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ABSTRACT

THEORY OF ORTHOGONALLY ADDITIVE OPERATORS

Sezer BOLAT

Master of Science, Mathematics
Supervisor: Assoc. Prof. Dr. Nazife ERKURŞUN ÖZCAN

2023, 99 pages

An orthogonally additive operator is a map that satisfies the additivity property under the

disjointness condition.

This thesis focuses on the theory of orthogonally additive operators. The concept of

fragments plays a significant role in constructing the theory of orthogonally additive

operators, and it is also studied in this thesis.

The first chapter is dedicated to the study of fragments. The concept is explored in the context

of vector lattices and lattice-normed vector spaces. The conclusions derived from Sections

2.2 and 2.3 of Chapter 2 can be found in [1].

The second chapter introduces the classes of orthogonally additive operators defined on

vector lattices and a novel class of vector lattice known as C-complete. This chapter also

addresses the extension problems associated with orthogonally additive maps. Various

examples and conclusions are provided to support the findings.

In the last chapter, orthogonally additive operators are examined in the context of lattice

normed spaces.
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ÖZET

DİKEY TOPLAMSAL OPERATÖRLERİN TEORİSİ

Sezer BOLAT

Yüksek Lisans, Matematik
Danışman: Doç. Dr. Nazife ERKURŞUN ÖZCAN

2023, 99 sayfa

Diklik koşulu altında toplamsallık özelliğini sağlayan operatörlere dikey toplamsal denir.

Bu tez dikey toplamsal operatörlerin teorisine odaklanmaktadır. Ayrıca bu tezde, dikey

toplamsal operatörlerin teorisi içinde önemli bir yere sahip olan “fragment” kavramı da

incelenmiştir.

Birinci bölüm, fragment kavramının çalışmasına odaklanmıştır. Fragment kavramı hem

vektör latisler hem de latis-normlu vektör uzaylar üzerinde incelenmiştir. 2. Bölümün 2.2 ve

2.3 kısımlarında elde edilen sonuçlar, kaynakça kısmındaki [1] makalesinde bulunabilir.

İkinci bölüm, dikey toplamsal operatör sınıflarını ve “C-tam” olarak bilinen yeni bir vektör

latis sınıfını tanıtmaktadır. Bu bölüm ayrıca bir dikey toplamsal dönüşümün genişletilmesi

problemini de ele almaktadır. Birçok örnek ve sonuç ile bulgular desteklenmiştir.

Son bölümde, dikey toplamsal operatör kavramı latis normlu uzaylar üzerinde incelenmiştir.

Anahtar Kelimeler: Dikey toplamsal operatörler, Fragmentlar, (bo)-Fragmentlar, C-tam

vektör latisler, Latis normlu uzaylar, Domine edilmiş dikey toplamsal operatörler
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1. Introduction

The field of operator theory plays a crucial role in various branches of mathematics. One

noteworthy area within the operator theory is the theory of orthogonally additive operators.

These operators possess remarkable properties and have been the subject of intense study

in recent years, see [2–11]. It is also worth noting that the study of orthogonally additive

operators has valuable applications across various fields of modern mathematics, see [11, 12].

The concept of orthogonally additive operators was initially introduced in [13, 14] by Mazón

and Segura de León in the early 1990s. Since then, the theory of these operators has

become a dynamic field within modern analysis. An orthogonally additive operator is defined

as an additive map that satisfies the additivity property under the disjointness condition.

Consequently, linear operators can be considered as a special subclass of orthogonally

additive operators.

The main objective of this thesis is to provide a comprehensive study of orthogonally additive

operators, exploring their fundamental properties and characterizations. Because of that, we

study the concept of fragments, which is an essential tool for orthogonally additive operators.

After that, we will investigate different classes of orthogonally additive operators and analyze

their relationships with each other.

The structure of this thesis is organized as follows.

In Chapter 2, we examine the articles [1, 15, 16]. We conduct a preliminary study on

vector lattices, providing essential definitions. We introduce the concept of fragments and

establish their properties. Notably, we demonstrate that the set of fragments forms a Boolean

algebra. Besides we explore the general properties of fragments on arbitrary vector lattices,

we specifically investigate this concept on the vector lattice C[0, 1]. Our findings reveal that

if an element in C[0, 1] is a fragment of another element, it must have a root within the

open interval (0, 1). Furthermore, we demonstrate that if an element in C[0, 1] has a proper

fragment, i.e., a fragment that is not zero or the element itself, it must also possess a root

within the open interval (0, 1).
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Subsequently, we extend this concept to lattice normed spaces, where fragments are referred

to as (bo)-fragments. Although there are similarities between fragments and (bo)-fragments,

significant differences exist. Notably, the set of (bo)-fragments does not generally form a

Boolean algebra. However, we show that under specific conditions, the set of (bo)-fragments

forms a Boolean algebra. We thoroughly investigate this concept, presenting numerous

properties that hold importance for the theory of orthogonally additive operators defined

on lattice normed spaces.

At the main part of Chapter 2, we present a collection of lemmas, propositions, and theorems

about fragments. These results have been carefully derived and selected due to their

significance and utility in the subsequent chapters of this thesis. They serve as essential

tools for our further investigations into orthogonally additive operators and contribute to the

overall understanding of fragments within the context of vector lattices and lattice normed

spaces.

In Chapter 3, we examine the articles [2, 4, 5, 13, 16]. We begin by introducing

orthogonally additive operators and providing their characterization through a significant

theorem. Furthermore, we present several important examples to illustrate the concept.

We define two important classes of orthogonally additive operators: positive operators and

order-bounded operators. An order-bounded orthogonally additive operator is called an

abstract Urysohn operator. Notably, we demonstrate that the set of all abstract Urysohn

operators from a vector lattice E to a Dedekind complete vector lattice F forms a Dedekind

complete vector lattice.

Moving forward, we introduce the concept of C-bounded orthogonally additive operators,

which is a generalization of order-bounded operators. Additionally, we define regular

orthogonally additive operators in a similar manner to linear operator theory. We establish

that C-bounded operators and regular operators coincide under a specific condition.

Furthermore, we define disjointness-preserving and non-expanding operators and provide

various propositions and examples to illustrate their relationships.
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We then delve into the exploration of a new class of vector lattices known as C-complete

vector lattices. We clarify that this class represents a generalization of Dedekind complete

vector lattices. Moreover, we introduce important definitions such as horizontal convergence

of a net, horizontally-to-norm continuous and horizontally-to-order continuous orthogonally

additive operators.

Next, we introduce the notion of compact-like operators, such as narrow operators, within

the context of orthogonally additive operators. We investigate their behaviour in C-complete

vector lattices.

The chapter also addresses the extension problem for orthogonally additive operators. We

demonstrate that an orthogonally additive map defined on an arbitrary subset of a vector

lattice generally does not extend to an orthogonally additive operator. Thus, we explore the

proper conditions for extending an orthogonally additive map to an operator. To enable this,

we introduce the definitions of lateral ideals and lateral bands, which play a crucial role in

the extension process. Finally, we provide various propositions and theorems to construct

the extension of orthogonally additive operators.

In the final part of Chapter 3, we introduce the concept of projection bands within the context

of orthogonally additive operators, presenting significant results and essential definitions.

The study of orthogonally additive operators defined on lattice normed spaces remains an

active and dynamic field of research, as evidenced by notable studies, see [17–19]. In the

final chapter of this thesis, our objective is to provide a foundational understanding of this

topic. We aim to present key understandings and essential concepts related to orthogonally

additive operators in the context of lattice normed spaces. One of the central focuses of this

chapter is the introduction of dominated operators and their characterization.
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2. On Fragments

In this chapter, we introduce the concept of fragments, which is a required notion for

orthogonally additive operators. In the first section, we demonstrate several properties of

fragments in vector lattices, with one of the most significant being that they form a Boolean

algebra. In the second section, we discuss the concept of fragments in a specific vector

lattice C[0, 1]. We choose this space because it requires the consideration of various special

conditions for the fragments to preserve the continuity of functions. In the third section, we

introduce a new type of fragment called (bo)-fragments, which are defined on lattice normed

spaces. This new concept is essential for the orthogonally additive operators defined on

lattice normed spaces. We investigate the relationship between fragments and (bo)-fragments

and show that (bo)-fragments do not, in general, form a Boolean algebra. Moreover, we

demonstrate several important properties of (bo)-fragments. In the first section, fragments

are initially defined as positive elements of a vector lattice. However, for the purpose of

structuring the theory of orthogonally additive operators, it is necessary to consider arbitrary

elements of a vector lattice rather than just positive elements. Hence, in the last section,

we redefine the concept of fragments as (bo)-fragments on the lattice normed vector lattice

(E, |·| , E), where |·| denotes the modulus on E. We present several important propositions,

lemmas, and theorems that are crucial for constructing orthogonally additive operators, in

this section.

2.1. Fragments in Vector Lattices

In this section, we introduce the concept of fragments in vector lattices. For a more in-depth

understanding, readers may refer to any functional analysis or Banach lattice books, such as

those listed in the references [20–25].

Definition 2.1.1. A real vector space E is said to be an ordered vector space whenever it is

equipped with an order relation ≤ that is compatible with the vector space operations in the

sense that it satisfies the following two axioms:
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(1) if x ≤ y, then x+ z ≤ y + z holds for all z ∈ E.

(2) if x ≤ y, then αx ≤ αy holds for all α ≥ 0.

An alternative notation for x ≤ y is y ≥ x. A vector x in an ordered vector space E is called

positive whenever x ≥ 0 holds. We denote by E+ := {x ∈ E : x ≥ 0} the set of all positive

vectors of E. The set E+ is called the positive cone of E.

Definition 2.1.2. An ordered vector space E is called a vector lattice if for each pair of

vectors x, y ∈ E the supremum and the infimum of the set {x, y} both exist in E. We shall

use the following notations for supremum and infimum:

x ∨ y := sup{x, y} and x ∧ y = inf{x, y}.

The following information provides an overview of vector lattices. For a more

comprehensive understanding, please see the [20]. In a vector lattice, we define the elements

x+ := x∨0, x− := (−x)∨0 and |x| := x∨(−x). The element x+ is called the positive part,

x− is called the negative part, and |x| is called the absolute value of x. In a vector lattice, two

elements x and y are said to be disjoint (in symbols x ⊥ y) whenever |x|∧|y| = 0 holds. The

equality x = y⊔z means that x = y+z and y ⊥ z. If A is a nonempty subset of a vector lattice

E, then its disjoint complement Ad is defined by Ad := {x ∈ E : x ⊥ y for all y ∈ A}.

A subset A of a vector lattice is called solid whenever |x| ≤ |y| and y ∈ A imply x ∈ A. A

solid vector subspace of a vector lattice is referred to as an ideal. A net (xα)α∈∆ of a vector

lattice is said to be order convergent to a vector x (in symbols xα
o−→ x or o− limα∈∆ xα = x)

whenever there exists another net (yα)α∈∆ with the same index set satisfying yα ↓ 0 and

|xα − x| ≤ yα for all α ∈ ∆. A subset A of a vector lattice is said to be order closed

whenever (xα)α∈∆ ⊆ A and xα
o−→ x imply x ∈ A. An order closed ideal is referred to as a

band. A band B in a vector lattice E that satisfies E = B ⊕Bd is referred to as a projection

band. We note that not every band is a projection band. A vector lattice in which every

band is a projection band is said to be a vector lattice with the projection property. Let B

be a projection band in a vector lattice E. Thus, E = B ⊕ Bd holds, and so every vector
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x ∈ E has a unique decomposition x = x1 + x2, where x1 ∈ B and x2 ∈ Bd. A projection

PB : E → E defined by the formula

PB(x) := x1

is said to be an order projection (or a band projection).

Theorem 2.1.3. If B is a projection band of a vector lattice E, then

PB(x) = sup{y ∈ B : 0 ≤ y ≤ x} = supB ∩ [0, x]

holds for all x ∈ E+

For detailed proof, please refer to [20, Theorem 1.43].

A vector x in a vector lattice E is said to be a projection vector whenever band Bx generated

by x (i.e., Bx = {y ∈ E : |y| ∧ n |x| ↑ |y|}) is a projection band. If every vector in a vector

lattice is a projection vector, then the vector lattice is said to have the principal projection

property. For a projection vector x we shall write Px for the order projection onto the band

Bx.

Theorem 2.1.4. A vector x in a vector lattice is a projection vector if and only if sup{y ∧

n |x| : n ∈ N} exists for each y ≥ 0. In this case

Px(y) = sup{y ∧ n |x| : n ∈ N}

holds for all y ≥ 0.

For the detailed proof, please refer to [20, Theorem 1.47].

Now we introduce the structure of Boolean algebra. To do so, we remind the concept of

lattices. A lattice is a partially ordered set in which every two elements have a supremum
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and infimum. We shall consider a lattice with the largest and smallest elements. In a lattice,

the element with the greatest value is known as the unit (denoted by 1), while the element

with the least value is known as the zero (denoted by 0).

Definition 2.1.5. Let X be a lattice. If x ∈ X and there exists an ¬x satisfying the properties:

x ∨ ¬x = 1 and x ∧ ¬x = 0, then ¬x is called the complement of the element x.

Definition 2.1.6. A Boolean algebra is a distributive lattice with the unit and zero for which

the complement of each element exists.

For further information on Boolean algebras, please refer to [21].

Definition 2.1.7. Let V be a real vector space and C be a convex subset of V. An element

x ∈ C is called an extreme point of C if it cannot be expressed as a non-trivial convex

combination of other points in C. More specifically, x is an extreme point if and only if

any representation of x as a convex combination x = λy + (1 − λ)z, with y, z ∈ C and

0 < λ < 1, implies that x = y = z.

Definition 2.1.8. Let V be a vector lattice. An element z ∈ V+ is called a fragment of x ∈ V+

if z ∧ (x− z) = 0. We denote by Cx = {z ∈ V+ : z ∧ (x− z) = 0} the set of all fragments

of x.

We note that, if z ∈ Cx, then x − z ∈ Cx. Moreover, by definition, z ≤ x. We observe that

the set Cx forms a Boolean algebra when it is equipped with the partial order induced by V.

The lattice operations defined on Cx coincide with those of V , and the Boolean complement

is given by ¬z = x− z. The details are given in the theorem below.

Theorem 2.1.9. For a positive vector x in a vector lattice V we have:

(1) If y, z ∈ Cx and z ≤ y holds, then y − z ∈ Cx.

(2) If y1, y2, z1, z2 ∈ Cx satisfy the inequalities y1 ≤ y2 ≤ z1 ≤ z2, then y2 − y1 ⊥ z2 − z1.

(3) If y, z ∈ Cx, then y ∨ z and y ∧ z both belong to Cx (and so Cx is a Boolean algebra

with smallest element 0 and largest element x).

7



(4) If V is Dedekind complete, then for every non-empty subset of C of Cx the element

supC and inf C both belong to Cx (and so in this case Cx is a Dedekind complete

Boolean algebra).

(5) The set of fragments Cx of x is precisely the set of all extreme points of the convex set

[0, x].

Proof. (1) The proof follows from the following inequalities:

0 ≤ (y − z) ∧ (x− (y − z)) = (y − z) ∧ ((x− y) + z)

≤ (y − z) ∧ (x− y) + (y − z) ∧ z

≤ y ∧ (x− y) + (x− z) ∧ z

= 0.

(2) We note that y2 − y1 ≤ z1 − y1 ≤ z1 and z2 − z1 ≤ x− z1. Thus, we have

(y2 − y1) ∧ (z2 − z1) ≤ z1 ∧ (x− z1) = 0.

(3) Let y, z ∈ Cx. Then, we have

0 ≤ (y ∨ z) ∧ (x− y ∨ z) = (y ∨ z) ∧ ((x− y) ∧ (x− z))

= (y ∧ (x− y) ∧ (x− z)) ∨ (z ∧ (x− y) ∧ (x− z))

= 0,

and hence y∨z ∈ Cx. By employing a similar technique, it can be shown that y∧z ∈ Cx.
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(4) Let V be a Dedekind complete vector lattice and let C be a nonempty subset of Cx. Put

by definition, u = supC. It follows from the infinite distributive laws that

0 ≤ u ∧ (x− u) = supC ∧ (x− u)

= sup{c ∧ (x− u) : c ∈ C}

≤ sup{c ∧ (x− c) : c ∈ C}

= 0,

and hence supC ∈ Cx. The same thing holds true for inf C ∈ Cx.

(5) Let z be an element of the extreme points of [0, x]. Put by definition y = z ∧ (x− z).

We claim that y = 0. Indeed, we first note that

0 ≤ z − y ≤ x− y ≤ x

and

0 ≤ z + y ≤ z + (z ∧ (x− z)) ≤ z + (x− z) = x.

Considering the convex combination z = 1
2
(z− y)+ 1

2
(z+ y), we have z− y = z+ y,

and hence y = 0 and z ∈ Cx.

On the other hand, let us assume that v ∈ Cx and let v = λy + (1 − λ)z, where

y, z ∈ [0, x] and λ ∈ (0, 1). We claim that v = y = z. It follows from v ∧ (x− v) = 0

that y ∧ (x− v) = 0. Thus, we have

y = y ∧ x = y ∧ (v + (x− v)) ≤ y ∧ v + y ∧ (x− v) = y ∧ v ≤ v.

Similarly, z ≤ v. Now assume that y < v or z < v holds true. Then we have

v = λy + (1− λ)z < λv + (1− λ)v = v,

which leads to a contradiction. Hence v = y = z holds true, and so v is an extreme

point of [0, x].
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Proposition 2.1.10. Let V be a vector lattice and v ∈ V. If v is a projection vector, then

Pvx ∈ Cx.

Proof. First, we note that an element v ∈ V+ is a fragment of x if and only if 2v ∧ x = v by

definition. Therefore we have the following:

2Pvx ∧ x = sup{2x ∧ 2n |v| : n ∈ N} ∧ x

= sup{2x ∧ 2n |v| ∧ x : n ∈ N}

= sup{x ∧ 2n |v| : n ∈ N}

= Pvx,

and hence Pvx ∈ Cx.

Remark 2.1.11. Let V be a vector lattice with the principal projection property. Consider an

element x ∈ V+ and order interval [0, x]. We assume that Cx = {0, x}. Take disjoint elements

u, v ∈ [0, x]. We claim that in this case, u = 0 or v = 0. Before starting the proof, we note

that since u and v are disjoint, then Pu+v = Pu + Pv( This is a conclusion of [20, Theorem

1.45]. Since Pu+v(x) ∈ Cx, there are two cases now, either Pu+v(x) = 0 or Pu+v(x) = x. If

Pu+v(x) = 0 holds true, then Pux = 0 and Pvx = 0, which implies u = 0 and v = 0. On the

other hand, if Pu+v(x) = x, then Pu(x) = 0 or Pv(x) = 0. Therefore u = 0 or v = 0. This

finishes the proof.

2.2. Fragments in C[0,1]

In this section, we study the fragments in the vector lattice C[0, 1]. Determining the fragments

of a positive element f in C[0, 1] is not always a straightforward task, especially when it

comes to preserving continuity. Therefore, we present some significant findings regarding

fragments in C[0, 1]. Additionally, the majority of the results presented in this section can be

found in the article [1].
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Definition 2.2.1. Let V be a vector lattice and f ∈ V+. Fragments of f except the zero and

itself are called proper fragments of f.

Lemma 2.2.2. Let f be a positive element of the vector lattice C[0, 1]. If z ∈ C[0, 1] is a

proper fragment of f , then z has at least one root in the open interval (0, 1).

Proof. Suppose there is no root of z in (0,1). Then

z(t) ̸= 0,∀t ∈ (0, 1). (2.2.1)

Since z is a proper fragment of f , we have

z(t) ∧ (f(t)− z(t)) = 0, ∀t ∈ [0, 1]. (2.2.2)

Considering (2.2.1) and (2.2.2), we obtain

f(t)− z(t) = 0,∀t ∈ (0, 1) ⇒ f(t) = z(t),∀t ∈ (0, 1).

Since both f and z are continuous functions and (0, 1) = [0, 1], f must be equal to z for

all elements of [0,1]. However it is a contradiction because z is a proper fragment of f.

Therefore the assumption z(t) ̸= 0,∀t ∈ (0, 1) is wrong. And hence z has at least one root

in (0,1).

Theorem 2.2.3. Let f be a positive element of the vector lattice C[0, 1]. If f has a proper

fragment, then f has at least one root in the open interval (0, 1).

Proof. Let z be a proper fragment of f. Also suppose that there is no root of f in (0,1). Then

f(t) ̸= 0, ∀t ∈ (0, 1). (2.2.3)

Let us define

A = {t ∈ (0, 1) : z(t) ̸= 0}
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and

B = {t ∈ (0, 1) : f(t) = z(t)}

and show that A = B. Let t ∈ A. Then z(t) ̸= 0, ∀t ∈ (0, 1). Considering that z is a proper

fragment of f , we obtain

f(t)− z(t) = 0 ⇒ f(t) = z(t) ⇒ x ∈ B

and hence A ⊆ B. Conversely, let t ∈ B. Then f(t) = z(t). Considering the (2.2.3), we

have z(t) ̸= 0 ⇒ t ∈ A, hence B ⊆ A.

Now, we investigate the topological properties of A and B.

A = {t ∈ (0, 1) : z(t) ̸= 0}

= (0, 1) ∩ z−1(R \ {0})

Hence, A is an open set in the τ(0,1) subspace of standard topology τs because R \ {0} ∈ τs

and z(t) is a continuous function.

B = {t ∈ (0, 1) : f(t) = z(t)}

= (0, 1) ∩ (f − z)−1({0})

In this case B is a closed set in τ(0,1) because {0} is a closed set in τs and f−z is a continuous

function.

Since (0, 1) is connected set, we can say that A = (0, 1) or A = ∅. We know that from

Lemma 2.2.2 if z is a proper fragment of f in C[0, 1], then z has at least one root in (0, 1).

Hence there exists t ∈ (0, 1) such that z(t) = 0 and hence the set A can not be equal (0, 1).

Therefore A = ∅ and hence z(t) = 0 for all t ∈ (0, 1). Since z is a continuous function and

(0, 1) = [0, 1], we obtain z(t) = 0 for all t ∈ [0, 1]. However it is a contradiction because z

is a proper fragment of f. Hence our assumption that f has no root in (0, 1) is wrong.

Corollary 2.2.4. In C[0, 1], the fragments of those functions having no roots in the open

interval (0, 1) are either themselves or zero.
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It may be asked whether the converse of Theorem 2.2.3 holds. If a function f(t) ∈ C[0, 1] has

at least one root in the open interval (0, 1), does it have a proper fragment? The subsequent

example serves as a counterexample.

Example 2.2.5. Let f ∈ C[0, 1], c ∈ (0, 1). Let us assume f(t) = 0 whenever t ∈ [0, c]

and f(t) > 0 whenever t ∈ (c, 1). We show that Cf = {0, f}. Let us consider h ∈ C[0, 1]

and assume h(t) ∧ (f(t) − h(t)) = 0. Since f(t) = 0 for all elements of [0, c], we obtain

h(t) ∧ −h(t) = 0 and hence h(t) = 0. Now we want to understand h in the interval (c, 1].

Let us define g = f |[c,1], which is a restriction of f. We can see that g ∈ C[c, 1] and g(t) > 0

for all t ∈ (c, 1). Similar to the idea in Theorem 2.2.3, we can see that g has no proper

fragment. Therefore fragments of g are only 0 and itself. Since g = f |[c,1], we conclude that

the fragments of g correspond to h|[c,1]. Therefore h(x) = 0 or h(x) = g(x) for all elements

of [c, 1]. Considering the above results we get h = 0 or h = f for all elements of [0, 1] and

hence Cf = {0, f}.

2.3. (bo)-Fragments

In this section, we begin by introducing the notion of lattice-normed spaces and

lattice-normed vector lattices. We then proceed to explore the concept of fragments in the

case of lattice-normed spaces called (bo)-fragments. This new concept holds significance

and interest both by itself and for its implications in the theory of orthogonally additive

operators defined on lattice-normed spaces. Within this section, we present various properties

of (bo)-fragments and explain the relationship between fragments and (bo)-fragments.

Furthermore, within the context of the discussed topic, this section consists of several

examples and in-depth discussions covering various cases. The majority of the results

presented in this section can be found in the article [1].

Definition 2.3.1. Consider a vector space V and a real vector lattice E. A mapping ∥·∥ :

V → E+ is a vector (E-valued) norm if it satisfies the following axioms:

(1) ∥x∥ = 0 ⇔ x = 0 for x ∈ V ;
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(2) ∥λx∥ = |λ|∥x∥ for λ ∈ R and x ∈ V ;

(3) ∥x+ y∥ ≤∥x∥+∥y∥ for x, y ∈ V.

A triple (V, ∥·∥ , E) ((V,E) or V for short) is called a lattice normed space (over E) if

∥·∥ is an E-valued norm in the vector space V. A vector norm is called a decomposable or

Kantorovich norm, see [21], if

(4) for all e1, e2 ∈ E+ and x ∈ V , from∥x∥ = e1+e2 it follows that there exist x1, x2 ∈ V

such that x = x1 + x2 and∥xk∥ = ek, k = 1, 2.

Two elements x, y of a lattice-normed space V is said to be disjoint (notation x ⊥ y), if

∥x∥ ∧∥y∥ = 0.

Not every vector norm needs to be decomposable, and we can provide an example of a

non-decomposable vector norm, as shown below:

Example 2.3.2. Consider the vector lattice R2 with respect to pointwise order. We observed

that the following map,∥·∥ : R → R2 defined by∥x∥ = (|x| , |x|), is a vector norm. However,

we claim that it is not decomposable. Considering the definition of the norm, we observe that

the map is not onto; therefore, we can choose numbers that are not in the range set. Consider

the elements e1 = (1
3
, 1
4
) and e2 = (2

3
, 3
4
). Obviously, we have∥1∥ = (1, 1) = (1

3
+ 2

3
, 1
4
+ 3

4
) =

e1 + e2. In contrast, no elements x, y ∈ R satisfy the conditions∥x∥ = e1 and∥y∥ = e2.

Proposition 2.3.3. Every lattice normed space (V, ∥·∥ ,R) is decomposable.
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Proof. Let x ∈ V and∥x∥ = e1 + e2. Put by definition x1 = e1
x

∥x∥ and x2 = x − x1. One

can see that∥x1∥ = e1. On the other hand, we have

∥x2∥ =∥x− x1∥ =

∥∥∥∥x− e1
x

∥x∥

∥∥∥∥
=

∥∥∥∥x(1− e1
∥x∥

)

∥∥∥∥
=∥x∥

∣∣∣∣1− e1
∥x∥

∣∣∣∣
= (e1 + e2)

∣∣∣∣1− e1
e1 + e2

∣∣∣∣
= e2.

Thus, the proof is finished.

Definition 2.3.4. Suppose that V is a vector lattice. The vector norm∥·∥ is called monotone

if |x| ≤ |y| implies∥x∥ ≤∥y∥ for x, y ∈ V. In this case (V, ∥·∥ , E) is called lattice normed

vector lattices, briefly LNVL.

It is worth noting that on lattice normed vector lattices, the inequality

∥∥|x| − |y|
∥∥ ≤∥x− y∥

holds for all x, y ∈ V.

Example 2.3.5. Consider the lattice normed space (R, |·| ,R) where |·| denotes the absolute

value on R. By applying the triangle inequality for the absolute value, we can conclude that

it is monotone. As a result, (R, |·| ,R) is lattice normed vector lattice.

We provide an example of a lattice-normed space that is not monotonic. Therefore it is not a

lattice normed vector lattice.

Example 2.3.6. Consider the vector lattice R2 with respect to pointwise order. We claim that

the mapping (R2, ∥·∥ ,R2) defined by

∥∥(x, y)∥∥ = (|x+ y| , |x− y|)

15



is a lattice normed space. However, since the norm is not monotone, we conclude that

(R2,∥·∥ ,R2) is not LNVL. To begin with, we demonstrate that it is a lattice normed space.

Indeed, we have the following:

(1) Given any element (x, y) ∈ R2, we obtain,

∥∥(x, y)∥∥ = (0, 0) ⇐⇒ (|x+ y| , |x− y|) = (0, 0)

⇐⇒ x+ y = 0 and x− y = 0

⇐⇒ x = y = 0

⇐⇒ (x, y) = (0, 0).

(2) Let λ ∈ R. Thus we have,

∥∥λ(x, y)∥∥ =
∥∥(λx, λy)∥∥

= (|λx+ λy| , |λx− λy|)

= |λ| (|x+ y| , |x− y|)

= |λ|
∥∥(x, y)∥∥ .

(3) Given any other element (z, w) ∈ R2, we obtain,

∥∥(x, y) + (z, w)
∥∥ =

∥∥(x+ z, y + w)
∥∥

= (
∣∣(x+ z) + (y + w)

∣∣ , ∣∣(x+ z)− (y + w)
∣∣)

≤ (|x+ y|+ |z + w| , |x− y|+ |z − w|)

= (|x+ y| , |x− y|) + (|z + w| , |z − w|)

=
∥∥(x, y)∥∥+

∥∥(z + w)
∥∥ .

Therefore, we showed that it is a lattice normed space. We now prove that the norm is not

monotone. Consider the elements (1,−1) and (1, 1). We see that
∣∣(1,−1)

∣∣ =
∣∣(1, 1)∣∣ =

(1, 1). Therefore we have
∣∣(1,−1)

∣∣ ≤ ∣∣(1, 1)∣∣. However, for the norms of these elements,
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we have
∥∥(1,−1)

∥∥ = (0, 2) and
∥∥(1, 1)∥∥ = (2, 0). Clearly (0, 2) ≤ (2, 0) is invalid. It follows

that the norm is not monotone, and hence (R2, ∥·∥ ,R2) is not a lattice normed vector lattice.

Definition 2.3.7. Let (V, ∥·∥ , E) be a lattice normed vector lattice. The vector norm ∥·∥

is order-semicontinuous if sup∥xα∥ = ∥supxα∥ for each increasing net (xα) ⊂ V with a

least upper bound x ∈ V . The vector norm∥·∥ is order-continuous if inf∥xα∥ = 0 for any

decreasing net (xα) ⊂ V with inf xα = 0.

Definition 2.3.8. Let (V, ∥·∥ , E) be a lattice normed space. An element z ∈ V is called a

(bo)-fragment of x ∈ V if ∥z∥∧∥x− z∥ = 0. We denote by Cbo
x = {z ∈ V : ∥z∥∧∥x− z∥ =

0} the set of all (bo)-fragments of x.

Analogous to the case of fragments, it is worth noting that for any x ∈ V , {0, x} ⊆ Cbo
x

holds. We note that the element x is not necessarily positive.

Proposition 2.3.9. Let (V, ∥·∥ ,R) be lattice normed space and x ∈ V . Then Cbo
x = {0, x}.

Proof. Let z ∈ Cbo
x . It follows from∥z∥ ,∥x− z∥ ∈ R that

∥z∥ ∧∥x− z∥ = 0 =⇒ ∥z∥ = 0 or ∥x− z∥ = 0,

and hence z = 0 or x = z. This finishes the proof.

Proposition 2.3.10. Let V be a vector lattice and consider the lattice normed vector lattice

(V, |·| , V ) where |·| is the modulus on V. Let x, z ∈ V+. If z is a fragment of x then z is a

(bo)-fragment of x.

Proof. Let z be a fragment of x. Since z and x−z are elements of V+, we have z∧(x−z) = 0

and so |z| ∧ |x− z| = 0. Hence z is a (bo)-fragment of x.

Proposition 2.3.11. Let (V, ∥·∥ , E) be a lattice normed vector lattice and x ∈ V+, z ∈ V. If

z is a (bo)-fragment of x then z is a fragment of x.
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Proof. Let z be a (bo)-fragment of x so that

∥z∥ ∧∥x− z∥ = 0

holds. We show that
∥∥z ∧ (x− z)

∥∥ ≤ ∥z∥ and
∥∥z ∧ (x− z)

∥∥ ≤ ∥x− z∥ . For the first

inequality we have

∥∥z ∧ (x− z)
∥∥ =

∥∥∥∥12(z + (x− z)−
∣∣z − (x− z)

∣∣)∥∥∥∥
=

1

2

∥∥x− |2z − x|
∥∥

=
1

2

∥∥|x| − |2z − x|
∥∥ (as x ∈ V+)

≤ 1

2

∥∥x− (2z − x)
∥∥ (as the norm is monotone)

=
1

2
∥2x− 2z∥

= ∥x− z∥ .

For the second inequality, we have

∥∥z ∧ (x− z)
∥∥ =

∥∥−(z ∧ (x− z))
∥∥

=
∥∥−z ∨ (z − x)

∥∥
=

∥∥∥∥12((−z + (z − x) +
∣∣−z − (z − x)

∣∣)∥∥∥∥
=

1

2

∥∥−x+ |−2z + x|
∥∥

=
1

2

∥∥|−2z + x| − |x|
∥∥ (as x ∈ V+)

≤ 1

2
∥−2z + x− x∥ (as the norm is monotone)

= ∥z∥ .

It follows that

0 ≤
∥∥z ∧ (x− z)

∥∥ ≤∥z∥ ∧∥x− z∥ = 0.

Hence z ∧ (x− z) = 0, and, z is a fragment of x.
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Corollary 2.3.12. Let (V, ∥·∥ , E) be a lattice normed vector lattice and x ∈ V+. Then every

(bo)-fragment of x is a positive element of V.

Proof. Let z be a (bo)-fragment of x. Then z is also a fragment of x. It follows from

0 = z ∧ (x− z) ≤ z

that z is positive.

Corollary 2.3.13. Let (V, |·| , V ) be a lattice normed vector lattice where |·| is the modulus

on V . Then Cx = Cbo
x whenever x ∈ V+.

Proof. The proof follows from Proposition 2.3.10 and Proposition 2.3.11.

Proposition 2.3.11 shows that Cbo
x ⊆ Cx holds in lattice normed vector lattices whenever

x ∈ V+. However, there exists a counterexample to show that Cx is not necessarily a subset

of Cbo
x in general.

Example 2.3.14. Consider the vector lattice C[0, 2π] with pointwise ordering. We define

the function f(t) = |sin t| , and the function z(t) = sin t whenever t ∈ [0, π] and z(t) =

0 whenever t ∈ [π, 2π]. Both f(t) and z(t) are positive elements of C[0, 2π]. Moreover

z(t) is a fragment of f(t). Indeed, if t ∈ [0, π], then f(t) = z(t), which implies that

z(t) ∧ (f(t) − z(t)) = 0. On the other hand, if t ∈ [π, 2π], then z(t) = 0, and therefore

z(t) ∧ (f(t) − z(t)) = 0. However z(t) is not a (bo)-fragment of f(t) in the lattice normed

vector lattice (C[0, 2π],∥·∥1 ,R) with the integral norm. To see this we note that

∥∥z(t)∥∥ =

∫ 2π

0

∣∣z(t)∣∣ dt = ∫ π

0

sin t dt = 2

and ∥∥f(t)− z(t)
∥∥ =

∫ 2π

0

∣∣f(t)− z(t)
∣∣ dt = ∫ 2π

π

|sin t| dt = 2

Hence,
∥∥z(t)∥∥ ∧

∥∥f(t)− z(t)
∥∥ ̸= 0.

19



The importance of the monotonicity of the E-valued norm ∥·∥ : V → E is evident in

Proposition 2.3.11. Additionally, it is important to note that Proposition 2.3.11 does not

hold for lattice normed spaces in general. The following example demonstrates this fact.

Example 2.3.15. Consider Example 2.3.6. We note that the lattice normed space

(R2, ∥·∥ ,R2) with norm ∥∥(x, y)∥∥ = (|x+ y| , |x− y|)

is not a lattice normed vector lattice because the norm is not monotone. Let us consider the

element x = (1, 2) ∈ R2. Firstly, we observe that

Cx = {(0, 0), (1, 0), (0, 2), (1, 2)}.

Secondly, we claim that (−1
2
, 1
2
) is a (bo)-fragment of x. Indeed, one has∥∥∥∥(−1

2
,
1

2
)

∥∥∥∥ ∧
∥∥∥∥(1, 2)− (−1

2
,
1

2
)

∥∥∥∥ = (0, 1) ∧ (3, 0) = (0, 0).

However (−1
2
, 1
2
) is not a fragment of x. Hence, Proposition 2.3.11 may fail in the case of

lattice normed spaces, in general.

Proposition 2.3.16. Let (V, ∥·∥ , E) be a lattice normed space and x ∈ V. Then z ∈ Cbo
x if

and only if −z ∈ Cbo
−x.

Proof. Let z ∈ Cbo
x . It follows from

∥∥−x− (−z)
∥∥ ∧∥−z∥ =∥x− z∥ ∧∥z∥ = 0

that −z ∈ Cbo
−x. The same method can be done for the other side.

Theorem 2.3.17. Let (V, ∥·∥ , E) be a lattice normed vector lattice and x ∈ V . Then the

following statements hold:

(1) If z ∈ Cbo
x , then |z| ∈ Cbo

|x|;
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(2) If z ∈ Cbo
x , then z+ ∈ Cbo

x+ and z− ∈ Cbo
x− .

Proof. Firstly, we demonstrate the proof of assertion (1). Let z ∈ Cbo
x . It follows from

∥∥|x| − |z|
∥∥ ≤∥x− z∥

that ∥∥|x| − |z|
∥∥ ∧

∥∥|z|∥∥ ≤∥x− z∥ ∧∥z∥ = 0

and hence |z| ∈ Cbo
|x|. We now begin the proof of assertion (2). In vector lattices we have

∣∣x+ − z+
∣∣ ≤ |x− z|

and

0 ≤ z+ ≤ |z| .

Therefore using monotonicity we obtain,

∥∥x+ − z+
∥∥ ≤∥x− z∥

and ∥∥z+∥∥ ≤∥z∥ .

It follows that

0 ≤
∥∥x+ − z+

∥∥ ∧
∥∥z+∥∥ ≤∥x− z∥ ∧∥z∥ = 0,

and hence, z+ ∈ Cbo
x+ . Similar steps can be applied in the case of z−.

We remark that Example 2.3.6 demonstrates that Theorem 2.3.17 does not hold in the more

general settings of lattice normed spaces. Indeed, in Example 2.3.6 we showed that (−1
2
, 1
2
) ∈

Cbo
x for x = (1, 2). However, one can observe that (−1

2
, 1
2
)+ = (0, 1

2
) /∈ Cbo

x+ .
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Proposition 2.3.18. Let (V, ∥·∥ , E) be a lattice normed vector lattice and x ∈ V. Then Cbo
x

is an order bounded set and furthermore Cbo
x ⊆ [−x−, x+].

Proof. Let z ∈ Cbo
x . According to Theorem 2.3.17, we know that z+ ∈ Cbo

x+ and z− ∈ Cbo
x− .

Since both x+ and x− are positive, by Proposition 2.3.11 we have z+ ∈ Cx+ and z− ∈ Cx− .

Therefore 0 ≤ z− ≤ x− and 0 ≤ z+ ≤ x+. Because

−x− ≤ z+ − z− = z ≤ x+

we have Cbo
x ⊆ [−x−, x+].

The subsequent example provides evidence that Proposition 2.3.18 may not hold true in the

more general settings of lattice normed spaces.

Example 2.3.19. Let us consider Example 2.3.6. For element x = (1,−2) ∈ R2, we have

Cbo
x = {(0, 0), (3

2
,−3

2
), (−1

2
,−1

2
), (1,−2)}

and

[−x−, x+] = [(0,−2), (1, 0)].

We can see that (3
2
,−3

2
) /∈ [(0,−2), (1, 0)] and hence Cbo

x is not a subset of the order interval

[−x−, x+].

It follows from Theorem 2.1.9 that in the case of vector lattices Cx = {z ∈ V+ : z∧ (x−z) =

0} is a Boolean algebra for x > 0. In the present case it can be asked whether the set

Cbo
x = {z ∈ V : ∥z∥ ∧∥x− z∥ = 0} consisting of all (bo)-fragments of x is a Boolean

algebra. The following example illustrates that if x is not positive, the answer to this question

is negative.

Example 2.3.20. Consider the lattice normed space (R2, ∥·∥ ,R2) with the norm

∥∥(x, y)∥∥ = (|x|+ |y| , |x|+ |y|).
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We note that this norm is monoton and hence (R2, ∥·∥ ,R2) is a lattice normed vector lattice.

For x = (−1, 2) ∈ R2, we have Cbo
x = {(0, 0), (−1, 2)}. In this case Cbo

x is not a Boolean

algebra, since (0, 0) ∧ (−1, 2) = (−1, 0) /∈ Cbo
x . This shows that Cbo

x is not necessarily a

Boolean algebra even in the case of lattice normed vector lattices.

The following result shows that if x is positive, then Cbo
x is a Boolean algebra in the case of

lattice normed vector lattices.

Theorem 2.3.21. Let (V, ∥·∥ , E) be a lattice normed vector lattice and x ∈ V+. Then Cbo
x is

a Boolean subalgebra of Cx. In particular, Cbo
x is a Boolean algebra in itself.

Proof. Since 0 ∈ Cbo
x , the set Cbo

x ̸= ∅. Additionally, by Proposition 2.3.11, if x ∈ V+, then

Cbo
x ⊆ Cx. Let z1, z2 ∈ Cbo

x . Then z1 and z2 are also fragments of x. Hence z1, z2, (x− z1) and

(x− z2) are positive elements of V. Now, using this and monotonicity we have the following

inequalities; ∥∥(x− z1) ∧ (x− z2)
∥∥ ≤∥x− z1∥ ∧∥x− z2∥ (2.3.1)

and

∥z1 ∧ z2∥ ≤∥z1∥ ∧∥z2∥ . (2.3.2)

By using (2.3.1) and (2.3.2) let us show that z1 ∧ z2 and z1 ∨ z2 belong to Cbo
x . First,

∥z1 ∨ z2∥ ∧
∥∥x− (z1 ∨ z2)

∥∥
=∥z1 ∨ z2∥ ∧

∥∥(x− z1) ∧ (x− z2)
∥∥

≤∥z1 ∨ z2∥ ∧∥x− z1∥ ∧∥x− z2∥

≤ (∥z1∥+∥z2∥+∥z1 ∧ z2∥) ∧∥x− z1∥ ∧∥x− z2∥

≤ (∥z1∥ ∧∥x− z1∥ ∧∥x− z2∥)

+(∥z2∥ ∧∥x− z1∥ ∧∥x− z2∥)

+ (∥z1 ∧ z2∥ ∧∥x− z1∥ ∧∥x− z2∥)

= 0.
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Similarly,

∥z1 ∧ z2∥ ∧
∥∥x− (z1 ∧ z2)

∥∥
=∥z1 ∧ z2∥ ∧

∥∥(x− z1) ∨ (x− z2)
∥∥

≤∥z1 ∧ z2∥ ∧ (∥x− z1∥+∥x− z2∥+∥x− z1∥ ∧∥x− z2∥)

≤ (∥z1 ∧ z2∥ ∧∥x− z1∥) + (∥z1 ∧ z2∥ ∧∥x− z2∥)

+ (∥z1 ∧ z2∥ ∧∥x− z1∥ ∧∥x− z2∥)

= 0,

and hence, the result.

According to Theorem 2.1.9, it is true that

Cx = {z ∈ V+ : z ∧ (x− z) = 0} = ext[0, x]

in the case of vector lattices. However, in the present case, the question arises whether

a similar statement holds true for Cbo
x . Example 2.3.20 provides a counterexample,

demonstrating that this claim does not hold true in either lattice normed spaces or lattice

normed vector lattices.

Now, we define the set
∥∥Cbo

x

∥∥ = {∥z∥ ∈ E : z ∈ Cbo
x } which consists of the norms of the

elements of Cbo
x .

Proposition 2.3.22. Let (V, ∥·∥ , E) be a lattice normed space and x ∈ V. Then the set
∥∥Cbo

x

∥∥
is order bounded and

∥∥Cbo
x

∥∥ ⊆ [0,∥x∥].

Proof. To prove this, take an element∥z∥ ∈
∥∥Cbo

x

∥∥ . It follows from

∥z∥ ∧∥x− z∥ = 0

that

∥z + x− z∥ =∥z∥+∥x− z∥ ,
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and hence,

0 ≤∥z∥ =∥x∥ −∥x− z∥ ≤∥x∥ .

We conclude that∥z∥ ∈ [0,∥x∥].

The knowledge that Cbo
x is an order bounded set on lattice normed vector lattices plays a

central role in the next theorem.

Theorem 2.3.23. Let (V, ∥·∥ , E) be an order continuous lattice normed vector lattice where

V and E are order complete vector lattices. Then Cbo
x is order complete for every x ∈ V+.

Proof. Consider any non empty subset A of Cbo
x . Since Cbo

x is order bounded by Proposition

2.3.18, A is order bounded in V and α = supA exists in V. We need to prove that α is an

element of Cbo
x . For every y ∈ A, we have 0 ≤ y ≤ α ≤ x and hence 0 ≤ x − α ≤ x − y.

Since norm is monotone, we get

∥x− α∥ ≤∥x− y∥

and

0 ≤∥y∥ ∧∥x− α∥ ≤∥y∥ ∧∥x− y∥ .

It follows that∥y∥ ∧∥x− α∥ = 0 for every y in A. Consider the set∥A∥ = {∥y∥ : y ∈ A} ⊂

E. It is bounded above by∥x∥ and since E is order complete, sup∥A∥ exists. As the norm is

order-semicontinuous sup∥A∥ =∥supA∥ =∥α∥ . Since

∥α∥ ∧∥x− α∥ = sup{∥y∥ ∧∥x− α∥ : y ∈ A} = 0

we obtain that α ∈ Cbo
x .

Proposition 2.3.24. Let (V, ∥·∥ , E) be lattice normed space and x ∈ V. Then
∥∥Cbo

x

∥∥ ⊆ C∥x∥.

Proof. Let∥z∥ ∈
∥∥Cbo

x

∥∥ . Since 0 ≤∥z∥ ≤∥x∥, we obtain

0 ≤∥x∥ −∥z∥ ≤∥x− z∥

25



and

0 ≤∥z∥ ∧ (∥x∥ −∥z∥) ≤∥z∥ ∧∥x− z∥ .

It follows that∥z∥ ∧ (∥x∥ −∥z∥) = 0, and hence,∥z∥ ∈ C∥x∥.

Proposition 2.3.25. Let (V, ∥·∥ , E) be lattice normed space and x ∈ V. Then
∥∥Cbo

x

∥∥ ⊆

ext[0,∥x∥].

Proof. Since C∥x∥ = ext[0,∥x∥], the proof follows from Proposition 2.3.24.

We know that Cx = ext[0, x] holds in vector lattices. Because of that, it can be asked whether∥∥Cbo
x

∥∥ = ext[0,∥x∥]. So many examples like Example 2.3.6, Example 2.3.14 and Example

2.3.20 show us that if the norm on V is surjective on E+, then
∥∥Cbo

x

∥∥ = ext[0,∥x∥]; otherwise,∥∥Cbo
x

∥∥ ̸= ext[0,∥x∥]. However, the following example shows that even if the norm on V is

not surjective on E+,
∥∥Cbo

x

∥∥ can be equal to ext[0,∥x∥].

Example 2.3.26. Consider the lattice normed space (R3,∥·∥ ,R3) with the vector norm

∥∥(x, y, z)∥∥ = (|x+ y|+ |z| , |x− y| , 0)

for (x, y, z) ∈ R3. We note that, in this case,∥·∥ is not surjective on the positive cone of R3.

However, for x = (1, 0,−2), we have
∥∥Cbo

x

∥∥ = ext[0,∥x∥].

After seeing Example 2.3.26, we searched again for the necessary conditions that make∥∥Cbo
x

∥∥ equal to ext[0,∥x∥]. In the view of some examples, we decide the norm on V must

be surjective on the positive cone of an ideal of E. This claim is still open.

The following is an open question: Which conditions do we need to make
∥∥Cbo

x

∥∥ equal to

ext[0,∥x∥]?

Remark 2.3.27. Let us consider (C[0, 1], |·| , C[0, 1]) lattice normed vector lattice where |·|

is the modulus on C[0, 1]. For taken positive element f ∈ C[0, 1], we have Cf = Cbo
f from
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Corollary 2.3.13. Therefore the results stated in this chapter for fragments of f are also valid

for (bo)-fragments of f .

Remark 2.3.28. Let us consider (C[0, 1],∥·∥ , E) lattice normed vector lattice. For positive

element f ∈ C[0, 1], we have Cbo
f ⊆ Cf from Proposition 2.3.11. In this case assuming

f(t) > 0, ∀t ∈ (0, 1) and using Theorem 2.2.3, we obtain Cf = {0, f} and hence we have

Cbo
f = Cf = {0, f}.

Remark 2.3.29. Let us consider (V, ∥·∥ , C[0, 1]) lattice normed space. For an arbitrary

element f ∈ V , we have
∥∥∥Cbo

f

∥∥∥ ⊆ C∥f∥ from Proposition 2.3.24. This idea can help us to

determine the set
∥∥∥Cbo

f

∥∥∥.

The following example shows how Remark 2.3.29 is vital for determining the set
∥∥∥Cbo

f

∥∥∥.

Example 2.3.30. Consider the lattice normed space (C[0, 1],∥·∥ , C[0, 1]) with the norm

∥f∥ =

∫ u

0

∣∣f(t)∣∣ dt
for f ∈ C[0, 1]. Let us assume that f ̸= 0. Assign∥f∥ = g(u) and notice that g(0) = 0 and

g(u) is non-decreasing function. Now we have two situations. In the first case, the function

g is zero up to a certain point of the interval (0, 1) and positive after that. In the second case,

there is no root of g in (0, 1). Thanks to Example 2.2.5 in the first case and Theorem 2.2.3 in

the second case, we can see that there is no proper fragment of g. Now considering Remark

2.3.29, we obtain ∥∥∥Cbo
f

∥∥∥ = C∥f∥ = {0,∥f∥}.

2.4. A specific case of (bo)-fragments

Fragments are commonly defined as positive elements of a vector lattice in many studies

(see [20, 21]). However, to understand the theory of orthogonally additive operators, we must

redefine this concept in the following section. When defining orthogonally additive operators

on vector lattices or C-complete vector lattices, it is preferable to choose fragments as
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arbitrary elements, rather than restricting them to only positive elements of the corresponding

vector lattice. This approach allows us to avoid the problem of expanding an orthogonally

additive operator only along the positive cone of the corresponding vector lattice, as well as

other related issues. Because of that, we give a new definition of fragments for the following

sections. Let E be a vector lattice and x ∈ E. An element z ∈ E is called a fragment of

x, if z ⊥ (x − z), that is, |z| ∧ |x− z| = 0. We use the notation z ⊑ x to say that z is a

fragment of x. We denote by Cx = {z ∈ V : |z| ∧ |x− z| = 0} the set of all fragments of x.

We say that y, z ∈ Cx are mutually complemented, if x = y ⊔ z. It should be noted that the

revised definition of fragments corresponds to the concept of (bo)-fragments on the lattice

normed vector lattice (E, |·| , E), where |·| denotes the modulus on E. Furthermore, this

new definition is a specific case of (bo)-fragments. Consequently, all the findings regarding

(bo)-fragments of a lattice normed vector lattice are applicable to the fragments. In this

section, we discuss some details about fragments which have a significant role in the theory

of orthogonally additive operators. In this subsection, we refer to the [1, 15, 16]

Theorem 2.4.1. Let E be a vector lattice and x ∈ E. Then the following statements hold:

(1) If z ∈ Cx then |z| ∈ C|x|;

(2) z ∈ Cx if and only if z+ ∈ Cx+ and z− ∈ Cx− .

Proof. We note that assertion (1) is proved in Theorem 2.3.17. Moreover, by revisiting

Theorem 2.3.17, one can see that it is enough to demonstrate only the sufficiency aspect of

the proof of assertion (2). Let z+ ⊑ x+ and z− ⊑ x−. It follows that z+ ≤ x+ and z− ≤ x−.

Then 0 ≤ z+ ∧ x− ≤ x+ ∧ x− = 0, and hence z+ ⊥ x−. Therefore one has

0 ≤
∣∣z+∣∣ ∧ |x− z| = z+ ∧

∣∣x+ − x− − z+ + z−
∣∣

≤ z+ ∧
∣∣x+ − z+

∣∣+ z+ ∧
∣∣x−∣∣+ z+ ∧

∣∣z−∣∣
= 0,
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and hence z+ ⊑ (x− z). The same holds true for z− ⊑ (x− z). It directly follows that

|z| ∧ |x− z| = (z+ + z−) ∧ |x− z| ≤ z+ ∧ |x− z|+ z− ∧ |x− z| = 0.

Thus, the proof is complete.

Proposition 2.4.2. Let E be a vector lattice. Then the binary relation ⊑ is a partial order in

E.

Proof. It’s clear that x ⊑ x. Assume x ⊑ y and y ⊑ x. It follows from |x| ∧ |y − x| = 0 and

|y| ∧ |x− y| = 0 that

|x− y| ≤ |x|+ |y|

≤ (|x|+ |y|) ∧ |x− y|

≤ (|x| ∧ |x− y|) + (|y| ∧ |x− y|)

= 0,

and hence x = y. Now we show that transitivity. We first show that the transitivity holds for

positive elements of E. So let us take x, y, z ∈ E+ with z ⊑ y and y ⊑ x. It follows from

z ∧ (y − z) = 0, y ∧ (x− y) = 0 and z ≤ y that

(x− z) ∧ z = ((x− y) + (y − z)) ∧ z ≤ ((x− y) ∧ z) + ((y − z) ∧ z))

≤ (x− y) ∧ y

= 0,

and hence z ⊑ x. Take any arbitrary x, y, z ∈ E with z ⊑ y and y ⊑ x. Because of the

above and Theorem 2.4.1, we get

z+ ⊑ y+ and y+ ⊑ x+ =⇒ z+ ⊑ x+
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and

z− ⊑ y− and y− ⊑ x− =⇒ z− ⊑ x−.

Thus we obtain z ⊑ x

Lemma 2.4.3. Let E be a vector lattice and x ∈ E. Then the set Cx is order closed.

Proof. Take a net (yα)α∈∆ in Cx. Assume (yα)
o−→ y and y ∈ E. We claim that y ⊑ x.

Indeed, by the order continuity of the lattice operations, we have

0 = |yα| ∧ |x− yα|
o−→ |y| ∧ |x− y| ,

and hence |y| ∧ |x− y| = 0.

Proposition 2.4.4. Let E be a vector lattice and x ∈ E. Then the set Cx equipped with the

partial order ⊑ is a Boolean algebra with the least element 0, maximal element x and with the

respect of Boolean operations: z∪y := (z+∨y+)−(z−∨y−), z∩y := (z+∧y+)−(z−∧y−),

¬z = x− z.

Proof. We note that by Theorem 2.1.9, the structures Cx+ and Cx− are Boolean algebras

equipped with zero 0, units x+ and x− respectively. Additionally, we note that the cartesian

product Cx+ × Cx− is a Boolean algebra equipped with zero (0, 0), unit (x+, x−) and lattice

operations (y1, z1) ∨ (y2, z2) = (y1 ∨ y2, z1 ∨ z2), (y1, z1) ∧ (y2, z2) = (y1 ∧ y2, z1 ∧ z2)

and ¬(y1, z1) = (x+ − y1, x
− − z1). Consider the mapping Φ : Cx+ × Cx− → Cx defined

by the formula Φ((a, b)) = a − b. We claim that Φ is a bijection and it induces the Boolean

algebra on Cx. Firstly, we show that Φ((a, b)) ∈ Cx. It follows from a ⊑ x+ and b ⊑ x− that
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0 ≤ a ∧ b ≤ x+ ∧ x− = 0. Thus, we have

|a− b| ∧
∣∣x− (a− b)

∣∣
= |a− b| ∧

∣∣x+ − x− − a+ b
∣∣

≤ (|a|+ |b|) ∧ (
∣∣x+ − a

∣∣+ ∣∣x− − b
∣∣)

≤ |a| ∧
∣∣x+ − a

∣∣+ |a| ∧
∣∣x− − b

∣∣+ |b| ∧
∣∣x+ − a

∣∣+ |b| ∧
∣∣x− − b

∣∣
= |a| ∧

∣∣x− − b
∣∣+ |b| ∧

∣∣x+ − a
∣∣

≤ |a| ∧
∣∣x−∣∣+ |a| ∧ |b|+ |b| ∧

∣∣x+
∣∣+ |b| ∧ |a|

≤
∣∣x+

∣∣ ∧ ∣∣x−∣∣+ ∣∣x−∣∣ ∧ ∣∣x+
∣∣

= 0.

Secondly, we show that Φ is a bijection. Take an element y ∈ Cx. Clearly, y = y+ − y−,

y+ ⊑ x+ and y− ⊑ x−. Therefore there exist a pair (y+, y−) ∈ Cx+ × Cx− such that

Φ((y+, y−)) = y. Moreover, let Φ((a, b)) = Φ((c, d)) for taken elements (a, b), (c, d) ∈

Cx+ × Cx− . It directly follows that

a− b = c− d =⇒ |a− c| = |b− d| ∧ |a− c|

≤ (|b|+ |d|) ∧ (|a|+ |c|)

≤ |b| ∧ |a|+ |b| ∧ |c|+ |d| ∧ |a|+ |d| ∧ |c|

= |b| ∧ |c|+ |d| ∧ |a|

≤
∣∣x−∣∣ ∧ ∣∣x+

∣∣+ ∣∣x−∣∣ ∧ ∣∣x+
∣∣

= 0,

and hence a = c. The same method can be used to show that b = d. Thus, (a, b) = (c, d).

Consider the lattice operations ∪, ∩ and ¬ defined by z ∪ y := (z+ ∨ y+) − (z− ∨ y−),

z ∩ y := (z+ ∧ y+)− (z− ∧ y−) and ¬z = x− z for all y, z ∈ Cx. For taken any y, z ∈ Cx,
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we have the following:

z ∪ y = (z+ ∨ y+)− (z− ∨ y−)

= Φ((z+ ∨ y+, z− ∨ y−))

= Φ((z+, z−) ∨ (y+, y−)),

and hence z ∪ y ∈ Cx. The same thing holds true for z ∩ y ∈ Cx. Moreover, we note that

Φ((0, 0)) = 0 and Φ((x+, x−)) = x. Hence Cx is a Boolean algebra with the least element 0

and maximal element x.

Proposition 2.4.5. Let E be a vector lattice, x, y, z, v ∈ E and z ⊔ v = x ⊔ y. Then there

exist elements z1, z2, v1, v2 ∈ E such that

(1) z = z1 ⊔ z2; v = v1 ⊔ v2;

(2) x = z1 ⊔ v1; y = z2 ⊔ v2.

For the detailed proof, please refer to [16, Lemma 3.5].
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3. On Orthogonally Additive Operators

In this chapter, we introduce the concept of orthogonally additive operators in vector lattices.

We provide important examples and discuss significant properties of orthogonally additive

operators. Additionally, we introduce several new classes of orthogonally additive operators,

including C-bounded, regular, disjointness preserving, non-expanding, narrow, and strictly

narrow operators. We investigate the relationships among these operators and support our

findings with various examples, propositions, lemmas, and theorems. Subsequently, we

explore the extension of orthogonally additive operators. Consequently, we analyze the

suitable conditions for extending orthogonally additive maps, focusing specifically on the

extension problem in C-complete vector lattices. Finally, we introduce the concept of

projection lateral bands and examine this topic in relation to orthogonally additive maps.

3.1. Preliminaries

In this section, we provide an introduction to orthogonally additive operators and cover

fundamental topics related to this area. The majority of the results presented in this section

can be found in the [4, 13].

Definition 3.1.1. Let E be a vector lattice and X be a real vector space. An operator T :

E → X is called orthogonally additive if T (x + y) = Tx + Ty for every disjoint elements

x, y ∈ E.

It is important to note that, for any orthogonally additive operator T , the condition T (0) = 0

holds true. Indeed, since 0 ⊥ 0, one has T (0 + 0) = T (0) + T (0), and hence T (0) = 0.

Example 3.1.2. Let T : R → R be a function with T (0) = 0. Then it is an orthogonally

additive operator. Indeed, take disjoint elements x, y ∈ R. It directly follows that x = 0 or

y = 0. Let y = 0. Therefore one has

T (x+ y) = Tx = Tx+ 0 = Tx+ Ty.
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Corollary 3.1.3. Let T : R → R be a function. Then T is an orthogonally additive operator

if and only if T (0) = 0.

Remark 3.1.4. Let OA(E,X) denote the set of all orthogonally additive operators from E

to X . It is noteworthy that OA(E,X) forms a real vector space.

The following proposition presents the structures of orthogonally additive operators defined

on finite-dimensional spaces.

Proposition 3.1.5. Let T : Rn → Rm. The operator T is orthogonally additive if and only if

there exist real functions Tij : R → R, 1 ≤ i ≤ m , 1 ≤ j ≤ n satisfying Tij(0) = 0 such

that

(T (x1, ..., xn))i =
n∑

j=1

Tij(xj)

Proof. To begin, we shall establish the validity of the ”if” implication. Take disjoint x =

(x1, ..., xn), y = (y1, ..., yn) ∈ Rn. We show that T (x + y) = Tx + Ty. Let us define the

following sets:

I = {k ∈ {1, ..., n} : yk = 0}

and J = {1, ..., n} \ I . By definition one has J ∩ I = ∅ and J ∪ I = {1, ..., n}. We note

that if k ∈ J , then xk = 0. Indeed, if we consider the disjointness of x and y, we obtain the

conclusion xi = 0 or yi = 0 for all i ∈ {1, ..., n}. It directly follows that

k ∈ J =⇒ k /∈ I =⇒ yk ̸= 0 =⇒ xk = 0.

Considering the definition of T , we have

T (x+ y) = (
n∑

j=1

T1j(xj + yj), ...,
n∑

j=1

Tmj(xj + yj)).
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Taken any i ∈ {1, ...,m}, we have the following:

n∑
j=1

Tij(xj + yj) =
∑
j∈I

Tij(xj + yj) +
∑
j∈J

Tij(xj + yj)

=
∑
j∈I

Tij(xj) +
∑
j∈J

Tij(yj)

=
∑
j∈I

Tij(xj) +
∑
j∈J

Tij(xj) +
∑
j∈J

Tij(yj) +
∑
j∈I

Tij(yj)

=
n∑

j=1

Tij(xj) +
n∑

j=1

Tij(yj),

and hence T (x + y) = Tx + Ty and T is an orthogonally additive operator. We are now

ready to give proof for the “only if” implication of the proposition. Let T : Rn → Rm

be an orthogonally additive operator. By definition Tx = (T̃1x, ..., T̃mx). Take any i ∈

{1, ...,m} and x = (x1, ..., xn) ∈ Rn. Since T is an orthogonally additive operator, we have

the following:

T̃i(x1, ..., xn) = T̃i(x1, 0, 0, ..., 0) + T̃i(0, x2, 0, ..., 0) + ...+ T̃i(0, 0, 0, ..., xn).

Take any j ∈ {1, ..., n}. Consider the function Tj : R → Rn defined by Tj(x) =

(0, 0, 0, ..., x, ..., 0), whose jth term is x and every other zero. Put by definition Tij := T̃i◦Tj .

We note that Tij : R → R and

T̃i(x1, ..., xn) = T̃i(x1, 0, 0, ..., 0) + T̃i(0, x2, 0, ..., 0) + ...+ T̃i(0, 0, 0, ..., xn)

= Ti1(x1) + Ti2(x2) + ...+ Tin(xn)

=
n∑

j=1

Tij(xj).

In that case, in order to complete the proof it is enough to show that Tij(0) = 0. Since T

is an orthogonally additive operator, one has T (0) = 0. It follows that T̃i(0) = 0. Thus,

Tij(0) = T̃i(0) = 0. This finishes the proof.
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Let (A,Σ, µ) be a finite measure space. For a given f ∈ L0(µ) by suppf , we denote the

measurable set

suppf := {t ∈ A : f(t) ̸= 0}.

The characteristic function of a set D is denoted by 1D.

Definition 3.1.6. Let (A,Σ, µ) and (B,℧, υ) be finite measure space and f ∈ L0(µ). By

(A × B, µ ⊗ υ) we denote the completion of their product measure space. A map K :

A×B×R → R is said to be a Carathêodory function if it satisfies the following conditions:

(C1) K(·, ·, r) is µ⊗ υ-measurable for all r ∈ R;

(C2) K(s, t, ·) is continuous on R for µ⊗ υ-almost all (s, t) ∈ A×B.

A Carathêodory function K is called normalized if K(·, ·, 0) = 0 for µ⊗υ-almost all (s, t) ∈

A×B.

Proposition 3.1.7. Let E be an order ideal of L0(υ), K : A×B ×R → R be a normalized

Carathêodory function and for every f ∈ E the inequality

∫
B

∣∣K(s, t, f(t))
∣∣ dυ(t) < ∞

holds for almost all s ∈ A. Then an orthogonally additive operator T : E → L0(µ) is

defined by setting

Tf(s) =

∫
B

K(s, t, f(t)) dυ(t).

Proof. In the first step of the proof, we show that for every f ∈ E and µ-almost all s ∈ A

the following equality holds

∫
B

K(s, t, f1suppf (t)) dυ(t) =

∫
B

K(s, t, f(t))1suppf dυ(t).

Let us define the set D := {(s, t) ∈ A × B : K(s, t, 0) ̸= 0}. By definition of D, we have

(µ ⊗ υ)(D) = 0. Given any (s, t) /∈ D, there are two cases: either t ∈ suppf or t /∈ suppf.
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If t ∈ suppf we have

K(s, t, f1suppf (t)) = K(s, t, f(t)) = K(s, t, f(t))1suppf .

For the opposite side, if t /∈ suppf we have

K(s, t, f1suppf (t)) = 0 = K(s, t, f(t))1suppf .

Thus K(s, t, f1suppf (t)) = K(s, t, f(t))1suppf holds true for all (s, t) /∈ D. Let us define the

set

H := {s ∈ A :

∫
B

K(s, t, f1suppf (t)) dυ(t) ̸=
∫
B

K(s, t, f(t))1suppf dυ(t)},

and assume µ(H) > 0. Consider the υ-measurable set Hs := {t ∈ B : (s, t) ∈ D}. One can

see that υ(Hs) > 0 for all s ∈ H. Additionally, for the set H ′ = {(s, t) : s ∈ H, t ∈ Hs} ⊆

D, we have (µ⊗ υ)(H ′) = 0. However, by [26, Theorem 3.4.1]

(µ⊗ υ)(H ′) =

∫
B

Hs dµ(s) > 0,

which is a contradiction. In the next step, we show that T is an orthogonally additive operator.

Take any disjoint elements f, g ∈ E. Then for almost all t ∈ B, we have

f(t) = 0 or g(t) = 0 ⇐⇒ t /∈ suppf or t /∈ suppg

⇐⇒ t ∈ (suppf)c or t ∈ (suppg)c

⇐⇒ t ∈ (suppf)c ∪ (suppg)c

⇐⇒ t /∈ suppf ∩ suppg,

and hence υ{t ∈ suppf ∩ suppg} = 0. It directly follows that

1suppf∪suppg = 1suppf + 1suppg.
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Therefore, we have the following:

T (f + g) =

∫
B

K(s, t, (f + g)(t)) dυ(t)

=

∫
B

K(s, t, (f + g)(t))1supp(f+g)(t) dυ(t)

=

∫
B

K(s, t, (f + g)(t))(1suppf + 1suppg)(t) dυ(t)

=

∫
B

K(s, t, (f + g)(t))(1suppf )(t) dυ(t) +

∫
B

K(s, t, (f + g)(t))(1suppg)(t) dυ(t)

=

∫
B

K(s, t, (f + g)1suppf (t)) dυ(t) +

∫
B

K(s, t, (f + g)1suppg(t)) dυ(t)

=

∫
B

K(s, t, f(t)) dυ(t) +

∫
B

K(s, t, g(t)) dυ(t)

= Tf + Tg

In the theory of linear operators, positive operators are defined as mappings that transform

positive elements into positive elements. However, in the context of orthogonally additive

operators, it is more suitable to define positive operators as mappings that transform any

element into a positive element. The motivation behind this will become more obvious in

subsequent sections.

Definition 3.1.8. Let E and F be vector lattices. An orthogonally additive operator T : E →

F is called:

(1) positive if Tx ≥ 0 for all x ∈ E;

(2) order bounded if it maps order bounded subsets of E to order bounded subsets of F .

In the context of linear operators, every positive operator is order bounded. However, this

does not hold true in the context of orthogonally additive operators. The following example

shows that a positive orthogonally additive operator may not be order bounded.
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Example 3.1.9. Consider the mapping T : R → R defined by

T (x) =


0 if x = 0

1
x2 if x ̸= 0.

As a consequence of Corollary 3.1.3, T is an orthogonally additive operator. Additionally,

since T (x) ≥ 0 for all x ∈ R, it is positive. However, it is not order bounded. To see

this, consider the order bounded interval [0, 1] and its image under T , which is T ([0, 1]) =

[1,∞] ∪ {0}. As this set is not order bounded, we conclude that T is not order bounded.

We note that order boundedness of an orthogonally additive operator does not imply its

positivity. The operator T : R → R defined by T (x) = x shows this fact.

Definition 3.1.10. Let E and F be vector lattices and T : E → F . The operator T is called

an abstract Urysohn operator if it is orthogonally additive and order bounded. We denote by

U(E,F ) the set of all abstract Urysohn operators from E into F.

Remark 3.1.11. We define the following order on U(E,F ): T ≥ S whenever T − S is

positive. In that case U(E,F ) becomes an ordered vector space. It is worth noting that this

bears similarity to the case of linear operators, where the set of all order bounded linear

operators forms an ordered vector space.

We recall from Chapter 2 that an element z ∈ E is called a fragment of x, if z ⊥ (x−z), that

is, |z| ∧ |x− z| = 0. We use the notation z ⊑ x to say that z is a fragment of x. We denote

by Cx = {z ∈ V : |z| ∧ |x− z| = 0} the set of all fragments of x. We say that y, z ∈ Cx are

mutually complemented, if x = y ⊔ z.

Theorem 3.1.12. Let E and F be vector lattices with F Dedekind complete. Then U(E,F )

is a Dedekind complete vector lattice. Moreover, for T, S ∈ U(E,F ) and for x ∈ E the

following hold:

(1) (T ∨ S)(x) = sup{Ty + Sz : x = y ⊔ z}
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(2) (T ∧ S)(x) = inf{Ty + Sz : x = y ⊔ z}

(3) T+(x) = sup{Ty : y ⊑ x}

(4) T−(x) = − inf{Ty : y ⊑ x}

(5) |Tx| ≤ |T | (x)

Proof. Let T, S ∈ U(E,F ). For every x ∈ E we define the mapping

Hx := sup{Ty + Sz : x = y ⊔ z}.

We note that since the operators T and S are order bounded and the space F is Dedekind

complete, the operator H is well defined and order bounded. We now claim that the operator

H is orthogonally additive. To see this, let us take disjoint elements x, y ∈ E. Assume

x = x1 ⊔ x2 and y = y1 ⊔ y2. In order to complete the proof, we need to show that x1 ⊥

y1, x2 ⊥ y2 and (x1 + y1) ⊥ (x2 + y2). It follows from x ⊥ y that

|x1| ∧ |y1| ≤ (|x1|+ |x2|) ∧ (|y1|+ |y2|)

= |x1 + x2| ∧ |y1 + y2|

= |x| ∧ |y|

= 0,

and hence x1 ⊥ y1. The same holds true for x2 ⊥ y2. On the other hand, we have

|x1 + y1| ∧ |x2 + y2| = (|x1|+ |y1|) ∧ (|x2|+ |y2|)

≤ |x1| ∧ |x2|+ |x1| ∧ |y2|+ |y1| ∧ |x2|+ |y1| ∧ |y2|

= |x1| ∧ |y2|+ |y1| ∧ |x2|

= |x| ∧ |y|+ |y| ∧ |x|

= 0.
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Thus, we have

(Tx1 + Sx2) + (Ty1 + Sy2) = T (x1 + y1) + S(x2 + y2)

≤ sup{Tz + Sw : x+ y = z ⊔ w}

= H(x+ y).

By taking the supremum over all x1, x2 and y1, y2 on the left side of the previous inequality,

we obtain

Hx+Hy ≤ H(x+ y).

We now prove the converse inequality. Let z, v be any elements of E such that x+y = z⊔v.

It follows that x ⊔ y = z ⊔ v. By Proposition 2.4.5, there exist elements z1, z2, v1, v2 ∈ E

such that

(1) z = z1 ⊔ z2; v = v1 ⊔ v2;

(2) x = z1 ⊔ v1; y = z2 ⊔ v2.

Therefore we have the following:

Tz + Sv = T (z1 + z2) + S(v1 + v2)

= (Tz1 + Sv1) + (Tz2 + Sv2)

≤ Hx+Hy.

By taking the supremum over all z, v on the left side of the previous inequality, we obtain

H(x + y) ≤ Hx + Hy. Therefore, we have H(x + y) = Hx + Hy, which implies that H

is an orthogonally additive operator. Hence the operator H is an abstract Urysohn operator.

Next, we show that H = T ∨ S ∈ U(E,F ). We note that T ≤ H and S ≤ H. Let

us take R ∈ U(E,F ) such that T ≤ R and S ≤ R. Given any x = y ⊔ z, we have

Ty + Tz ≤ Ry + Rz = Rx. By taking the supremum over all y, z, we obtain Hx ≤ Rx.

Thus, we have H = T ∨ S, and as a result, U(E,F ) becomes a vector lattice. Consequently,

we can establish the proof by demonstrating the validity of assertions (1)-(5).
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(1) (T ∨ S)(x) = sup{Ty + Sz : x = y ⊔ z}

(2) (T ∧ S)(x) = −[(−T ) ∨ (−S)] = − sup{−Ty − Sz : x = y ⊔ z}

= inf{Ty + Sz : x = y ⊔ z}

(3) T+(x) = (T ∨ 0)(x) = sup{Ty + 0z : x = y ⊔ z} = sup{Ty : y ⊑ x}

(4) T−(x) = (−T )+(x) = sup{−Ty : y ⊑ x} = − inf{Ty : y ⊑ x}

(5) |T |x = (T+ ∨ T−)(x) = sup{T+y − T−z : x = y ⊔ z}.

Therefore we have Tx ≤ |T |x and −Tx ≤ |T |x. Hence |Tx| ≤ |T |x. For the last part

of the proof, we need to show that U(E,F ) is Dedekind complete. So, let us take a net

(Tα)α∈∆ ∈ U(E,F ) such that 0 ≤ Tα ↑≤ T. We claim that supTα exists in U(E,F ).

Consider the element Sx := supα∈∆ Tα(x) for every x ∈ E. Since F is Dedekind complete,

the element Sx exists in F. Additionally, taken disjoint x, y ∈ E, we have

S(x+ y) = sup
α∈∆

Tα(x+ y) = sup
α∈∆

{Tα(x) + Tα(y)}

= sup
α∈∆

Tα(x) + sup
α∈∆

Tα(y)

= Sx+ Sy,

and hence the operator S is orthogonally additive. Finally, considering the S ≤ T , we deduce

S is order bounded. Hence S ∈ U(E,F ) and S = supα∈∆ Tα. The proof is finished.

We denote by U+(E,F ) the set of all positive abstract Urysohn operators. The following

example demonstrates that a positive abstract Urysohn operator can be constructed using

positive linear operators.

Example 3.1.13. Let T : E → F be a positive linear operator. Consider the mapping

GT : E → F defined by GT (x) = T |x| . One can see that the mapping GT is well defined.

We claim that GT is an orthogonally additive operator. Indeed, consider disjoint elements
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x, y ∈ E. It follows from T is a linear operator that

GT (x+ y) = T (|x+ y|) = T (|x|+ |y|) = T |x|+ T |y| = GT (x) +GT (y).

Additionally, by the definition of GT , it is positive and order bounded. Hence GT ∈

U+(E,F ).

Here we introduce another significant example of a non-linear abstract Urysohn operator.

Example 3.1.14. Consider the operator T : ℓ2 → R defined by

T ((xn)) =
∑
n∈Ix

n(|xn| − 1)

where Ix := {n ∈ N : |xn| ≥ 1}. We show that T ∈ U+(ℓ2,R). To begin with, we claim

that T is well-defined. Consider any sequence (xn)n∈N ∈ ℓ2. By definition of ℓ2, we have the

following:

(
∞∑
n=1

|xn|2)1/2 < ∞ =⇒ xn
2 → 0

=⇒ xn → 0

=⇒ ∃N ∈ N : ∀n > N ∈ N : |xn| ≤ 1,

and therefore the set Ix contains a finite number of elements. Hence
∑

n∈Ix n(|xn|−1) < ∞,

which implies that T is well defined. In the next step, we show that T is an orthogonally

additive operator. Take any disjoint x = (xn), y = (yn) ∈ ℓ2. It follows that xi = 0 or yi = 0

for all i ∈ N. Also, we note that if xn ̸= 0 (or yn ̸= 0), then yn = 0 (or xn = 0). In order to

complete the proof, we need to show that Ix ∪ Iy = Ix+y. Indeed, let n ∈ Ix ∪ Iy. Thus, we
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have the following:

n ∈ Ix or n ∈ Iy =⇒ |xn| ≥ 1 or |yn| ≥ 1

=⇒ |xn + yn| ≥ 1 or |yn + xn| ≥ 1

=⇒ n ∈ Ix+y.

On the other hand, let n ∈ Ix+y. Then, we have |xn + yn| ≥ 1. Considering the disjointness

of x and y, we obtain |xn| ≥ 1 or |yn| ≥ 1, and hence n ∈ Ix ∪ Iy. Additionally, one can

easily see that Ix ∩ Iy = ∅. By considering the last results, we have the following:

T (x+ y) =
∑

n∈Ix+y

n(|xn + yn| − 1)

=
∑
n∈Ix

n(|xn + yn| − 1) +
∑
n∈Iy

n(|xn + yn| − 1)

=
∑
n∈Ix

n(|xn| − 1) +
∑
n∈Iy

n(|yn| − 1)

= Tx+ Ty,

and hence T is an orthogonally additive operator. It follows from the definition of T that

it is positive. In the last step, we show that the operator T is order bounded. Consider the

order interval [z, w], where z = (zn), w = (wn) ∈ ℓ2. Given any x = (xn) ∈ [z, w], we have

|x| ≤ |z| ∨ |w| = η, where η = (ηn) ∈ ℓ2. We note that Ix ⊆ Iη. Thus, we have

Tx =
∑
n∈Ix

n(|xn| − 1) ≤
∑
n∈Ix

n(|ηn| − 1) ≤
∑
n∈Iη

n(|ηn| − 1) = Tη.

Hence T ∈ U+(ℓ2,R).

3.2. C-bounded and Regular OAO

In this section, we introduce two classes of orthogonally additive operators: C-bounded and

regular operators. Some of the results discussed in this section can be found in the [16].
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Definition 3.2.1. Let E,F be vector latices. An orthogonally additive operator T : E → F

is called:

(1) regular if T = S1 − S2, where S1, S2 are positive orthogonally additive operator from

E to F ;

(2) C-bounded if T (Cx) is an order bounded subset of F for every x ∈ E.

We denote by P(E,F ) the set of all C-bounded orthogonally additive operators from E

to F. We note that P(E,F ) is known in the literature as the space of Popov operators.

Furthermore, one can show that if F is Dedekind complete, then all the conclusions of

Theorem 3.1.12 regarding abstract Urysohn operators also hold for C-bounded operators

(see [16, Theorem 3.6]). That is, if F is Dedekind complete, then P(E,F ) is a Dedekind

complete vector lattice with the same order as on U(E,F ). Additionally, we note that

U(E,F ) ⊆ P(E,F ) holds true, by definition. However, the converse side is not valid.

Example 3.2.2. Consider Example 3.1.9. Take any x ∈ R. Since the set Cx = {0, x},

we obtain that T (Cx) = {0, Tx}, which is order bounded. Therefore the operator T is

C-bounded but not order bounded.

Proposition 3.2.3. Let E,F be vector lattices with F Dedekind complete and T : E → F

be an orthogonally additive operator. Then T is C-bounded if and only if T is regular.

Proof. Let T : E → F be a regular orthogonally additive operator. We need to show that

T (Cx) is order bounded for every x ∈ E. Take any y ∈ Cx. Since T is regular, there exist

positive orthogonally additive operators S1, S2 from E to F such that T = S1−S2. It follows

that

|Ty| = |S1y − S2y| ≤ |S1y|+ |S2y|

= S1y + S2y

= (S1x− S1(x− y)) + (S2x− S2(x− y))

≤ S1x+ S2x,
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and hence the set T (Cx) is order bounded and T is C-bounded.

On the other hand, Let T : E → F be a C-bounded orthogonally additive operator. Consider

the operator G : E → F defined by

Gx = sup{|T | y : y ⊑ x}.

We note that since |T | is C-bounded and F is Dedekind complete, the operator G is well

defined. Let us take disjoint elements x, y ∈ E. For an arbitrary z ⊑ x + y, by the

decomposition property (see [20, Theorem 1.13]), there exist z1, z2 of E such that z = z1+z2

and |z1| ≤ |x| and |z2| ≤ |y|. One can see that z1 ⊥ z2 is valid. Now we claim that z1 ⊑ x

and z2 ⊑ y. To prove that, we must show (x− z1) ⊥ (y − z2). Indeed,

|x− z1| ∧ |y − z2| ≤ (|x|+ |z1|) ∧ (|y|+ |z2|)

≤ |x| ∧ |y|+ |x| ∧ |z2|+ |z1| ∧ |y|+ |z1| ∧ |z2|

= |x| ∧ |z2|+ |z1| ∧ |y|

≤ |x| ∧ |y|+ |x| ∧ |y|

= 0.

We can now show that z1 ⊑ x. Because of the above, we have

|z1| ∧ |x− z1| ≤ (|z1|+ |z2|) ∧ (|x− z1|+ |y − z2|)

≤ |z1 + z2| ∧ |x− z1 + y − z2|

= |z| ∧ |x+ y − z|

= 0.

One can apply the same steps for z2. Thus, we have

|T | (z) = |T | z1 + |T | z2 ≤ sup{|T |w : w ⊑ x}+ sup{|T |w : w ⊑ y}

= Gx+Gy.
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Taking supremum over z, we obtain G(x + y) ≤ Gx + Gy. Now we prove the other side.

We claim that if z1 ⊑ x and z2 ⊑ y then z1 + z2 ⊑ x+ y. Because

|z1 + z2| ∧ |x− z1 + y − z2| ≤ (|z1|+ |z2|) ∧ (|x− z1|+ |y − z2|)

≤ |z1| ∧ |y − z2|+ |z2| ∧ |x− z1|

≤ |z1| ∧ |y|+ |z1| ∧ |z2|+ |z2| ∧ |x|+ |z2| ∧ |z1|

≤ |x| ∧ |y|+ |z1| ∧ |z2|+ |y| ∧ |x|+ |z2| ∧ |z1|

= 0,

and hence z1 + z2 ⊑ x+ y. It follows that

|T | z1 + |T | z2 = |T | (z1 + z2) ≤ sup{|T |w : w ⊑ x+ y} = G(x+ y).

Taking supremum over z1 and z2, we conclude Gx + Gy ≤ G(x + y). Additionally, G is

positive by definition. Therefore there exist a positive orthogonally additive operator such

that T ≤ G, which implies T is a regular operator. This finishes the proof.

Proposition 3.2.4. Let E,F be vector lattices. Then every positive orthogonally additive

operator T : E → F is a C-bounded operator.

Proof. Let T : E → F be a positive orthogonally additive operator. Take an arbitrary

element x ∈ E. Then for every y ∈ Cx, we have

Tx = T (x− y) + Ty =⇒ Ty = Tx− T (x− y) ≤ Tx.

Therefore Tx is an upper bound for T (Cx). Hence T is a C-bounded operator.

3.3. Disjointness Preserving OAO

Some of the results presented in this section can be found in reference [4].
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Definition 3.3.1. Let E and F be vector lattices. An orthogonally additive operator T : E →

F is called disjointness preserving if Tx ⊥ Ty for every disjoint x, y ∈ E. We denote by

OAdpo(E,F ) the set of all disjointness preserving orthogonally additive operators from E to

F .

The following provides an example of a non-disjointness preserving orthogonally additive

operator.

Example 3.3.2. Consider the operator T : R2 → R defined by T (x, y) = x+ y. We observe

that T is an orthogonally additive operator. However, T is not disjointness preserving.

Because for taken disjoint elements (0, 1) and (1, 0), one can see that T (0, 1) = T (1, 0) = 1,

and hence T (0, 1) ∧ T (1, 0) ̸= 0.

Definition 3.3.3. Let E be a vector lattice. An orthogonally additive operator T : E → E is

called non-expanding if Tx ∈ {x}dd for every x ∈ E.

Example 3.3.4. Let (A,Σ, µ) be a finite measure space. We say that N : A × R → R is a

superpositionally measurable function, if N(·, f(·)) is µ-measurable for every f ∈ L0(µ). A

superpositionally measurable function N is called normalized if N(s, 0) = 0 for µ-almost

all s ∈ A. Now we define the operator

N :L0(µ) → L0(µ)

f(s) → N (f)(s) = N(s, f(s)).

We claim that N is a non-expanding orthogonally additive operator. Take any disjoint

elements f, g ∈ L0(µ). By applying the same method used in Proposition 3.1.7, we can
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conclude that 1suppf∪suppg = 1suppf + 1suppg. Therefore one has

N (f + g)(s) = N(s, f + g) = N(s, (f + g)1suppf∪suppg)

= N(s, f + g)1suppf∪suppg

= N(s, f + g)1suppf +N(s, f + g)1suppg

= N(s, f)1suppf +N(s, f)1suppg

= N(s, f) +N(s, f)

= N (f)(s) +N (g)(s).

Thus, N is an orthogonally additive operator. Let us now show that N is a non-expanding

operator. First, we have suppN (f) ⊆ suppf since N (f)(s) = N(s, f)1suppf . It follows that

h ∈ {f}d ⇒ µ(suppf ∩ supph) = 0

⇒ µ(suppN (f) ∩ supph) = 0

⇒ N (f) ⊥ h

⇒ N (f) ∈ {f}dd.

We also note that the operator N is known in the literature as the nonlinear superposition

operator or Nemytskii operator.

Proposition 3.3.5. Let E be a vector lattice. Then every non-expanding orthogonally

additive operator from E to E preserves disjointness.

Proof. Let T : E → E be a non-expanding operator and let x, y be disjoint elements of E.

Considering the y ∈ {x}d and Tx ∈ {x}dd, we obtain y ⊥ Tx. Therefore Tx ∈ {y}d. Since

Ty ∈ {y}dd, then Tx ⊥ Ty.

The following example shows that not every disjoint preserving operator has to be a

non-expanding operator.
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Example 3.3.6. Consider the orthogonally additive operator T : R2 → R2 defined by

T (x, y) = (x2, x). Let (a, b) and (c, d) be disjoint elements of R2. Starting from this,

one can obtain a = 0 or c = 0, and hence it follows from T (a, b) = 0 or T (c, d) = 0 that T

is a disjointness preserving operator. However, T is not a non-expanding operator. Because

for taken element (1, 0) ∈ R2, one may see that T (1, 0) = (1, 1) /∈ {(1, 0)}dd = {(x, 0) ∈

R2 : x ∈ R}.

Proposition 3.3.7. Let E and F be vector lattices with F Dedekind complete. Then

OAdpo(E,F ) ⊆ OAr(E,F ).

Proof. Let T ∈ OAdpo(E,F ) and x ∈ E. Given y ∈ Cx, we have y ⊥ (x− y). Considering

the T ∈ OAdpo(E,F ), one has

∣∣T (x)∣∣ = ∣∣T (x− y ⊔ y)
∣∣ = ∣∣T (x− y) ⊔ T (y)

∣∣ = ∣∣T (x− y)
∣∣ ⊔ ∣∣T (y)∣∣ .

Thus
∣∣T (y)∣∣ ≤

∣∣T (x)∣∣. Hence the set T (Cx) is upper bounded by
∣∣T (x)∣∣, and T is a

C-bounded operator. Considering Proposition 3.2.3 and that F is Dedekind complete, T

is a regular operator.

Remark that OAr(E,F ) ⊆ OAdpo(E,F ) does not generally hold. Indeed, in Example 3.3.2,

we have seen that the operator T is not disjointness preserving. Despite this, T is C-bounded.

Because for taken x = (a, b) ∈ R2, one can observe that Cx = {(0, 0), (0, b), (a, 0), (a, b)}

and hence T (Cx) is order bounded. Since R is Dedekind complete, T is a regular operator.

Remark that if F is Dedekind complete, then OAdpo(E,F ) is a solid subset of OAr(E,F ).

Let S ∈ OAr(E,F ), T ∈ OAdpo(E,F ), and |S| ≤ |T |. We show that S ∈ OAdpo(E,F ).

Given disjoint elements x, y ∈ E, we have |Tx| ∧ |Ty| = 0. It follows that |Sx| ∧ |Sy| ≤

|Tx| ∧ |Ty| = 0, and hence S ∈ OAdpo(E,F ).
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Proposition 3.3.8. Let E,F be vector lattices and T ∈ OAdpo(E,F ). Then the module

|T | = T ∨ (−T ) of T exists and |T | ∈ OAdpo(E,F ). Moreover

|T |x = |Tx| , x ∈ E.

Proof. Consider the operator R : E → F defined by R(x) = |Tx|. Given disjoint elements

x, y ∈ E, we have R(x + y) =
∣∣T (x+ y)

∣∣ = ∣∣T (x) + T (y)
∣∣. Since T ∈ OAdpo(E,F ), one

has Tx ⊥ Ty. It follows that

R(x+ y) = |Tx|+ |Ty| = Rx+Ry.

Thus R is an orthogonally additive operator. Also, one can see that R is a positive disjointness

preserving operator. Let L ∈ OA+(E,F ) such that Lx ≥ Tx and Lx ≥ (−Tx) for all

x ∈ E. Then,

Lx ≥ Tx ∨ (−Tx) = Rx, x ∈ E.

It follows from T,−T ≤ R and L ≥ R that R = T ∨ (−T ).

Example 3.3.9. Every orthogonally additive operator T : R → R is non-expanding and

therefore preserves disjointness. To see this, take an element x ∈ R. If x = 0, then {x}dd =

{0}. It follows from Tx = T0 = 0 that Tx ∈ {x}dd. If x ̸= 0, then {x}dd = R. It follows

that Tx ∈ {x}dd.

3.4. C-complete Vector Lattices and Relationship with OAO

In this section, we begin by introducing a new class of vector lattices known as C-complete.

We explore the relationship between C-completeness and both the Archimedean property and

Dedekind completeness. Furthermore, we present two significant classes of orthogonally

additive operators: horizontally-to-norm continuous operators and horizontally-to-order

continuous operators. Some of the results presented in this section can be found in the [2, 4].

Definition 3.4.1. A vector lattice E is called C-complete, if for each x ∈ E+ every subset

D ⊆ Cx has a supremum z = supD.
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Remark that considering Lemma 2.4.3, we observe that z = supD ∈ Cx. Besides if E is a

C-complete vector lattice, x ∈ E+, and D ⊆ Cx, then v = infD exists. Indeed, consider the

set D̄ = {x− z : z ∈ D}. Then D̄ has a supremum z̄ = sup D̄ and v = x− z̄.

Example 3.4.2. Every Dedekind complete vector lattice E is C-complete.

We present an example of a non-C-complete vector lattice, as a consequence it is not

Dedekind complete.

Example 3.4.3. Consider the vector lattice c, which is the space of all convergent (real)

sequences, i.e., c = {(xn) ⊆ R : limxn exists in R}. We claim that it is not C-complete.

To see this consider the sequence en, whose nth term is one and every other zero. Put by

definition, D := {e2n : n ∈ N}. Now let us define the sequence 1 = (1, 1, 1, ...), where each

term is one. We observe that D ⊆ C1. However, since the sequence supD = (0, 1, 0, 1, ...)

is not convergent, then c is not C-complete.

The following shows us that the C-completeness of a vector lattice does not imply the

Dedekind completeness of it. We note that C[0, 1] is not a Dedekind complete vector lattice.

Example 3.4.4. The vector lattice C[0, 1] of all continuous functions on the interval [0,1] is

C-complete.

For detailed proof, please refer to [2, Prop. 4.2]

The relationship between Archimedean vector lattices and C-complete vector lattices is a

natural question to ask. Example 3.4.3 shows that Archimedean property does not imply

C-completeness. In addition, we present an example of a vector lattice in this context that

is C-complete but not Archimedean. This example serves as evidence that the property of

C-completeness does not necessarily imply the Archimedean property in vector lattices.

Example 3.4.5. Consider the vector lattice (R2,≤l) equipped with the lexicographic order.

Notice that (R2,≤l) is not Archimedean. However, it is C-complete. Indeed, take a

positive element x = (x1, x2) ∈ R2. Since there exist only two fragments of x, that is,

Cx = {0, (x1, x2)}, then (R2,≤l) is C-complete.
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Definition 3.4.6. Let E be a vector lattice. A net (eα)α∈∆ in E horizontally converges to an

element e ∈ E (notation eα
h−→ e) if the net (eα)α∈∆ order converges to e and eα ⊑ eβ ⊑ e

for all α, β ∈ ∆ with α ≤ β.

Example 3.4.7. Consider the vector lattice c and its element 1 = (1, 1, 1, ...). We

find a sequence of c that horizontally converges to 1. Put by definition, an =

(1, 1, 1, ..., 1, 0, 0, 0, ...), whose first nth term is one and every other zero. Now one can

see that

|1− an| = (0, 0, 0, ..., 0, 1, 1, 1, ...) = bn.

It follows from bn ↓ 0 that an
o−→ 1. Besides for taken n,m ∈ N with n ≤ m, we have

an ⊑ am ⊑ 1. Hence an
h−→ 1.

Of course, not every order convergent net is horizontally convergent. For example, the net

eα = 1
α

for α ∈ R+ order converges to zero. However, the convergence is not horizontal.

Because for given α, β ∈ R+ with α ≤ β, the statement 1
α
⊑ 1

β
⊑ 0 is not valid.

Remark that in any vector lattice E, the only net that horizontally converges to zero is the

sequence (xn)n∈N = (0)n∈N, where each element is zero. The reason is that there is no

fragment of zero except itself.

Proposition 3.4.8. Every sequence of R that horizontally converges to x ∈ R is an element

of ℓ∞c = {(xn)n∈N : (∃k ∈ N) (∀n ≥ k) (xn = xk)}, which is the space of eventually

constant sequences.

Proof. Let the sequence (xn) ⊆ R horizontally converges to x ∈ R. Therefore for all n ∈ N

we have xn ⊑ x. It follows from Cx = {0, x} for every x ∈ R that xn = 0 or xn = x.

Considering the sequence (xn) order converges to x, one can see that there exists N ∈ N

such that xn = x for all n ≥ N .

Definition 3.4.9. Let E be a vector lattice and let X be a normed space. An orthogonally

additive operator T : E → X is called horizontally-to-norm continuous if for every net

(xα)α∈∆ in E horizontally convergent to x ∈ E the net (Txα)α∈∆ norm converges to Tx.
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Corollary 3.4.10. Let X be a normed space. Then every orthogonally additive operator

T : R → X is horizontally-to-norm continuous.

Proof. The proof follows from Proposition 3.4.8.

Definition 3.4.11. Let E,F be vector lattices. An orthogonally additive operator T : E →

F is called horizontally-to-order continuous if for every net (xα)α∈∆ in E horizontally

convergent to x ∈ E the net (Txα)α∈∆ order converges to Tx.

The Nemytskii operator is an example of the horizontally-to-order continuous orthogonally

additive operator. The following example confirms this.

Example 3.4.12. Let (A,Σ, µ) be a finite measure space and let N : A × R → R be

a superpositionally measurable function. Consider the Nemytskii operator N : L0(µ) →

L0(µ) associated with N . Take a net (fα)α∈∆ ⊆ L0(µ) which horizontally converges to

f ∈ L0(µ). We notice that suppfα is a measurable subset of A for all α ∈ ∆, and suppfα ⊆

suppfβ where α, β ∈ ∆, α ≤ β. Indeed, since fα ⊑ fβ is equivalent to fα ⊥ (fβ − fα), we

have µ{t ∈ suppfα ∩ supp(fβ − fα)} = 0. It directly follows that suppfα ⊆ suppfβ. Also,

we note that fα = f1suppfα for all α ∈ ∆. Now we claim that the net (1suppfα)α∈∆ order

converges to 1suppf . One can see that

∣∣1suppfα − 1suppf
∣∣ ≤ 1supp(fα−f) and 1supp(fα−f) ↓ 0,

thus 1suppfα
o−→ 1suppf . After all these inferences, we get the following for the Nemytskii

operator;

N fα = N(·, fα(·)) = N(·, f1suppfα(·)) = N(·, fα(·))1suppfα(·)

order converges to N(·, f(·))1suppf (·) = N(·, f1suppf (·)) = N(·, f(·)) = N (f). Hence the

Nemytskii operator is a horizontally-to-order continuous orthogonally additive operator.
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3.5. Compact Like OAO

In this section, we focus on the study of compact-like operators, such as AM-compact and

Narrow operators, within the framework of orthogonally additive operators. We study their

properties and characteristics in this context. It is worth noting that some of the results

presented in this section can be found in the [2, 4].

Definition 3.5.1. Let E be a vector lattice and let X be a normed space. An orthogonally

additive operator T : E → X is called:

(1) AM-compact if T maps order bounded subsets of E into relatively compact sets in X ,

(2) C-compact if for every x ∈ E the set T (Cx) is relatively compact in X .

Definition 3.5.2. A vector e > 0 in a vector lattice E is called an atom if x∧y and x, y ∈ [0, e]

imply either x = 0 or y = 0.

Definition 3.5.3. A vector lattice E is called atom-filled if each element of E+ is an atom.

Example 3.5.4. (R,≤) is an example of atom-filled vector lattice.

Example 3.5.5. Consider the set Cc[0, 1] = {f(x) ∈ C[0, 1] : (∃c ∈ R) (∀x ∈

[0, 1]) (f(x) = c)}. We observed that the set Cc[0, 1] is a vector sublattice of C[0, 1]. Besides,

every element of its positive cone is an atom. Hence Cc[0, 1] is an atom-filled vector lattice.

Remark 3.5.6. We remark that if e > 0 is an atom in a vector lattice E, then Ce = {0, e}.

Indeed, let x ⊑ e. Since x ∧ (e − x) = 0 and x, e − x ∈ [0, e], then we have x = 0 or

e− x = 0. This finishes the proof.

Theorem 3.5.7. Let E be an atom-filled vector lattice. Then the followings are valid for all

x, y ∈ E+.

(1) x ∧ y = 0 ⇐⇒ x = 0 or y = 0,

(2) x ∧ y = x or x ∧ y = y, and x ∨ y = x or x ∨ y = y,
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(3) E+ is a chain,

(4) Ce = {0, e} is valid for all e ∈ E.

Proof. (1) Let x ∧ y = 0. Since E is an atom-filled vector lattice, then x ∨ y is also an

atom. It follows from x, y ∈ [0, x ∨ y] and x ∧ y = 0 that x = 0 or y = 0.

(2) Note that (x− x∧ y)∧ (y− x∧ y) = x∧ y− x∧ y = 0. It follows from the previous

conclusion that x− x ∧ y = 0 or y − x ∧ y = 0. The same is true for the other side.

(3) It follows directly from the conclusion (2).

(4) Take an arbitrary e ∈ E. Since |e| is an atom, then we have C|e| = {0, |e|}. Let

0 ̸= y ⊑ e. By Theorem 2.4.1, we have |y| ⊑ |e|, y+ ⊑ e+ and y− ⊑ e−. It follows

from y ̸= 0 that |e| = |y|. Considering the e− is an atom, we have two cases: y− = 0

or y− = e−. If y− = 0, then we have the following:

|y| = |e| =⇒ y+ + y− = e+ + e−

=⇒ y+ − e+ = e−

=⇒ e− ≤ 0

=⇒ e ≥ 0

=⇒ Ce = {0, e}.

On the other hand, let us assume y− = e−. It follows from y+ + y− = e+ + e− that

y+ = e+. Thus we obtain e = y. This finishes the proof.

Proposition 3.5.8. Let E be a vector lattice with the principal projection property and x ∈

E+. Then x is an atom if and only if Cx = {0, x}.

Proof. The proof follows from Remark 2.1.11 and Remark 3.5.6.

Definition 3.5.9. A vector lattice E is called atomless if there is no atom in E.
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Example 3.5.10. The vector lattice C[0, 1] is an example of an atomless vector lattice.

Proposition 3.5.11. Let E be an atomless Dedekind complete vector lattice and 0 ̸= x ∈ E.

Then the set Cx has infinite cardinality.

Proof. It follows from x ̸= 0 that x+ ̸= 0 or x− ̸= 0. Let x+ ̸= 0. We note that x+ ⊑ x

is valid. Since 0 ̸= x+ ∈ E is not an atom, by Proposition 3.5.8 we have Cx+ ̸= {0, x+}.

Therefore there exists a proper fragment y ∈ E of x+, that is, y ⊑ x+ and 0 ̸= y ̸= x+. Note

that y is not an atom either. Thus, similarly, there exists a proper fragment z ∈ E of y such

that z ⊑ y and 0 ̸= z ̸= y. Considering the Proposition 2.4.2, one has z ⊑ y ⊑ x+ ⊑ x.

Using the same steps, we obtain that x has infinitely many proper fragments.

Proposition 3.5.12. Let E be an atom-filled vector lattice and let X be a normed space.

Then every orthogonally additive operator T : E → X is C-compact.

Proof. Let x ∈ E. Since E is an atom-filled vector lattice, then Cx = {0, x}. We observe

that the set T (Cx) = {0, Tx} is compact in any normed space. Hence T is C-compact.

Remark that every AM-compact orthogonally additive operator T : E → X is C-compact

because the set Cx is order bounded. However, the converse of this statement is not valid.

Example 3.5.13. Consider the orthogonally additive operator T : R → R defined by

T (x) =


0 if x = 0

1
x

if x ̸= 0

Although the set [0, 1] is order bounded, T ([0, 1]] = [1,∞] ∪ {0} is not relatively compact.

Hence T is not AM-compact. Additionally, by Proposition 3.5.12, we can see that T is

C-compact.

Definition 3.5.14. Let E be a vector lattice and X be a normed space. An orthogonally

additive operator T : E → X is called narrow if for every x ∈ E and ϵ > 0 there exists a

pair x1, x2 of mutually complemented fragments of x such that∥Tx1 − Tx2∥ < ϵ.
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We observed that if T : E → F is a narrow orthogonally additive operator and x ∈ E is

an atom, then Tx = 0. Indeed, since Cx = {0, x}, we obtain∥Tx− T0∥ < ϵ for all ϵ > 0.

Hence Tx = 0. For this reason, we choose the vector space E as atomless in the following

several propositions and theorems. Additionally, starting from this point until Definition

3.5.22, it is assumed that every vector lattice E has the principal projection property.

Theorem 3.5.15. Let E be an atomless C-complete vector lattice and let X be a Banach

space. Then every orthogonally additive horizontally-to-norm continuous C-compact

operator T : E → X is narrow.

In order to prove Theorem 3.5.15, we require the following results.

The next auxiliary proposition is well known (see e.g. [27, Lemma 10.20]).

Proposition 3.5.16. Let (vi)ni=1 be a finite subset of elements in a finite-dimensional normed

space V and (λi)
n
i=1 be non-negative numbers such that 0 ≤ λi ≤ 1 for each i. Then there

exists a set (θi)ni=1 of numbers such that θi ∈ {0, 1}, i ∈ {1, 2, ..., n} and∥∥∥∥∥∥
n∑

i=1

(λi − θi)vi

∥∥∥∥∥∥ ≤ dimV

2
max

i∈{1,2,...,n}
∥vi∥ .

Proposition 3.5.17. Let E be an atomless vector lattice, x ∈ E, X a Banach space and

T : E → X an orthogonally additive horizontally-to-norm continuous operator. Then for

any ϵ > 0 there exists a decomposition x = y ⊔ z, where y, z are nonzero fragments of x

such that∥Tz∥ < ϵ.

Proof. Since E is an atomless vector lattice, by Proposition 3.5.11, Cx has infinitely many

elements. We observed that the net (xα)α∈Cx = α ⊆ Cx horizontally converges to x.

Since T is a horizontally-to-norm continuous operator, then ∀ϵ > 0,∃α0 ∈ Cx such that

∥Tx− Txα∥ ≤ ϵ for all α ≥ α0. Note that xα0 ⊑ x. It follows that x = (x − xα0) ⊔ xα0 .

Thus one has

Tx = T ((x− xα0) ⊔ xα0) = T (x− xα0) + T (xα0).
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It follows that Tx − T (xα0) = T (x − xα0), and hence
∥∥T (x− xα0)

∥∥ < ϵ. Assign y := xα0

and z := x−xα0 . Then∥Tz∥ < ϵ and x = y⊔z is the desirable disjoint decomposition.

Proposition 3.5.18. Let E be an atomless vector lattice, x ∈ E, X a Banach space and

T : E → X an orthogonally additive horizontally-to-norm continuous operator. Assume

that (yn)n∈N is a sequence of fragments of x such that y1 = x, yn ⊑ ym for n ≥ m;m,n ∈ N

and
⋂
n∈N

Cyn = {0}. Then

lim
n→∞

∥Tyn∥ = 0.

Proof. Put by definition xn := x − yn for all n ∈ N. Firstly, we show xm ⊑ xn for all

m ≤ n. It follows from ym ⊑ x and |yn| ≤ |ym| that

|xm| ∧ |xn − xm| = |x− ym| ∧
∣∣(x− yn)− (x− ym)

∣∣
= |x− ym| ∧ |ym − yn|

≤ |x− ym| ∧ |ym|+ |x− ym| ∧ |yn|

≤ |x− ym| ∧ |ym|+ |x− ym| ∧ |ym|

= 0.

Secondly, using the hypothesis, one has
⋂
n∈N

Cx−xn =
⋂
n∈N

Cyn = {0}. It follows that xn
h−→ x.

Now notice that xn ⊥ (x − xn) for all n ∈ N. It follows that x = xn ⊔ (x − xn), n ∈

N. Therefore we obtain Tx = T (xn) + T (x − xn). And finally, considering the T is a

horizontally-to-norm continuous operator, one has

lim
n→∞

∥Tyn∥ = lim
n→∞

∥∥T (x− xn)
∥∥

= lim
n→∞

∥Tx− Txn∥

= 0.
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Proposition 3.5.19. Let E be an atomless C-complete vector lattice, X a Banach space,

T : E → X an orthogonally additive horizontally-to-norm continuous operator, x ∈ E and

ϵ > 0. Then for some n ∈ N there exists a decomposition

x =
n⊔

i=1

xi,

where xi are nonzero fragments of x such that∥Txi∥ < ϵ for any i ∈ {1, 2, ..., n}.

Proof. Let us define the set Dx,T,ϵ := {z ∈ Cx : z ̸= 0, ∥Tz∥ < ϵ}. By Proposition 3.5.17

there is a decomposition of x = y ⊔ z such that∥Tz∥ < ϵ. Therefore Dx,T,ϵ ̸= ∅. Besides

Dx,T,ϵ is a partially ordered set with respect to relation ⊑. Let ∆ ⊆ Dx,T,ϵ be a totally ordered

set. Put by definition (uα)α∈∆ = α. Clearly (uα)α∈∆ ⊆ Dx,T,ϵ is a chain and uα ⊑ uβ for all

α, β ∈ ∆, α ⊑ β. Since E is a C-complete vector lattice, then there exists u ∈ Cx such that

uα
o−→ u. Thus we obtain uα

h−→ u. It follows from T is a horizontally-to-norm continuous

operator that Tuα
∥·∥−→ Tu. Therefore one has

∥Tu∥ ≤∥Tu− Tuα∥+∥Tuα∥

≤ ϵ′ + ϵ,

and hence u ∈ Dx,T,ϵ. By Zorn’s Lemma, Dx,T,ϵ has a maximal element z ∈ Dx,T,ϵ. If∥∥T (x− z)
∥∥ < ϵ, then the proof is done. Let us define y = x − z. Assume

∥∥T (y)∥∥ > ϵ. By

Proposition 3.5.17 there is a decomposition of y = y1⊔ y2, where y1 is a maximal element in

Dy,T,ϵ with∥Ty1∥ < ϵ. Similarly, if we assume∥Ty2∥ > ϵ, then we can construct a sequence

of decompositions y2k = y2k+1 + y2k+2, where y2k+1 is a maximal element in Dy2k,T,ϵ, and

satisfying the conditions∥Ty2k+1∥ < ϵ and∥Ty2k+2∥ > ϵ, k ∈ N. Now we claim that there

exists l ∈ N such that y2l = y2l+1 ⊔ y2l+2 and both ∥Ty2l+1∥ ,∥Ty2l+2∥ < ϵ. Assume the

contrary. Then∥Ty2k∥ > ϵ for all k ∈ N. Now we show that
⋂
n∈N

Cy2n = {0}. Assume on the

contrary, there exists a nonzero element v ∈
⋂
n∈N

Cy2n . Put by definition y′2k = y2k − v for all
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k ∈ N. It follows from y2n ⊑ y2m for all m ≤ n that

∣∣y′2n∣∣ ∧ ∣∣y′2m − y′2n
∣∣ = |y2n − v| ∧

∣∣y2m − v − (y2n − v)
∣∣

= |y2n − v| ∧ |y2m − y2n|

≤ |y2n| ∧ |y2m − y2n|+ |v| ∧ |y2m − y2n|

= |v| ∧ |y2m − y2n|

≤ |v| ∧ |y2m − v|+ |v| ∧ |v − y2m|

= 0,

and hence y′2n ⊑ y′2m and
⋂
n∈N

Cy′2n = {0}. By Proposition 3.5.18 there exists n0 ∈ N such

that
∥∥Ty′2n0

∥∥ < ϵ. Thus y2n0 = y′2n0
⊔ v, y′2n0

∈ Dy2n0 ,T,ϵ
and y2n0+1 is a maximal element

of Dy2n0 ,T,ϵ
. Therefore we have

y2n0 = y2n0+1 ⊔ y2n0+2 = y′2n0
⊔ v.

Now let us show that y′2n0
= y2n0+1. In the first part of the proof, we show that y2n0+1 ⊑ y′2n0

.

It follows from y2n0+1 ⊑ y2n0 that

|y2n0+1| ∧
∣∣y′2n0

− y2n0+1

∣∣ = |y2n0+1| ∧
∣∣y2n0 − v − (y2n0+1)

∣∣
≤ |y2n0+1| ∧ |y2n0 − y2n0+1|+ |y2n0+1| ∧ |v|

= |y2n0+1| ∧ |v|

= |y2n0 − y2n0+2| ∧ |v|

≤ |y2n0 − v| ∧ |v|+ |v − y2n0+2| ∧ |v|

= 0.

In the second part, let us consider the maximality of y2n0+1 on Dy2n0 ,T,ϵ
and y′2n0

∈ Dy2n0 ,T,ϵ
.

It diretly follows that y′2n0
= y2n0+1. Since y′2n0

= y2n0+1, then we obtain that v = y2n0+2.
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Considering the construction of the sequence (y2k)k∈N, we have

...,⊑ y2n0+6 ⊑ y2n0+4 ⊑ v = y2n0+2.

It directly follows that v = y2n for all n ≥ n0+1. This conclusion implies that y2n+1 = 0 for

all n ≥ n0 + 1, but it is a contradiction caused by Proposition 3.5.17. Hence
⋂
n∈N

Cy2n = {0}

and so, by applying Proposition 3.5.18 we get

lim
n→∞

∥Ty2n∥ = 0.

However, this result contradicts our assumption, ∥Ty2n∥ > ϵ for all n ∈ N. Therefore the

desirable l ∈ N exists. Consider the following elements

x1 = y1, x2 = y3, ..., xl = y2l−1, xl+1 = y2l+1, xl+2 = y2l+2, xl+3 = z.

Then x =
n⊔

i=1

xi with n = l + 3 is desirable decomposition of x.

Proposition 3.5.20. Let E be an atomless C-complete vector lattice and V a

finite-dimensional Banach space. Then every orthogonally additive horizontally-to-norm

continuous operator G : E → V is narrow.

Proof. By Proposition 3.5.19, for any x ∈ E and ϵ > 0, there exists a decomposition of

x =
n⊔

i=1

xi such that ∥Gxi∥ < ϵ
dimV

for all i ∈ {1, 2, ..., n}. Considering the Proposition

3.5.16, for λi =
1
2
, there exists θi ∈ {0, 1} such that

2

∥∥∥∥∥∥
n∑

i=1

(
1

2
− θi)Gxi

∥∥∥∥∥∥ ≤ dimV max∥Gxi∥ < ϵ.

Put by definition, I0 = {i ∈ {1, 2, ..., n} : θi = 0}, I1 = {i ∈ {1, 2, ..., n} : θi = 1}, y0 =⊔
i∈I0

xi and y1 =
⊔
i∈I1

xi. One can observe that y1 and y2 are mutually complemented fragments
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of x. Therefore we have

∥Gy1 −Gy2∥ =

∥∥∥∥∥∥
∑

i∈I0∪I1

(1− 2θi)Gxi

∥∥∥∥∥∥ < ϵ,

hence the operator G is narrow.

Definition 3.5.21. Let E be a vector lattice and F a vector space. An orthogonally additive

operator T : E → F is called of finite rank if the set T (E) generates a finite-dimensional

subspace in F .

Let us consider a Banach space X . We define a set W := l∞(BX∗) = {q : BX∗ →

R : sup
∣∣q(f)∣∣ < ∞, f ∈ BX∗}. Notice that W is a Banach space equipped with the

supremum norm, and X can be considered as a closed subspace of W . Also, notice

that if H is a relatively compact subset of the Banach space W and ϵ > 0, then there

exists a linear finite rank operator R ∈ L(W ) such that∥w −Rw∥ ≤ ϵ for every w ∈ H.

For a comprehensive and detailed discussion on this topic, please refer to [27, Lemma 10.25].

Finally, after these studies, we can now prove Theorem 3.5.15.

Proof. Fix an arbitrary x ∈ E and ϵ > 0. Since T is a C-compact operator, then the set K =

T (Cx) is relatively compact in X and therefore in W . Thus there exists a finite rank operator

S ∈ L(W ) such that∥y − Sy∥ ≤ ϵ
4

for all y ∈ K. We define the operator G := SoT . Notice

that G is an orthogonally additive horizontally-to-norm continuous finite rank operator. By

Proposition 3.5.20 G is narrow. Thus there exist mutually complemented fragments x1, x2

of x such that∥Gx1 −Gx2∥ < ϵ
2
. It follows from∥Txi −Gxi∥ < ϵ

4
for i ∈ {1, 2} that

∥Tx1 − Tx2∥ =
∥∥(Tx1 −Gx1) + (Gx2 − Tx2) + (Gx1 −Gx2)

∥∥
≤ ϵ

4
+

ϵ

4
+

ϵ

2

= ϵ.
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Hence T is narrow.

Definition 3.5.22. Let E and F be vector lattices. An orthogonally additive operator T :

E → F is called strictly narrow if there exist mutually complemented fragments u,w of x,

such that Tu = Tw.

Proposition 3.5.23. Let E be an atom-filled vector lattice, F be a vector lattice and T :

E → F be an orthogonally additive operator. Then T is a strictly narrow operator if and

only if Tx = 0 for all x ∈ E.

Proof. Let T : E → F be a strictly narrow orthogonally additive operator. Take an element

x ∈ E. By Theorem 3.5.7, the only mutually complemented fragments of x are only 0 and

itself. Thus, we have

x = 0 ⊔ x ⇒ T0 = Tx

⇒ 0 = Tx.

Additionally, the operator T = 0 is always strictly narrow. This finishes the proof.

3.6. Extensions of an OAO

Consider a vector lattice E, a vector space F , A ⊆ E such that x + y ∈ A for all disjoint

elements x, y ∈ A. A map T : A → F is called an orthogonally additive map if T (x+ y) =

Tx+ Ty for all disjoint elements x, y ∈ A.

The extension problem can be considered for the orthogonally additive operators. That is,

whether every orthogonally additive map on an arbitrary subset A of a vector lattice E has

an extension to an orthogonally additive operator on E. So we get the following question.

For what subsets A of E every orthogonally additive map T : A → F can be extended to an

orthogonally additive operator T̃ : E → F ? Therefore, we need the following definitions of

the lateral ideal and lateral band.
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3.6.1. Lateral Ideals and Lateral Bands

Definition 3.6.1. Let E be a vector lattice. A subset ∅ ̸= I of E is called a lateral ideal if

the following hold:

(1) x ⊔ y ∈ I for every disjoint x, y ∈ I;

(2) if x ∈ I then y ∈ I for all y ∈ Cx.

Every order ideal of a vector lattice E is a lateral ideal of E. Indeed, let I be an order ideal

of E. Take disjoint elements x, y ∈ I. Then x + y ∈ I since I is a vector subspace of E.

Also, take an element y ∈ Cx. Therefore, one has |y| ≤ |x| and hence y ∈ I.

A lateral ideal need not be an order ideal, generally. Additionally, a lateral ideal may not be

a vector subspace of E. The following proposition explains these facts.

Proposition 3.6.2. Let E be a vector lattice. Then the set Cx of all fragments of an element

x ∈ E+ is a lateral ideal of E.

Proof. Let y, z be disjoint elements of Cx

(1) First we remind that y + z = y ∧ z + y ∨ z. Since y, z ∈ Cx and x ∈ E+, we obtain

that y + z = y ∨ z. By Theorem 2.1.9, the set Cx is a Boolean algebra. It follows that

y ∨ z ∈ Cx. Hence we obtain y + z ∈ Cx.

(2) Let y ∈ Cx. Given any z ⊑ y, we have z ⊑ x, by Proposition 2.4.2.

The proof is finished.

Corollary 3.6.3. Let E be a vector lattice. Then the set Cx of all fragments of an element

x ∈ E is a lateral ideal of E.
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Proof. It is well-known in the literature that (y+z)+ = y++z+ and (y+z)− = y−+z− for

all disjoint elements y, z of E, (see [21, 1.3.3]). Take disjoint y, z ∈ Cx. Therefore, for the

positive part of these elements, we have y+, z+ ∈ Cx+ . Also, the disjointness of y and z imply

the disjointness of y+ and z+. Thus, by Proposition 3.6.2 one has (y+z)+ = y++z+ ∈ Cx+ .

The same is valid for the negative parts of these elements. So (y + z)− ∈ Cx− . It directly

follows that (y + z) ∈ Cx, by Theorem 2.4.1. This finishes the proof.

We note that the set of fragments need not generally be an ideal of any vector lattice E.

Example 3.6.4. Let E,F be vector lattices and T : E → F be a positive orthogonally

additive operator. Then Ker(T ) = {x ∈ E : Tx = 0} is an example of a lateral ideal of E.

Since T is an orthogonally additive operator, 0 ∈ Ker(T ). Therefore the set Ker(T ) ̸= ∅.

Let x, y ∈ Ker(T ) and x ⊥ y. It follows from T (x+y) = Tx+Ty = 0 that x+y ∈ Ker(T ).

In the end, take an arbitrary x ∈ Ker(T ) and y ∈ Cx. Since T is a positive operator, one has

Tx = T (x− y + y) = T (x− y) + T (y) =⇒ 0 ≤ T (y) = T (x)− T (x− y) ≤ Tx = 0,

and hence y ∈ Ker(T ).

Definition 3.6.5. Let E be a vector lattice and (xα)α∈∆ be a net in E. The net (xα)α∈∆ is

called order fundamental if the net (xα − xβ)(α,β)∈∆×∆ order converges to zero.

Definition 3.6.6. An order fundamental net (xα)α∈∆ in E is called horizontally fundamental

if xα ⊑ xβ for all α, β ∈ ∆ with α ≤ β.

Definition 3.6.7. A subset D of the vector lattice E is called horizontally closed if every

horizontally fundamental net (xα)α∈∆ in D order converges to some x ∈ D. Horizontally

closed lateral ideal B is called lateral band of E.

Lemma 3.6.8. Let E be a vector lattice, x ∈ E and yα
h−→ y, where y ∈ E and yα ⊑ x for

all α ≥ α0. Then y ⊑ x.

Proof. The proof follows from Lemma 2.4.3.
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Proposition 3.6.9. Let E be a vector lattice and (xα)α∈∆ be a net in E. If the net (xα)α∈∆

horizontally converges, then it is horizontally fundamental.

Proof. Let (xα)
h−→ x. Then we have

|xα − x| ≤ βα ↓ 0 and xα ⊑ xα′ for all α, α′ ∈ ∆ and α ≤ α′.

It follows that

|xα − xα′| ≤ |xα − x|+ |x− xα′ |

≤ βα + γα′ .

Now put by definition θ(α,α′) = βα + γα′ . Clearly θ(α,α′) ↓ 0, and hence the net (xα)α∈∆ is

horizontally fundamental.

Example 3.6.10. Let E be a C-complete vector lattice. The set Cx, which is a lateral ideal

for all x ∈ E, is horizontally closed by Lemma 3.6.8. Hence Cx is a lateral band.

Example 3.6.11. Every band B of a Dedekind complete vector lattice E is a lateral band of

E.

We note that Example 3.6.10 shows not every lateral band has to be a band.

Proposition 3.6.12. Let E be a vector lattice and (Bi)i∈I be a family of lateral bands of E.

Then the set
⋂
i∈I

Bi is a lateral band of E.

Proof. First, we claim that
⋂
i∈I

Bi ̸= ∅. Indeed, take an arbitrary i ∈ I . Since Bi is a

lateral band, it is also a lateral ideal. Therefore Bi ̸= ∅. Given any element x ∈ Bi, we

obtain Cx ⊆ Bi by the definition of lateral ideal. It directly follows that 0 ∈ Bi, and hence⋂
i∈I

Bi ̸= ∅. We show that
⋂
i∈I

Bi is a lateral ideal of E. Indeed, let x, y be disjoint elements

of
⋂
i∈I

Bi. Considering the Bi is a lateral ideal for all i ∈ I , we have x + y ∈ Bi, and hence

x + y ∈
⋂
i∈I

Bi. Additionally, for an arbitrary element x ∈
⋂
i∈I

Bi, we have x ∈ Bi for all
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i ∈ I . Therefore Cx ⊆ Bi for all i ∈ I , and hence Cx ⊆
⋂
i∈I

Bi. Finally, we show that the

set
⋂
i∈I

Bi is horizontally closed. Take a horizontally fundamental net (xα)α∈∆ in
⋂
i∈I

Bi. It

follows that the net (xα)α∈∆ is a horizontally fundamental net in the lateral band Bi for all

i ∈ I. Therefore xα
o−→ x ∈ Bi, which implies x ∈

⋂
i∈I

Bi.

Definition 3.6.13. Let H be a subset of a vector lattice E. We denote by B(H) the

intersection of all lateral bands (Bα)α∈∆ with H ⊆ Bα, α ∈ ∆. We say that B(H) is

the lateral band generated by H .

3.6.2. Extensions of an OAO on C-complete Vector Lattices

In this subsection, we construct the extensions of orthogonally additive operators. Some of

the results presented in this section can be found in [4, 5]

Definition 3.6.14. Let E,F be vector lattices and I be a lateral ideal of E. A map T : I →

F is called orthogonally additive if T (x + y) = Tx + Ty for all disjoint x, y ∈ I. An

orthogonally additive map T : I → F is called:

(1) positive if Tx ≥ 0 for every x ∈ I;

(2) order bounded if it maps order bounded subsets of I to order bounded subsets of F .

Definition 3.6.15. Let E be a vector lattice, F be a Banach lattice and B be a lateral band of

E. A positive orthogonally additive map T : B → F is called:

(1) horizontally-to-order continuous if (Txα)α∈∆ order converges to Tx whenever a net

(xα)α∈∆ in B horizontally converges to x;

(2) narrow if for every x ∈ B and ϵ > 0 there exists a disjoint decomposition x = x1 ⊔ x2

such that∥Tx1 − Tx2∥ < ϵ;
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(3) strictly narrow if for every x ∈ B there exist a disjoint decomposition x = x1 ⊔ x2

such that Tx1 = Tx2.

(4) AM-compact if T maps order bounded subsets of B to relatively compact subsets of F ;

(5) C-compact if T (Cx) is relatively compact subset of F for every x ∈ B;

(6) disjointness preserving if Tx ⊥ Ty for all disjoint x, y ∈ B.

Theorem 3.6.16. Let E be a vector lattice, F be a Dedekind complete vector lattice, I be a

lateral ideal of E and T : I → F+ be an order bounded positive orthogonally additive map.

Then there exists a positive abstract Urysohn operator T̃I : E → F , such that Tx = T̃Ix for

every x ∈ I. The operator T̃I (or T̃ for brevity) is called the minimal extension (with respect

to I) of the order bounded positive orthogonally additive map T : I → F . Moreover,

T̃ x = sup{Ty : y ∈ I ∩ Cx}

for all x ∈ E.

Proof. We show that T̃ is an order bounded positive orthogonally additive operator. Take

disjoint elements x, y ∈ E. For an arbitrary z ∈ I ∩ Cx+y, by the decomposition property

(see [20, Theorem 1.13]), there exist z1, z2 of E such that z = z1 + z2 and |z1| ≤ |x|

and |z2| ≤ |y|. By using the same idea in Theorem 3.2.3, we note that z1 ⊥ z2, z1 ⊑ x

and z2 ⊑ y. Additionally, we note that Cz ⊆ I since I is a lateral ideal. It follows from

|z1| ∧ |z − z1| = |z1| ∧ |z2| = 0 that z1 ∈ Cz, and hence z1 ∈ I. The same is true for z2.

69



Thus, we have

T (z) = T (z1 + z2) = Tz1 + Tz2

≤ sup{Tw : w ∈ I ∩ Cx}+ sup{Tw : w ∈ I ∩ Cy}

= T̃ x+ T̃ y.

Since z is an arbitrary element of I ∩ Cx+y, one has

T̃ (x+ y) = sup{Tw : w ∈ I ∩ Cx+y} ≤ T̃ x+ T̃ y.

We claim that if z1 ∈ I ∩ Cx and z2 ∈ I ∩ Cy then z1 + z2 ∈ I ∩ Cx+y. Because

|z1 + z2| ∧ |x− z1 + y − z2| ≤ (|z1|+ |z2|) ∧ (|x− z1|+ |y − z2|)

≤ |z1| ∧ |y − z2|+ |z2| ∧ |x− z1|

≤ |z1| ∧ |y|+ |z1| ∧ |z2|+ |z2| ∧ |x|+ |z2| ∧ |z1|

≤ |x| ∧ |y|+ |z1| ∧ |z2|+ |y| ∧ |x|+ |z2| ∧ |z1|

= 0,

and hence z1 + z2 ∈ Cx+y. We proved the claim. It directly follows that

Tz1 + Tz2 = T (z1 + z2) ≤ sup{Tw : w ∈ I ∩ Cx+y} = T̃ (x+ y).

Now passing to the supremum over z1 ∈ I ∩ Cx and z2 ∈ I ∩ Cy, we have

T̃ x+ T̃ y ≤ T̃ (x+ y).

Therefore T̃ is an orthogonally additive operator. In addition, the positivity of T implies the

positivity of T̃ by the definition of T̃ . Let A be an order bounded subset of E. It follows

that the set
⋃
x∈A

Cx is an order bounded subset of E. Since F is Dedekind complete, the set

T̃ (A) is order bounded, and hence T̃ is an order bounded operator. Finally, if x ∈ I, then
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I ∩ Cx = Cx. Take an element y ∈ Cx. It follows from y ⊥ (x− y) that

T (x) = T (y + (x− y)) = T (y) + T (x− y).

By the positivity of T , we have

T (y) = T (x)− T (x− y) ≤ T (x) for all y ∈ Cx,

and hence T̃ x ≤ Tx. Also, clearly Tx ≤ T̃ x. Therefore we obtain Tx = T̃ x. So, T̃ is an

extension of T . This finished the proof.

Definition 3.6.17. Let E,F be vector lattices, where F is Dedekind complete, I is a lateral

ideal in E and T : I → F+ is an order bounded orthogonally additive mapping. A positive

abstract Urysohn operator S : E → F is called the least extension of T if Tx = Sx for

every x ∈ I and Sx ≤ Rx for all x ∈ E and for every positive abstract Urysohn operator

R : E → F such that Rx = Tx for all x ∈ I.

Theorem 3.6.18. Let E,F, I, T , and T̃ be as in Theorem 3.6.16. The operator T̃ : E → F

is the least extension of T : I → F+.

Proof. Take an arbitrary positive abstract Urysohn operator R : E → F such that Tu = Ru

for all u ∈ I. Since T is a positive operator, given any x ∈ E and y ∈ I ∩ Cx, we have

Rx = R(y + (x− y)) = Ry +R(x− y) = Ty +R(x− y) ≥ Ty.

It directly follows that T̃ x = sup{Ty : y ∈ I ∩ Cx} ≤ Rx. Since x is an arbitrary element

of E, the proof is complete.

Theorem 3.6.19. Let E be a C-complete vector lattice, F be a Dedekind complete Banach

lattice, B be a lateral band of E, T : B → F be a positive orthogonally additive map and

T̃ : E → F be an extension of T defined by T̃ x = sup{Ty : y ∈ B ∩ Cx}. Then
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(1) T̃ is horizontally-to-order continuous if and only if T is;

(2) T̃ is strictly narrow if and only if T is;

(3) T̃ is narrow if and only if T is;

(4) T̃ is AM-compact if and only if T is;

(5) T̃ is C-compact if and only if T is;

(6) T̃ preserves disjointness if and only if T is.

The proof of the theorem will be given after the subsequent studies.

Remark 3.6.20. Let E be a vector lattice, x ∈ E and B be a lateral band of E. We define

the set Bx := B ∩ Cx. One can see that the set Bx is not empty because it contains at least 0.

Proposition 3.6.21. Let E be a C-complete vector lattice, x ∈ E and B be a lateral band of

E. Then Bx has a maximal element which we denote by xB.

Proof. Since E is a C-complete vector lattice and Bx ⊆ Cx, supBx exists and it is an element

of Cx. Let v = supBx, by definition. The set Bx is the upward directed set with respect the

relation ⊑ because Bx ⊆ Cx. Thus, there exist a net (vα)α∈∆ such that (vα)
h−→ v. We note

that Cx is a lateral band for all x ∈ E and B is a lateral band by the hypothesis; therefore we

obtain v ∈ B and v ∈ Cx, and hence v ∈ Bx. It directly follows that v = xB.

Proposition 3.6.22. Let E be a vector lattice, B be a lateral band of E, x ∈ E and x = y⊔z.

Then xB = yB ⊔ zB.

Proof. We note that xB ⊑ x by Proposition 3.6.21 and there exists a decomposition of

xB = u + v for some u, v ∈ E. Using the method in Theorem 3.2.3, we can see that u ⊑ y

and v ⊑ z. Clearly, u ⊥ v. Therefore we have xB = u ⊔ v. We show that u = yB and

v = zB. It follows from |u|∧ |u+ v − u| = |u|∧ |v| = 0 that u ⊑ u+v = xB. Thus u ⊑ xB.

Clearly, v ⊑ xB. Since B is a lateral band and xB ∈ B, then B consists all fragments of xB.
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So, we obtain u ∈ B ∩Cy and v ∈ B ∩Cz. Therefore u ⊑ yB and v ⊑ zB. Assume that either

u ̸= yB or v ̸= zB. Then we obtain

xB = u+ v ⊑ yB ⊔ zB ∈ B ∩ Cx and xB ̸= yB + zB.

Since xB is the maximal element of B ∩ Cx, it is a contradiction.

Lemma 3.6.23. Let E,F,B, T , and T̃ be as in Theorem 3.6.19. Then T̃ x = TxB.

Proof. Take an element y ∈ B ∩ Cx. It directly follows that

y ⊑ xB ⇒ TxB = T (xB − y) + Ty

⇒ Ty ≤ TxB (as T is positive.)

⇒ T̃ x ≤ TxB.

On the other hand, since xB ⊑ x, we have

T̃ xB = T̃ x− T̃ (x− xB)

T̃ xB ≤ T̃ x

TxB ≤ T̃ x (as xB ∈ B ∩ Cx).

This ends the proof.

We can now give the proof of Theorem 3.6.19.

Proof. Since T is a restriction of T̃ , the ”only if” part holds for all items (1)-(6). Now we

can give the proof for the other side.

(1) Take a net (xα)α∈∆ in E which horizontally converges to x ∈ E. Since x = xα⊔(x−xα),

one has xB = xB
α ⊔ (x − xα)

B by Proposition 3.6.22. Besides, since (x − xα)
B ⊑ (x − xα)

and (x − xα)
o−→ 0 is valid, we obtain (x − xα)

B o−→ 0. It directly follows that xB
α

o−→ x. We

note that for any a, b ∈ E, a ⊑ b implies Ca ⊆ Cb. It follows from B ∩ Cxα ⊆ B ∩ Cxβ
for all
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α, β ∈ ∆ with α ≤ β that xB
α ⊑ xB

β . Thus, we obtain the net (xB
α)α∈∆ horizontally converges

to xB. Consequently, by Lemma 3.6.23, we have

o− lim
α∈∆

T̃ xα = o− lim
α∈∆

TxB
α = TxB = T̃ x.

(2) Take an arbitrary x ∈ E. Since T is strictly narrow, then there exist mutually

complemented fragments u,w of xB such that Tu = Tw. We note that xB ⊑ x and

x = xB ⊔ (x− xB) = u⊔w ⊔ (x− xB). Assign ũ = u and w̃ = w+ x− xB. Clearly ũ ⊑ x.

Additionally, it follows from

|w̃| ∧ |x− w̃| =
∣∣∣w + x− xB

∣∣∣ ∧ ∣∣∣x− (w + x− xB)
∣∣∣

=
∣∣∣x− (xB − w)

∣∣∣ ∧ ∣∣∣xB − w
∣∣∣

= |x− ũ| ∧ |ũ|

= 0,

and hence w̃ ⊑ x and ũ, w̃ are mutually complemented fragments of x. We claim that

T̃ w̃ = T̃ ũ. Indeed, it follows from

T̃ x = T̃ (x− xB) + T̃ xB ⇒ TxB = T̃ (x− xB) + TxB (as xB ∈ B ∩ Cx )

⇒ T̃ (x− xB) = 0

that

T̃ ũ− T̃ w̃ = T̃ u− T̃ (w + (x− xB)) (as w ⊥ (x− xB))

= T̃ u− T̃w − T̃ (x− xB)

= T̃ u− T̃w (as u,w ∈ B ∩ Cx)

= Tu− Tw

= 0.
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The same steps can be applied to the claim (3).

(4) Take an order bounded subset G of E. Let us define the set GB := {xB : x ∈ G}. Since

G is an order bounded set, GB is also an order bounded subset of E. It follows from

T̃ (G) = {T̃ x : x ∈ G}

= {TxB : xB ∈ GB}

= T (GB)

that the set T̃ (G) is relatively compact.

The same steps can be applied to the claim (5).

(6) Take disjoint elements x, y ∈ E. We show that T̃ x ⊥ T̃ y. Indeed, since
∣∣xB

∣∣ ∧ ∣∣yB∣∣ ≤
|x| ∧ |y| = 0, one has T̃ x ∧ T̃ y = TxB ∧ TyB = 0. The proof is finished.

3.7. Projection Lateral Bands

In this section, our main purpose is to provide fundamental definitions and introduce the

concept of projection bands within the context of orthogonally additive operators. Some of

the results presented in this section can be found in [4].

Theorem 3.7.1. Let E be a C-complete vector lattice and B be a lateral band of E. Then the

map pB : E → E defined by pB(x) = sup{y : y ∈ B∩Cx} satisfies the following properties:

(1) pB is an orthogonally additive operator;

(2) pB is a horizontally-to-order continuous operator;

(3) pB is a non-expanding operator;

(4) pB is an projection from E onto B.

Proof. First, we note that the supremum on pB is taken with respect to the partial order ⊑.

Secondly, the map pB is well defined and pB(x) = xB according to Proposition 3.6.21.
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(1) Take disjoint elements y, z ∈ E. Assign x = y ⊔ z. Therefore, by Proposition 3.6.22,

we have

xB = yB + zB ⇐⇒ pB(x) = pB(y ⊔ z) = pB(y) + pB(z).

(2) Take a net (xα)α∈∆, which horizontally converges to x. It was proved in Theorem

3.6.19 that (xB
α)α∈∆ horizontally converges to xB. This completes the proof.

(3) We show that pB(x) ∈ {x}dd. Take any y ∈ {x}d. It follows from xB ⊑ x that

0 ≤
∣∣xB

∣∣ ∧ |y| ≤ |x| ∧ |y| = 0, and hence pB(x) ∈ {x}dd.

(4) If x ∈ B, then Cx ⊆ B. It directly follows that pB(x) = x. Therefore one has

pB(pB(x)) = pB(x) for any x ∈ E. Hence pB is a projection onto B.

Definition 3.7.2. Let E be a C-complete vector lattice and B be a lateral band of E. The map

pB is called lateral projection onto B. The set of all projections of E is denoted by OAp(E).

If a lateral band B coincide with Cy for some y ∈ E, then we denote the operator pCy by py.

Example 3.7.3. Let E be a Dedekind complete vector lattice and B be a band of E. Then

the order projection πB is a lateral projection.

Definition 3.7.4. Let E be a vector lattice and x, y ∈ E. We say that x is laterally disjoint to

y and write x † y if {z ∈ Cx∩Cy} = {0}. We say that two subsets G and H of E are laterally

disjoint and use the notation G †H if x † y for every x ∈ G and y ∈ H .

Proposition 3.7.5. Let E be a vector lattice, x, y ∈ E and x ⊥ y. Then x † y.

Proof. Take an element z ∈ Cx∩Cy. It follows that z ⊑ x and z ⊑ y. Thus one has |z| ≤ |x|

and |z| ≤ |y|. It directly follows that |z| ≤ |x| ∧ |y| = 0, and hence x † y.

The converse side of Proposition 3.7.5 is invalid. Indeed, consider the vector lattice c, and its

elements 1 = (1, 1, 1, ...) and 2 = (2, 2, 2, ...). Since C1∩C2 = {0}, one has 1 †2. However,

this does not imply the disjointness of 1,2.
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Proposition 3.7.6. Let E be a vector lattice, x, y ∈ E, x † y and x, y ∈ Cv for some v ∈ E.

Then x ⊥ y.

For detailed proof, please refer to [4, Prop. 5.7].

Proposition 3.7.7. Let E be an atom-filled vector lattice, and H,G be subsets of E. Then

H †G if and only if H ∩G = {0} or H ∩G = ∅.

Proof. Let H,G be subsets of E. Given any x ∈ H and y ∈ G we have the following:

H †G ⇐⇒ Cx ∩ Cy = {0}

⇐⇒ x ̸= y or x = y = 0 (as x and y are atom)

⇐⇒ H ∩G = ∅ or H ∩G = {0}.

The following example shows that Proposition 3.7.7 may not be accurate in the more general

settings of vector lattices.

Example 3.7.8. Consider the vector lattice R2 with respect to pointwise order. We note that

the vector lattice R2 is not atom-filled. Now take the subsets H = {(1, 1)} and G = {(1, 0)}

of R2. Clearly H ∩G = ∅. However, considering the

C(1,1) = {(0, 0), (1, 0), (0, 1), (1, 1)} and C(1,0) = {(0, 0), (1, 0)},

we obtain C(1,1) ∩ C(1,0) = {(0, 0), (1, 0)} ≠ {(0, 0)}, and hence H and G are not laterally

disjoint.

Proposition 3.7.9. Let E,F be vector lattices with F Dedekind complete, T ∈ U+(E,F ), I

be a lateral ideal of E and ρ be an order projection on F . Then a map πIT defined by

πITx = sup{Ty : y ∈ I ∩ Cx}, x ∈ E
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is a positive abstract Urysohn operator and ρπIT ∈ CT .

Proof. Take any disjoint x, y ∈ E. We show that πIT (x + y) = πITx + πITy. Let us

take an arbitrary z ∈ I ∩ Cx+y. By decomposition property, there exist z1, z2 ∈ E such that

z = z1 + z2 and |z1| ≤ x, |z2| ≤ y. By using the same idea in Theorem 3.2.3, we note

that z1 ⊥ z2, z1 ⊑ z, z2 ⊑ z, z1 ⊑ x and z2 ⊑ y. Thus z1, z2 ∈ I. Therefore one has the

following:

Tz = Tz1 + Tz2

≤ sup{Tu : u ∈ I ∩ Cx}+ sup{Tw : w ∈ I ∩ Cy}

= πITx+ πITy.

Considering the z is an arbitrary element of I ∩Cx+y, one has πIT (x+ y) ≤ πITx+ πITy.

On the other hand, since z1 ∈ I ∩ Cx and z2 ∈ I ∩ Cy, we get z1 + z2 ∈ I ∩ Cx+y. It directly

follows that

Tz1 + Tz2 = T (z1 + z2) ≤ πIT (x+ y).

Taking supremum over z1 ∈ I ∩ Cx and z2 ∈ I ∩ Cy, we get

πITx+ πITy ≤ πIT (x+ y),

and hence we obtain πITx+ πITy = πIT (x+ y). Considering the idea in Theorem 3.6.16,

we conclude that πITx is a positive abstract Urysohn operator. Finally, we show that ρπIT ∈

CT . Consider the operator Π : U+(E,F ) → U+(E,F ) defined by Π(T ) = ρπIT . We

observe that the inequality 0 ≤ Π(T ) ≤ T holds for all T ∈ U+(E,F ). By [20, Theorem

1.44] we deduce that Π is an order projection. Additionally, again corresponding to [20,

Theorem 1.44], we have

Π(T ) ⊥ S − Π(S) for all T, S ∈ U+(E,F ).
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It directly follows that Π(T ) ⊥ T − Π(T ), and hence ρπIT ⊥ (T − ρπIT ). The proof is

finished.

Proposition 3.7.10. Let E be a C-complete vector lattice, F be a Dedekind complete vector

lattice, x ∈ E and T ∈ U+(E,F ). Then πCxT = Tpx

Proof. Let v ∈ E. Take any element z ∈ Cv ∩ Cx. Consider the maximal element px of

Cv ∩ Cx. Since z ⊑ px, one has Tz = Tpx − T (px − z) ≤ Tpx. It directly follows that

πCxTv = sup{Ty : y ∈ Cv ∩ Cx} ≤ Tpx.

On the other hand, considering the px is an element of Cv ∩ Cx one has

Tpx ≤ sup{Ty : y ∈ Cv ∩ Cx} = πCxTv.

Hence πCxT = Tpx.
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4. OAO on Lattice-Normed Spaces

In this chapter, our main purpose is to explore the concept of orthogonally additive operators

within the context of lattice-normed spaces. Moreover, we introduce a new class of

orthogonally additive operators known as dominated orthogonally additive operators. We

note that further information about lattice-normed spaces can be found in Section 2.3.

4.1. Dominated OAO

Some of the results presented in this section can be found in [3].

Definition 4.1.1. Let (V,E) and (W,F ) be lattice-normed spaces. A map T : V → W is

said to be an orthogonally additive if T (u+ v) = Tu+ Tv for any u, v ∈ V with u ⊥ v.

Definition 4.1.2. An orthogonally additive map T : V → W is said to be a dominated Popov

operator (or dominated P-operator for brevity) if there exists a positive orthogonally additive

operator S : E → F such that∥Tv∥ ≤ S∥v∥ for any v ∈ V. In this case, we say that S is a

dominant for T. The set of all dominants of an operator T is denoted by D(T ). If there exist

the least element in D(T ) with respect to the order induced by P+(E,F ), then it is called

the least or the exact dominant of T , and it is denoted by ∥T∥ . The set of all dominated

P-operators from V to W is denoted by DP(V,W ).

Example 4.1.3. Consider the vector space RR, which is the space of all functions from R to

R. Let us define the set RR
0 := {f ∈ RR : f(0) = 0}. We claim that

DP(R,R) = RR
0 .

Take an element f ∈ RR
0 . Consider the function S : R → R defined by S(x) =∣∣f(x)∣∣ + ∣∣f(−x)

∣∣ . Clearly, S(0) = 0. Therefore S is a positive orthogonally additive

operator. Additionally, the inequality
∣∣f(x)∣∣ ≤

∣∣f(|x|)∣∣ + ∣∣f(− |x|)
∣∣ = S |x| holds true

for all x ∈ R. Therefore S is a dominant for f and f ∈ DP(R,R). Hence RR
0 ⊆ DP(R,R).

The other side follows from the definition of DP(R,R).
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Example 4.1.4. Let X and Y be normed spaces. Consider the lattice-normed spaces (X,R)

and (Y,R). Then the map T : X → Y is an element of DP(X, Y ) if and only if there exists

a function f : R → R+ such that f(0) = 0, and the inequality ∥Tx∥ ≤ f(∥x∥) holds for

every x ∈ X. Indeed, let T ∈ DP(X, Y ). Then there exists a positive orthogonally additive

operator S : R → R such that ∥Tx∥ ≤ S∥x∥. Additionally, since S is an orthogonally

additive operator from R to R, then S(0) = 0. We prove now the “if” implication. Consider

the function S : R → R defined by S(x) =
∣∣f(x)∣∣ + ∣∣f(−x)

∣∣ . We note that S is a positive

orthogonally additive operator and it satisfies the following inequality

∥Tx∥ ≤ f(∥x∥) ≤ S |x| .

This finishes the proof.

Example 4.1.5. Let E and F be vector lattices with F Dedekind complete. Consider the

lattice-normed spaces (E,E) and (F, F ) where the lattice-valued norms coincide with the

modules. We claim that P(E,F ) = DP(E,F ). Take any C-bounded operator T ∈ P(E,F ).

Considering the F is Dedekind complete, T is dominated by its module |T | . Therefore

P(E,F ) ⊆ DP(E,F ). On the other hand, given any T ∈ DP(E,F ) there exist a positive

orthogonally additive operator S : E → F such that |T | ≤ S |x| for all x ∈ E. By

Proposition 3.2.4, S is a C-bounded operator. This directly implies that T is a C-bounded

operator. Hence DP(E,F ) ⊆ P(E,F ).

Now we consider a decomposable lattice-normed space (V,E). We introduce an important

set denoted by Ẽ+ = {e ∈ E+ : e =
⊔n

i=1∥vi∥ ; vi ∈ V ; n ∈ N}, which plays a significant

role in the following lemmas and theorems. We note that the set Ẽ+ is a lateral ideal of the

vector lattice E. For detailed proof see [3].

Lemma 4.1.6. Let E,F be vector lattices with F Dedekind complete, D be a lateral ideal

in E, and (Tα)α∈∆ be a downward directed set of positive orthogonally additive maps from

D to F. For any e ∈ D, put

Re = inf{Tαe : α ∈ ∆}.
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Then R defines a positive orthogonally additive map from D to F.

Proof. Let us take an element e ∈ D. Consider the set Re := {Tαe : α ∈ ∆}. We note that

since the net (Tα)α∈∆ is downward directed, then the set Re is also a downward directed

set in F. Considering the Dedekind completness of F , we conclude that R is well defined.

Additionally, by definition of itself, R is positive. Now we show that R is an orthogonally

additive map. Take any disjoint elements e, f ∈ D and any α ∈ ∆. It follows from

Tα(e+ f) = Tαe+ Tαf

that

R(e+ f) ≤ Tαe+ Tαf.

Passing to the infimum in the right-hand side of the previous inequality over all α ∈ ∆, we

obtain that R(e + f) ≤ Re + Rf. For the other side, we have Re + Rf ≤ Tαe + Tαf =

Tα(e + f). Therefore the element Re + Rf is a lower bound for the set {Tαe : α ∈ ∆}. It

directly follows that

Re+Rf ≤ R(e+ f).

This finishes the proof.

Definition 4.1.7. Let E,F be vector lattices with F Dedekind complete, and let D be a

lateral ideal in E. With any positive orthogonally additive map T : D → F , we can associate

a map T̃D : E → F defined by T̃De = sup{Te0 : e0 ⊑ e ; e0 ∈ D}. The map T̃D is called

the minimal extension (with respect to D) of T.

Lemma 4.1.8. Let E,F be vector lattices with F Dedekind complete, D be a lateral ideal

in E, and T : D → F be a positive orthogonally additive map. Then T̃D ∈ P+(E,F ) and

T̃De = Te for any e ∈ D.

For detailed proof, please refer to [16, Theorem 4.4].

Theorem 4.1.9. Let (V,E) and (W,F ) be lattice-normed spaces with V decomposable

and F Dedekind complete. Then every dominated P-operator T : V → W has an exact
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dominant∥T∥ . Moreover the exact dominant of a dominated P-operator T : V → W can

be calculated by the following formulas:

(1) ∥T∥ (e) = sup{
∑n

i=1∥Tui∥ :
⊔n

i=1∥ui∥ = e, n ∈ N} (e ∈ Ẽ+);

(2) ∥T∥ (e) = sup{∥T∥ (e0) : e0 ∈ Ẽ+, e0 ⊑ e} (e ∈ E).

Proof. To complete the proof, we need to show that D(T ) is the downward-directed set.

Take any S1, S2 ∈ D(T ). Let x ∈ V and e = ∥x∥ . Consider disjoint pair f, h ∈ E with

e = f ⊔ h. Since (V,E) is a decomposable lattice-normed space, there exist y, z ∈ V such

that x = y + z and∥y∥ = f ,∥z∥ = h. It directly follows that

∥Tx∥ =
∥∥T (y + z)

∥∥ =∥Ty + Tz∥ ≤∥Ty∥+∥Tz∥

≤ S1∥y∥+ S2∥z∥

= S1f + S2h.

Passing to the infimum in the right-hand side of the above inequality over all h, f ∈ E+, we

have

∥Tx∥ ≤ (S1 ∧ S2)∥x∥ .

Take an any S ∈ D(T ). We define S as the restriction of S to positive cone E+. We note that

S̃ : E+ → F is an orthogonally additive map. Consider the set R := {S : S ∈ D(T )}. One

can see that R is a downward directed set of positive orthogonally additive maps from E+ to

F. Therefore considering the Lemma 4.1.6, the operator R : E+ → F defined by

Re = inf{Se : S ∈ D(T )}

is a positive orthogonally additive map, and

∥Tx∥ ≤ R∥x∥ ≤ S∥x∥
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is valid for all x ∈ V and S ∈ D(T ). Hence by Lemma 4.1.8, there exists the minimal

extension of R. Let R̃ be the minimal extension of R. It follows that R̃ = ∥T∥ . Take

an element e ∈ Ẽ+. We denote by Ge the right-hand side of the formula (1). For any

decomposition e =
⊔n

i=1∥vi∥, v1, ..., vn ∈ V, we have the following

∥Tvi∥ ≤∥T∥∥vi∥ =⇒
n∑

i=1

∥Tvi∥ ≤
n∑

i=1

∥T∥∥vi∥ =∥T∥ (
n⊔

i=1

∥vi∥) =∥T∥ (e).

It follows that∥T∥ (e) is an upper bound for Ge. Considering the Dedekind completeness of

F , we conclude that Ge : Ẽ+ → F a is well defined positive map. Now we show that G is an

orthogonally additive map. Take disjoint f, h ∈ Ẽ+ with f =
⊔n

i=1∥ui∥ and h =
⊔m

j=1

∥∥vj∥∥ .
It follows that

G(f + h) = sup{
k∑

i=1

∥Twi∥ :
k⊔

i=1

∥wi∥ = f + h, k ∈ N}

≥
n∑

i=1

∥Tui∥+
m∑
j=1

∥∥Tvj∥∥
Passing to the supremum in the right-hand side of the above inequality over all h, f ∈ Ẽ+,

we have Gf + Gh ≤ G(f + h). On the other hand, let us consider a decomposition f +

h =
⊔n

i=1∥wi∥ . Since the lattice normed space (V,E) is decomposable, there exist mutually

disjoint elements u1, ..., un ∈ V and v1, ..., vn ∈ V, such that

f =
n⊔

i=1

∥ui∥ and h =
n⊔

i=1

∥vi∥

with wi = ui + vi for all i = 1, ..., n. It directly follows that

n∑
i=1

∥Twi∥ ≤
n∑

i=1

∥Tui∥+
n∑

i=1

∥Tvi∥ ≤ Ge+Gf.

Thus G(e + f) ≤ Ge + Gf , and hence G is an orthogonally additive map from Ẽ+ to F

and ∥Tx∥ ≤ G∥x∥ for all x ∈ V. By Lemma 4.1.8, it follows that G̃ ∈ P+(E,F ). We

claim that G̃ is the exact dominant of T. Take an arbitrary S ∈ D(T ) and e ∈ Ẽ+. For any
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decomposition e =
⊔n

i=1∥ui∥, we have

n∑
i=1

∥Tui∥ ≤ S(
n⊔

i=1

∥ui∥) = Se.

It follows that

G̃e = Ge ≤ Se, e ∈ Ẽ+.

Take an arbitrary element e ∈ E. Then we have

G̃e0 = Ge0 ≤ Se0 ≤ Se, e0 ⊑ e, e0 ∈ Ẽ+.

Passing to the supremum in the left-hand side of the above inequality over all fragments

e0 ∈ Ẽ+ of an element e, we have G̃e ≤ Se for all e ∈ E.

Corollary 4.1.10. Let (V,E) and (W,F ) be the same as Theorem 4.1.9. Then an

orthogonally additive operator T : V → W is dominated if and only if the set

Ge = {
n∑

i=1

∥Tui∥ :
n⊔

i=1

∥ui∥ = e, n ∈ N}

is order bounded for any e ∈ Ẽ+.

Proof. The proof follows from Theorem 4.1.9.
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