which are

written in Java programming language and alternatives to each other in terms of

functionality, were identified as shown in Table 6.2. These ERP systems are Adempiere,

Compiere, and Apache OFBiz. In addition to serving the same purpose, the fact that all

these products are written in the same programming language, which supports the

homogeneity factor in working systems, has an important place in selecting these

products. In addition, the websites that provide the OSS products (Apache, SourceForge,

Debian, Savannah, etc.) were searched, and it was verified that these ERP systems can be

alternatives to each other in terms of popularity and functionality.

Table 6.2. List of selected OSS products used in case studies

Product

Properties

Apache OFBiz Adempiere Compiere

Website https://ofbiz.apache.org/ https://adempiere.org/ http://www.compiere.com/

Product type Open-source ERP system Open-source ERP system Open-source ERP system

Programming

language

Java Java Java

First release date 2009 2006 2000

6.1.2. Determining Quality Characteristics and Sub-characteristics

After the products to evaluate are determined, their quality characteristics to evaluate

should also be determined. Since product quality is an abstract, complex and multi-

faceted concept; it is decomposed into quality characteristics, each of which focuses on a

specific concern such as reliability or maintainability. The product quality characteristics

are used to elicit and specify the concerns of stakeholders regarding quality, and in turn,

to determine how well the software product or system satisfies these concerns.

 125

In this context, maintainability, one of the most concerned quality characteristics in

general, was determined to specify and evaluate the quality of the three open source ERP

systems in the three case studies. This is because maintainability plays an important role

in the quality of the OSS products because of their sustainability by developer

communities throughout the years. The SLR studies [24][29][30], which investigate OSS

quality models, also support the importance of maintainability for OSS quality. The

results of the most recent SLR study [30] indicated that maintainability is the most

commonly evaluated quality characteristic by OSS quality models. Aside from this,

maintainability is also the most measured quality attribute in well-designed quality

models (e.g., ISO/IEC 25010 [206], McCall [21], Boehm [22], etc.).

Since maintainability is still abstract to measure as a quality characteristic, it is

decomposed into sub-attributes to make it more concrete. The adapted, existing OSS

quality models (i.e., OpenBRR and OSMM) define their own sub-characteristics and

these were used in the case studies 2 and 3. Since a new operationalized OSS quality

model was derived from the OSS-QMM in case study 1, its characteristics and sub-

characteristics required to be determined specifically. To do this, the ISO/IEC 9126

quality model was taken as reference rather than its replacing counterpart ISO/IEC 25010.

This was because the results of the SLR studies [24][29][30] indicate that the majority of

the OSS quality models originated from this standard, and we searched for an alignment

for the contexts of evaluation among the cases. The ISO/IEC 9126 standard provides a

comprehensive specification and evaluation model for software product quality and

explicitly addresses a product's user needs by allowing a common language for specifying

user requirements by various stakeholders [207]. In this context, four sub-characteristic

of maintainability – namely testability, analyzability, stability, and changeability – were

determined for the case study 1.

6.1.3. Determining Measures and Measurable Concepts

Although the sub-characteristics are more concrete than the quality characteristics, they

still remain abstract to measure directly as we specified in the OSS-QMM. That is,

concrete measures are needed to quantify the sub-characteristics. The existing OSS

quality models (i.e., OpenBRR and OSMM), which were used in the case studies 2 and

3, define their own set of measures and the scoring criteria. Therefore, the case studies 2

and 3 used the measures and the scores defined by OpenBRR and OSMM, respectively.

In this way, it was investigated whether the existing OSS quality models comply and

 126

work in harmony with the OSS-QMM. In this section, measures to use in the new,

operationalized OSS quality model (in the case study 1) derived from the OSS-QMM are

provided. This OSS quality model, which was developed within the scope of the case

study 1, aimed to enable evaluations from both the code-based and the community-based

aspects. Therefore, the measures for both OSS aspects required to be obtained.

In this context, firstly, code-based measures for evaluating maintainability were searched

in the literature. It has been observed that there are many code-based measures used for

this purpose. In the SLR study [208], measures to evaluate code maintainability are

investigated, and the most popular and adopted measures among them are determined.

This SLR study reports the total number of articles mentioning the measure, and

calculates a score with respect to the frequency of use and the adoption of each measure

in industry and academia. As a result of scoring, McCabe’s cyclomatic complexity (CC),

Chidamber and Kemerer (C&K) metric suite, and two others (i.e., number of statements

(NOS) and number of nested levels (NNL)) were observed to have clearly higher scores

than the remaining ones. Therefore, we used the CC, NNL, NOS measures and C&K

metrics suite to evaluate code maintainability. In addition, the SLR study [30], in which

we analyzed the OSS quality models, confirms that these measures are strongly adopted

to evaluate maintainability of OSS. For the evaluations to be reasonable and consistent,

it is important to note that the selected open source ERP systems are mostly written in

Java and that the identified measures are valid for developments following an object-

oriented approach. The list of the selected measures and their explanations are given in

Table 6.3. Measurable concepts (MC) associated with each measure are also provided in

this table.

 127

Table 6.3. List of code-based measures with their description and measurable concepts

associated with each measure [209-212]

Measurable

concept (MC)

Measure Description

MC1:

Complexity of

source code

WMC:

Weighted methods per

class

The degree of complexity and the number of methods in a class [213]. With the

increasing number of methods, the code analyzability time will automatically

increase.

CC:

Cyclomatic complexity

Measures the ratio of the flow of the program source code to follow independent

paths from one another and is directly related to the complexity of the code.

The high value of this metric is undesirable and will affect the source code

analyzability.

NNL:

Number of nested levels

Measures the depth of nesting of the loops in a class, and a higher value of this

metric reduces the testability and stability.

MC2:

Comment

frequency of

source code

NOS:

Number of statement

Measure the frequency of comments and explanations that will show us the way

to reduce the complexity of software. It also facilitates the tracking and

resolvability of the program.

MC3:

Inheritance

complexity

degree of source

code

DIT:

Depth of inheritance tree

Measures the distance of a class to the root of the inheritance tree [214]. The

high depth of the tree increases the complexity since it includes more classes

and methods, indicating low changeability and the stability of the software

product.

NOC:

Number of children

Measures the number of lower classes derived from a class. When the value of

this metric is high, it indicates that the value of re-use is higher, more errors

may occur [215], and a higher effort is required during testing [214].

MC4:

Interaction

Complexity

(coupling)

degree of source

code

CBO:

Coupling between object

classes

Represents the number of classes coupled to a given class. This dependency is

a dependency when some properties or methods in the class are used in other

classes without inheritance between classes[215]. High levels of dependence

between classes harm the modular design [214] and reduce changeability

RFC:

Response for a class

Measure the number of all the methods that can be triggered when calling

methods of an object from one class to this object. Namely, the total number of

written in a class and method called [214]. Software products with a lower RFC

metric value can be better understood and tested.

MC5:

Cohesion

degree of source

code

LCOM:

Lack of cohesion of

methods

Measures the degree of similarity of methods with each other [213]. Therefore,

it is desirable to have low values of the metric.

After determining the measures belonging to the code-based aspect and the relations of

these measures with the sub-attributes, secondly, the measures belonging to the

community-based aspect required to be determined. In addition to the literature searches

described above, additional effort was spent to obtain community-related measures. For

this purpose, the websites of OSS repositories (e.g., GitHub, Sourceforge, Apache) were

visited, and all possible measures to evaluate maintainability were determined. After this

step, the relationships of the community-based measures with the sub-characteristic of

maintainability were investigated. Although there are many community-based measures

in the literature, no evidence was found on the relationship between the measures

belonging to the community-based aspect and the maintainability sub-attributes. As

mentioned in the SLR study [30], OSS quality models often used these measures to assess

 128

the overall community quality. There are diverse types of data on the community-based

side, and it is not easy to process them. In this context, we conducted exploratory research

[216] both to understand that the determined community measures are suitable for

evaluating maintainability and to associate these measures with the sub-characteristics.

The details of this exploratory research are described in detail in Section 6.1.5.3. The list

of the community-based measures obtained and the measurable concepts (MC) associated

with these measures as a result of this process are given in Table 6.4. The description of

each measure is provided in [217]. As specified in Table 6.4, some of the determined

community measures are the derived ones. Therefore, in the last column of the table, the

equations used for these derived measures and the base measures used in these equations

are given.

Table 6.4. List of community-based measures with their equation and measurable

concept associated with each measure

Measurable concept (MC) Measure Measurement functions (equation)

MC6:

Difficulty degree of bug

*BSI:

Bug severity index

(
𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑒𝑟

𝐿𝑂𝐶
× 9) + (

𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝐿𝑂𝐶
× 7) + (

𝑜𝑓 𝑚𝑎𝑗𝑜𝑟

𝐿𝑂𝐶
× 5) + (

𝑜𝑓 𝑚𝑖𝑛𝑜𝑟

𝐿𝑂𝐶
× 3)

+ (
𝑜𝑓 𝑡𝑟𝑖𝑣𝑖𝑎𝑙

𝐿𝑂𝐶
× 1)

MC7:

Completeness of

documentation

ND:

Number of document No equation (it is a base measure)

MC8:

The activeness of the

community

*CD:

Commit density

(# 𝑜𝑓 𝑐𝑜𝑚𝑚𝑖𝑡) (# 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟)⁄

(𝑘𝐿𝑂𝐶)

*ED:

Email density

(# 𝑜𝑓 𝑒 − 𝑚𝑎𝑖𝑙) (# 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟)⁄

(𝐿𝑂𝐶) (# 𝑜𝑓 𝑟𝑒𝑙𝑒𝑎𝑠𝑒)⁄

MC9:

Size of contributor

NC:

Number of contributors
No equation (it is a base measure)

MC10:

Performance of contributor

*FRIS:

Feature request

implementation success

(# 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) (# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡)⁄

(𝑘𝐿𝑂𝐶)

*BSSR:

Bug-solving success rate

(# 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑢𝑔) (# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑏𝑢𝑔)⁄

(𝑘𝐿𝑂𝐶)

MC11:

Productivity of contributors

NR:

Number of releases
No equation (it is a base measure)

MC12:

Fault proneness of

contributor

*DD:

Defect density
𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑓𝑒𝑐𝑡

(𝐿𝑂𝐶)

MC13:

Maturity of project

PA:

Product age
No equation (it is a base measure)

6.1.4. Determining Evaluation Methods to Use in the Case Studies

In order to use the OSS-QMM in practice, some methods (with formulae or functions)

should be selected and defined in OSS quality models as the instances of the concepts

 129

(e.g., the weighting method and evaluation aggregation method) in the OSS-QMM. In

this section, the methods that were used by the OSS quality model derived from the OSS-

QMM (in the case study 1) and that were adapted for the existing OSS quality models (in

the case studies 2 and 3) are introduced. The list of methods used in the case studies is

shown in Table 6.5. The following sub-section describes the integrated AHP-TOPSIS

method, which is essential for carrying out quality evaluations in the case studies.

Table 6.5. List of methods to use for the relevant concepts in the OSS-QMM

Concept of OSS-QMM Methods used for case studies

Weighting method Integrated AHP-TOPSIS method (AHP, Step 1-7)

Weight aggregation method Weighted distribution

Normalize measure Integrated AHP-TOPSIS method (TOPSIS, Step 2)

Measure aggregation method Average of the measure

Measurement function Some mathematical equation

Evaluation aggregation method Integrated AHP-TOPSIS method (TOPSIS, Step 3-7)

Evaluation function Linear utility function

6.1.4.1. Integrated AHP-TOPSIS

The OSS products have a dynamic and diverse nature, and their quality is affected by

many variables. In other words, variety of qualitative and quantitative data is accessible

from the code-based and the community-based aspects. The SLR study [30] investigated

challenges faced while developing OSS quality models and evaluating OSS products. The

results of the SLR study [30] indicated that, in addition to the diversity challenge

mentioned above, stakeholders have different expectations from the OSS products. That

is, each stakeholder will have different inputs for evaluation. In this context, processing

and aggregating heterogeneous data from diverse sources considering the expectations of

stakeholders is a complicated process. Since there are many criteria for evaluating

software quality, it can be considered a Multi-Criteria Decision Making (MCDM)

problem [218]. The MCDM is a powerful technique that allows managing multiple,

complex and conflicting objectives in the evaluation. An array of MCDM methods exist,

such as Analytic Hierarchy Process (AHP), Data Envelopment Analysis (DEA),

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Analytic

Network Process (ANP), etc. Among them, AHP and TOPSIS are the most widely used

MCDM methods because of their strong mathematical background and systematic way

of data collection [218-220]. They have been applied and validated in numerous

multidisciplinary fields such as engineering [221], economics [222], social science [223],

 130

etc. [224-225]. Therefore, the integrated AHP-TOPSIS method, having the steps shown

in Fig. 6.3 [226], was used for evaluation in the case studies.

Figure 6.3. Integrated AHP-TOPSIS method used for quality evaluation in the case

studies

AHP is very useful in involving several stakeholders with multiple conflicting criteria to

arrive at a consensus, and TOPSIS is powerful in obtaining final scores for alternatives.

A problem must be in a hierarchical structure to apply the AHP method. Since quality

characteristics have a hierarchical structure, AHP was used to assign weights to them.

The weights obtained from the AHP method, the value assigned to the concept of impact,

and the actual measurement data were used as inputs to the TOPSIS method. The

description and equations of the methods (in Table 6.5) used in the case studies are

explained in Table 6.6.

Table 6.6. Description of evaluation methods with their formulas used in case studies

Technique Description Equation

AHP
The AHP method consists of the following steps. Please see [227-

228] for details.

Step 1
Firstly, structural hierarchies are created. The concepts of OSS aspect

and quality characteristics provide this condition.
No equation

Step 2

A pair-wise comparison matrix A (size nxn) is constructed to

compare the criteria in pairs. Each OSS aspect and related sub-

characteristics are as "criteria".

𝐴 = [𝑥𝑖𝑗]𝑛𝑥𝑛

Matrix A is a pair-wise comparison matrix.

Step 3

Pair-wise comparisons are performed by comparing the relative

importance of two selected criteria. The matrix A is filled by using

the scale 1-9, as proposed by Saaty [227] (see [228] for details).

A pairwise comparison is performed on

matrix A, and the matrix is filled out.

Step 4

The matrix A is normalized, and normalized pairwise comparison

decision matrix Anorm matrix is obtained. In this formula, each

element of matrix A in a column is divided by the sum of the elements

in the same column.

𝐴𝑛𝑜𝑟𝑚 = [𝑎𝑖𝑗]𝑛𝑥𝑛 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑛
𝑖=1

⁄ (1)

Step 5 The final weight of each criterion is calculated.
𝑤𝑖 =

∑ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑛⁄ and ∑ 𝑤𝑖
𝑛
𝑖=1 =1

𝑖, 𝑗 = 1,2, … 𝑛
(2)

Step 6

The Consistency Ratio (CR) is calculated to check the consistency of

the decision-maker’s judgement. Firstly, the Consistency Index (CI)

is calculated, where λmax is the Eigenvalue (see [228-229] for details)

corresponding to the matrix of pair-wise comparisons, and n is the

number of criteria being compared. Then, CR is calculated. Here,

Random Index (RI) is a value that depends on the number of criteria

(n) (see [228-229] for values of RI according to n).

𝑪𝑰 = (𝜆𝑚𝑎𝑥 − 𝑛) (𝑛 − 1⁄)

(3)

𝑪𝑹 = 𝐶𝐼 𝑅𝐼⁄ (4)

Step 7 The final weight of each criterion is approved. No equation

 131

TOPSIS

The final weight of each criterion obtained from the AHP method is

used as input to the TOPSIS method. The TOPSIS method consists

of the following steps (please see [219][229-230] for details).

Step 1

Firstly, decision matrix B= [bij]mxn, where m is alternatives (i.e., OSS

products) in the rows and n is evaluation criteria (i.e., measurable

concepts) in the columns, is constructed.

𝐵 = [𝑏𝑖𝑗]𝑚𝑥𝑛

Matrix B is the decision matrix

Step 2 Normalized decision matrix R= [rij]mxn is constructed.
𝑹 = [𝑟𝑖𝑗]𝑚𝑥𝑛 = 𝑏𝑖𝑗

 √∑ 𝑏𝑖𝑗
2

𝒎

𝒊=𝟏
⁄

𝑖 = 1,2,3 … 𝑚; and 𝑗 = 1,2,3 … 𝑛

(5)

Step 3

The final weights obtained from the AHP method are multiplied by

the values of the normalized decision matrix R. Thus, the weighted

normalized decision matrix V= [vij]mxn is obtained.

𝑽 = [𝑣𝑖𝑗]
𝑚𝑥𝑛

= 𝑤𝑗 𝑥 𝑟𝑖𝑗

𝑖 = 1,2,3 … 𝑚; and 𝑗 = 1,2,3 … 𝑛
(6)

Step 4

In this step, two artificial alternatives, A+ (the positive ideal solution)

and A− (the negative ideal solution), are defined by Eq. (7) and Eq.

(8), respectively.

Here, J is the subset of {I = 1, 2, …, m}, which presents the concept

of impact (positive impact) in the OSS-QMM, and J- is the

complement set of J.

𝑨+ = {(𝑚𝑎𝑥𝑖𝑣𝑖𝑗 | 𝑗 ∈ 𝐽)(𝑚𝑖𝑛𝑖𝑣𝑖𝑗 |𝑗 ∈ 𝐽−)

| 𝑖 = 1,2,3, … 𝑚 } = {𝑣1
+, 𝑣2

+, … 𝑣𝑗
+, … 𝑣𝑛

+}
(7)

𝑨− = {(𝑚𝑖𝑛𝑖𝑣𝑖𝑗 | 𝑗 ∈ 𝐽)(𝑚𝑎𝑥𝑖𝑣𝑖𝑗 |𝑗 ∈ 𝐽−)

| 𝑖 = 1,2,3, … 𝑚 } = {𝑣1
−, 𝑣2

−, … 𝑣𝑗
−, … 𝑣𝑛

−}
(8)

Step 5

In this step, separation measurement is performed by calculating the

distance between each alternative in V and the ideal vector A+ or the

negative ideal A- by using the Euclidean distance, which is given by

Eq. (9) and Eq. (10), respectively. At the end of Step 5, two values,

namely, S+ and S- for each alternative, have been counted. These two

values represent the distance between each alternative and both the

ideal and negative ideal.

𝑺𝒊
+ = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

+)
2
 𝑛

𝑗=1 , 𝑖 = {1,2,3 … 𝑚} (9)

𝑺𝒊
− = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)
2
 𝑛

𝑗=1 , 𝑖 = {1,2,3 … 𝑚} (10)

Step 6

In this process, the closeness of Ai (i
th alternative) to the ideal solution

𝐴+ is defined, as shown in Eq. (11). 𝐶𝑖
∗ = 1 if and only if 𝐴𝑖 = 𝐴+;

similarly, 𝐶𝑖
∗ = 0 if and only if 𝐴𝑖 = 𝐴−.

𝑪𝒊
∗ = 𝑆𝑖

− (𝑆𝑖
− + 𝑆𝑖

+)⁄

0 < 𝐶𝑖
∗ < 1, 𝑖 = {1,2,3 … 𝑚}

(11)

Step 7

The set of alternatives 𝐴𝑖 can now be ranked according to

descending order of 𝐶𝑖
∗, indicating that a higher value corresponds

with better performance.

No equation

Weighted

distribution

The weight of each sub-characteristic for each OSS aspect can be

different (these weights are calculated in the AHP process).

Therefore, the final weight of each sub-characteristic as specific to

the OSS aspect is calculated.

Here, 𝑋𝑖 is the final weight of a sub-characteristic for an OSS aspect,

𝑤𝑖
𝑎 are the weights of OSS aspects, 𝑤𝑗

𝑠 are the weights of OSS sub-

characteristics, 𝑖 is the number of OSS aspects (there are two OSS

aspects), and 𝑚 is the number of sub-characteristics.

𝑋𝑖 = (𝑤𝑖
𝑎 ∗ 𝑤𝑗

𝑠) ∑ 𝑤𝑖
𝑎

𝑛

𝑖=1

⁄

∑ 𝑤𝑖
𝑎𝑛

𝑖=1 = 1 (see Eq. (2))

𝑖 = {1 𝑜𝑟 2} 𝑗 = {1,2,3 … 𝑚}

(12)

Some math.

equation

Some mathematical equations are used to obtain derived measures

from the base measures in the concept of measurement function. For

example, M1 and M2 are base measures, and M3 is a derived measure

obtained from M1 and M2 using the following mathematical

equation: M3=M1/(M1+M2). Therefore, this equation corresponds

to the concept of measurement function in the OSS-QMM.

It can be a different kind of equations

Average of

the

measures

In cases where multiple measures are associated with a measurable

concept, these measures should be aggregated. The normalized

measures (obtained in Step 2 of TOPSIS) associated with a

measurable concept are averaged in this aggregation process.

Here, 𝑝 is the number of alternatives (OSS product), 𝑚(𝑘) is a new

value of measures associated with a measurable concept for kth

alternative, 𝑟𝑖𝑗 is a normalized measure (Step 2 of TOPSIS), and 𝑚, 𝑛

are the first and the last indices of measures associated with a

measurable concept, respectively.

 𝑚(𝑘) = ∑ 𝑟𝑖𝑗

𝑛

𝑗=1

𝑛⁄

𝑖 = {𝑚 … 𝑛} 𝑘 = {1,2,3 … 𝑝}

(13)

Linear

utility

function

The utility functions for each OSS product can be defined to

operationalize the evaluation step. The higher the evaluation value of

each of these OSS products and the best it is for software quality, the

higher should be the associated utility. To reflect this, simple

increasing linear utility functions can be selected with two thresholds,

min and max, as shown in Fig. 6.4.

See Fig. 6.4

 132

6.1.5. Exploratory Study Applied as Part of Case Studies

A survey was conducted with industry experts to determine weights of sub-

characteristics, relationships between community-based measures and sub-

characteristics, and weights of OSS aspects as an initial part of the case studies. To do

that, questions under five parts were prepared to ask to the experts [198]. The application

of the survey in the case study 1 is shown in this study, and the applications of the survey

in the other two case studies are shown in a supplementary document [231]. The part-5

of the survey is about performing the case studies 2 and 3, which is also shown in the

supplementary document.

Prior to executing the survey, first, the participants working in well-known companies

were identified and contacted via e-mail, and online meetings were arranged with each

separately. Since the primary application area of the OSS-QMM is software industry, this

survey allowed the implementation of the OSS-QMM from the viewpoints of the industry

experts, and the information gathered guided the enactment of the case studies. Details

about the survey is given in the following sub-sections, together with the parts considered

in each case study.

6.1.5.1. Part-1: Background of the Participants (for the Case studies 1, 2, and 3)

This part of the survey includes questions aimed at obtaining information about the

background of the participants. Thus, it was aimed to determine the concept of viewpoint

in the OSS-QMM to be used in the case studies. In this context, the participants were

expected to answer the following questions; positions in their company, periods of

experience in each position, level of knowledge about OSS (to rate 1-5 in Likert scale),

and experience in OSS quality evaluation (Yes or No). Although the survey was

conducted with a total of 24 participants in different positions, the majority of the experts

were in the developer position; so that the developer position was taken into consideration

and determined as the viewpoint in the case studies. However, some additional criteria

were sought in the experts in addition to being a developer, such that: the expert should

work five or more years in the developer position, rate their OSS knowledge as 4 or 5,

and have experience with OSS quality evaluation. Satisfying all these criteria, a total of

11 experts were determined, and some background information about these experts (E) is

given in Table 6.7.

 133

Table 6.7. Background of industry experts participated in the case studies

Background/Expert E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

Experience in the developer

position

5 9 5 6 7 6 5 10 6 5 7

Experience in other positions PM SA, SC PM, TD, T BDM, IM, PM - - DS - SA PM, T SA, SE

Experience in OSS quality

evaluation

yes yes yes yes yes yes yes yes yes yes yes

OSS knowledge 4 5 5 5 4 5 4 4 5 5 4

Abbreviations: Project manager (PM), software architect (SA), security consultant (SC), technology director (TD), business

development manager (BDM), innovation manager (IM), data scientist (DS), Tester (T), software engineer (SE)

6.1.5.2. Part-2: Weighting Sub-characteristics of the New OSS Quality Model (for

Case Study 1)

The open source ERP systems were evaluated in terms of maintainability in the case

studies as specified in Section 6.1. In this context, sub-characteristics of maintainability

were determined as criteria (i.e., analyzability, changeability, stability, and testability) for

the case study 1. These sub-characteristics were given weights (i.e., for the concept of

weighting in the OSS-QMM) according to the degree of importance and considering a

certain viewpoint. For the concept of the weighting method (i.e., assigning weights), the

AHP method was used as specified in Table 6.5. The AHP process is implemented as

explained in the following steps, as already given in Table 6.6. In addition, the process is

demonstrated over the judgement of Expert #10 in Table 6.8, for a better understanding.

- Step 1: Maintainability was decomposed into four sub-characteristics (i.e.,

analyzability, changeability, stability, and testability); it means that the required

hierarchy was provided (see Table 6.6).

- Step 2: A pair-wise comparison matrix A (size nxn) was constructed using sub-

characteristics as criteria (see Table 6.6).

- Step 3: A total of 11 experts were asked to fill in the comparison matrix A using

the scales (1-9) individually. The comparison matrix A was filled out as a result

of the pairwise comparison of experts (see Table 6.8 (a)).

- Step 4: The decision matrix Anorm which was normalized using Eq. (1) was

obtained (see Table 6.8 (b)).

- Step 5: Eq. (2) was applied to the matrix Anorm, and the final weight of the

priorities was obtained according to the judgment of each expert for each sub-

 134

characteristic (see Table 6.9). The weights obtained for Expert #10 are shown in

Table 6.8 (c).

- Step 6: Consistency Ratio (CR) was calculated using Eq. (3-4) to see if the

judgments of the experts were consistent (see Table 6.9). The calculation of CR

is explained in detail in the studies [228-229] and not repeated here to save space.

- Step 7: It was observed that CR values were less than 0.1, which means that the

judgments of each expert were consistent [229]. If this was not the case, the

pairwise comparison (in Step 3) should have been revised [229].

Table 6.8. Parts of AHP process w.r.t. the Expert #10’s judgement: (a) Pair-wise

comparison, (b) Normalized decision matrix, and (c) Weight of sub-characteristics

Finally, the average value was calculated from the priority weights from all experts for

each sub-characteristic, and final weights were obtained for the sub-characteristics in the

case study 1. As seen in Table 6.9, the importance of changeability and analyzability was

higher than the other two sub-characteristics. The most important reason for this might

be that the developer was determined as the viewpoint in the evaluation, and it is essential

for a developer to easily analyze and change the source code in the OSS.

Table 6.9. The weights for each sub-characteristics according to expert’s judgements,

the average of these weights, and the CR values

Sub-char. /Expert E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 Avg.

Analyzability 0.1823 0.2047 0.5960 0.4392 0.1244 0.5998 0.5383 0.2212 0.1847 0.2693 0.4788 0.3490

Changeability 0.5011 0.5214 0.2282 0.2768 0.4213 0.2127 0.1794 0.4566 0.6038 0.5569 0.1615 0.3745

Testability 0.0678 0.0930 0.0436 0.0983 0.0855 0.1160 0.0819 0.1202 0.0713 0.0532 0.1059 0.0851

Stability 0.2487 0.1807 0.1321 0.1855 0.3686 0.0713 0.2002 0.2019 0.1401 0.1204 0.2536 0.1912

Consistency Ratio

(CR)

0.0590 0.0790 0.0510 0.0530 0.0290 0.0100 0.0070 0.0160 0.0230 0.0970 0.0530 0.0430

 135

6.1.5.3. Part-3: Understanding Relationships Between Community-based Measures

and Sub-characteristics (for the Case study 1)

In the OSS projects, aside from the code-based data, diverse types of historical data

belonging to the community-based aspect are stored in public repositories. This indicates

that heterogeneous and scattered community-based data from different sources must be

coped with while evaluating OSS quality. In this context, possible community-based

measures that could be used to evaluate maintainability were determined for the case

study 1 by following the process described in Section 6.1.3. However, while there are lots

of evidence in the literature regarding the relationship between code-based measures and

sub-characteristics of maintainability, there is little or no evidence for the relationship

between community-based measures and these sub-characteristics. Therefore, this part of

the survey was formed to understand whether the determined community measures were

suitable for evaluating maintainability and also to associate these measures with the sub-

characteristics.

In this context, experts were asked to associate possible measures with the sub-

characteristics of maintainability, after having reminded that each measure might relate

to one, more, or none of the sub-characteristics. While deciding on a relationship between

a sub-characteristic and a community-based measure, it was required that seven or more

experts agreed on the relationship. Accordingly, the community-based measures used to

evaluate each sub-characteristic were identified and are marked by green color in Table

6.10. The measures that were determined as possible for evaluating the sub-characteristics

but were not associated with any sub-characteristics by the experts are not given in the

table. It should be reminded that the existing OSS quality models (i.e., OpenBRR and

OSMM) used in the case studies 2 and 3 define their own sub-characteristics and related

measures.

 136

Table 6.10. Relationship between sub-characteristic and community-based measures

Sub-characteristic/

community-based

measure

D
ef

ec
t

d
en

si
ty

E
-m

ai
l

d
en

si
ty

B
u

g
-s

o
lv

in
g

 s
u

cc
es

s

ra
te

B
u

g
 s

ev
er

it
y

 i
n

d
ex

N
u

m
b

er
 o

f
co

n
tr

ib
u

to
rs

N
u

m
b

er
 o

f

d
o

w
n

lo
ad

ab
le

d
o

cu
m

en
ts

P

ro
d
u

ct
 a

g
e

N
u

m
b

er
 o

f
re

le
as

es

F
ea

tu
re

 r
eq

u
es

t

im
p

le
m

en
ta

ti
o

n

su
cc

es
s

C
o

m
m

it
 d

en
si

ty

Analyzability 4 5 3 9 4 8 2 3 1 5

Changeability 1 4 5 0 9 2 5 7 8 8

Testability 8 2 9 8 2 0 1 2 1 2

Stability 7 8 5 5 2 3 9 8 5 4

6.1.5.4. Part 4: Weighting OSS-aspects (for the Case Studies 1, 2, and 3)

The OSS evaluation stage consists of the code-based and the community-based aspects,

and the importance of these aspects may vary with respect to different viewpoints. These

two aspects (i.e., specified as "criteria" in Table 6.6) should be given weights (i.e., for the

concept of weighting in the OSS-QMM) according to the degree of importance with

respect to a certain viewpoint. As explained in part-2 of the questionnaire, the process of

the AHP method which is described in Section 6.1.5.2 was followed in assigning these

weights. As different from the process given in Section 6.1.5.2, it was unnecessary to

calculate the CR value since there were two criteria (i.e., OSS aspects) for pair-wise

comparison. The weights obtained for each OSS aspect at the end of the AHP process

according to the expert's judgments and the average of these weights are given in Table

6.11. These weights were used in the case studies 1, 2, and 3. As seen in the table, the

importance of the code-based aspect was higher than that of the community-based aspect.

This might be because the OSS has quality source code for the developer, as the main

reason for the developer to use the OSS is to use the existing code base by changing it

according to own needs.

Table 6.11. The weights for each OSS aspect according to the expert's judgements and

the average of these weights

OSS aspects /Expert E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 Avg.

Code-based aspect 0.8 0.75 0.875 0.6666 0.3333 0.8571 0.5 0.5 0.8333 0.5 0.3333 0.6317

Community-based

aspect

0.2 0.25 0.125 0.3333 0.6666 0.1428 0.5 0.5 0.1666 0.5 0.6666 0.3682

 137

6.1.6. Performing the Case Study-1

This section explains the usage of the OSS-QMM for creating the new, operationalized

OSS quality model by the case study 1. The application of the OSS-QMM on the two

existing OSS quality models are explained in [231] to save space. As shown in Fig. 3,

the stages of using the OSS-QMM for instantiating quality models are classified as

specification, measurement, and evaluation. To provide the traceability of the quality

models instantiated in the case studies to the concepts of the OSS-QMM, the concepts are

shown in bold and italic, and given in accordance with their stages classified.

In the specification stage, the required preparations were performed as described in

Sections 6.1.1 – 6.1.5 before applying the case studies. In this context, three open source

ERP products were determined as alternatives. In addition, the following concepts were

determined: characteristics and sub-characteristics to evaluate, information needs,

entity, measurable concepts (belonging code-based and community-based

aspects), measures associated with these measurable concepts, and the methods (e.g., the

concepts of weighting method, measurement function, etc.) as listed in Table 6.5. The

values for these concepts are given with their explanation in Sections 6.1.1 – 6.1.5. Apart

from these, the relationship of measurable concepts with sub-characteristics and their

impacts on sub-characteristics were determined on the basis of quality requirements, as

shown in Table 6.13. In addition, as explained in Section 6.1.5, survey was conducted to

determine: the viewpoint to take into account in the measurement, the weights of the OSS

aspects and the sub-characteristics according to the specified viewpoint, and the relations

of the sub-characteristics with the community-based measures. As a result of this survey,

the "developer" was determined as the viewpoint as stated in Section 6.1.5.1. Each OSS

aspect and sub-characteristic were weighed by the pair-wise comparison according to the

judgment of the developer's viewpoint. This corresponds to the concept of weighting in

the OSS-QMM. Then, the weights for each sub-characteristic and OSS aspect were

calculated with the AHP method (Steps 1-7), the application of which is shown in Section

6.1.4.1 with related equations. The AHP method corresponds to the concept of the

weighting method in the OSS-QMM, as previously specified in Table 6.5.

Then, the final weights of the sub-characteristics affecting each OSS aspect were

calculated, as shown in Table 6.12, using the weighted distribution method by using Eq.

(12). This method corresponds to the concept of weighting aggregation method in the

OSS-QMM, as specified Table 6.5. The rationale behind this concept is that from a

 138

particular viewpoint, the importance of each sub-characteristic may be different in each

OSS aspect. That is, the weights of the sub-characteristics should be distributed on the

OSS aspects according to the importance of the OSS aspect. For example, assume that

the evaluator is a developer, and the code-based aspect is more critical for this viewpoint.

Therefore, the analyzability sub-characteristic of the source code in the code-based aspect

should have a greater importance for this evaluator. In other words, the weight of

analyzability on the code-based side should be greater than the one on the community-

based side.

Table 6.12. (a) weights of sub-characteristics w.r.t importance, (b) weights of OSS

aspects w.r.t importance, and (c) final weights for sub-characteristics in the case study-1

In the measurement stage, the concepts are used to quantify the quality of an OSS product

via measures belonging to code-based and community-based aspects. The general

information about the determined code-based and community-based measures is provided

in Section 6.1.3. As shown in Table 6.3, code-based measures are base measures which

can be quantified directly. As specified in the OSS-QMM, a measurement method is

determined to obtain values for these measures, and the values are obtained

automatically. Research has indicated that code analyzer tools are available such as

MetricsReloaded (IntelliJ IDEA plugin) [232], CodeMetrics (IntelliJ IDEA plugin) [233],

CKJM [234], and Understand Scitool [235] in the literature to automatically obtain the

values of the measures. Among these tools, the Understand Scitool was selected due to

its ease of use. Accordingly, the values of the determined measures were obtained at the

class level from the source code of the open source ERP products. The values of the code-

based measures for each ERP product are shown in Table 6.13. As indicated in Table 6.4,

community-based measures consist of the base and derived measures. The measurement

functions for computing these derived measures and the base measures used in these

measurement functions are given in Table 6.4. For example, the defect density is a derived

measure and calculated by dividing the total number of defects by the total number of

 139

code lines. As specified in the OSS-QMM, a measurement method is determined to

obtain values for the community measures, and the values are obtained manually. The

implementation of the AHP method has been demonstrated in the specification part. Here,

the TOPSIS method is employed using the outputs of the AHP process. The steps of

TOPSIS are represented in Fig. 6.3 and their equations are given in Table 6.6 (see

[219][229-230] for details). The first two steps of the TOPSIS were employed in the

measurement part for the concept of the normalized measure as follows.

- Step 1: The decision matrix B =[bij]mxn was constructed as shown in Table 6.13

after the measure values belonging to code-based and community-based aspect

were obtained. In matrix B, m represents the number of ERP systems (i.e.,

alternatives), and n represents the number of measures (i.e., evaluation criteria) as

specified in Table 6.6.

- Step 2: As seen in Table 6.13, as the values of the measure computed have

heterogeneous scales and units, they should be normalized using the concept of

normalized measure. Therefore, the normalized decision matrix R =[rij]mxn was

obtained, as represented in Table 6.14, by applying Eq. (5) to decision matrix B.

Table 6.13. Final weights of sub-characteristics, impacts, measurable concepts (MC),

measures associated with MC, values of measures, and decision matrix B.

If a measurable concept (MC) is associated with more than one measure, these associated

measures should be aggregated using the concept of aggregated measure. In this context,

the average of the measure's values was calculated using Eq. (13) within the scope of the

measure aggregation method concept, as specified in Table 6.6. In this case study 1, the

measures associated with the MC1 and MC3 were aggregated, as shown in Table 6.14.

 140

Then, measurement was performed as action, and measurement results were produced

for each measurable concept before the evaluation phase.

Table 6.14. Normalized decision matrix R

In the evaluation stage, three inputs are needed for the concept of evaluation to start:

measurement results, impacts, and final weights of sub-characteristics. The concept of

evaluation aggregation should be used to aggregate these inputs. In this case study 1, the

concept of the evaluation aggregation method was used to aggregate these three inputs.

In other words, as specified in Table 6.5, we used the integrated AHP-TOPSIS method

(TOPSIS, Steps 3-7) for this concept. Therefore, the steps 3-7 of TOPSIS were used for

the evaluation as follows:

- Step 3: The weighted normalized matrix V =[vij]mxn was obtained, as shown in

Table 6.15, by using Eq. (6). More clearly, the final weight of each sub-

characteristic in Table 6.15 was multiplied by each associate normalized measure.

- Step 4: As shown in Table 6.16, the A+ (PIS: positive ideal solution) and A- (NIS:

negative ideal solution) were calculated by Eq. (7) and Eq. (8), respectively. In

other words, matrix V is used to calculate the impacts ((i.e., (+) or (-)). More

clearly, if the impact is positive, the PIS value is the maximum of the normalized

measure in the associated column, as shown in Table 6.15; if it is negative, it is

the minimum one, and vice versa for NIS.

- Step 5: As shown in Table 6.17, separation measures based on Euclidian distance

for PIS (i.e., S+) and NIS (i.e., S-) were calculated by Eq. (9) and Eq. (10),

respectively. Please see the studies [229][230] for detail on its calculation.

 141

- Step 6: The final quality score (i.e., the closeness of each alternative to the ideal

solution (i.e., PIS)) was calculated by using Eq. (11), as shown in Table 6.17.

- Step 7: As shown in the last column of Table 6.17, each ERP system was ranked

according to its final quality score, indicating that a higher value corresponds to

better quality.

Table 6.15. Weighted normalized decision matrix V

Table 6.16. Values of Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS)

Table 6.17. Separation measurement (S+ and S-), final quality evaluation score and rank

values for ERP products

OSS Product S+ S- Score Rank

Adempiere 0.0551 0.0692 0.5207 2

Compiere 0.0753 0.0366 0.3162 3

Apache OFBiz 0.0322 0.0675 0.6997 1

The final quality score for each ERP system obtained from the concept of the evaluation

can be interpreted with the concepts of evaluation function or manual evaluation as

specified in the OSS-QMM. For example, an expert opinion can be considered as the

 142

concept of manual evaluation, and an expert can interpret the results according to the final

quality scores or rank values. In this case study 1, as shown in Fig. 6.4, the linear utility

function was used as the concept of the evaluation function to interpret the final quality

scores. As seen from the figure, 𝑥𝑚𝑎𝑥 was 1, and therefore, according to the formula

𝑢 = 𝑥 𝑥𝑚𝑎𝑥⁄ the 𝑢(𝑥) value of each ERP system was the same as the final quality score

of them. After all these processes, the evaluation results can be produced at this point by

the concept of the evaluation result. As seen from Fig. 6.4, Apache OFBiz was

determined as the most preferable product in terms of maintainability, followed by

Adempiere and Compiere, respectively. Also, considering that a>b in the figure, it is seen

that the difference in quality between Compiere and Adempiere was greater than the

difference in quality between Adempiere and Apache OFBiz.

Figure 6.4. Linear utility function according to the final quality scores of ERP products

6.2. Expert Opinion Studies

The opinions of the experts in the market are crucial for the validation process of the OSS-

QMM since the primary purpose of software engineering is to release high-quality

software to the market. Similarly, since the primary purpose of the development of the

OSS-QMM is to use it in the industry, it is important to validate it with expert opinions

from the industry. Also, SLR studies [30][37] have concluded that expert opinion is one

of the critical techniques used in the validation of models [5] or meta-models [236].

Therefore, semi-structured interviews, which are frequently used as a data collection

technique in literature [237], were planned with domain experts. The semi-structured

interview is a research method that supports the gathering and discussing of ideas from

domain experts in line with a predetermined thematic framework [237]. In this context,

 143

the domain experts working in important companies were determined, and online or face-

to-face meetings were held with each separately. It should be noted that the experts

consulted during the development stage of the OSS-QMM, the experts consulted in the

implementation of the case studies, and the experts consulted during the validation

process were different persons. This validation method (i.e., expert opinion) was used to

answer the RQs in Table 6.1. In the following sub-sections, firstly, the questionnaire

design and its execution are explained, and then the answers obtained from the experts

are discussed.

6.2.1. Questionnaire Design and Execution

In this section, the effort spent in designing and executing the questionnaire is explained.

To design the questionnaire, the following process has been followed; (i) we have used

our experience on software quality modeling and open source software [30][54][57], (ii)

we have considered the deficiency of OSS-QMs based on our SLR study [30], (iii) we

have considered the fundamentals and intended use of OSS-QMM based on our SLR

study [37], (iv) we have analyzed studies on validating the meta-models (e.g., [195]), and

(v) we have analyzed accepted and well-known guidelines on conducting questionnaires

[238]. As a result of this process, we have prepared a draft of the questionnaire.

To improve this draft, we have performed a series of meetings between this student and

his supervisor. During these meetings, we have tried to improve the content and quality

of the questionnaire. Then, we carried out pilot studies with two practitioners from

industry and academia who have active research on software quality modeling.

Accordingly, we have revised the questions to ensure that they are complete and

consistent based on the feedback received. After this process, we have obtained a final

version of the questionnaire as given in [197]. The questionnaire was available online via

JotForm [239] between June 2022 and October 2022.

At the beginning of the questionnaire, information about the purpose (i.e., validation of a

meta-model) and content (i.e., type of questions, how it will be applied, and time required)

of the questionnaire have been given to the participants. Then, a pre-interview has been

held with the participants, who have agreed to participate in the questionnaire, in order to

obtain information about their backgrounds. If the background of a participant met the

requirement given in Table 6.18, the opinion of this expert has been taken into account to

investigate the validity of the OSS-QMM. In this context, a prerequisite has been applied

 144

that experts should have seven years or more experience in the field of software quality

and its modeling (e.g., software engineer (SE), software quality assurance (QA) engineer,

QA manager, SE manager, lead QA engineer, QA tester, QA analyst, and IT consultant,

etc.), regardless of other experiences. Also, the experts should rate their OSS and quality

modeling knowledge as 4 or 5 on a 5-point Likert scale (5 indicating the highest degree

of knowledge). Although 29 experts have been determined and pre-interviewed; after

reviewing their experiences, 20 of them whose experiences are given in Table 6.18 have

been selected after applying the prerequisite mentioned above. Detailed information

about the background of all 29 experts is provided in Appendix-4. In addition to the

information given in Table 6.18, the experts’ current position, company size, the country

where the companies are located, and interview duration are provided in this appendix. It

should be noted that the durations of the interviews with the experts who were pre-

interviewed and did not provide the necessary experience are not given in the appendix.

Table 6.18. Background of experts (E1…E20) consulted during the validation process

Background/Expert E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20

Experience in software quality

modeling

11 7 9 10 8 22 8 12 7 14 10 7 13 17 8 12 15 7 9 11

OSS knowledge 5 5 4 4 4 5 4 5 5 4 5 5 4 5 5 5 4 4 5 4

Experience in selecting the

wrong software

Y Y N Y Y Y N Y Y Y N N N Y Y Y N Y Y N

Quality modeling knowledge 5 5 4 5 4 5 5 4 4 5 4 5 5 5 4 5 5 4 4 5

In order to reach experts with the necessary background, we have shared the questionnaire

with: (i) the personal connections of this student and his supervisor, (ii) industry-

experienced authors of the papers proposing meta-models, (iii) some actively used

mailing lists, (iv) engineers with necessary experience working for important companies,

(v) people with experience in software quality and its modeling in the industry by

searching the LinkedIn, and (vi) some actively used LinkedIn groups (e.g., quality

assurance, quality modeling, open source software, etc.). As indicated in Table 6.18, after

applying the abovementioned prerequisite, a total of 20 experts whose opinions to take

into account in the validation process have been identified. Then, online or face-to-face

meetings have been held with each separately. In these meetings, experts have been

provided with a two-part questionnaire to investigate the validity of the RQs given in

Table 6.1. The questionnaire has been provided to the experts before the meeting so that

they could obtain preliminary information about the subject. In the interview meetings,

 145

firstly, the development process of the OSS-QMM has been presented to the experts, as

well as the OSS-QMM itself together with the concepts, their meanings and intended use,

and the relationships between these concepts. Then, the questions in two parts have been

asked to each expert individually. In addition, before each question, experts have been

provided with the necessary information about the purpose of each question.

The Part-1 of the questionnaire has consisted of questions to validate RQ1 and RQ2 (see

Table 6.1) in terms of the comparability of evaluation results and the effectiveness of

model derivation. In Part-2, experts have assessed the practical applicability of the OSS-

QMM considering its structure and content to validate RQ3 (see Table 6.1). These parts

have consisted of some single-select multiple-choice questions (Part-1: Q1 and Q2),

multi-select multiple-choice questions (Part-1: Q1.1, Q2.1, and Q4), 10-point Likert scale

questions (Part-1: Q3) and 5-point Likert scale questions (Part 1: Q5, Q6; and Part 2: Q1,

Q12). As an example, the answers obtained after the semi-structured interview conducted

with Expert-10 are given in Appendix-5. In order to protect the confidentiality of the

participants' personal information, each expert has been assigned a different code (e.g.,

E10). In addition, the answers obtained from all experts are given in this excel sheet [197].

The techniques used to analyze the data obtained after the completion of the semi-

structured interviews together with the results obtained are described in Sections 6.2.2

and 6.2.3.

6.2.2. Part 1: Demonstrating Applicability of the OSS-QMM in Practice w.r.t

Consistency in Evaluation Results and Effectiveness in Model Derivation

In this part of the semi-structured interview with the domain experts, evidence was

gathered on the practical applicability of the OSS-QMM to answer RQ1 and RQ2 (in

terms of evaluation results comparability and model derivation effectiveness,

respectively). It is reminded that the questions prepared are given in [197]. The Part 1 of

the questionnaire consisted of six main questions. The Q1, Q2, and Q3 were aimed at

comparing the results of the case studies with the opinions of the experts and at

investigating the deficiencies in the field of OSS quality evaluation. The Q4 and Q5 were

aimed to analyze the effectiveness of the concepts of the OSS-QMM in addressing OSS

quality modeling. Finally, the Q6 was aimed to investigate the potential usefulness of a

web-based tool to automate the use of the OSS-QMM that is planned to be developed in

future studies. The findings obtained in this part of the validation are interpreted in

Section 7.

 146

In Q1, the experts were asked about their experiences using open-source ERP systems,

and in Q1.1, their experiences with three open-source ERP systems used in the case

studies. Table 6.19 (Q1) shows that 16 experts (80%) had experiences with the open-

source ERP systems. It is observed that 15 of them had experience with Apache OFBiz,

13 of them with Adempiere, and 10 of them with Compiere. These experiences could be

about using the ERP systems, modifying them according to further needs, or integrating

them into developed systems. It should also be noted that an expert might have experience

with more than one ERP system. As seen from the table, the number of experts who had

experiences with Apache OFBiz is higher than the others. This supports the results of the

case studies and shows that Apache OFBiz was used more than others because it better

met the needs.

In Q2, the experts were asked whether there was a quality model that they employed for

software quality evaluation in their companies. Here, the quality model could be a

method, framework, or technique. Table 6.19 shows that all experts had experiences in

software quality evaluations using quality models. Then, in Q2.1, they were asked the

types of software for which they used these quality models in evaluation. It should be

noted that the experts could select one or more types of software. As seen in Table 6.19,

11 of the experts used the quality models in OSS quality evaluation, 10 of them in

evaluating their developed software, 7 of them in evaluating commercial software, and 5

of them in evaluating other types of software (web services, microservices etc.). Despite

the fact that almost all of the experts used OSS (from the answer to Q1), nearly half of

them evaluated their quality using quality models (from the answer to Q2.1). The majority

of the experts, including those who used quality models, usually decided on OSS quality

based on wide acceptance rate of the products or the recommendations of their colleagues.

This situation has also been noted in many studies in the literature [17][41]. However,

75% of the experts who used quality models in software selection had problems with OSS

selection, as seen from Table 6.18. This observation confirms the SLR studies [24][30]

claiming that there is little or no adoption of OSS quality models in practice. Also, the

results of the SLR study [30] indicated that OSS quality models have moved away from

standardization and turned into individual models. That is, there is a diversity in their

structure, leading to the proliferation of individual heterogeneous OSS quality models.

This situation, in turn, has caused the standardization problem and incomparable and

 147

unreliable evaluation results obtained from different quality models for the same purpose

[39][54].

Table 6.19. The answers to Q1, Q2, and Q3 obtained in Part 1 of semi-structured

interview questionnaire (questions available in [197])

Experience in ERP systems Experience in quality models Weighting the ERP systems

Q1 Q1.1 Q2 Q2.1 Q3

Yes 16

Apache OFBiz 15

Yes 20

OSS 11 Apache OFBiz 7.75

Adempiere 13 COTS 7 Adempiere 6.36

Compiere 10 Developed by yourself 10 Compiere 5.70

No 4 - Other 5

 No - -

In Q3, experts were asked to assign weights on a 10-point Likert scale to the ERP systems

they had experience with, taking into account the answers to Q1.1. That is, if an expert

did not have any experience with an ERP system, the weights given by that expert for that

ERP system were not taken into account. Table 6.19 shows that Apache OFBiz met the

needs better than the other two ERP systems, according to the averages of the weights

obtained from the experts. As in Q1.1, this situation supports the results of the case studies

performed in Section 6.1.

Table 6.20. The answers to Q4 obtained in Part 1 of semi-structured interview

questionnaire (questions available in [197])

Concepts of

OSS-QMM

of expert

(hesitant)
%

5-point L.

scale

(mean)

Decision Concepts of OSS-QMM
of expert

(hesitant)
%

5-point L.

scale

(mean)

Decision

Q. model 15 (1) 78.9 4.15 Agree Weighting (agg: w. method) 17 (-) 85 4.4 Str. agree

Viewpoint 16 (1) 84.2 4.36 Str. agree Measures (agg: base and derived

measure, measurement function)
20 (-) 100 5.0 Str. agree

Q. requirements 20 (-) 100 5.0 Str. agree Unit 20 (-) 100 5.0 Str. agree

Information

needs
17 (-) 85 4.4 Str. agree Scale 20 (-) 100 5.0 Str. agree

Entity 15 (1) 78.9 4.15 Agree M. method (agg: manually,

automatically)
20 (-) 100 5.0 Str. agree

Q.

characteristics
20 (-) 100 5.0 Str. agree Normalize measure 16 (1) 84.2 4.36 Str. agree

Q. sub-

characteristics
20 (-) 100 5.0 Str. agree Aggregated Measure (agg: measure

aggregation method)
16 (1) 84.2 4.36 Str. agree

M. concepts 16 (-) 80 4.2 Str. agree Measurement 20 (-) 100 5.0 Str. agree

OSS aspects 15 (1) 79.8 4.15 Agree Measurement result 20 (-) 100 5.0 Str. agree

Code-based 15 (1) 79.8 4.15 Agree Evaluation (agg: evaluation

aggregation, manual evaluation)
14 (2) 77.7 4.1 Agree

Community-

based
15 (1) 79.8 4.15 Agree E. aggregation (agg: evaluation agg.

method, evaluation agg. function)
14 (2) 77.7 4.1 Agree

Impact 14 (2) 77.7 4.1 Agree Evaluation results 14 (2) 77.7 4.1 Agree

 Avg. - 87.94 4.5 Str. agree

 148

In Q4, it was aimed to analyze the extent to which the concepts used in the OSS-QMM

matched the terms of the OSS quality models according to the experts’ points of view.

The OSS quality model used for the matching process might be a quality model that the

experts used in their company; or if it was not, it might be the OSS quality model they

knew from the literature. To respond this question, each expert matched the terms of their

OSS quality models with the concepts of the OSS-QMM. In this matching process, the

experts were asked to derive the OSS quality models from the OSS-QMM. The number

of experts who matched the concepts of the OSS-QMM with the terms of the OSS quality

models is given in Table 6.20 per OSS-QMM concept. Some experts were hesitant to

match some terms in the OSS quality models to the concepts in the OSS-QMM. The

number of hesitant experts for each concept is also given in parentheses in the second

column of the table. Also, the matching percentages of the concepts (obtained without

including the opinions of the hesitant experts) are given in the table. For example, if 15

experts agreed that a concept was matched and 1 expert was hesitant, then the matching

percentage of that concept would be 78.9 %, as 15 out of 19 experts agreed on the match.

Afterwards, as shown in the fourth column of Table 6.20, matching percentages were

moved to a Likert scale of 1-5. In the moving process, 0% corresponded to 1; 25% to 2;

50% to 3; 75% to 4; and 100 % to 5 [240]. The range values were taken from the studies

[240-241] in literature to interpret the 5-point Likert scale, as shown in Table 6.21.

According to the values in the table, decisions were made for each concept in the OSS-

QMM considering the expert opinions. As a result of the average of the answers given by

the experts during the matching process, it was observed that the experts "agree" or

"strongly agree" on the inclusion of the concepts in the OSS-QMM. It should be noted

that the expert judgement of "agree" or "strongly agree" indicated that the judgement was

at an acceptable level according to Likert scale equivalent given in Table 6.21.

Table 6.21. Interpretation of 5-point Likert scale w.r.t its ranges [240-241]

 149

In Q5, the experts were asked to what extent the terms of the OSS quality model derived

from the OSS-QMM (given in Appendix-3) were compatible with the concepts of the

OSS-QMM. Experts were already familiar with the matching process of the terms as they

performed it in answering Q4. Also, this derived OSS quality model was explained to the

experts before expressing their judgments for Q5 in order to provide a stable basis for

their assessments. Then, in this question, experts were asked to rate the compatibility of

the quality model with the OSS-QMM using a 5-point Likert scale. The score given by

each expert can be accessed from [197]. The mean and median of the scores obtained

from the 20 experts for Q5 are given in Table 6.22. The range values in Table 6.21 were

used to interpret the compatibility in line with mean values of the expert opinions. As

shown in Table 6.22, the experts "strongly agree" on the compatibility between terms of

the quality model and the OSS-QMM.

Table 6.22. The answers to Q5 and Q6 obtained in Part-1 of the semi-structured

interview questionnaire (questions available in [197])

Question Description of Question Mean value of

expert opinion

Median value of

expert opinion

Decision

Q5 Compatibility of the terms of the derived QM and

the OSS-QMM

4.60 5 Strongly

agree

Q6 The degree of necessity of the tool to be developed

in the future

4.75 5 Strongly

agree

In order to automate the usage of the OSS-QMM and thus increase the likelihood of its

adoption in industry, it is planned to develop a tool that enables the derivation of standard

OSS quality models in future studies. Therefore, in Q6, the experts were asked how useful

such a tool would be for their company. Then, in this question, experts were asked to rate

the usefulness of the tool using a 5-point Likert scale. One can access the score given by

each expert from [197]. The mean and median of the scores obtained from the 20 experts

for Q6 are given in Table 6.22. The range values given in Table 6.21 were used to interpret

the usefulness of the tool in line with expert opinions. As shown in Table 6.22, the experts

"strongly agree" that the developed tool will increase the use of the OSS-QMM and its

adoption in industry.

 150

6.2.3. Part 2: Assessment of the OSS-QMM w.r.t Its Practical Applicability

In this second part of the semi-structured interview, the experts assessed the practical

applicability of the OSS-QMM considering its structure and content. During this

assessment, they took into account the outputs obtained so far (i.e., from the case studies

and then expert opinions (in Part 1)) in the validation process. In this regard, the

implementation of the case studies and their results were presented to the experts before

answering the questions in this part. The Part 2 of the questionnaire consisted of a total

of 12 questions, and a list of them is given in [197]. The answer to each question was

provided by the experts in a 5-point Likert scale. Before the experts answered the

questions, preliminary information was given to them about the content of the questions.

However, there were questions that some of the experts felt they did not had enough

experience to answer. In this case, the experts did not assess the OSS-QMM and the

answers of the experts for such questions were not taken into account. In this context, the

number of questions, the number of experts whose answers were counted per question,

the brief descriptions of the questions, the mean and median values obtained from the

expert judgements, and the interpretation of the mean values by considering Table 6.21

are given in Table 6.23. The findings obtained in this part of the validation are interpreted

in Section 7.

In Q1, the experts were asked to what extent the OSS-QMM was generic or abstract for

deriving an existing (e.g., OSMM, QualOSS) or a new OSS quality model. That is, this

question asked about the ability of the OSS-QMM to cover these quality models. To

answer this question, the experts took into account an OSS quality model that they used

in their companies or existed in literature. In other words, they took into account the

model derivation process they carried out in Q4 of the Part-1. As seen from Table 6.23,

experts "strongly agree" that the OSS-QMM was sufficiently generic or abstract. In Q2,

the experts were asked about the compatibility of the concepts of the OSS-QMM as they

were mapped to its 5-level structure, which is indicated by the color codes in Fig. 3. As

shown in Table 6.23, experts "strongly agree" that the 5-level structure and the mapping

process is compatible. In Q3, the experts were asked about the usefulness of the 3-stage

structure (i.e,. specification, measurement, evaluation) shown in Fig. 3 for understanding

and applying the OSS-QMM. As seen from Table 6.23, experts "strongly agree" that

separating the terms by their categories is useful in OSS-QMM. In Q4, the experts were

asked about the completeness of the OSS-QMM. The quality of OSS products is affected

 151

by many variables from the source code and community side, and scattered data from

different sources. The experts were asked to what extent the OSS-QMM allowed them to

obtain quality models incorporating this data according to their needs. As shown in Table

6.23, experts "strongly agree" with the capability of OSS-QMM in this regard.

Table 6.23. The answers to Q1-12 obtained in Part-2 of the semi-structured interview

questionnaire (questions available in [197])

Question # of

experts

Description of Question Mean value of

expert opinion

Median value of

expert opinion

Decision

Q1 19 Generality of OSS-QMM 4.473 5 Str. agree

Q2 19 Compatibility of the 5-level structure with the mapping

process

4.578 5 Str. agree

Q3 20 The usefulness of classification (i.e., specification,

measurement, and evaluation) of QMM-OSS concepts

4.600 5 Str. agree

Q4 17 Completeness of the OSS-QMM 4.235 4 Str. agree

Q5 18 Completeness of the QM given Appendix-3 4.222 4 Str. agree

Q6 18 The homogeneity level of QMs to be derived from OSS-

QMM

4.388 4.5 Str. agree

Q7 19 The degree of flexibility of the OSS-QMM in deriving QM 4.631 5 Str. agree

Q8 17 The degree of intervention provided by the OSS-QMM to

stakeholders in the derivation of QMs

4.529 5 Str. agree

Q9 18 The extent to which OSS-QMM can cope with

heterogeneous data of OSS products

4.222 4 Str. agree

Q10 20 Understandability of the OSS-QMM 3.700 4 Agree

Q11 20 Understandability of the derived QM given Appendix-3 3.950 4 Agree

Q12 20 The ease of deriving quality models from OSS-QMM 3.600 4 Agree

Avg. Average of all answers 4.261 4.458 Str. agree

In Q5, based on the previous question, the experts were asked about the completeness of

the OSS quality model (Appendix-3) derived from the OSS-QMM. As shown in Table

6.23, experts "strongly agree" with the completeness of the quality model. In Q6, experts

were asked about the degree of homogeneity of the structure of the OSS quality models

to be derived from the OSS-QMM considering the abstraction level of the OSS-QMM

discussed in Q1. As seen from Table 6.23, experts "strongly agree" on the homogeneity

of the quality models to be derived. In Q7, the experts were asked about the degree to

which the OSS-QMM provides flexibility in the structure or content of the derived quality

 152

models (existing or to be derived), provided that homogeneity is maintained. As shown

in Table 6.23, experts "strongly agree" that the meta-model will provide flexibility in the

derived models. In Q8, the experts were asked about the degree of intervention provided

by the OSS-QMM to stakeholders in the derivation of the quality models. As seen from

Table 6.23, experts "strongly agree" that the OSS-QMM allows stakeholders to intervene

in the measurement based evaluation process in the derived quality models.

In Q9, the experts were asked to what extent the OSS-QMM could cope with

heterogeneous data of OSS products. Accessing several types of heterogeneous

evaluation data from the code and community side is possible. Thus, in this question, the

ability of the OSS-QMM to process these complex data and perform accurate evaluations

was investigated. As shown in Table 6.23, experts "agree" on the capability of OSS-QMM

in this regard. In Q10, experts were asked about the understandability of the OSS-QMM,

considering its structure and content. That is, it was investigated to what extent an

external-party QM expert could understand the OSS-QMM without any guidance

document. As seen from Table 6.23, experts "agree" on the understandability of OSS-

QMM. In Q11, the experts were asked the same question as the previous one for the

derived quality model in Appendix-3. The purpose was to investigate the

understandability of the derived quality model to external parties. As shown in Table 6.23,

experts "agree" on the understandability of the OSS-QMM. In Q12, the experts were

asked about the difficulty of deriving quality models from the OSS-QMM. As seen from

Table 6.23, experts "agree" on the understandability of OSS-QMM.

 153

7. DISCUSSION

In this section, the answers to the RQs listed in Table 6.1 are discussed in light of the

results obtained in Section 6. As seen from the table, two validation methods were used

for each RQ. As mentioned in Section 6, the OSS-QMM should fulfill the validation

conditions for the three RQs. That is, it was necessary to obtain successful results from

the validation methods under each RQ. The following sub-sections are structured as

follows: In Section 7.1, the results of validation methods related to RQ.1 are discussed.

In this regard, it is discussed whether the results of the OSS-QMs derived from our OSS-

QMM are comparable. In Section 7.2, the results of validation methods related to RQ.2

are discussed. In this regard, the effectiveness of the OSS-QMM in deriving new and

existing OSS-QMs is discussed. In Section 7.3, the results of validation methods related

to RQ.3 are discussed. In this regard, the results of the expert assessment of the practical

applicability of the OSS-QMM are discussed. In Section 7.4, the degree of confidence in

the validation process and potential threats to the validity of our thesis are discussed. As

explained in the following sub-sections, successful results were obtained for each

validation method, and accordingly, the OSS-QMM was validated. The results of these

validation methods are grouped on the basis of RQs, and compared and discussed in the

following sub-sections.

7.1. RQ.1: Are Evaluation Results of the OSS-QMs Derived from the OSS-QMM

Comparable?

In RQ.1, it was investigated whether the results of the quality models derived from the

OSS-QMM were comparable. As seen in Fig. 6.2, multiple-embedded case studies were

designed as the validation method to answer this RQ. In this context, a new

operationalized, and two existing OSS quality models were derived from the OSS-QMM.

These quality models were applied to three real-world cases with open-source ERP

systems and real data obtained from cloud repositories. As shown in Table 7.1, the

evaluation results were obtained from each case study separately. The same OSS products

were used in the case studies to demonstrate that the evaluation results were comparable.

Although different types of measures were used in each OSS quality model and

evaluations were performed in different OSS aspects, comparable results were obtained.

In other saying, evaluations performed using an OSS quality model created results

comparable with those from the evaluation using a different OSS quality model by

 154

another person. Also, as shown in Fig. 7.1, the evaluation results for the case studies were

shown on linear utility functions, separately. Given that a>b in all figures, aside from the

comparable results, even the quality difference between Compiere and Adempiere, or

between Adempiere and Apache OFBiz was similar. This further increased the

consistency in the comparable results.

Table 7.1. Evaluation results obtained from case studies and expert opinions

 Case studies Expert option

EFFORT

[32] Products/Results

Case study-1

(New OSS-

QM)

Case study-2

(OpenBRR)

Case study-3

(OSMM)

RQ1.1

(expert

opinion)

RQ3

(expert

opinion)

Apache OFBiz 0.6997 0.6653 0.6244 15 7.75 3.97

Adempiere 0.5207 0.5364 0.5107 13 6.36 2.93

Compiere 0.3162 0.3383 0.3755 10 5.70 2.83

The comparable results are essential for the standardization and reliability of the

measurement. Standardization in OSS quality is of vital importance as a communication

vehicle for stakeholders in identifying and selecting high-quality products [39]. As

revealed in the SLR study [30], the OSS quality models have moved away from

standardization and turned into individual quality models. This has highlighted the need

for a comprehensive OSS-QMM. During the development of this OSS-QMM, a

systematic process was followed to enable the derivation of homogeneous OSS quality

models and standard measurements. In this context, a rigorous effort has been performed

to eliminate inconsistencies and terminology conflicts between the vocabularies of the

OSS-QMMs and the quality models, as detailed in our latest study [54]. An important

step has been taken towards standardization with the OSS-QMM developed as a result of

this effort, as also observed from the results of the case studies.

 155

Case study-1 Case study-2

Case study-3

Figure 7.1. Linear utility function according to the final quality score of each OSS

product for case studies 1-3

As the other validation method, expert opinion was employed to support the accuracy of

the results obtained from the case studies, as already shown in Table 6.1. In this context,

in the first part of the semi-structured interview, questions (i.e., Q1 and Q3) were asked

to the experts to confirm the results of the case studies. In this context, in Q1, the experts

were asked whether they had experience with open-source ERP systems. In Q1.1, if they

had experience, they were asked which open-source ERP systems they had experience

with. As seen from Table 6.19, 16 out of 20 experts had experience with ERP systems.

Based on the experiences of these 16 experts, the most used open Source ERP systems in

practice were identified as Apache OFBiz, followed by Adempire and then Compiere.

Therefore, it was concluded that Apache OFBiz, as the most used ERP system, was more

useful and met the needs better than the others. These results indicated that the judgments

of the experts supported the results of the case studies. Moreover, in Q3, the experts were

asked to assign weights (on a 10-point Likert scale) to the ERP systems in terms of

maintainability (i.e. 1-10, 10 indicating the highest degree of maintainability). In order

for the judgment of the experts to be taken into account, it was required that they should

have experiences with the products they weighted. As seen from Table 6.19, Apache

OFBiz got the highest weight, followed by Adempire and Compiere, respectively. These

weights also supported the results of the case studies. As a result, as shown in Table 7.1,

the results of the case studies and the judgments of the experts indicated that the OSS-

QMM enabled the derivation of OSS quality models that would produce comparable

results.

Apart from the validation methods, taking into account the OSS quality models studied

in our second SLR study [30], we analyzed the quality models validated by case studies.

 156

Among these studies, we came across an OSS quality model called EFFORT [32], which

evaluates open-source ERP systems. Within the ERP systems, Apache OFBiz, Adempiere

and Compiere had also been evaluated in terms of a number of quality characteristics,

including maintainability. The results obtained for the three open-source ERP systems in

terms of maintainability using the EFFORT quality model [32] are also given in Table

7.1. According to the results, Apache OFBiz was observed to be the best product in terms

of maintainability. It should be noted that the evaluations using this quality model were

performed independent of the OSS-QMM (i.e. the EFFORT model had not been derived

from the OSS-QMM). Nevertheless, the results obtained using this quality model were

given to demonstrate the accuracy of the results obtained by our studies.

7.2. RQ.2: Is the OSS-QMM Effective for Deriving the OSS-QMs?

The RQ.2 investigated whether the developed OSS-QMM allowed the derivation of new

OSS quality models and whether it fits the structure of existing OSS quality models. As

seen from Table 6.1, case studies and expert opinions were employed as the validation

methods for answering this RQ.

In the case study method, a multiple-embedded case design was employed, as already

shown in Fig. 6.2. In this context, one new operationalized and two existing quality

models were derived from the OSS-QMM. As provided in Appendix-6, the terms of these

models were matched with the concepts of the OSS-QMM. Since the aim was to represent

the abstraction levels in the OSS-QMM, only the determined terms belonging to the levels

of the models (i.e., characteristics, sub-characteristics, measure, etc.) were used as

examples in the matching process. That is, not all terms in each level of these models

were used in the matching. For example, maintainability is decomposed into four sub-

characteristics in the OSMM, but only one of them (i.e., integration) was used in the

matching process in the appendix. This applied to any level in the matching. In addition,

the concepts of the OSS-QMM listed in Table 6.5 (i.e., techniques) were not shown in the

matching given in Appendix-6, since these concepts enabled to perform some calculations

by using some other concepts (impact, measure, OSS aspect, etc.) matched in the

appendix. For example, the concept of weight aggregation method was not shown in the

matching, as different quality models might use different formulations or methods for this

concept. As shown in Fig. 4.4, there should be no unmatched terms left in models or meta-

models in the matching process. Accordingly, the OSS-QMM covered all the OSS quality

models used in the case studies, and there were no terms left unmatched. As a result, it

 157

was observed that the proposed OSS-QMM was effective to derive a new or existing OSS

quality model.

In the expert opinion method, the experts with experience in the field of OSS quality and

its modeling were consulted to gather more information on the effectiveness of the OSS-

QMM. As the details are given in Section 6.2.1, semi-structured interviews were

conducted with the domain experts. Within this scope, it was aimed to gather evidence

for the generality of the OSS-QMM through some questions (i.e., Q4 and Q5) in the first

part of these interviews. In Q4, the experts were asked to match the terms of the OSS-

QMM with those of the OSS quality models they used in their companies or knew from

the literature. This question is important to understand whether the OSS-QMM was found

to be generic enough to apply in practice. In this context, as seen in the last row of Table

6.20, the average of the experts' judgements was obtained as "strongly agree" about the

presence of concepts in the OSS-QMM. On the other hand, the average of the experts'

judgements was obtained as "agree" for the presence of some concepts (e.g., impact and

evaluation) in the OSS-QMM, as shown in the same table. Nevertheless, it should be

remembered that the judgement of "agree" indicates an acceptable level according to the

mean values given for the interpretation of the 5-point Likert scale in Table 6.21 [240-

241].

In the semi-structured interviews with the experts, it was investigated the reasons why the

experts were not "strongly agree" (i.e., they "agree") about the existence of these terms in

the OSS-QMM. In this regard, as seen from Table 6.20, according to the average of the

expert opinion ratings, "agree" was concluded for the existence of the "quality model"

concept in the OSS-QMM. The experts who did not use the concept of "quality model"

in the matching process explained the reason for this as using a framework or method

instead of using a quality model to evaluate OSS. These experts also declared that this

concept should be included in the OSS-QMM.

Moreover, these experts stated that the specifications were not formally expressed for

measurement because a formal quality model was not used for OSS quality in their

evaluations. In this regard, as seen in Table 6.20, according to the average value of the

expert opinion ratings, "agree" was concluded for the existence of the "entity" and

"impact" concepts in the OSS-QMM. More clearly, companies that developed

commercial off-the-shelf (COTS) software performed measurements by following formal

procedures using formal quality models to ensure product quality. However, sometimes

 158

this was not the case with the OSS products. In other words, sometimes internal

assessments were performed, ignoring formal procedures in evaluating the quality of OSS

to use or integrate into another software. Also, considering that individual OSS quality

models in companies were developed without depending on a comprehensive meta-

model, it was likely that the specifications were not formally determined. Sometimes

evaluators even chose OSS products on the recommendations of their colleagues without

using quality models. Hence, it was usually OSS users who suffered from the wrong

software selection, as analyzed in Table 6.18. In summary, some experts expressed that

the OSS quality models they used in the matching process did not include terms related

to "entity" and "impact" concepts. Nevertheless, these experts also declared that such

concepts should be included in the OSS-QMM.

Some of the OSS quality models in literature or the OSS quality models that experts used

in their companies enable to perform either "code-based" or "community-based"

measurements. Therefore, some experts did not use both of these concepts together in the

matching process, as specified in Table 6.20. That is, as seen from the table, according to

the average value of the expert opinion ratings, "agree" was concluded for the existence

of these concepts in the OSS-QMM. However, a comprehensive quality model is needed

to deal with both code-based and community-based data simultaneously [24][30]. Based

on this need, the OSS-QMM provided the opportunity to evaluate these two aspects of

OSS quality, both simultaneously and separately. The experts who did not use these

concepts together in the matching declared, however, that these concepts should be

included in the OSS-QMM. In other words, they expressed that the quality models they

used in the matching process performed either code-based or community-based

evaluation. However, as seen in Table 6.20, the majority of experts used both of these

concepts in the matching.

As seen in Fig. 5.10, OSS evaluation in the OSS-QMM is grouped into three main stages:

specification, measurement, and evaluation. The concepts belonging to the measurement

group are all about the numbers and being able to quantify the quality of OSS, whereas

the concepts belonging to the evaluation group are all about interpreting these numbers

to judge the quality of OSS. Since some experts performed result-oriented individual

measurements, they did not use the concepts belonging to the evaluation group in the

OSS-QMM after obtaining the measurement values. In other words, the quality models

they used in the matching process did not include the terms regarding the evaluation stage.

 159

Therefore, as shown in Table 6.20, according to the average value of the expert opinion

ratings, "agree" was concluded for the existence of the concepts that reside in the

evaluation stage of the OSS-QMM. However, the concepts belonging to the evaluation

group are essential in terms of revealing the consistency of the measurement, so these

concepts were included in the OSS-QMM. Accordingly, the experts who did not use these

concepts in the matching process declared that these concepts should be included in the

OSS-QMM. Also, the majority of the experts agreed on the existence of these concepts

in the OSS-QMM, as shown in Table 6.20.

As a result, experts generally "strongly agree" on the generality of the OSS-QMM.

Despite the experts "agree" (not "strongly agree") on some issues, this situation is

considered normal considering the nature of the OSS and the general perception about

the OSS as explained above. Moreover, it is satisfactory that the participants "agree" on

the subject according to the mean values obtained. It is important to note that the experts

used different OSS quality models in the matching process, and yet the OSS-QMM was

found effective. In any case, the diversity in the structure of the OSS quality models used

by the experts was the most important indicator of why some experts did not use some

terms in the matching process. Notwithstanding, the experts "agree" on average about the

existence of these concepts, and the 5-level structure of the OSS-QMM served well to

abstract and group the concepts in related levels.

In Q5, the experts were asked about the compatibility between the terms of the derived

quality model (given in Appendix-3) and the concepts of the OSS-QMM. The experts, as

the external parties, performed the matching process between the derived quality model

and the OSS-QMM, without any intervention. They were already familiar with the

matching of the terms since they previously performed it in answering Q4. At the end of

this matching, the experts indicated that they "strongly agree" on the compatibility

between the terms of the derived quality model and the concepts of the developed OSS-

QMM. Consequently, it was observed that the OSS-QMM developed was effective in

deriving a new or existing OSS quality model, as also discussed partially in the previous

paragraphs.

 160

7.3. RQ.3: Is the OSS-QMM Applicable in Practice?

In RQ.3, it was investigated whether the developed OSS-QMM was applicable in

practice. As mentioned in Table 6.1, case studies and expert opinions were employed as

the validation methods in answering this RQ.

In the case study method, a multiple-embedded case design was employed, as shown in

Fig. 6.2. In this context, the OSS-QMM was implemented in practice by deriving a new

operationalized and two existing OSS quality models. Then, evaluations were performed

to demonstrate the practical applicability of the derived quality models using real open-

source ERP systems, as detailed in Section 6.1. These case studies were conducted with

real data provided by open-source repositories. The evaluations were carried out using

the structure and content provided by the quality models in accordance with the OSS-

QMM. Therefore, the case studies indicated that the OSS-QMM could be applied in

practice on real OSS products with real data. The practical application of the OSS-QMM

and the results obtained are explained in detail in Section 6.1.

In the expert opinion method, the experts with experience in the field of OSS quality and

its modeling were consulted to gather more information on the applicability of the OSS-

QMM in practice. As the details are given in Section 6.2.2, semi-structured interviews

were conducted with the domain experts within this scope. In this context, 12 questions

were asked to the experts in the second part of the interviews. The experts were expected

to answer these questions considering the practical applicability of the OSS-QMM. In this

context, first of all, the practical application of the OSS-QMM in the case studies and the

information needed for applying the OSS-QMM were explained to the experts.

Furthermore, the experts observed the practical applicability of the OSS-QMM by

deriving their selected OSS quality models from the OSS-QMM in Part 1 of the semi-

structured interviews. In this regard, in Part 2 of the semi-structured interviews, the

experts were expected to assess the applicability of the OSS-QMM by considering the

validation process performed so far in order to answer RQ3.

As seen in the last row of Table 6.23, based on the average value of the experts'

judgements, it was observed that the experts "strongly agree" on the application of the

OSS-QMM in practice. One of the most important reasons underlying this is that the OSS-

QMM has been developed by following a systematic process. In this context, meta-

models and OSS quality models were investigated in detail by conducting SLR studies.

 161

This way, deficiencies in OSS meta-models and quality models were revealed, and effort

was spent to eliminate these deficiencies. Furthermore, during the development process

of the OSS-QMM, we studied with domain experts and obtained feedback from them on

the improvement of the OSS-QMM. In this context, subject matter experts were consulted

during the development and validation processes, as shown in Fig. 1.2. That is, the

proposed OSS-QMM was developed by consulting experts from both industry and

academia, following an iterative review-and-revise process. Thus, the development of the

OSS-QMM has been based on solid foundations, and the OSS-QMM has been improved

with continuous feedback until the final version has been obtained.

As a result, subject matter experts validated the practical applicability of the OSS-QMM

in the assessments that they performed in Part 2 of the semi-structured interview. In this

regard, the systematic and iterative development process mentioned above was an

important factor for the experts to "strongly agree" on the validity of the OSS-QMM for

practical applicability. It should be noted that the experts consulted at the development

stage of the OSS-QMM and the experts consulted at the validation stage were different

persons. Due to the nature of the OSS, its evaluation includes a variety of heterogeneous

data from both code-based and community-based aspects, making the evaluation a

challenging process [5]. At this point, considering the judgements of the experts, it was

important that the experts reached the conclusion that the OSS-QMM was complete and

it could deal with the heterogeneous data.

As shown in Table 6.23, however, the experts "agree" (i.e., not "strongly agree") on the

understandability of the developed OSS-QMM and the new OSS quality model derived

from the OSS-QMM (and given in Appendix-3). Also, they "agree" on the difficulty of

deriving a new OSS quality model from the OSS-QMM. Considering the common

opinions of the experts, the most important reason for this was that it would be difficult

for the employees who did not have software quality modeling experience to understand

the OSS-QMM and derive an OSS quality model from it. The experts stated that they

made these inferences based on the impressions that they obtained in their companies.

The experts also stated that they would agree on the understandability of the OSS-QMM

if there was a guarantee that only people with experience in this field would use it. They

also indicated that this situation would not change the fact that the applicability of the

OSS-QMM in practice was at a good level. Therefore, given the understandability of the

OSS-QMM to non-experts in this field, the next goal can be developing a web-based,

 162

open-source tool that automates the use of the OSS-QMM for deriving OSS quality

models. In addition, it is planned to develop a guidance document for using the OSS-

QMM to instantiate the OSS quality models. This way, it is planned that, even if

employees do not have sufficient software quality modeling experience, they will be able

to develop their OSS quality models and perform quality evaluations according to their

needs.

7.4. Confidence in Validity and Potential Threats

In this section, firstly, all the results obtained throughout the validation process are

provided collectively, along with the degrees of confidence they provide for validation.

Then, we discuss potential threats to the validity of our study and the actions taken to

mitigate these threats.

The degrees of confidence in the validity of the OSS-QMM, based on the empirical

evaluation results for each RQ, are given in Table 7.2. As seen from the table, case studies

were conducted to answer the three RQs asked for validating the OSS-QMM. In this

context, the confidence degree for having comparable results was determined as "very

high" (for RQ1). In the case studies, a new OSS quality model and two existing OSS

quality models were derived from the OSS-QMM (as given in Appendix-6). Considering

the matched concepts and the compatibility of the OSS-QMM with the derived OSS

quality models, the degree of confidence in validating the effectiveness of the OSS-QMM

in model derivation was determined as "very high" (for RQ2). Moreover, the successful

application of these derived OSS quality models in practice showed that the confidence

degree in validating the applicability of the OSS-QMM in practice was "very high", as

shown in Table 7.2 (regarding RQ3).

As the other validation method, the Part 1 of the expert opinion study was used to validate

RQ1 and RQ2. In this context, first, the experts evaluated the same OSS products (i.e.,

the three ERP systems) used in the case studies in order to check the accuracy of the

results obtained from the case studies. According to the opinions of the experts, the degree

of confidence in obtaining comparable results from the OSS quality models derived from

the OSS-QMM was determined as "very high" (for RQ1). In order to answer RQ2 (via

Part 1 of the expert opinion study), each expert derived an OSS quality model of his/her

concern from the OSS-QMM, and then performed a mapping between the terms of this

OSS quality model and the concepts of the OSS-QMM. Considering the values obtained

 163

as a result of these mappings by the experts (given in Table 6.20), the confidence degree

in validating the effectiveness of the OSS-QMM in deriving new OSS quality models was

determined as "very high", as shown in Table 7.2. Since the applicability of the OSS-

QMM was not validated in Part 1 of the expert opinion study (for RQ3), it is not specified

(labelled as "not applicable") in Table 7.2.

Even though Part 2 of the expert opinion study was mainly designed to validate RQ3, it

partially contained questions about validating RQ2. The degree of confidence in

validating the effectiveness of the OSS-QMM in deriving new OSS quality models was

determined as "very high" in the case studies and also Part 1 of the expert opinion study.

However, it was determined as "high" in Part 2 of the expert opinion study since the

understandability of the OSS-QMM was not at a desired level according to the expert

opinions (regarding RQ2). Moreover, considering the average values obtained as a result

of the expert opinions (as given in Table 6.23), the degree of confidence in validating the

applicability of the OSS-QMM in practice was determined as "very high" (for RQ3), as

specified in Table 7.2.

Table 7.2. Degree of confidence on the validity of the OSS-QMM with respect to

empirical evaluation results

RQ# – Motivation Case studies Expert Opinion – Part 1 Expert Opinion – Part 2

RQ.1 – Comparability of

results by OSS-QMs
Very High

(from Fig. 7.1)

Very High

(from Table 6.19)
Not applicable

RQ.2 – Effectiveness of

OSS-QMM
Very High

(from Appendix -6)

Very High

 (from Table 6.20, Table 6.22)

Partially applicable

High

(from Table 6.23)

RQ.3 – Applicability of

OSS-QMM in practice
Very High

(from Table 6.88-6.17)
Not applicable

Very High

(from Table 6.23)

Potential threats to the validity of this study can be analyzed in four main categories,

which are internal, external, construct, and conclusion validity, as adapted from Wohlin

et al. [242]. Although a systematic process was followed to develop and validate the OSS-

QMM, some potential threats might have arisen regarding validity.

Researcher bias can be considered as the main internal threat to the validity of this study.

Researchers of this study have played an important role while determining the first set of

concepts and an initial version of the relationships between these concepts. There might

be concepts that were overlooked or not used. To mitigate this threat, however, a laborious

 164

effort was spent. In this context, firstly, two separate SLR studies [30][37] were

conducted to investigate the SQMMs and the OSS quality models, respectively. The

results of these SLR studies guided the researchers in determining the concepts of the

OSS-QMM, details of which are given in Section 5.1.1. Nevertheless, the concepts

identified might still have contained subjectivity. Therefore, an iterative review-and-

revise process was followed with subject matter experts in order to validate the identified

concepts and their relationships, as detailed in Section 5.2.1 (Step 5), using the guidelines

by Kläs et al. [195] and Tanrıöver et al. [194]. Moreover, the OSS-QMM was validated

in a real-world setting (in Step 6), and the concepts and their relationships in the OSS-

QMM were revised in case of any opportunities observed during the validation process.

Throughout the validation process, experts were asked questions for various purposes

using surveys. The low quality or understandability of these questions included in these

surveys could be considered as the main threat to the construct validity in this study. To

mitigate this threat, firstly, in the SLR study [37], we analyzed the problems in proposing

meta-models and prepared questions considering to address these problems. In addition,

studies on the validation of meta-models (e.g., [195]) were examined, and questions were

prepared in line with this purpose in order to increase the quality of the questions. To

mitigate the threat of not understanding the questions by experts, online or face-to-face

semi-structured interviews were held, and necessary information was provided to the

experts on the points that were not very clear. In addition, during these interviews, it was

ensured that the experts answered each question carefully, and also, the questions matured

with the advice of the experts.

The quality of the RQs (given in Table 6.1) underlying the validation aspects and the

validation methods were important factors affecting the conclusion validity of the study.

To mitigate this threat, the fundamentals and practical uses of the SQMMs were well

explored through the SLR study [37] in order to ensure the quality of the RQs. In this

way, RQs were created to validate the intended uses of the OSS-QMM. In addition,

validation methods common in literature for validating meta-models were determined

[37]. In synthesizing the results obtained, the methods provided in the literature (given in

Table 6.21) were used without the intervention of the authors of this study.

External validity deals with the generalization of the findings of our study. Our main

concern is to develop a quality meta-model for OSS. Therefore, the OSS-QMM

developed in this study cannot be generalized beyond this context, and thus, does not

 165

guarantee accurate evaluation for other types of software (i.e., COTS). Moreover, external

validity can be strengthened by deriving other OSS quality models and using them in

further real contexts by interested researchers and/or practitioners, which might also

provide opportunities for improving the OSS-QMM in future studies.

 166

8. CONCLUSION

The motivation for this thesis has been the lack of meta-models for OSS quality and the

inconsistent terminology among the existing general-purpose SQMMs. Aside from these,

existing OSS-QMs produce incomparable and unreliable evaluation results. This is

because the dynamic and diverse nature of OSS has caused the OSS-QMs to be

heterogeneous in terms of structure and content. Therefore, there is little or no adoption

of existing OSS-QMs in practice. In this context, in this thesis, a comprehensive OSS-

QMM has been proposed to enable the derivation of OSS-QMs having homogenous

structure and terms, contribute to the standardization of OSS quality evaluation, and

increase the adoption of OSS-QMs in practice.

For this purpose, a systematic and laborious effort has been spent via the step-based meta-

model creation process, including review-and-revise iterations. In this context, in Step-1,

meta-models have been examined in detail by performing an SLR study [37], and thus

deficiencies have been discovered in this domain, and the current status of the meta-

models for OSS quality has been analyzed. Then, in Step-2, another SLR study [30] has

been performed to analyze the OSS quality models. Considering the output of this SLR,

the common structure of the tailored quality models which were proposed for OSS and

that of the basic quality models which provide partial evaluation for OSS have been

analyzed. Consequently, it has been observed that these quality models have a common

structure consisting of five levels. Then, in Step-3, inconsistencies and terminology

conflicts between international standards and proposals have been identified and analyzed

since these standards or proposals are the basis for the SQMMs. Then, the terminologies

of the SQMMs have been analyzed, and how inconsistencies and terminology conflicts

in standards or proposals are reflected in the SQMMs have been discussed. It has been

observed that the SQMMs cover more terms from ISO/IEC 15939 than the others since

other sources identify concepts for only certain application domains and purposes. The

synonyms of the terms in different SQMMs have been listed, and the terms have been

categorized according to the most used ones among their synonyms. The aggregations of

the terms under each category have also been listed. Consequently, it has been observed

that 38 cases of synonymity exist for 15 terms in the SQMMs, and this situation has

confirmed that there are inconsistencies among the terms of different SQMMs. Next, the

terms at each level of the OSS quality models and the terms of the SQMMs in each

category have been matched since quality models are assumed to be the instances of the

 167

SQMMs. As a result of all these processes, the infrastructure for developing consistent

meta-models of OSS quality has been established.

Then, in Step-4, a comprehensive OSS-QMM has been proposed by following an iterative

process to refine the OSS-QMM. Therefore, in summary, the main achievements of this

OSS-QMM are to;

 eliminate the inconsistency in terminologies of the SQMMs,

 make a matching between the concepts of the SQMMs and the terms of the OSS-

QMs,

 enable common understanding among stakeholders,

 enable the derivation of OSS-QMs having homogenous structure and terms,

 represent concepts of OSS quality more formally,

 provide the opportunity for deriving new or existing OSS-QMs that enable

comparable measurements,

 contribute to the standardization of OSS quality evaluation, which in turn will

provide an important communication vehicle to companies in interoperating, and

 provide the opportunity to increase adoption of OSS-QMs in practice.

Finally, in Step-5, the OSS-QMM developed initially has been validated by using multi-

faced methods and to obtain the final version of the OSS-QMM by review-and-revise

process applied during this validation. We have considered the outputs of the previous

SLR studies that analyzed meta-models in determining the validation techniques and,

accordingly, determined the most used methods to apply in validating the OSS-QMM.

For this purpose, three research questions (RQs) have been determined to investigate the

validity of the OSS-QMM by using case study and expert opinion methods. Each RQ has

aimed at validating the OSS-QMM from different aspects such as results comparability,

effectiveness, and applicability.

First, three case studies have been conducted to validate the following issues;

 A new OSS quality model and two existing OSS quality models have been derived

from the OSS-QMM.

 168

 These derived OSS quality models have been applied in practice to evaluate real

OSS products.

 Evaluation results obtained as a result of the practical applications of these OSS

quality models have been found as comparable.

Then, semi-structured interviews have been held with 20 domain experts. Since the main

application area of the OSS-QMM is the software industry, the opinions of software

quality experts from the industry are very important for the validity of the OSS-QMM.

To obtain relevant feedback, a questionnaire consisting of two parts has been prepared

prior to conducting the interviews. It has been aimed to gather evidence about the

applicability of the OSS-QMM with respect to evaluation results comparability and

model derivation effectiveness in Part 1; and to collect evidence for the practical

applicability of the OSS-QMM considering its structure and content in Part 2.

The feedback from the domain experts have mainly validated the following issues;

 Evaluation results from different OSS quality models derived from the OSS-

QMM have been found as comparable.

 The concepts of the OSS-QMM have matched well with the terms of the OSS

quality models used in practice.

 The generality and completeness of the OSS-QMM have been found as sufficient.

 The structure of the OSS-QMM (i.e., the 5-level structure, classification of its

concepts and their relationships) has found as appropriate.

 The OSS-QMM has provided flexibility to the users in deriving the OSS quality

models and also enabled the OSS quality models to be homogeneous.

The results of multi-faceted empirical studies have indicated that the OSS-QMM

addressed solving problems in the OSS quality evaluation and its adoption with high

degrees of confidence. Nevertheless, it cannot be claimed that the effort spent in this

thesis and the proposed OSS-QMM will solve all the problems related to consistency and

harmonization in a way that will be accepted by all parties in the OSS community.

Still, it can serve as a guide for;

 OSS quality specification and evaluation by forming the basis of discussions to

solve the problems with standardization,

 169

 evaluators who want to develop a new OSS-QM,

 evaluators who are confused about the heterogeneity of existing OSS-QMs,

 evaluators who are confused by inconsistent terminology in the existing SQMMs

or international standards,

 for meta-model developers who will propose new SQMMs or integrate consistent

concepts into the developed SQMMs.

 170

REFERENCES

[1] Androutsellis-Theotokis, S., Spinellis, D., Kechagia, M. and Gousios, G.: Open

source software: A survey from 10,000 feet. Foundations and Trends in

Technology, Information and Operations Management, 4(3-4), pp.187-347.

(2011).

[2] Miguel, J.P., Mauricio, D. and Rodríguez, G.: A review of software quality

models for the evaluation of software products. In: arXiv preprint

arXiv:1412.2977, (2014).

[3] Miloudi, C., Cheikhi, L., Abran, A., and Idri, A.: Maintenance effort estimation

for open source software: Current trends, The 31st International Workshop on

Software Measurement (IWSM), (2022).

[4] Tassone, J., Xu, S., Wang, C., Chen, J. and Du, W.: Quality Assessment of Open

Source Software: A Review. IEEE/ACIS 17th International Conference on

Computer and Information Science (ICIS) (pp. 411-416). IEEE. (2018).

[5] Adewumi, A., Misra S. and Omoragbe, N.: FOSSES: Framework for open‐

source software evaluation and selection. In: Software: Practice and

Experience 49.5, 780-812, (2019).

[6] Rossi, B., Russo, B. and Succi, G.: Adoption of free/libre open source software

in public organizations: factors of impact. Information Technology & People.

(2012).

[7] Midha, V. and Palvia, P.: Factors affecting the success of Open Source

Software. Journal of Systems and Software, 85(4), pp.895-905. (2012).

[8] Wang, Q., Zhang, W., Jiang, J. and Li, L.: A Reliability Automatic Assessment

Framework of Open Source Software Based on JIRA. In: Proceedings of the

2020 9th International Conference on Software and Computer Applications,

(2020).

[9] Jean-Christophe D., and Alexandre, S.: Comparing assessment methodologies

for free/open source software: OpenBRR and QSOS. In: International

Conference on Product Focused Software Process Improvement. Springer,

Berlin, Heidelberg, (2008).

[10] Al-Qutaish, R. E.: Quality models in software engineering literature: an

analytical and comparative study. In: Journal of American Science. 6(3): 166-

75, (2010).

[11] Laporte, C. Y., and April, A.: Software quality assurance, John Wiley and Sons,

(2018).

[12] O’Regan, G.: Introduction to software quality. Springer, (2014).

 171

[13] IEEE Std. 610.12: Standard Glossary of Software Engineering Terminology.

The Institute of Electrical and Electronics Engineers, New York, NY, USA,

(1990).

[14] ISO. ISO/IEC 14598-1: Software product evaluation - Part 1: General overview.

International Organization for Standardization, Geneva, Switzerland, (1999).

[15] Khatri, S.K. and Singh, I.: Evaluation of open source software and improving its

quality. In: 5th International Conference on Reliability, Infocom Technologies

and Optimization (ICRITO). IEEE, (2016).

[16] Azadeh A., Nazari-Shirkouhi S., Samadi H., Nazari-Shirkouhi A.: An integrated

fuzzy group decision making approach for evaluation and selection of best

simulation software packages. Int J Ind Syst Eng., 18(2):256-282, (2014).

[17] Hauge, O., Osterlie, T. and Sorensen, C.F.: An empirical study on selection of

Open Source Software-Preliminary results. In: ICSE Workshop on Emerging

Trends in Free/Libre/Open Source Software Research and Development. IEEE,

(2009).

[18] Parker K. R.: Selecting software tools for IS/IT curricula. Educ Inf Technol.,

15(4):255-275, (2010).

[19] Sung, W.J, Kim, J.H. and Rhew, S.Y.: A quality model for open source software

selection. In: Sixth International Conference on Advanced Language Processing

and Web Information Technology (ALPIT 2007). IEEE, (2007).

[20] Petrinja, E., Sillitti, A. and Succi. G.: Comparing OpenBRR, QSOS, and OMM

assessment models. In: IFIP International Conference on Open Source Systems.

Springer, Berlin, Heidelberg, (2010).

[21] ISO/IEC TR 9126, Software engineering–Product quality – Part 1,2,3. 2002-03-

15.

[22] Boehm, B. W., Brown, J. R., Lipow, M.: Quantitative evaluation of software

quality. In: Proceedings of the 2nd Int Conf on Software Eng, Oct 13, pp. 592-

605, IEEE, 1976.

[23] McCall, J.A., Richards, P. K., Walters, G.F.: Factors in Software Quality.

Volume I. Concepts and Definitions of Software Quality, Fort Belvoir, VA:

Defense Tech Info Center, 1977.

[24] Adewumi, A., Misra S. and Omoragbe, N., Crawford, B. and Soto, R.: A

systematic literature review of open source software quality assessment models.

In: SpringerPlus 5.1, 1936, (2016).

[25] Samoladas, I., Gousios G., Spinellis, D. and Stamelos, I.: The SQO-OSS quality

model: measurement based open source software evaluation. In: IFIP

international conference on open source systems. Springer, Boston, MA, (2008).

 172

[26] Adewumi, A., Misra, S. and Omoregbe, N.: A review of models for evaluating

quality in open source software." IERI Procedia 4, 88-92, (2013).

[27] Duijnhouwer, F.W., Widdows, C.: Capgemini Expert Letter Open Source

Maturity Model, Capgemini, url: tinyurl.com/yxdbvjk6, (2003).

[28] Wasserman, M.P., Chan, C.: Business Readiness Rating Project, BRR

Whitepaper RFC 1, url: tinyurl.com/y5srd5sq, (2006).

[29] Lenarduzzi, V., Taibi, D., Tosi, D., Lavazza, L and Morasca, S.: Open Source

Software Evaluation, Selection, and Adoption: a Systematic Literature Review.

In: 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA). IEEE, (2020).

[30] Yılmaz, N., and Tarhan, A.K.: Quality evaluation models or frameworks for

open source software: A systematic literature review. J Softw Evol Proc.

2022;34(6):e2458. doi:10.1002/smr.2458, (2022).

[31] Stol, K.J., and Babar, M.A.: Challenges in using open source software in product

development: a review of the literature. In: Proceedings of the 3rd international

workshop on emerging trends in free/libre/open source software research and

development, (2010).

[32] Aversano, L., and Tortorella, M.: Quality evaluation of floss projects:

Application to ERP systems. In: Information and Software Technology 55.7,

1260-1276, (2013).

[33] Ciolkowski, M., and Soto, M.: Towards a comprehensive approach for assessing

open source projects. In Software Process and Product Measurement (pp. 316-

330). Springer, Berlin, Heidelberg. (2008)

[34] Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., Lochmann, K.,

Mayr, A., Plösch, R., Seidl, A., Streit, J. and Trendowicz, A.: Operationalised

product quality models and assessment: The Quamoco approach. Information

and Software Technology, 62, pp.101-123. (2015).

[35] Stefan Wagner, Klaus Lochmann, Sebastian Winter, Andreas Goeb, Michael

Klaes, Quality models in practice: a preliminary analysis, in: Proc. 3rd

International Symposium on Empirical Software Engineering and Measurement

(ESEM’09), IEEE, 2009, pp. 464–467.

[36] Stefan Wagner, Klaus Lochmann, Sebastian Winter, Andreas Goeb, Michael

Kläs, Sabine Nunnenmacher, Software quality in practice. survey results,

Technical Report TUM-I129, Technische Universität München, 2012.

[37] Yılmaz, N., and Tarhan, A.K.: Meta-models for Software Quality and Its

Evaluation: A Systematic Literature Review. In: International Workshop on

Software Measurement and the 15th International Conference on Software

Process and Product Measurement, Mexico, (2020).

 173

[38] Nistala, P., Nori, K.V. and Reddy, R.: Software quality models: A systematic

mapping study. In 2019 IEEE/ACM International Conference on Software and

System Processes (ICSSP) (pp. 125-134). IEEE. (2019).

[39] Garcia, F., Bertoa, M.F., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M. and

Genero, M.: Towards a consistent terminology for software

measurement. Information and Software Technology, 48(8), pp.631-644.

(2006).

[40] Ramamoorthy, C.V., Prakash, A., Tsai, W.T. and Usuda, Y.: Software

engineering: Problems and perspectives. Computer, 17(10), pp.191-209. (1984).

[41] Li, J., Conradi, R., Bunse, C., Torchiano, M., Slyngstad, O.P.N. and Morisio,

M.: Development with off-the-shelf components: 10 facts. IEEE

software, 26(2), pp.80-87, (2009).

[42] Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven

Architecture Practice and Promise. Addison Wesley (2003)

[43] OMG: Model Driven Architecture (MDA). Object Management Group. (2001),

OMG document ormsc/2001-07-01.

[44] Garcia, F., Serrano, M., Cruz-Lemus, J., Ruiz, F., Piattini, M. and ALARCOS

Research Group.: Managing software process measurement: A metamodel-

based approach. Information Sciences, 177(12), pp.2570-2586, (2007).

[45] Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J.

J., Pavon, J., and Gonzalez-Perez, C.: FAML: a generic metamodel for MAS

development. IEEE Transactions on Software Engineering, 35(6), 841-863,

(2009).

[46] Othman, S. H., Beydoun, G., and Sugumaran, V.: Development and validation

of a Disaster Management Metamodel (DMM). Information Processing &

Management, 50(2), 235-271, (2014).

[47] Othman, S. H., and Beydoun, G.: Metamodelling approach to support disaster

management knowledge sharing, In: 21st Australasian Conference on

Information Systems, (2010).

[48] Al-Dhaqm, A., Razak, S., Othman, S. H., Ngadi, A., Ahmed, M. N., and Ali

Mohammed, A.: Development and validation of a database forensic metamodel

(DBFM). PloS one, 12(2), e0170793, (2017).

[49] Object Management Group (OMG), Meta Object Facility (MOF). Core

Specification Version 2.5.1. October

2019. https://www.omg.org/spec/MOF/2.5.1/PDF

[50] Henderson-Sellers, B., and Bulthuis, A.: COMMA: Sample

metamodels. JOOP, 9(7), 44-48, (1996)

https://www.omg.org/spec/MOF/2.5.1/PDF

 174

[51] Rossi, M., Ramesh, B., Lyytinen, K., & Tolvanen, J. P.: Managing evolutionary

method engineering by method rationale. Journal of the association for

information systems, 5(9), 12, (2004).

[52] Karagiannis, D. and Kühn, H.: Metamodelling platforms. In EC-Web (Vol.

2455, p. 182). (2002).

[53] Othman, S. H., and Beydoun, G.: A disaster management metamodel (DMM)

validated. In Knowledge Management and Acquisition for Smart Systems and

Services: 11th International Workshop, PKAW 2010, Daegue, Korea, August

20-September 3, Proceedings 11 (pp. 111-125). Springer Berlin Heidelberg,

(2010).

[54] Yılmaz, N., and Tarhan, A. K.: Matching terms of quality models and meta-

models: toward a unified meta-model of OSS quality. Software Quality Journal,

1-53, (2022).

[55] The Open Source Definition | Open Source Initiative. URL:

https://opensource.org/docs/osd, [Las visited: 11-Mayıs-2023].

[56] Özdaș, M. R.: Kamuda Açık Kaynak Kodlu Yazılım Kullanımı,” no. T.C

kalknma bakanlığı bilgi toplum dairesi, 2012.

[57] Yılmaz, N., and Tarhan, A.K.: A two-dimensional method for evaluating

maintainability and reliability of open source software. Journal of the Faculty of

Engineering and Architecture of Gazi University, 34(4), (2019).

[58] Çavuş, M. F., and Kurt, H. S.: Kamu kurumlarında açık kaynak kodlu

yazılımların kullanımı. Siyaset, Ekonomi ve Yönetim Araştırmaları Dergisi,

5(3), 39-49, (2017).

[59] Black Duck Software Composition Alanysis (SCA), URL:

https://www.synopsys.com/, [Las visited: 11-Mayıs-2023].

[60] Yılmaz, N., and Dinçer, K.: Açık Kaynak Yazılım Seçimi için İki Boyutlu

Değerlendirme Metodu, UYMS, (2016).

[61] GitHub’s January Report, URL: https://octoverse.github.com/, [Las visited: 11-

Mayıs-2023].

[62] The 2022 state of Open Source Report, URL:

https://www.openlogic.com/resources/2022-open-source-report, [Las visited:

11-Mayıs-2023].

[63] OpenForum Europe (ofe), URL: Open Source Study - OpenForum Europe, [Las

visited: 11-Mayıs-2023].

[64] Open Source Software Stratagey (European Commission), URL:

https://commission.europa.eu/about-european-commission/departments-and-

https://opensource.org/docs/osd
https://www.synopsys.com/
https://octoverse.github.com/
https://www.openlogic.com/resources/2022-open-source-report
https://openforumeurope.org/open-source-impact-study/
https://commission.europa.eu/about-european-commission/departments-and-executive-agencies/informatics/open-source-software-strategy_en

 175

executive-agencies/informatics/open-source-software-strategy_en, [Las visited:

11-Mayıs-2023].

[65] Open source, open standards and re-use: government action plan - GOV.UK.

URL: https://www.gov.uk/government/publications/open-source-open-

standards-and-re-usegovernment-action-plan, [Las visited: 11-Mayıs-2023].

[66] Aiven and the Open Source Community, URL: https://aiven.io/open-source,

[Las visited: 11-Mayıs-2023].

[67] Open Access Government, URL: https://www.openaccessgovernment.org/why-

the-government-is-backing-open-source-software/140839/, [Las visited: 11-

Mayıs-2023].

[68] Open Source Software Country Intelligence Report (Netherlands), URL:

https://joinup.ec.europa.eu/sites/default/files/inline-

files/OSS%20Country%20Intelligence%20Report_NL.pdf, [Las visited: 11-

Mayıs-2023].

[69] The Malaysian Public Sector Open Source Software Master Plan, URL:

https://digitallibrary.un.org/record/594324, [Las visited: 11-Mayıs-2023].

[70] Jusoh, Y., Chamili, K., Yahaya, J. H., and Pa, N. C.: The selection criteria of

open source software adoption in Malaysia. International Journal of

Advancements in Computing Technology, 4(21), 278-287, (2012).

[71] Technology Research | Gartner Inc. URL:

http://www.gartner.com/technology/home.jsp, [Las visited: 11-Mayıs-2023].

[72] Pardus. URL: http://www.pardus.org.tr/, [Las visited: 11-Mayıs-2023].

[73] Zhao, Y., Liang, R., Chen, X., & Zou, J.: Evaluation indicators for open-source

software: a review. Cybersecurity, 4(1), 1-24, (2021).

[74] Gezici, B., Özdemir, N., Yılmaz, N., Coşkun, E., Tarhan, A., and

Chouseinoglou, O.: Quality and success in open source software: A systematic

mapping. In 2019 45th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA) (pp. 363-370). IEEE, (2019).

[75] The State of Enterprise Open Source: A Red Hat report, URL:

https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-

2022, [Las visited: 11-Mayıs-2023].

[76] North Bridge. URL: Available: http://www.northbridge.com/, [Las visited: 11-

Mayıs-2023].

[77] Ellram, L. M.: Total cost of ownership. Handbuch Industrielles

Beschaffungsmanagement: Internationale Konzepte—Innovative Instrumente—

Aktuelle Praxisbeispiele, 659-671, (2002).

https://commission.europa.eu/about-european-commission/departments-and-executive-agencies/informatics/open-source-software-strategy_en
https://aiven.io/open-source
https://www.openaccessgovernment.org/why-the-government-is-backing-open-source-software/140839/
https://www.openaccessgovernment.org/why-the-government-is-backing-open-source-software/140839/
https://joinup.ec.europa.eu/sites/default/files/inline-files/OSS%20Country%20Intelligence%20Report_NL.pdf
https://joinup.ec.europa.eu/sites/default/files/inline-files/OSS%20Country%20Intelligence%20Report_NL.pdf
https://digitallibrary.un.org/record/594324
http://www.gartner.com/technology/home.jsp
http://www.pardus.org.tr/
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
http://www.northbridge.com/

 176

[78] CyberSource. URL: Linux vs. Microsoft TCO Comparison (lwn.net), [Las

visited: 11-Mayıs-2023].

[79] Thomas, S. L., and Francillon, A.: Backdoors: Definition, deniability and

detection. In Research in Attacks, Intrusions, and Defenses: 21st International

Symposium, RAID 2018, Heraklion, Crete, Greece, September 10-12, 2018,

Proceedings 21 (pp. 92-113). Springer International Publishing, (2018).

[80] Schuster, F., and Holz, T.: Towards reducing the attack surface of software

backdoors. In Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security (pp. 851-862), (2013).

[81] Rosen, L.: Open source licensing. Software Freedom and Intellectual Property

Law, (2005).

[82] Lerner, J., and Tirole, J.: The scope of open source licensing. Journal of Law,

Economics, and Organization, 21(1), 20-56, (2005).

[83] Suman, M.W. and Rohtak, M.D.U.: A comparative study of software quality

models. International Journal of Computer Science and Information

Technologies, 5(4), pp.5634-5638. (2014).

[84] Sadeghzadeh H. M., and Rashidi, H.: Software quality models: A comprehensive

review and analysis. Journal of Electrical and Computer Engineering

Innovations (JECEI), 6(1), pp.59-76. (2017).

[85] Grady, R. B.: Practical Software Metrics for Project Management and Process

Improvement. Prentice Hall, Englewood Cliffs, NJ, USA, (1992).

[86] Bertoa, M., and Vallecillo A.: Quality Attributes for COTS Components,” I+D

Computación, Vol 1, Nro 2, 128-144, (2002).

[87] Georgiadoui, E.: GEQUAMO-A Generic, Multilayered, Customizable Software

Quality model,” Software Quality Journal, 11, 4, 313-323.

DOI=10.1023/A:1025817312035, (2003).

[88] Rawashdeh, A., and Matalka, B.: A New Software Quality Model for Evaluating

COTS Components,” Journal of Computer Science 2 (4): 373-381, (2006).

[89] Orijin, A.: Method for qualification and selection of open source software

(QSOS) version 2.0, url: http://www.qsos.org/, (2006).

[90] Taibi, D., Lavazza, L., and Morasca, S..: OpenBQR: A framework for the

assessment of OSS. In: IFIP International Conference on Open Source Systems.

Springer, Boston, MA, (2007).

[91] Alfonzo, O., Domínguez, K., Rivas, L., Perez, M., Mendoza, L., and Ortega, M.:

Quality measurement model for analysis and design tools based on FLOSS. In:

https://static.lwn.net/images/pdf/cybersource-tco-study.pdf
http://www.qsos.org/

 177

19th Australian conference on software engineering, Perth, Australia,26–28,

(2008)

[92] Raffoul, E., Domínguez, K., Perez, M., Mendoza, L. E., and Griman, A. C.:

Quality model for the selection of FLOSS-based Issue tracking system. In:

Proceedings of the IASTED international conference on software engineering,

Innsbruck, Austria, (2008)

[93] Soto, M., and Ciolkowski, M.: The QualOSS open source assessment model

measuring the performance of open source communities. In: Proceedings of the

3rd international symposium on empirical software engineering and

measurement, (2009).

[94] Alvaro, A., Almeida, E. S., and Meira, S. R. L.: A Software Component Quality

Framework,” ACM SIGSOFT SEN 35, 1, 1-4, (2010).

[95] Upadhyay, N., Despande, B. M., and Agrawal, V. P.: Towards a software

component quality model. In International Conference on Computer Science

and Information Technology (pp. 398-412). Springer, Berlin, Heidelberg,

(2011).

[96] Raza, A., Capretz, L. F., and Ahmed, F.: An open source usability maturity

model (OS-UMM). In: Computers in Human Behavior 28.4, 1109-1121, (2012).

[97] Samarthyam, G., Suryanarayana, G., Sharma, T., and Gupta, S.: MIDAS: A

Design Quality Assessment Method for Industrial Software, Software

Engineering in Practice, San Francisco, CA, USA, pp 911-920, (2013).

[98] Sarrab, M., and Rehman, O. M. H.: Empirical study of open source software

selection for adoption, based on software quality characteristics. In: Advances

in Engineering Software 69, 1-11, (2014).

[99] Kuwata, Y., Takeda, K., and Miura, H.: A study on maturity model of open

source software community to estimate the quality of products. In: Procedia

Computer Science 35, 1711-1717, (2014).

[100] Sohn H., Lee M.G., Seong B.M., Kim J.B.: Quality evaluation criteria based on

open source mobile HTML5 UI framework for development of cross-platform.

In: International Journal of Software Engineering and Its Applications 9.6, 1-12,

(2015).

[101] Wasserman, A. I., Guo, X., McMillian, B., Qian, K., Wei, M. Y., and Xu, Q.:

OSSpal: finding and evaluating open source software. In: IFIP International

Conference on Open Source Systems. Springer, Cham, (2017).

[102] Haaland, K., Groven, A.K. and Regnesentral, N.: Free/libre open source quality

models-a comparison between two approaches. In: 4th FLOS International

Workshop on Free/Libre/Open Source Software, (2010).

 178

[103] Russo, B. and Succi, G.: A cost model of open source software

adoption. International Journal of Open Source Software and Processes

(IJOSSP), 1(3), pp.60-82, (2009).

[104] Silic, M. and Back, A.: The influence of risk factors in decision-making process

for open source software adoption. International Journal of Information

Technology & Decision Making, 15(01), pp.151-185, (2016).

[105] Heili, J. and Assar, S.: An empirical enquiry into the adoption of Open Source

Software by individual users in France. In IADIS 2009: International

Conference Information Systems, February 25-27, Barcelona, Spain, (2009).

[106] Cotugno, F.R. and Messina, A.: Adapting scrum to the Italian army: methods

and (open) tools. In IFIP International Conference on Open Source Systems (pp.

61-69). Springer, Berlin, Heidelberg, (2014).

[107] Del Bianco, V., Lavazza, L., Morasca, S., and Taibi, D.: Quality of open source

software: The QualiPSo Trustworthiness Model. In: IFIP International

Conference on Open Source Systems. Springer, Berlin, Heidelberg, (2009).

[108] Eghan, E. E., Alqahtani, S.S., Forbes, C. and Rilling, J.: API trustworthiness: an

ontological approach for software library adoption. In: Software Quality

Journal 27.3, 969-1014, (2019).

[109] Mens, T., Doctors, L., Habra, N., Vanderose, B. and Kamseu, F.: Qualgen:

Modeling and analysing the quality of evolving software systems. In: 15th

European Conference on Software Maintenance and Reengineering. IEEE,

(2011).

[110] Hmood, A., Keivanloo, I., and Rilling, J.: SE-EQUAM-an evolvable quality

metamodel. In 2012 IEEE 36th Annual Computer Software and Applications

Conference Workshops (pp. 334-339), IEEE, (2012).

[111] Vanderose, B., Habra, N., & Kamseu, F. (2010). Towards a model-centric

quality assessment. In Proceedings of the 20th International Workshop on

Software Measurement (IWSM 2010): Conference on Software Process and

Product Measurement (Stuttgart Nov 2010).

[112] Czarnacka, C. B.: The ISO/IEC Standards for the Software Processes and

Products Measurement. (pp. 187-200). (2009).

[113] ISO/IEC 14598, Information Technology, Software Product Evaluation: Process

for Developers. Software Engineering. 1999

[114] ISO/IEC 15939: Software Engineering – Software Measurement Process,

Second edition, 2007.

[115] ISO, International Standard ISO VIM, International Vocabulary of Basic and

General Terms in Metrology, International Standards Organization, Geneva,

Switzerland, second edition, 1993.

 179

[116] IEEE Standard for a Software Quality Metrics Methodology, in IEEE Std 1061-

1998, vol., no., pp.i-, 31 Dec. 1998.

[117] IEEE 610.12-1990 - IEEE Standard Glossary of Software Engineering

Terminology

[118] Kitchenham, B., Hughes, R.T., Linkman, S.G.: Modeling software measurement

data, IEEE Transactions on Software Engineering 27 (9), 788–804. (2001).

[119] L. Briand, S. Morasca, V. Basili, An operational process for goal driven

definition of measures, IEEE Transactions on Software Engineering 28 (12),

1106–1125, (2002).

[120] Kim, H.M.: Representing and Reasoning about Quality using Enterprise Models,

PhD thesis, Dept. Mechanical and Industrial Engineering, University of Toronto,

Canada, 1999.

[121] Van Solingen, R., Basili, V., Caldiera, G. and Rombach, H.D.: Goal question

metric (GQM) approach. Encyclopedia of software engineering. (2002).

[122] Software Engineering Institute. CMMI for Development, Version 1.3, Technical

Report CMU/SEI-2010-TR-033, (2010).

[123] ISO/IEC. ISO/IEC 12207: System and software engineering – Software life-

cycle processes, Second edition, 2008.

[124] ISO/IEC 15504-1, Information Technology – Process Assessment – Concepts

and Vocabulary, 2004.

[125] ISO/IEC 14143-6:2012 Information technology, Software measurement,

Functional size measurement

[126] ISO/IEC 19761, Software Engineering COSMIC-FFP, A functional size

measurement method. International Organization for Standardization ISO,

Geneva, (2002).

[127] Benyon, D., Information and Data Modelling, second edition, McGraw-Hill,

Wokingham, (1997).

[128] Sprinkle, J., Rumpe, B., Vangheluwe, H., and Karsai, G.: Metamodelling: State

of the Art and Research Challenges. In Model-Based Engineering of Embedded

Real-Time Systems: International Dagstuhl Workshop, Dagstuhl Castle,

Germany, November 4-9, 2007. Revised Selected Papers (pp. 57-76), Springer

Berlin Heidelberg, (2010).

[129] Stachowiak, H., Allgemeine Modelltheorie. Springer-Verlag, Wien and New

York, (1973).

[130] Seidewitz, E., What Models Mean, IEEE Computer Society, (2003).

 180

[131] Kurpjuweit, S., and Winter, R.: based Meta Model Engineering. In EMISA (Vol.

143, p. 2007), (2007).

[132] Guizzardi, G.: Conceptualizations, Modeling Languages, and (Meta) Models.

In Databases and Information Systems IV: Selected Papers from the Seventh

International Baltic Conference, DB&IS'2006 (Vol. 155, p. 18). IOS Press,

(2007).

[133] Kleppe, A. G., Warmer, J. B., and Bast, W.: MDA explained: the model driven

architecture: practice and promise. Addison-Wesley Professional, (2003).

[134] Olivé, A.: Conceptual modeling of information systems. Springer Science &

Business Media, (2007).

[135] Object Management Group (OMG), URL: https://www.omg.org/, [Las visited:

11-Mayıs-2023].

[136] Soley, R. M., Stone, C. M., Object Management Architecture Guide, Revision

3.0, 1995

[137] Overbeek, J. F.: Meta Object Facility (MOF): investigation of the state of the

art (Master's thesis, University of Twente), (2006).

[138] Kitchenham, B. and Charters, S.: Guidelines for performing systematic literature

reviews in software. In: Engineering Technical Report EBSE-2007-01, (2007).

[139] Wohlin, C.: Guidelines for Snowballing in Systematic Literature Studies and a

Replication in Software Engineering. In International Conference on Evaluation

and Assessment in Software Engineering, ser. EASE ’14, pp. 38:1–38:10,

(2014).

[140] Kitchenham, B. and Brereton, O.: A systematic review of systematic review

process research in software engineering. In: Information & Software

Technology, vol. 55, no. 12, pp. 2049–2075, (2013).

[141] Keele,S.: Guidelines for performing Systematic Literature Reviews in Software

Engineering, Version 2.3, EBSE-2007-01.

[142] Yilmaz, N., and Tarhan, A.K.: Data extraction sheet of SLR 1, URL:

https://tinyurl.com/ybz2ybky

[143] Burgués, X., Franch, X., Ribó, J.M.: A MOF-compliant approach to software

quality modeling. In: International Conference on Conceptual Modeling, Oct 24,

pp. 176-191, Springer, Berlin, Heidelberg, 2005.

[144] Wagner, S., Lochmann, K., Heinemann, L., Kläs, M., Trendowicz, A., Plösch,

R., Seidi, A., Goeb, A., Streit, J.: The quamoco product quality modelling and

assessment approach. In: 34th International Conference on Software

Engineering, pp. 1133-1142, IEEE, 2012.

https://www.omg.org/

 181

[145] Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., and Girard, J. F.: An

activity-based quality model for maintainability. In 2007 IEEE International

Conference on Software Maintenance (pp. 184-193), IEEE, (2007).

[146] Casola, V., Fasolino, A. R., Mazzocca, N., and Tramontana, P.: An ahp-based

framework for quality and security evaluation. In 2009 International Conference

on Computational Science and Engineering (Vol. 3, pp. 405-411), IEEE, (2009).

[147] Cachero, C., Calero, C., Poels, G.: Metamodeling the quality of the web

development process’ intermediate artifacts, In: International Conference on

Web Engineering, pp. 74-89, Springer, Berlin, Heidelberg, Jul 16, 2007.

[148] Yilmaz, N., and Tarhan, A.K.: Data extraction sheet of SLR 2, URL:

tinyurl.com/yz368ubg

[149] Adewumi, A., Omoregbe, N., Misra, S. and Fernandez, L.: Quantitative quality

model for evaluating open source web applications: case study of repository

software. In IEEE 16th International Conference on Computational Science and

Engineering (pp. 1207-1213), (2013).

[150] Tawsopar, K. and Mekhabunchakij, K.: An evaluation of open source e-learning

systems incorporated with OSMM. In Proceedings of the 6th International

Conference on e-Business, Bangkok, Thailand, (2007).

[151] Akbari, M. and Peikar, S.R.H.: Evaluation of free/open source software using

OSMM model case study: WebGIS and spatial database. Advances in Computer

Science: an International Journal, 3(5), pp.34-43, (2014).

[152] Zarouk, M.Y., Restivo, F. and Khaldi, M.: Student-Centered Learning

Environment for Self-Regulated Project-Based Learning in Higher Education: A

Qualification/Selection Study. Learning through Inquiry in Higher Education:

Current Research and Future Challenges (2018).

[153] Laaziri, M., Benmoussa, K., Khoulji, S. and Kerkeb, M.L.: A Comparative study

of PHP frameworks performance. Procedia Manufacturing, 32, pp.864-871,

(2019).

[154] Wasserman, T. and Das, A.: Using FLOSSmole data in determining business

readiness ratings, In: Workshop on public data about software development.

(2007).

[155] Syahlie, K., Eng, K.I., Lim, C. and Galinium, M.: Hypervisors assessment in

education industry: Using OpenBRR methodology. In Proceedings of

International Conference on Information, Communication Technology and

System (ICTS) 2014 (pp. 303-308), (2014).

[156] Marinheiro, A. and Bernardino, J.: Openbrr evaluation of an open source bi suite.

In Proceedings of the international c* conference on computer science and

software engineering (pp. 134-135), (2013).

 182

[157] Gousios, G., Karakoidas, V., Stroggylos, K., Louridas, p., Vlachos, V., and

Spinellis, D.: Software Quality Assessment of Open Source Software, In: 11th

Panhellenic Conference in Informatics, (2007).

[158] Gousios, G. and Spinellis, D.: Alitheia core: An extensible software quality

monitoring platform. In IEEE 31st International Conference on Software

Engineering (pp. 579-582), (2009).

[159] Gousios, G. and Spinellis, D.: A platform for software engineering research.

In 6th IEEE International Working Conference on Mining Software

Repositories (pp. 31-40), (2009).

[160] Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P., Adams, P.J., Samoladas,

I. and Stamelos, I.: Evaluating the quality of open source software. Electronic

Notes in Theoretical Computer Science, 233, pp.5-28, (2009).

[161] Taibi, D., Del Bianco, V., Dalle Carbonare, D., Lavazza, L. and Morasca, S.:

Towards the evaluation of OSS trustworthiness: Lessons learned from the

observation of relevant OSS projects. In IFIP International Conference on Open

Source Systems (pp. 389-395), (2008).

[162] Xu, H., Wang, B. and Zhang, H.: Research on the Experimental Framework of

OpenSource Maturity Model. In International Conference on Computational

Intelligence and Software Engineering (pp. 1-4). IEEE, (2010).

[163] Petrinja, E. and Succi, G.: Assessing the open source development processes

using OMM. In: Advances in Software Engineering, (2012).

[164] Malanga, K.N.: Evaluation of Open Source Software with QualiPSO OMM: a

case for Bungeni and AT4AM for All, In: Free and Open Source Software

Conference (2015).

[165] Soto, M. and Ciolkowski, M.: The QualOSS process evaluation: initial

experiences with assessing open source processes. In European Conference on

Software Process Improvement (pp. 105-116). Springer, Berlin, Heidelberg,

(2009).

[166] Majchrowski, A. and Deprez, J.C.: An operational approach for selecting open

source components in a software development project. In European Conference

on Software Process Improvement (pp. 176-188). Springer, Berlin, Heidelberg,

(2008).

[167] Deprez, J.C., Monfils, F.F., Ciolkowski, M. and Soto, M.: Defining software

evolvability from a free/open-source software. In Third International IEEE

Workshop on Software Evolvability 2007 (pp. 29-35), (2007).

[168] Izquierdo-Cortazar, D., Gonzalez-Barahona, J.M., Duenas, S. and Robles, G.:

Towards automated quality models for software development communities: The

 183

QualOSS and FLOSSMetrics case. In Seventh International Conference on the

Quality of Information and Communications Technology (pp. 364-369), (2010).

[169] Izquierdo-Cortazar, D., González-Barahona, J.M., Robles, G., Deprez, J.C. and

Auvray, V.: Floss communities: Analyzing evolvability and robustness from an

industrial perspective. In IFIP International Conference on Open Source

Systems (pp. 336-341), (2010).

[170] Aversano, L., Pennino, I. and Tortorella, M.: Evaluating the Quality of

Free/Open Source Projects. In: ENASE (pp. 186-191), (2010).

[171] Aversano, L. and Tortorella, M.: Evaluating the quality of free/Open source

systems: A case study. In: International Conference on Enterprise Information

Systems (pp. 119-134). Springer, Berlin, Heidelberg, (2010).

[172] Aversano, L., Guardabascio, D. and Tortorella, M.: Analysing the Quality

Evolution of Open Source Software Projects. In: International Conference on

Software Quality (pp. 117-129). Springer, Cham, (2017).

[173] Aversano, L. and Tortorella, M.: Applying EFFORT for evaluating CRM open

source systems. In: International Conference on Product Focused Software

Process Improvement (pp. 202-216). Springer, Berlin, Heidelberg, (2011).

[174] Aversano, L., Pennino, I. and Tortorella, M.: Evaluating the Quality of

Free/Open Source ERP Systems. In: ICEIS (1) (pp. 75-83), (2010).

[175] Leite, N., Pedrosa, I. and Bernardino, J.: Open Source Business Intelligence

Platforms' Assessment using OSSpal Methodology. In ICETE (1) (pp. 356-362),

(2018).

[176] Marques, J.F. and Bernardino, J.: Evaluation of Asana, Odoo, and ProjectLibre

Project Management Tools using the OSSpal Methodology. In: KEOD (pp. 397-

403), (2019).

[177] Calçada, A. and Bernardino, J.: Evaluation of Couchbase, CouchDB and

MongoDB using OSSpal. In: KDIR (pp. 427-433), (2019).

[178] Cruz, S. and Bernardino, J.: Project Management Tools Assessment with

OSSpal. In: KEOD (pp. 390-396), (2019).

[179] De Paula, H.C. and Bernardino, J.: An Application of OSSpal for the Assessment

of Open Source Project Management Tools. In: WEBIST (pp. 411-417), (2019).

[180] Poernomo, I.: The meta-object facility typed. In Proceedings of the 2006 ACM

symposium on Applied computing (pp. 1845-1849), (2006).

[181] Yilmaz,. N, and Kolukısa Tarhan, A.: Definition of the terminologies in the

SQMM [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6367596 (2022).

https://doi.org/10.5281/zenodo.6367596

 184

[182] Zahoor, A., Mehboob, K. and Natha, S.: Comparison of open source maturity

models. In: Procedia computer science 111, 348-354, (2017).

[183] Stol, K.J., and Babar, M.A.: "A comparison framework for open source software

evaluation methods”, In: International Conference on Open Source Systems.

Springer, Berlin, Heidelberg, (2010).

[184] Wagner, S.: Cost-Optimization of analytical software quality assurance: models,

data, case studies, VDM Verlag, (2008).

[185] Dromey, R. G.: A model for software product quality, IEEE Transactions on

Software Engineering, 21(2): 146-162, 1995.

[186] Al-Badareen, A.B., Selamat, M.H., Jabar, M.A., Din, J. and Turaev, S.: Software

quality models: A comparative study. In International Conference on Software

Engineering and Computer Systems (pp. 46-55). Springer, Berlin, Heidelberg.

2011.

[187] Yan, M., Xia, X., Zhang, X., Xu, L. and Yang, D.: A systematic mapping study

of quality assessment models for software products. In 2017 International

Conference on Software Analysis, Testing and Evolution (SATE) (pp. 63-71).

IEEE. (2017).

[188] Deissenboeck, F., Juergens, E., Lochmann, K. and Wagner, S.: Software quality

models: Purposes, usage scenarios and requirements. In 2009 ICSE workshop

on software quality (pp. 9-14). IEEE. (2009).

[189] Kitchenham, B. and Pfleeger, S.L.: Software quality: the elusive target [special

issues section]. IEEE software, 13(1), pp.12-21. 1996.

[190] Siemens company, website url: https://www.siemens.com/global/en.html

[191] Pinter, C. C.: A book of abstract algebra. Courier Corporation, (2010).

[192] ISO/IEC 25020:2019 Systems and software engineering, Systems and software

Quality Requirements and Evaluation (SQuaRE), Quality measurement

framework

[193] García, F., Ruiz, F., Calero, C., Bertoa, M. F., Vallecillo, A., Mora, B., &

Piattini, M. (2009). Effective use of ontologies in software measurement. The

Knowledge Engineering Review, 24(1), 23-40.

[194] Tanrıöver, Ö. Ö., and Bilgen, S.: A framework for reviewing domain specific

conceptual models. Computer Standards & Interfaces, 33(5), 448-464, (2011).

[195] Kläs, M., Lampasona, C., Nunnenmacher, S., Wagner, S., Herrmannsdörfer, M.,

and Lochmann, K.: How to evaluate meta-models for software quality.

In Proceedings of the 20th International Workshop on Software Measurement,

(2010).

https://www.siemens.com/global/en.html

 185

[196] Kitchenham, B., Pfleeger, S. L., & Fenton, N. (1995). Towards a framework for

software measurement validation. IEEE Transactions on software

Engineering, 21(12), 929-944

[197] List of questions and expert opinion (Step-5), URL:

https://tinyurl.com/2ow7ayua

[198] Flyvbjerg, B. (2006). Five misunderstandings about case-study

research. Qualitative inquiry, 12(2), 219-245

[199] Gerring, J. (2016). Case study research: Principles and practices. Cambridge

university press

[200] Feagin, J. R., Orum, A. M., & Sjoberg, G. (Eds.). (1991). A case for the case

study. UNC Press Books.

[201] Yin, R. K.:The case study anthology. Sage. (2004).

[202] Wang, S., & Wang, H. (2014). A Survey of Open Source Enterprise Resource

Planning (ERP) Systems. International Journal of Business & Information, 9(1).

[203] Fougatsaro, V. (2009). A study of open source ERP systems

[204] Carvalho, R. A. D. (2006). Issues on evaluating free/open source ERP systems.

In Research and practical issues of enterprise information systems (pp. 667-

675). Springer, Boston, MA

[205] Kim, H., & Boldyreff, C. (2005). Open source ERP for SMEs.

[206] ISO/IEC 25010.: Software Engineering: Software Product Quality

Requirements and Evaluation (SQuaRE) Quality Model and guide. International

Organization for Standardization, Geneva, Switzerland, (2008).

[207] Al-Kilidar, H., Cox, K. and Kitchenham, B.: The use and usefulness of the

ISO/IEC 9126 quality standard. In: International Symposium on Empirical

Software Engineering, IEEE, (2005).

[208] Ardito, L., Coppola, R., Barbato, L., & Verga, D. (2020). A tool-based

perspective on software code maintainability metrics: a systematic literature

review. Scientific Programming, 2020.

[209] Bakar, A. D., Sultan, A. B. M., Zulzalil, H., & Din, J. (2012). Review on

‘Maintainability’Metrics in Open Source Software.

[210] Chawla, M. K., & Chhabra, I. (2015, October). Sqmma: Software quality model

for maintainability analysis. In Proceedings of the 8th Annual ACM India

Conference (pp. 9-17).

 186

[211] Dagpinar, M., & Jahnke, J. H. (2003, November). Predicting maintainability

with object-oriented metrics-an empirical comparison. In 10th Working

Conference on Reverse Engineering, 2003. WCRE 2003. Proceedings. (pp. 155-

155). IEEE Computer Society.

[212] Dubey, S. K., & Rana, A. (2011). Assessment of maintainability metrics for

object-oriented software system. ACM SIGSOFT Software Engineering

Notes, 36(5), 1-7.

[213] M. Hanefi Calp, N. Arici, B. Enstitüsü, G. Üniversitesi, and T. Ankara, “Nesne

Yönelimli Tasarım Metrikleri ve Kalite Özellikleriyle İlişkisi,” Politek. Derg. J.

Polytech. Cilt Digit. Object Identifier, vol. 14141, no.10, pp. 9–14, 2011.

[214] F. B. U. Erdemir, U. Tekin, “Nesneye Dayalı Yazılım Metrikleri ve Yazılım

Kalitesi,” Yazılım Kalitesi ve Yazılım Geliştirme Araçları Sempozyumu, 2008.

[215] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented

Design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.

[216] Stebbins, R. A.: Exploratory research in the social sciences (Vol. 48). Sage,

(2001)

[217] Yilmaz, N.: List of community-based measures and their descriptions. Zenodo.

https://doi.org/10.5281/zenodo.8008179

[218] Triantaphyllou, E.: Multi-criteria decision making methods. In: Multi-criteria

decision making methods: A comparative study. Springer, Boston, MA, 5-21,

(2000).

[219] Hasnain, S., Ali, M. K., Akhter, J., Ahmed, B., & Abbas, N. (2020). Selection

of an industrial boiler for a soda-ash production plant using analytical hierarchy

process and TOPSIS approaches. Case Studies in Thermal Engineering, 19,

100636.

[220] Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., &

Abdulnabi, M. (2015). Evaluation and selection of open-source EMR software

packages based on integrated AHP and TOPSIS. Journal of biomedical

informatics, 53, 390-404.

[221] Dweiri, F., Kumar, S., Khan, S. A., and Jain, V.: Designing an integrated AHP

based decision support system for supplier selection in automotive industry.

Expert Systems with Applications, 62, 273-283, (2016).

[222] Caputo, A. C., Pelagagge, P. M., and Salini, P.: AHP-based methodology for

selecting safety devices of industrial machinery. Safety science, 53, 202-218,

(2013).

 187

[223] Saaty, T. L., and Sagir, M.: Ranking countries more reliably in the summer

olympics. International Journal of the Analytic Hierarchy Process, 7(3), 589-

610, (2015).

[224] Deshamukhya, T., and Ray, A.: Selection of cutting fluid for green

manufacturing using analytical hierarchy process (AHP): a case study.

International Journal of Mechanical Engineering and Robotics Research, 3(1),

173-182, (2014).

[225] Khashei-Siuki, A., & Sharifan, H. (2020). Comparison of AHP and FAHP

methods in determining suitable areas for drinking water harvesting in Birjand

aquifer. Iran. Groundwater for Sustainable Development, 10, 100328

[226] Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Application

of an integrated multi-criteria decision making AHP-TOPSIS methodology for

ETL software selection. SpringerPlus, 5(1), 1-17.

[227] Saaty TL. The analytic hierarchy process: planning, priority setting and resource

allocation. New York: McGraw-Hill; (1980).

[228] Saaty, T. L.: Decision making with the analytic hierarchy process. International

journal of services sciences, 1(1), 83-98, (2008).

[229] Işıklar, G., and Büyüközkan, G.: Using a multi-criteria decision making

approach to evaluate mobile phone alternatives. Computer Standards &

Interfaces, 29(2), 265-274, (2007).

[230] Hwang CL, Yoon K. Multiple attribute decision making: methods and

applications. New York: Springer-Verlag; 1981.

[231] Yilmaz, N., and Kolukısa Tarhan, A.: Supplementary document of the thesis.

Zenodo. https://doi.org/10.5281/zenodo.7986369 (2023).

[232] Online URL: https://plugins.jetbrains.com/plugin/93-metricsreloaded

[233] Online URL: https://plugins.jetbrains.com/plugin/12159-codemetrics

[234] D. Spinellis and M. Jureczko.(May 2011). Metric Description [Online]

Available: http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/

[235] Scitools | Build Notes. URL: https://scitools.com/buildnotes/

[236] Goeb, A. (2013). A Meta Model for Software Architecture Conformance and

Quality Assessment. Electronic Communications of the EASST, 60

[237] Newcomer, K. E., Hatry, H. P., & Wholey, J. S. (2015). Conducting semi-

structured interviews. Handbook of practical program evaluation, 492, 492.

[238] Molléri, J. S., Petersen, K., and Mendes, E.: Survey guidelines in software

engineering: An annotated review. In Proceedings of the 10th ACM/IEEE

https://doi.org/10.5281/zenodo.7986369
https://plugins.jetbrains.com/plugin/93-metricsreloaded
https://plugins.jetbrains.com/plugin/12159-codemetrics
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
https://scitools.com/buildnotes/

 188

international symposium on empirical software engineering and

measurement (pp. 1-6), (2016).

[239] Jotform, URL: https://www.jotform.com/, [Las visited: 11-Mayıs-2023].

[240] Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert scale: Explored and

explained. British journal of applied science & technology, 7(4), 396.

[241] Salem, I. E. B. (2015). Transformational leadership: Relationship to job stress

and job burnout in five-star hotels. Tourism and Hospitality Research, 15(4),

240-253

[242] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B.,Wesslén, A.:

Experimentation in software engineering: An introduction. Springer, (2012).

https://www.jotform.com/

 189

APPENDIX

APPENDIX-1 – List of Primary Studies Included in SLR Study [30]

R1 Duijnhouwer, F.W., Widdows, C.: Capgemini Expert Letter Open Source Maturity Model, URL:

tinyurl.com/yxdbvjk6, Capgemini, (2003)

R2 Polancic, G., Horvat R.V., and Rozman, T..: Comparative assessment of open source software

using easy accessible data. In: 26th International Conference on Information Technology

Interfaces, IEEE, (2004).

R3 Koponen, T.: Evaluation framework for open source software maintenance. In: International

Conference on Software Engineering Advances (ICSEA'06), IEEE, (2006).

R4 Semeteys, R.: Method for Qualification and Selection of Open Source software (QSOS), version

1.6." URL: tinyurl.com/y2phllex, (2006).

R5 Wasserman, M.P., Chan, C.: Business Readiness Rating Project, BRR Whitepaper RFC 1, URL:

tinyurl.com/y5srd5sq, (2006).

R6 Sung, W.J, Kim, J.H. and Rhew, S.Y.: A quality model for open source software selection. In:

Sixth International Conference on Advanced Language Processing and Web Information

Technology. IEEE, (2007).

R7 Taibi, D., Lavazza, L., and Morasca, S..: OpenBQR: A framework for the assessment of OSS. In:

IFIP International Conference on Open Source Systems. Springer, Boston, MA, (2007).

R8 Raffoul, E., Domínguez, K., Perez, M., Mendoza, L. E. and Griman, A. C.: Quality model for the

selection of FLOSS-based Issue tracking system. In: Proceedings of the IASTED international

conference on software engineering, Innsbruck, Austria. Vol. 12. (2008).

R9 Samoladas, I., Gousios G., Spinellis, D. and Stamelos, I.: The SQO-OSS quality model:

measurement based open source software evaluation. In: IFIP international conference on open

source systems. Springer, Boston, MA, (2008).

R10 Ciolkowski, M., and Soto, M.: Towards a comprehensive approach for assessing open source

projects. In: Software Process and Product Measurement. Springer, Berlin, Heidelberg, 316-330,

(2008).

R11 Alfonzo, O., Domínguez, K., Rivas, L., Pérez, M., Mendoza, L. and Ortega, M.: Quality

measurement model for analysis and design tools based on FLOSS. In 19th Australian Conference

on Software Engineering, (pp. 258-268), IEEE, (2008)

R12 Petrinja, E., Nambakam, R., and Sillitti, A.: Introducing the opensource maturity model. In: ICSE

Workshop on Emerging Trends in Free/Libre/Open Source Software Research and Development.

IEEE, (2009).

R13 Del Bianco, V., Lavazza, L., Morasca, S., and Taibi, D.: Quality of open source software: The

QualiPSo Trustworthiness Model. In: IFIP International Conference on Open Source Systems.

Springer, Berlin, Heidelberg, (2009).

R14 Soto, M., and Ciolkowski, M.: The QualOSS open source assessment model measuring the

performance of open source communities. In: 3rd International Symposium on Empirical

Software Engineering and Measurement. IEEE, (2009).

R15 Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., and Tosi, D.: The QualiSPo approach to OSS

product quality evaluation. In: Proceedings of the 3rd International Workshop on Emerging

Trends in Free/Libre/Open Source Software Research and Development. (2010).

R16 Müller, T.: How to choose a free and open source integrated library system. In: OCLC Systems

& Services: International digital library perspectives, (2011).

R17 Chirila, C. B., Juratoni, D., Tudor, D., and Cretu, V.: Towards a software quality assessment

model based on open-source statical code analyzers. In: 6th IEEE International Symposium on

Applied Computational Intelligence and Informatics (SACI). IEEE, (2011).

 190

R18 Lee, W., Lee, J.K. and Baik, J.: Software reliability prediction for open source software adoption

systems based on early lifecycle measurements. In 35th Annual Computer Software and

Applications Conference (pp. 366-371). IEEE. (2011)

R19 Lavazza, L., Morasca, S., Taibi, D. and Tosi, D.: OP2A: how to improve the quality of the web

portal of open source software products. In International Conference on Web Information

Systems and Technologies (pp. 149-162). Springer, Berlin, Heidelberg. (2011)

R20 Raza, A., Capretz, L. F., and Ahmed, F.: An open source usability maturity model (OS-UMM).

In: Computers in Human Behavior 28.4, 1109-1121, (2012).

R21 Adewumi, A., Omoregbe, N., Misra, S., and Fernandez, L.: Quantitative quality model for

evaluating open source web applications: case study of repository software. In: IEEE 16th

International Conference on Computational Science and Engineering. IEEE, (2013).

R22 Aversano, L., and Tortorella, M.: Quality evaluation of floss projects: Application to ERP

systems. In: Information and Software Technology 55.7, 1260-1276, (2013).

R23 Sarrab, M., and Rehman, O. M. H.: Empirical study of open source software selection for

adoption, based on software quality characteristics. In: Advances in Engineering Software 69, 1-

11, (2014).

R24 Roy, J., Contini, C., Brodeur, F., Diouf, N., and Suryn, D. W.: Method for the evaluation of open

source software quality from an IT untrained user perspective. In: Proceedings of the International

C* Conference on Computer Science & Software Engineering, (2014).

R25 Kuwata, Y., Takeda, K., and Miura, H.: A study on maturity model of open source software

community to estimate the quality of products. In: Procedia Computer Science 35, 1711-1717,

(2014).

R26 Houaich, Y. A., and Belaissaoui, M.: Measuring the maturity of open source software. In: 6th

International Conference on Information Systems and Economic Intelligence (SIIE). IEEE,

(2015).

R27 Aversano, L., and Tortorella, M.: Analysing the reliability of open source software projects. In:

10th International Joint Conference on Software Technologies, Vol. 1. IEEE, (2015).

R28 Okamura, H. and Dohi, T.: Towards comprehensive software reliability evaluation in open source

software. In 2015 IEEE 26th International Symposium on Software Reliability Engineering

(ISSRE) (pp. 121-129). IEEE. (2015).

R29 Khatri, S. K., and Singh, I.: Evaluation of open source software and improving its quality. In: 5th

International Conference on Reliability, Infocom Technologies and Optimization (Trends and

Future Directions), IEEE, (2016).

R30 Di Ruscio, D., Kolovos, D. S., Korkontzelos, Y., Matragkas, N., Vinju, J.: Supporting custom

quality models to analyse and compare open-source software. In: 10th International Conference

on the Quality of Information and Communications Technology, IEEE, (2016).

R31 Wasserman, A. I., Guo, X., McMillian, B., Qian, K., Wei, M. Y., and Xu, Q.: OSSpal: finding

and evaluating open source software. In: IFIP International Conference on Open Source Systems.

Springer, Cham, (2017).

R32 Vijaya, P., Chander, S., and Raju, G.: Usqo-Foss quality model: utilization based software quality

observatory for evaluation of free and open source software. In: Free and Open Source Software

Conference, (2017).

R33 Eghan, E. E., Algahtani, S. S., Forbes, C., and Rilling, J.: API trustworthiness: an ontological

approach for software library adoption. In: Software Quality Journal 27.3, 969-1014, (2019).

R34 Adewumi, A., Misra, S., Omoregbe, N., and Sanz, L. F.: FOSSES: Framework for open‐source

software evaluation and selection. In: Software: Practice and Experience 49.5, 780-812, (2019).

R35 Razzaq, S., and Xie, M.: Understanding the Surviving Bugsin Open Source Software through the

Community Perspective: Using Bayesian Analysis. In: Amity International Conference on

Artificial Intelligence, IEEE, (2019).

R36 Wang, Q., Zhang, W., Jiang, J., and Li, L.: A Reliability Automatic Assessment Framework of

Open Source Software Based on JIRA. In: Proceedings of the 2020 9th International Conference

on Software and Computer Applications. (2020).

 191

APPENDIX-2 – Development of the OSS-QMM Through Versions

(a) The Initial Version (v1) of the OSS-QMM

 192

(b) The Second Version (v.2) of the OSS-QMM

 193

(c) The Third Version (v.3) of the OSS-QMM

 194

(d) The Fourth Version (v.4) of the OSS-QMM

 195

APPENDIX-3 – The New Operationalized Quality Model Derived from OSS-QMM

 196

APPENDIX-4 – Detailed Information about the Background of Experts

Expert

Experience

in quality

modeling

Current

Position

OSS

knowledge

(years)

Modeling

knowledge

(years)

Company

size
Country

Interview

time

Interview

type

Include/

exclude

E1 11 SD 5 5
Very
large

Turkey 77 min. Online Include

E2 7 SQAE 5 5 Medium A.B.D 83 min. Online Include

E3 9
QAT and

QAA
4 4 Large Turkey 68 min.

Face-to-

face
Include

E4 10 SQAE 4 5
Very

large
Turkey 55 min. Online Include

E5 8 ITMC 4 4 Large Canada 60 min. Online Include

E6 22 CO 5 5
Very

large
Norway 73 min.

Face-to-

face
Include

E7 8
SE and

SQAE
4 5

Very

large
Turkey 60 min. Online Include

E8 12 PM 5 4 Large Turkey 84 min. Online Include

E9 7 QAM 5 4 Medium Turkey 81 min. Online Include

E10 14 QAM 4 5
Very

large
Turkey 74 min. Online Include

E11 10 QAM 5 4
Very
large

England 64 min. Online Include

E12 7 SSE 5 5
Very

large
Turkey 56 min.

Face-to-

face
Include

E13 13 LQAE 4 5 Medium Turkey 75 min. Online Include

E14 17 QAT 5 5
Very

large
Canada 67 min. Online Include

E15 8 SEM 5 4 Large Turkey 80 min.
Face-to-

face
Include

E16 12 QAT 5 5
Very

large
A.B.D 67 min. Online Include

E17 15 QAM 4 5
Very

large
Turkey 59 min. Online Include

E18 7 SQAE 4 4 Large Turkey 51 min.
Face-to-

face
Include

E19 9 LQAE 5 4 Large Germany 67 min. Online Include

E20 11 QAA 4 5
Very
large

Netherlands 72 min. Online Include

E21 7 QAT 3 3 Medium Turkey - Online Exclude

E22 6 QAA 4 3 Large Turkey - Online Exclude

E23 8 SE 4 3 Medium Germany - Online Exclude

E24 10 BDM 3 3
Very

large
A.B.D - Online Exclude

E25 7 SA 3 2 Large Turkey - Online Exclude

E26 8 SC 3 4 Large Turkey - Online Exclude

E27 4 SE 4 3 Medium Turkey - Online Exclude

E28 6 QAT 4 4 Medium Turkey - Online Exclude

E29 5 SQAE 4 4
Very

large
Turkey - Online Exclude

 197

Abbreviation: Software Director (SD), Software Quality Assurance Engineer (SQAE), Quality Assurance Tester

(QAT), Quality Assurance Analyst (QAA), IT management consultant (ITMC), Company owner (CO), Software

Engineer (SE), Project Manager (PM), Quality Assurance Manager (QAM), Senior Software Engineer (SSE), Lead

quality assurance engineer (LQAE), Software Engineering Manager (SEM), Quality Assurance Manager (QAM),

Business Development Manager (BDM), Software Architect (SA), and Security Consultant (SC).

Information: Very large company (1000+ employees), Large company (200-999 employees), Medium (50-199

employees), Small (10-46 employees), and Very small (1-9 employees)

 198

APPENDIX-5 – The Screenshots Obtained After the Semi-structured Interview

conducted with Expert #10 via the Questionnaire

(a) The output for Part-1: Demonstrating Applicability of the OSS-QMM in Practice

w.r.t Consistency in Evaluation Results and Effectiveness in Model Derivation

 199

(b) The output for Part-2: Assessment of the OSS-QMM w.r.t Its Practical Applicability

 200

APPENDIX-6 – Mapping the Terms in Existing OSS-QMs (i.e., OSMM, OpenBRR,

and SQO-OSS) to the Concepts of the OSS-QMM

OSS-QMM

concepts

Terms in OSS quality models

Quality model OSMM OpenBRR SQO-OSS

Viewpoint Developer Developer Developer

OSS aspect Community-based Community-based Code-based Community-based

Information

need

Calculation of

developer size to

evaluate

maintainability

Calculation of developer

productivity to evaluate

maintainability

Calculation of comment

frequency to evaluate

maintainability

Calculation of

documentation

quality to evaluate

maintainability

Characteristic Maintainability Maintainability Maintainability Maintainability

Sub-

characteristic

Acceptance Product quality Analyzability Analyzability

Entity Developer Contributor Source code Contributor

Quality

requirement

The large size of

developer is desirable

for maintainability.

The productive developers

are desirable for

maintainability.

The high comment

frequency is desirable

for maintainability.

The large number of

document is

desirable for

maintainability.

Impact Positive Positive Positive Positive

Measurable

concepts

The size of developer Productivity of contributors Complexity of source

code

Completeness of

documentation

Measure Number of developer

(Base measure)

Number of release

(Base measure)

Weighted method per

class

(WMC)

(Base measure)

Number of

documents

(Base measure)

Unit Developer Release Methods Documents

Scale Integer from zero to

five

(The score (1-5) is

assigned w.r.t. rules

given

in OSMM)

Integer from zero to three

(The score (1-3) is assigned

w.r.t. rules given in

OpenBRR)

Integer from zero to

infinity

Integer from zero to

infinity

Measurement

method

Manually Manually Automatically

(e.g., Understand

scitool, CKJM, Intellij

IDEA, etc.)

Manually

Measurement

function

There is no

measurement function

because it is a base

measure.

There is no measurement

function because it is a base

measure.

There is no

measurement function

because it is a base

measure.

There is no

measurement

function because it

is a base measure.

