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ABSTRACT

CONDITIONAL DIRECT SUMMAND PROPERTIES VIA RELATIVE

INJECTIVITY

Burak MUSLU

Master of Science, Mathematics

Supervisor: Prof. Dr. Adnan TERCAN

June 2023, 81 pages.

In this study, CS-modules and some of their generalizations, conditional direct summands

feature modules will be handled with the help of relative injectivity and the results in this

direction will be compiled and the findings that may contribute to the literature will be

given at the end of the thesis as an original section.
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direct summand modules, fully invariant submodules.
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ÖZET

GÖRECELİ İNJEKTİFLİK YARDIMIYLA KOŞULLU DİK TOPLANAN

ÖZELLİKLERİ

Burak MUSLU

Yüksek Lisans, Matematik

Danışman: Prof. Dr. Adnan TERCAN

Haziran 2023, 81 sayfa.

Bu çalışmada CS-modüller ve belirlenmiş bazı genelleştirmeleri, koşullu dik toplanan özel-

likli modüller, göreceli injektiflik yardımıyla ele alınıp bu yöndeki sonuçlar derlenecek ve

bu çerçevede literatüre katkısı olabilecek bulgular özgün bölüm olarak tezin sonunda ver-

ilecektir.

Anahtar Kelimeler: CS-modüller, göreceli injektif modüller, complement alt modüller,

koşullu dik toplanan alt modüller, tam değişmez alt modüller.
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ABBREVIATIONS

N The set of positive integers

Z The ring of integers

N The set of positive integers

Z The ring of integers

Zn or Z/Zn (n > 1) The ring of integers modulo n

Q The field of rational numbers

R The field of real numbers

C The field of complex numbers

Mn(R) The n × n Matrix ring over R

Tn(R) The n × n Upper triangular matrix ring over R

Z(MR) or Z(M) The singular submodule of MR

Z2(MR) or Z2(M) The second singular submodule of MR

soc(M) or soc(MR) The socle of MR

rad(M) or rad(MR) The Jacobson radical of MR

Mn or M (n) The direct sum of n copies of M

J(R) The Jacobson radical of R

u-dim M Uniform dimension

E(M) The injective hull of MR

Ẽ(M) The rational hull of MR

acc (dcc) The ascending (descending) chain condition

N ≤ M N is a submodule of M

N ⊴ M N is a fully invariant submodule of M

N ≤e M N is an essential (large) submodule of M

N ≤c M N is a complement submodule of M

N ≤d M N is a direct summand of M

|I| The cardinal of I
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1 Introduction

In this study, R is a ring with unit but not necessarily commutative, and M is a right

R-module. In this chapter, some results and necessary definitions that will be used in

other parts of the thesis will be given. In this context, the proofs of some of the main

results are clearly shown for completeness. Basic notations and definitions as well as basic

results we refer to [2], [4], [13].

1.1 Complement Submodules

In this section, we introduce the concept of complement submodules and establish their

fundamental properties. Additionally, we delve into the topic of chain conditions concern-

ing complement submodules.

Definition 1.1.1. A submodule N of a right R-module M is called essential (or large)

provided N ∩ K ̸= 0 for each nonzero K ≤ MR, and in this case we write N ≤e MR. In

particular M ≤e MR. On the other hand, 0 ≤e MR if and only if M = 0.

Example 1.1.2. Every non-zero submodule of ZZ are essential in ZZ.

Propositon 1.1.3. Let M be a module. Then

(i) N ≤e M ⇐⇒ N ∩ mR ̸= 0 for all 0 ̸= m ∈ M.

(ii) Given K ≤ N ≤ M, K ≤e M ⇐⇒ K ≤e N and N ≤e M.

(iii) For any integer t ≥ 1, Ni ≤e Ki (1 ≤ i ≤ t) =⇒ (N1 ∩ ...∩ Nt) ≤e (K1 ∩ ...

∩ Kt)

(iv) For any nonempty index set Λ, Nλ ≤e Kλ (λ ∈ Λ) =⇒
⊕

Nλ ≤e

⊕
Kλ.

Definition 1.1.4. Let MR be a module and N ≤ MR. If there exists a submodule

N ′ ≤MR such that N ∩ N ′ = 0 andM = N + N ′, then N is said to be a direct summand

of M and denoted by N ≤d M . On the other hand N ′ is called a direct complement of N .
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Example 1.1.5. Let MR = VF be a vector space and N ≤ VF . Then N ≤d VF .

Definition 1.1.6. Given L ≤ M , a complement (submodule) of L in M refers to a

submodule K of M that is maximal with respect to the property K ∩ L = 0. In other

words, K is a complement of L in M if and only if it satisfies the following conditions:

(i) K ∩ L = 0, and

(ii) For any submodule K ⊂ N ≤M , we have N ∩ L ̸= 0.

Example 1.1.7. Let F be any field and let MF = F ⊕ F . Now L = F ⊕ 0 ≤ MF .

For any x ∈ F , the subspace (x, 1)F = {xf , f : f ∈ F} ≤ MF is a complement submod-

ule of L in MF .

Propositon 1.1.8. Let L, N ≤ M with N ∩ L = 0. Then there exists a complement

K of L in M such that N ⊆ K.

Proof. Clear on using Zorn’s Lemma.

Propositon 1.1.9. Let L ≤M and let K be any complement of L in M . Then K⊕L ≤e

M .

Proof. Assume N ≤ M and (K ⊕ L) ∩ N = 0. Let’s suppose that K ⊂ K + N . Since

(K + N) ∩ L ̸= 0, there exists k ∈ K, n ∈ N , and 0 ̸= x ∈ L such that x = k + n. This

implies that n ∈ (K ⊕ L) ∩ N , which means that n = 0. Consequently, we have x = 0,

which leads to a contradiction. Therefore, we conclude that K = K + N , which implies

that N ⊆ K. Consequently, we have N = 0. Thus, we have shown that if (K⊕L)∩N = 0,

then N = 0. Therefore, K ⊕ L is an essential submodule of M . Hence, we can conclude

that K ⊕ L ≤e M .

Let MR be a module. Then the sum of all minimal (or the direct sum of all simple)

submodules of M is called the socle of M , and denoted by Soc(M).

Corollary 1.1.10. For any module M, Soc(M) =
⋂

{N : N ≤e M }.
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Proof. Let N ≤e M and U be a simple submodule of M . If N ∩ U ̸= 0, then it must be

the case that N ∩ U = U , implying that U is a subset of N . Thus, we have soc(M) ⊆⋂
{N : N ≤e M}.

Conversely, let m ∈
⋂
{N : N ≤e M}. Suppose soc(mR) ̸= mR. Then there exists

a maximal submodule L of mR such that soc(mR) ⊆ L. Suppose L ≤e mR. Let K

be a complement of L in M . Then mR ∩ K = 0 and L ⊕ K ≤e mR ⊕ K ≤e M by

Proposition 1.1.9. Thus, we have L⊕K ≤e M (Proposition 1.1.3.) and m ∈ L⊕K, which

implies m ∈ L, leading to a contradiction. Therefore, L ≤e mR is not true, and there

exists a non-zero submodule V ≤ mR such that L ∩ V = 0. It follows that V is a simple

submodule, and we have V ⊆ soc(mR) ⊆ L, which is a contradiction. Thus, we conclude

that mR = soc(mR), and m ∈ soc(M). The desired result follows.

A submodule K of a module M is called a complement submodule (in M), denoted as

K ≤c M , if there exists a submodule L ≤ M such that K is a complement of L in M . It

is clear that 0 ≤c M and M ≤c M . Furthermore, for any direct summand K of M , we

have K ≤c M .

Propositon 1.1.11. Let N ≤ M. Then there exists K ≤ M, containing N, such that

N ≤e K ≤c M.

Proof. Let N ′ be a complement of N in M . According to Proposition 1.1.8, there exists

a complement K of N ′ in M such that N ⊆ K. Consider a non-zero submodule L ≤ K.

It follows that N ′ ⊆ L+N ′, and therefore (L+N ′) ∩N ̸= 0. There exist x ∈ L, n′ ∈ N ′,

and 0 ̸= n ∈ N such that n = x+n′. This implies that n′ ∈ K ∩N ′, and therefore n′ = 0,

resulting in n ∈ L ∩N . Thus, we have shown that N ≤e K.

Propositon 1.1.12. Let K ≤c M and K ≤ N ≤ M. Then N ≤e M ⇐⇒ N/K ≤e M/K.

Proof. (⇐=) By [13, Exercise 1.40.(iv)].

( =⇒ ) Assume that N ≤e M . Let M ′ = M/K and N ′ = N/K, where K is a

complement of N in M . Consider a submodule L′ ≤M ′ with N ′ ∩ L′ = 0. There exists a

submodule L ≤M such that K ⊆ L, L′ = L/K, and N ∩L = K. Let K ′ be a complement
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of K in M . Then we have N ∩ L ∩K ′ = 0, which implies L ∩K ′ = 0. Since K ⊆ L, we

conclude that K = L, and thus L′ = 0. Therefore, we have shown that N ′ ≤e M
′.

Propositon 1.1.13. Assume K ≤ M. Then K ≤c M if and only if whenever K ≤e L ≤

M, then K = L.

Proof. Clear using Proposition 1.1.11.

Propositon 1.1.14. Let K, L ≤c M. Then K is a complement of L in M if and only if L

is a complement of K in M.

Proof. Let K be a complement of L in M . Suppose L ⊆ L′ ≤ M and L′ ∩ K = 0.

According to Proposition 1.1.9., we have K⊕L ≤e M . Let 0 ̸= y ∈ L′. There exists r ∈ R

such that 0 ̸= yr = k+x for some k ∈ K and x ∈ L. Then we have k = yr−x ∈ K∩L′ = 0,

which implies yr ∈ L. Therefore, we have L ≤e L
′. By Proposition 1.1.13., we conclude

that L = L′. Hence, L is a complement of K in M .

Propositon 1.1.15. Assume N ≤ K ≤ M. Then

(i) K ≤c M =⇒ K/N ≤c M/N.

(ii) K/N ≤c M/N, N ≤c M =⇒ K ≤c M.

Proof. (i) Let L be a submodule of M such that K ⊆ L and K/N ≤e L/N . According to

[13, Exercise 1.40.(iv)], K ≤e L and, by Proposition 1.1.13., it follows that K = L. Hence,

K/N = L/N . Furthermore, by Proposition 1.1.13., we have K/N ≤c M/N .

(ii) There exist submodules K ′ and N ′ of M such that N ⊆ K ′, K/N is a complement

of K ′/N in M/N , and N is a complement of N ′ in M . Consequently, we have K ∩K ′ =

N and N ∩ N ′ = 0, which implies K ∩ (K ′ ∩ N ′) = 0. Suppose K ≤ L ≤ M and

L ∩ (K ′ ∩N ′) = 0. Since N ⊆ L ∩K ′ and (L ∩K ′) ∩N ′ = 0, it follows that L ∩K ′ = N .

Thus, (L/N) ∩ (K ′/N) = 0, and therefore L/N = K/N . We conclude that L = K, which

implies that K is a complement of K ′ ∩N ′ in M .

Propositon 1.1.16. Let K ≤c N and N ≤c M. Then K ≤c M.

Proof. There exists a submodule K ′ of N such that K is a complement of K ′ in N , and

there exists a submodule N ′ of M such that N is a complement of N ′ in M . It is evident
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that K∩(K ′+N ′) = 0. Suppose K ≤e L ≤M . Then L∩(K ′+N ′) = 0, and consequently,

(N ∩ (L+N ′))∩K ′ = K ′∩ (L+N ′) = 0. However, K ⊆ N ∩ (L+N ′), which implies that

K = N ∩ (L +N ′). Thus, (N + L) ∩N ′ = 0. It follows that L ⊆ N , and by Proposition

1.1.13., we have K = L. Hence, by Proposition 1.1.13., we conclude that K ≤c M .

A moduleM satisfies the ascending chain condition on complements, denoted by acc-c,

if for any chain

K1 ⊆ K2 ⊆ K3 ⊆ . . .

of complements, there exists a positive integer n such that Kn = Kn+1 = Kn+2 = . . . .

Similarly, a module M satisfies the descending chain condition on complements, denoted

by dcc-c, if for any chain

K1 ⊇ K2 ⊇ K3 ⊇ . . .

of complements, there exists a positive integer n such that Kn = Kn+1 = Kn+2 = . . . .

Propositon 1.1.17. The following statements are equivalent for a module M.

(i) M satisfies acc-c.

(ii) For any ascending chain of submodules N1 ⊆ N2 ⊆ N3 ⊆ ··· of M there exists k ≥

1 such that Ni ≤e Ni+1 for all i ≥ k.

(iii) M satisfies dcc-c.

(iv) For any descending chain of submodules N1 ⊇ N2 ⊇ N3 ⊇ ··· of M there exists k

≥ 1 such that Ni+1 ≤e Ni for all i ≥ k.

(v) M does not contain an infinite direct sum of non-zero submodules.

(vi) There exists N ≤e M such that N does not contain an infinite direct sum of non-

zero submodules.

(vii) For each N ≤ M there exists a finitely generated K ≤e N.

(viii) For each N ≤e M there exists a finitely generated K ≤e N.

Proof. (i) =⇒ (v) Assume thatM satisfies the ascending chain condition on complements

(acc-c). Suppose N1⊕N2⊕N3⊕ . . . is an infinite direct sum of non-zero submodules ofM .

By Proposition 1.1.11., there exists K1 ≤c M with N1 ≤e K1. Note that K1 ∩ (N2 ⊕N3 ⊕
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. . . ) = 0. Again, by Proposition 1.1.11., there exists K2 ≤c M such that (K1⊕N2) ≤e K2.

Note that

K2 ∩ (N3 ⊕ N4 ⊕ ···) = 0.

Continuing this process, we obtain a chain of complements K1 ⊆ K2 ⊆ K3 ⊆ . . . . Thus,

M does not satisfy the ascending chain condition on complements.

(v) =⇒ (ii) Let N1 ⊆ N2 ⊆ N3 ⊆ . . . be an ascending chain of submodules of M such

that Ni is not an essential submodule of Ni+1 for all i ≥ 1. For each i ≥ 1, there exists

0 ̸= Ki ≤ Ni+1 such that Ni ∩Ki = 0. It is easy to check that K1 +K2 +K3 + . . . is an

infinite direct sum of non-zero submodules.

(ii) =⇒ (i) This is implied by Proposition 1.1.13.

(iii) ⇐⇒ (iv) ⇐⇒ (v) Similar to (i) ⇐⇒ (ii) ⇐⇒ (v)

(v) ⇐⇒ (vi) Obvious.

(ii) ⇐⇒ (vii) Let 0 ̸= N ≤ M . Let 0 ̸= n1 ∈ N . Then either n1R ≤e N , or there

exists 0 ̸= n2 ∈ N such that n1R ∩ n2R = 0. Next, either n1R ⊕ n2R ≤e N or there

exists 0 ̸= n3 ∈ N such that (n1R ⊕ n2R) ∩ n3R = 0. Repeat this process and note that,

by (ii), it must stop after a finite number of steps. Thus there exists k ≥ 1 such that n1R

⊕ ··· ⊕ nkR ≤e N .

(vii) ⇐⇒ (viii) Clear.

(viii) ⇐⇒ (v) Suppose (viii) holds. Let N = N1 ⊕ N2 ⊕ N3 ⊕ . . . be a direct

sum of submodules of M . Let N ′ be a complement of N in M . By Proposition 1.1.9.,

N ⊕ N ′ ≤e M , and hence there exists K ≤e N ⊕ N ′ with K finitely generated. Since K

is finitely generated, there exists t ≥ 1 such that K ⊆ N1 ⊕N2 ⊕ · · · ⊕Nt ⊕N ′. Then, for

all i ≥ t+ 1, K ∩Ni = 0, and hence Ni = 0. It follows that M satisfies property (v).

Corollary 1.1.18. Suppose that M satisfies acc-c and N ≤ M. Then

(i) N satisfies acc-c.

(ii) M/N satisfies acc-c provided N ≤c M.

Proof. (i) is evident, and (ii) is a consequence of Proposition 1.1.15.

We shall say that a module M satisfies acc-e (respectively, dcc-e) if every ascending

7



(descending) chain of essential submodules terminates. The following statement is a direct

implication of Proposition 1.1.17.

Propositon 1.1.19. The following statements are equivalent for a module M.

(i) M satisfies acc-e.

(ii) For all K ≤e N ≤ M, the module N/K is finitely generated.

(iii) M/ Soc (M) is Noetherian.

Proof. (i) =⇒ (ii) Suppose that M satisfies acc-e. Let K be an essential submodule of

N which is a submodule of M . Let L be a complement of K in N . Then N ∩ L = 0,

and by Proposition 1.1.9., K ⊕ L is an essential submodule of M . Hence M/(K ⊕ L) is

Noetherian, and N/K ∼= (N ⊕ L)/(K ⊕ L) is finitely generated.

(ii) =⇒ (iii) Suppose that (ii) holds. Let S = soc(M). Let S ⊆ N ⊆ M . Let K

be a complement of S in N . We first prove that K satisfies acc-c. Suppose not, and let

K ′ = K1 ⊕K2 ⊕K3 ⊕ . . . be a direct sum of non-zero submodules of K. For each i ≥ 1,

S ∩Ki = 0, and hence by Corollary 1.1.10., there exists Li ≤e Ki with Li ̸= Ki. Let

L = L1 + L2 + L3 + ... = L1 ⊕ L2 ⊕ L3 ⊕ ···.

By Proposition 1.1.3. (iv), L ≤e K
′ and hence K ′/L is finitely generated. But

K ′/L ∼= (K1/L1) ⊕ (K2/L2) ⊕ (K3/L3) ⊕ ··· ,

which is an infinite direct sum of non-zero submodules, a contradiction. Thus K satisfies

acc-c.

By Proposition 1.1.17., there exists P ≤e K with P finitely generated. Moreover,

P ⊕S ≤e N . By Propositions 1.1.3. and 1.1.9., N/(P ⊕S) is finitely generated, and hence

N/S is finitely generated. It follows that M/S is Noetherian.

(iii) =⇒ (i)This is clear by Corollary 1.1.10.

A similar argument yields the following result.

Propositon 1.1.20. The following statements are equivalent for a module M.

(i) M satisfies dcc-e.

8



(ii) For all K ≤e N ≤ M, the module N/K is finitely generated.

(iii) M/ soc (M) is Artinian.

Corollary 1.1.21.

(i) A module M is Noetherian if and only if M satisfies acc-c and acc-e.

(ii) A module M is Artinian if and only if M satisfies dcc-c and dcc-e.

Proof. By Propositions 1.1.17., 1.1.19., and 1.1.20.

Another consequence of Proposition 1.1.17 is the following result.

Propositon 1.1.22. Let N ≤ M be such that both N and M/N satisfy acc-c. Then

M satisfies acc-c.

Proof. Take K as a submodule of M . Consider a complement L of N ∩K in K. Using

Proposition 1.1.9., we have that (N ∩ K) ⊕ L ≤e K. Applying Proposition 1.1.17., we

find a submodule K ′ of (N ∩ K) such that K ′ is finitely generated. Additionally, since

N ∩L = 0, we can see that L is isomorphic to a submodule ofM/N . Thus, L satisfies acc-

c. Using Proposition 1.1.17. once again, we can find a submodule L′ of L that is finitely

generated. It is clear that K ′ ⊕L′ is also finitely generated, and by Proposition 1.1.3., we

have K ′ ⊕ L′ ≤e K. Finally, Proposition 1.1.17. implies that M satisfies acc-c.

Definition 1.1.23. A submodule U ofM is called uniform, written U ≤u M , if U ̸= 0 and

X ∩ Y ̸= 0 for all 0 ̸=X, Y ≤ U . In other words, U ≤u M ⇐⇒ X ≤e U for all 0 ̸=X ≤ U .

Example 1.1.24. MR = ZZ is a uniform module.

The following result provides additional details regarding modules satisfying acc-c.

Propositon 1.1.25. Suppose that M is a non-zero module satisfying acc-c. Then

(i) M contains a uniform submodule.

(ii) There exist a positive integer n and uniform submodules Ui (1 ≤ i ≤ n) of M such

9



that U1 ⊕ ··· ⊕ Un ≤e M.

(iii) Given N ≤ M, N ≤e M ⇐⇒ N ∩ Ui ̸= 0 (1 ≤ i ≤ n).

(iv) For any direct sum N1 ⊕ ··· ⊕ Nk of non-zero submodules of M, k ≤ n.

(v) If V1 ⊕ ··· ⊕ Vk ≤e M, with Vi ≤u M (1 ≤ i ≤ k), then k = n.

Proof. (i)IfM does not satisfy the uniform property, then there exist non-zero submodules

L1 and L′
1 of M such that L1 ∩ L′

1 = 0. If L′
1 is not uniform, then there exist non-zero

submodules L2 and L′
2 of L′

1 such that L2 ∩ L′
2 = 0. This process can be continued,

generating a direct sum L1⊕L2⊕L3⊕ . . . of non-zero submodules. By Proposition 1.1.17,

either M is uniform or there exists a positive integer t such that L′
t is uniform.

(ii) According to (i), there exists a uniform submodule U1 of M . We consider two

cases: either U1 is an essential submodule of M , or there exists a non-zero submodule K1

of M such that U1 ∩K1 = 0. In the latter case, we can apply (i) again to find a uniform

submodule U2 contained in K1. Notably, U1 and U2 have zero intersection. We continue

this process, either obtaining a direct sum U1 ⊕ U2 ⊕ U3 ⊕ . . . that is essential in M , or

finding a non-zero submodule K2 such that (U1 ⊕ U2) ∩ K2 = 0. In the latter scenario,

we repeat the process and find a uniform submodule U3 contained in K2. This pattern

continues, allowing us to construct a direct sum of uniform submodules. By Proposition

1.1.17., there exists a positive integer n such that U1 ⊕ U2 ⊕ · · · ⊕ Un is essential in M .

(iii) If N ≤e M then clearly N ∩ Ui ̸= 0 for each 1 ≤ i ≤ n. Conversely, suppose that

N ∩ Ui ̸= 0 (1 ≤ i ≤ n). Let 0 ̸= K ≤ M . Let k be a non-zero element of K. Then kR

∩ (U1 ⊕ ··· ⊕ Un) ̸= 0. Thus there exist r ∈ R, ui ∈ Ui (1 ≤ i ≤ n) such that

0 ̸= kr = u1 + ··· + un.

Clearly, ui ̸= 0 for some 1 ≤ i ≤ n. Note that, because Ui is uniform, we have uiR ∩ (U

∩ N) ̸= 0. Thus, there exists s ∈ R such that 0 ̸= uis ∈ N . Then

0 ̸= krs = u1s + ··· + uis + ··· + uns.

Let x = krs - uis. Let V =
⊕

j ̸=i Uj. By induction on n, N ∩ V ≤e V . Either x = 0, or

there exists t ∈ R such that 0 ̸= xt ∈ N ∩ V . Thus, either krs is a non-zero element of

N , or krst is a non-zero element of N . In any case, N ∩ K ̸= 0. Thus N ≤e M .
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(iv) Clearly, the direct sum N2⊕· · ·⊕Nk is not an essential submodule ofM . Without

loss of generality, we can assume that U1 ∩ (N2 ⊕ · · · ⊕Nk) = 0, using property (iii). We

form the direct sum U1 ⊕N2 ⊕ · · · ⊕Nk. By applying the same argument, we can further

assume, without loss of generality, that U1 +U2 +N3 + · · ·+Nk is a direct sum. If k > n,

then repeating this process would yield the direct sum U1 ⊕ · · · ⊕ Un ⊕Nn+1 ⊕ · · · ⊕Nk.

However, this would imply that

(U1 ⊕ · · · ⊕ Un) ∩Nk = 0,

which contradicts the previous assumption. Therefore, we conclude that k ≤ n.

(v) By (iv).

Definition 1.1.26. Assume that M be a module with acc-c. There exists a positive

integer n such that n is the number of non-zero direct summands in any essential direct

sum of uniform submodules. n is called the uniform dimension or Goldie dimension of

M , denoted as u-dim M . Clearly

u−dim M = 0 ⇐⇒ M = 0.

Propositon 1.1.27. Let M be a module which satisfies acc-c and let N ≤ M. Then

(i) N satisfies acc-c and u−dim N ≤ u−dim M. Moreover, u−dim N = u−dim M if

and only if N ≤e M.

(ii) If N ≤c M then M/N satisfies acc-c and in this case u−dim M = u−dim N +

u−dim (M/N).

Proof. (i) Clear.

(ii) Suppose N ≤c M . Let N ′ be a complement of N in M . By Proposition 1.1.9., N

⊕ N ′ ≤e M . Moreover, by Proposition 1.1.12., N ′ ∼= (N ⊕ N ′)/N ≤e M/N . Now N ′ has

acc-c, by (i), and hence so does M/N by Corollary 1.1.18 Moreover, it is clear that

u−dim M = u−dim N + u−dim N ′

= u−dim N + u−dim (M/N).
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Definition 1.1.28. Let M be a right R-module and x ∈ M . Let r(x) = {r ∈ R : xr =

0} (resp., l(x) = {r ∈ R : rx = 0}) be the right (resp., left) annihilator of x. The singular

submodule of M is defined by Z(M) = {x ∈ M : r(x) ≤e RR}. Then the module M is

called singular if M = Z(M), and nonsingular if Z(M) = 0.

Example 1.1.29. ZZ is a nonsingular module.

The following definition and corollary are very basic concepts in our work. Note that

we will discuss fully invariant notion in details at Chapter 5. For more information we

refer to [12], [2].

Definition 1.1.30. Let MR be a module and N ≤ MR. If f(N) ⊆ N for every f ∈

End(MR), N is called a fully invariant submodule of M .

Corollary 1.1.31. Let M be a right R-module and A, B, C ≤ M . Then

(A ∩ B) + (A ∩ C) ≤ A ∩ (B ∩ C).

If B ≤ A then

A ∩ (B ∩ C) = B ∩ (A ∩ C).

The latter equality is known as modular law in module theory.

Proof. Take any x ∈ (A ∩ C). Hence x ∈ A and x ∈ B + C and there exists b ∈ B and

c ∈ C such that x = b + c. Since B ≤ A then c = x - b ∈ A ∩ C. From here x = b + c

∈ B + (A ∩ C). So

A ∩ (B + C) ⊆ B + (A ∩ C).

Conversely, since B + (A ∩ C) ≤ B + C and B + (A ∩ C) ≤ B + A ≤ A then

B + (A ∩ C) ⊆ A ∩ (B + C).

Thus we obtain

A ∩ (B + C) = B + (A ∩ C).

12



1.2 Injective Modules

In this section, we focus on injective modules, which are a fundamental class of modules

in our work. We introduce injective modules and provide an overview of their basic prop-

erties.

Definition 1.2.1. A right R-module M is injective provided that for any right R-module

B and any submodule C ≤ B, all homomorphisms f : C → M extend to homomorphism

g: B → M .

Equivalently MR is injective if and only if for every monomorphism f : A → B and

homomorphism g: A → M , ∃ h: B → M such that h o f = g. In other words

0 A B exact

M

g

f

h

which makes the diagram commutative. In this context, we define the lifting of g to h.

Injective modules can be seen as the duals of projective modules, where the direction of

arrows is reversed and epimorphisms are replaced by monomorphisms. The first result

provides a valuable criterion for injectivity, often referred to as the Injective Test Lemma.

Theorem 1.2.2. (Baer’s Lemma) A right R-module M is injective if and only if for

each right ideal I of R and each R-homomorphism f : I → M there exists m ∈ M such that

f(r) = mr (r ∈ I).

Proof. If M is injective then given I ≤ RR any f : I → M extends to some f1 : R → M

and f(r) = f1(r) = f1(1)r for all r ∈ R.

Conversely; assume that M satisfies given condition and consider right R-modules C

≤ B with f : C → M . Let X = {(C1,f1) : C ≤ C1 ≤ B; f1 : C1 → M and f1|C = f}
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̸= ∅. Define a relation ”≤” on X by (C1,f1) ≤ (C2,f2) ⇐⇒ C1 ⊆ C2 and f2 extends f1.

Thus (X,≤) is a poset and every chain in X has an upper bound. By Zorn’s Lemma X

has a maximal member (C∗,f ∗) in X and if C∗ = B we are done. If not choose b ∈ B/C

and let I = {r ∈ R : br ∈ C∗}. The rule r 7→ f ∗(br) defines a homomorphism I → M ,

and hence by assumption ∃ m ∈ M ∋ f ∗(br) = mr for all r ∈ I. Now define f1 : C∗ +

bR → M , c + br 7→ f ∗(c) + mr (for all c ∈ C∗, r ∈ R) is a well defined homomorphism.

However this contradicts with the maximality of (C∗,f ∗). M is injective.

The above theorem has the following immediate consequence.

Corollary 1.2.3. Let K be a field. Then every K-module is injective.

Theorem 1.2.2 can be utilized to determine which Abelian groups are injective Z-modules.

Remarkably, the injective Z-modules correspond precisely to the divisible groups. An

Abelian group D is referred to as divisible if, for every d ∈ D and nonzero integer k, there

exists d′ ∈ D such that d′k = d. In this sense, every element of D is divisible by each

nonzero integer. For any k ∈ Z, let Dk = dk : d ∈ D. Then, D is divisible if and only if

D = Dk for every nonzero k ∈ Z. It should be noted that the zero group is considered

divisible. Furthermore, it is evident that the rational numbers Q form a divisible group.

Lemma 1.2.4.

(i) Every factor group of a divisible group is divisible.

(ii) Every direct sum and direct product of divisible groups is divisible.

(iii) Every Abelian group can be embedded in a divisible group.

Proof. (i) Suppose D is divisible and C ≤ DZ. Then we have the following equality for

any non-zero integer k:

(D/C)k = (Dk + C)/C = (D + C)/C = D/C,

(ii) Let Dλ (λ ∈ Λ) be a non-empty collection of divisible groups, and let D be the direct

product Πλ∈Λ Dλ. Then, for any non-zero integer k, we have the following equality:
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Dk = Πλ∈ΛDλk = Πλ∈Λ(Dλk) = Πλ∈ΛDλ = D,

The argument for direct sums follows a similar pattern.

(iii) Consider an arbitrary Abelian group M . According to [13, Proposition 1.8.] there

exists a set Λ and a surjective map θ : F → M , where F is the free Abelian group

F = Z(Λ). The kernel K of θ is a subgroup of F , and we have the isomorphismM ∼= F/K.

Assume D = Q(Λ). By (ii) D is a divisible group and clearly F/K can be embedded in

the group D/K which is divisible by (i).

To utilize Lemma 1.2.4, we initially establish a proposition concerning the ring Z.

Proposition 1.2.5. An Abelian group M is an injective Z-module if and only if M is

a divisible group.

Proof. AssumingM is an injective module over Z, take an element m ∈M and a non-zero

integer n ∈ Z. Define a mapping ϕ : nZ →M by ϕ(nk) = mk for k ∈ Z. We can observe

that ϕ is well-defined because if nk = nk′ for some k, k′ ∈ Z, then k = k′ and consequently

mk = mk′. It is clear that ϕ is a homomorphism, and by Theorem 1.2.2., there exists an

element b ∈ M such that ϕ(r) = br for r ∈ nZ. In particular, m = ϕ(n) = bn, indicating

that M is divisible.

Conversely, assume that M is a divisible module. Consider a non-zero ideal I of Z and

a homomorphism θ : I → M . Since Z is a principal ideal domain, there exists a non-zero

element a ∈ I such that I = aZ. By assumption, there exists an element b ∈M such that

θ(a) = ba. For any s ∈ I, there exists t ∈ Z such that s = at, and we have

θ(s) = θ(at) = θ(a)t = bat = bs.

Applying Theorem 1.2.2. once again, we conclude that M is an injective Z-module.

By combining Lemma 1.2.4. (iii) and Proposition 1.2.5., it becomes evident that any

module over Z can be embedded in an injective module over Z. In fact, this statement

holds not only for the ring Z but also for any ring. This follows as a consequence of the

next result.
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Lemma 1.2.6. Let D be a divisible group. Then Hom(R, D) is an injective right R-

module.

Proof. Assume X = Hom(R, D) and consider the [13, Diagram 1.10.]. Associated with

[13, Diagram 1.10.] is the following diagram of Z-modules:

0 A B exact

D

α

θ

where α : A → D is defined as α(a) = ϕ(a)(1) for a ∈ A. By Proposition 1.2.5., there

exists a Z-homomorphism β : B → D such that α = βθ. Define ψ : B → X = Hom(R,D)

as follows: for each b ∈ B, ψ(b) is the mapping from R to D defined by ψ(b)(r) = β(rb)

for r ∈ R. Note that ψ(b) is a Z-homomorphism since β is a Z-homomorphism, thus

ψ(b) ∈ X. It can be checked that ψ is an R-homomorphism. To show that ψθ = ϕ, we

need to verify that for any a ∈ A, the mappings ψθ(a) and ϕ(a) are equal. Specifically,

we want to prove:

ψθ(a)(r) = ϕ(a)(r) (r ∈ R)

Let r ∈ R. Then

ψθ(a)(r) = ψ[θ(a)(r)] = β(rθ(a)) = βθ(ra) = α(ra)

= ϕ(ra)(1) = (rϕ(a))(1) = ϕ(a)(1r) = ϕ(a)(r).

This proves [13, Diagram 1.10.] and hence that ψθ = ϕ. It follows that X is injective.

Corollary 1.2.7. For any ring R, any right R-module can be embedded in an injective

right R-module.

Lemma 1.2.8. Let θ : MR → BR be a monomorphism. Then there exists an exten-

sion C of M and an R-isomorphism ϕ : C → B such that ϕ|M = θ.

Proof. Let D = (0, b) : b ∈ B, b /∈ im θ ≤ (R⊕B)R. Define the set C =M ∪D. We define
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a mapping ϕ : C → B as follows:

ϕ(c) =

θ(c), if c ∈M

π(c), if c ∈ D

(1)

where π : R⊕B → B is the canonical projection. The mapping ϕ is a bijection, and thus

has an inverse ϕ−1 : B → C. We can equip C with a right R-module structure by defining

addition and scalar multiplication as follows:

c1 + c2 = ϕ−1 [ϕ(c1) + ϕ(c2)], and

rc = ϕ−1[ϕ(rc)],

for all r ∈ R, c, c1, c2 ∈ C. It can be verified that with these definitions, C becomes a

right R-module. Moreover, we have M ≤ CR, ϕ : C → B is an R-isomorphism, and

ϕ|M = θ.

Corollary 1.2.9. Assume that θ : AR → BR is an isomorphism and AR does not have any

nontrivial essential extension. BR also does not have any nontrivial essential extension.

Proof. Assume that B is an essential submodule of CR. By Lemma 1.2.8., there exists an

extension D of A and an R-isomorphism ϕ : D → C such that ϕ|A = θ. Let 0 ̸= E ≤ DR.

Then 0 ̸= ϕ(E) ≤ CR, implying that B∩ϕ(E) ̸= 0. However, we have B∩ϕ(E) ⊆ ϕ(A∩E).

Thus, A ∩ E ̸= 0. This implies that A ≤e DR. By the hypothesis, we have A = D, and

therefore,

C = ϕ(D) = ϕ(A) = ϕ(A) = B.

Consequently, B does not have any proper essential extension.

The combination of Corollary 1.2.7. and Lemma 1.2.8. immediately yields:

Proposition 1.2.10. Any right R-module has an injective extension.

The following result provides two characterizations of injective modules:
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Proposition 1.2.11. The following statements are equivalent for a right R-module E:

(i) E is injective.

(ii) E is a direct summand of each of its extensions.

(iii) E has no proper essential extension.

Proof. (i) =⇒ (ii) Assume that E ≤ MR. Consider the diagram

0 E A exact

E

iE

ι

By hypothesis, there exists θ : M → E such that θι = iE. By [13, Exercise 1.30.] and [13,

Exercise 1.31.], it follows that E is a direct summand of M .

(ii) =⇒ (iii)Assume that E is an essential submodule of BR. By the hypothesis, there

exists a submodule C of BR such that B = E ⊕ C and E ∩ C = 0. Consequently, C = 0,

implying E = B.

(iii) =⇒ (i) According to Proposition 1.2.10., there exists an injective right R-module

X such that E ≤ XR. By [13, Proposition 1.17.], there exists D ≤ XR maximal with

respect to the property E ∩ D = 0 and in this case E ⊕ D ≤e XR. Our goal is to prove

X = E ⊕ D.

Suppose, for contradiction, X ̸= E ⊕ D. Note that

E ∼= E/(E ∩ D) ∼= (E ⊕ D)/D ≤ (X/D)R

and (E ⊕ D)/D ̸= X/D (see [13, Proposition 1.6.]). By Corollary 1.2.9. it follows that

(E ⊕ D)/D ≰e (X/D)R. Hence, there exists a submodule D ⊂ H ≤ XR such that

(E ⊕ D)/D ∩ (H/D) = 0

This implies (E ⊕ D) ∩ H = D, and therefore E ∩ H ⊆ E ∩ D = 0. Thus, E ∩ H = 0,

contradicting the choice of D. This proves that E is a direct summand of the injective

module X, and it can be shown that E is injective using a simple exercise.
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Theorem 1.2.12. Any right R-module M has an essential extension E which is an in-

jective right R-module. Moreover, if E ′ is any essential extension of M such that E ′ is

injective, then there exists an R-isomorphism θ : E → E ′ such that θ|M = iM .

Proof. By Proposition 1.2.10., we know that M has an injective extension X. Applying

[13, Exercise 1.63.] to obtain a submodule E of X maximal with respect to the property

that M ≤e ER. Suppose that F is an essential extension of E. Consider the diagram

0 E F exact

X

ι

ι

where ι denotes the inclusion mapping. SinceX is injective, there exists anR-homomorphism

θ : F → X such that θ ◦ ι = ι. If ker, θ ̸= 0, then M ∩ ker, θ ̸= 0 (see [13, Exercise 1.64.]).

Thus, ker, θ = 0, which implies that θ is a monomorphism. Therefore, E ≤e R(im, θ)

because E ≤e FR. Since E ⊆ im, θ, the maximality of E implies E = im, θ. For any

f ∈ F , we have θ(f) ∈ E, so

θ(f) = ι(θ(f)) = θ(θ(f)

which implies f = θ(f) ∈ E. Thus, F = E, and E has no proper essential extension. By

Proposition 1.2.11., we conclude that E is an injective module, and it is clear from the

definition that M ≤e ER.

Now suppose that E ′ is an essential extension of M such that E ′ is injective. Consider

the diagram

0 M E exact

E ′

ι

ι

where ι denotes the inclusion mapping. Since E ′ is injective, there exists a homomorphism

θ : E → E ′ such that θ ◦ ι = ι. We observe that M ∩ ker, θ = 0 and M ≤e ER. Hence,

ker, θ = 0. This implies that im, θ ∼= E is an injective submodule of E ′ and, therefore,

a direct summand of E ′ (Proposition 1.2.11.). Since M ≤e E
′ and M ⊆ im, θ, we have

im, θ ≤e E
′
R. It follows that im, θ = E ′, which means θ : E → E ′ is an isomorphism.

Clearly, θ|M = ι.
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Definiton 1.2.13. Assume that M be any right R-module. Theorem 1.2.12. states that

there exists an injective module E such that M ≤e ER. This injective module E is known

as the injective envelope or injective hull ofM , and it will be denoted as E(MR) or simply

E(M). It is important to note that Theorem 1.2.12. also demonstrates the uniqueness of

E(M) up to isomorphism. Specifically, if E ′
R is another injective module and M ≤e E

′
R,

then E ′ is isomorphic to E(M).

1.3 Quasi-Injective Modules

Recall that injective modules are based on lifting homomorphisms. In this section we deal

with a weaker form of injective modules by restricting the main idea of injective modules

so-called quasi-injective modules. (See [6]).

Definiton 1.3.1. A module M is said to be quasi-injective provided any homomor-

phism from a submodule of M into M extends to an endomorphism of M i.e if N ≤ M

and f : N → M then ∃ g: M → M such that g|N = f .

Proposition 1.3.2. A right module M is quasi-injective if and only if M is a fully invariant

submodule of E(M).

Proof. Let T = EndR (E(M)). Assume that TM ⊆ M . Given A ≤ M , any f : A → M

must extend to some g ∈ T , where g|M is an endomorphism of M which extends to f .

Thus M is quasi-injective.

Conversely, assume that M is quasi-injective and g ∈ T . Now, restricting g, we get a

map from M ∩ g−1(M) into M , which by quasi-injectivity, extends to an endomorphism

h of M . Then h extends to a map α ∈ T such that α(M) ⊆ M and (α - g) (M ∩ g−1) =

0. Since α(M) ⊆ M we get

M ∩ ((α - g)−1 (M)) ≤ M ∩ α−1 (M) ≤ Ker (α - g)

where (α - g) (M) ∩ M = 0. Then (α - g) (M) = 0. (because M ≤e E(M)). Hence g(M)

= α(M) ⊆ M . Thus TM ⊆ M .
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Corollary 1.3.3. If M is any quasi-injective module then any decomposition E(M) =
⊕

α

Eα induces a corresponding decomposition M =
⊕

α (M ∩ Eα)

Proof. For each α, let Πα : E(M) → E(M) be the projection onto the direct summand

Eα. Since Πα (M) ⊆ M , we have Eα-component of any element of M also belongs to M .

Thus M =
⊕

α (M ∩ Eα).

Corollary 1.3.4. Let M a quasi-injective module. Then all complement submodules of M

are direct summand of M (i.e M is CS) and all direct summands of M are quasi-injective.

Proof. Let N ≤c M choose injective hulls. E(N) ≤ E(M), N ≤c M ∩ E(N) ≤ M , we

obtain M ∩ E(N) = Now, E(M) ⊕ B for some B. Hence by Corollary M = [M ∩ E(N)]

⊕ [M ∩ B] i.e N ≤c M .

Now assume M = A ⊕ B. Now; E(M) = E(A) ⊕ E(B), and let T = EndR (E(M))

if π the projection onto E(A), then π T π = EndR (E(A)) and so π T π(A) ≤ A by the

Proposition again, A is quasi-injective.

Corollary 1.3.5. Let MR be a quasi-injective module, and S = End M. Then J(S) = {f

∈ S : Kerf ≤e M}, and S/J(S) is a regular ring.

Proof. Set K = {f ∈ S : Ker f ≤e M} and consider f , g ∈ K. Since (Ker f) ∩ (Ker g)

≤ Ker (f - g), we have Ker (f - g) ≤e M . So (f - g) ∈ K. Given any h ∈ S we have Ker

(fh) = h−1(Ker f) ≤e M i.e fh ∈ K. Also, since Ker f ≤e Ker (hf), we have hf ∈ K.

Thus K is an ideal of S. Given any f ∈ K, we have ker f ≤e M and (ker (1 - f)) ∩ Ker

f = 0. Hence ker (1 - f) = 0.

2 Relative injective module classes

In this chapter, we delve into the concepts of relative injectivity and ejectivity of modules.

By examining lifting homomorphisms, we construct classes of lifting submodules. It is

important to note that the majority of the results presented in this chapter can be found

in [1], [12], [13].
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2.1 Relative injective modules

Definition 2.1.1. Assume M and X be right R-modules. We say that X is M-injective

if, for every submodule N of M and every R-homomorphism φ : N → X, there exists

an R-homomorphism θ : M → X such that θ(n) = φ(n) for all n ∈ N . Recall that a

module X is called quasi-injective (or QI or self-injective) if it is X-injective, as defined

in Definition 1.3.1.

First, note that any injective module is M -injective for any module M . This means

that if N is an injective module and M is any module, then N is also M -injective. On the

other hand, any RR-injective module is injective. This means that if N is an RR-injective

module, then N is also injective. Recall that for any module M , E(M) stands for the

injective hull of M . The injective hull of a module M is the smallest injective module

containing M as a submodule.

Proposition 2.1.2. The R-module X is M-injective if and only if the following con-

ditions hold for any submodule K of an R-module M:

(i) X is K-injective

(ii) X is (M/K)-injective.

(iii) Any homomorphism φ : K → X can be lifted to a homomorphism θ : M → X.

Proof. Suppose that X is M -injective. Then conditions (i) and (iii) are clearly satisfied.

Now, suppose that K ⊆ N ≤M and φ ∈ HomR(N/K,X). Define φ′ : N → X by

φ′(n) = φ(n+K) for n ∈ N .

Note that φ′ ∈ HomR(N,X) and can be lifted to θ′ ∈ HomR(M,X). Furthermore, θ′(n) =

φ′(n) for n ∈ N and specifically,

θ′(k) = φ′(k) = φ(k +K) = 0 for k ∈ K.

Define θ :M/K → X as θ(m+K) = θ′(m) for m ∈M . Since θ′(K) = 0, it follows that θ

is well-defined. Moreover,

θ(n+K) = θ(n+K) = θ′(n) = φ′(n) = φ(n+K) for n ∈ N .
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Therefore, X is (M/K)-injective.

Conversely, assume that X satisfies conditions (i), (ii), and (iii). Let N ≤ M and

φ ∈ HomR(N,X). Denote the restriction of φ to N ∩ K as φ′. Since X is K-injective,

there exists α ∈ HomR(K,X) that lifts φ′. By (iii), there exists β ∈ HomR(M,X) that

lifts α. Hence,

β(k) = φ(k) for k ∈ K ∩N .

Let γ = φ− β. Then γ ∈ HomR(N,X) and γ(K ∩N) = 0. Define φ′′ : (N +K)/K → X

as φ′′(n+K) = γ(n) for n ∈ N . Note that φ′′ is well-defined since γ(K ∩N) = 0. Clearly,

φ′′ ∈ HomR((N+K)/K,X). By (ii), there exists θ′ ∈ HomR(M/K,X) that lifts φ′′. Define

θ′′ ∈ HomR(M,X) as θ′′(m) = θ′(m + K) for m ∈ M . Let θ = β + θ′′ ∈ HomR(M,X).

For n ∈ N , we have θ(n) = β(n) + θ′′(n) = φ(n)− γ(n) + θ′(n+K) = φ(n). Thus, θ lifts

φ. Therefore, X is M -injective.

Proposition 2.1.3. Consider R be a ring and M an R-module expressed as the the sum

Σλ∈Λ Mλ of its submodules Mλ (λ ∈ Λ). Then an R-module X is M-injective if and only

if X is Mλ-injective for every λ ∈ Λ.

Proof. Suppose that X is M -injective. Then X is also Mλ-injective for every λ in Λ, by

Proposition 2.1.2.

Conversely, assume that X is Mλ-injective for all λ in Λ. Let N be a submodule of M

and φ be an element of HomR(N,X). Let S denote the collection of pairs (L, α), where

N ⊆ L ≤ M , α ∈ HomR(L,X), and α|N = φ. If (L, α), (L′, α′) ∈ S, then we define

(L, α) ≤ (L′, α′) if L ⊆ L′ and α′|L = α. A non-empty collection of elements (Lω, αω)

in S, where ω belongs to some index set Ω, is called a chain if for all ω, ω′ in Ω, either

(Lω, αω) ≤ (Lω′ , αω′), or (Lω′ , αω′) ≤ (Lω, αω). Let {(Lω, αω) : ω ∈ Ω} be a chain in S.

Let L =
⋃

ω∈Ω Lω. Then L ≤ M and clearly N ⊆ L. Define α : L → X by α(a) = αω(a),

where a ∈ Lω. It can be easily verified that (L, α) ∈ S. By Zorn’s Lemma, S contains a

maximal member (K, θ).

Next we prove that K = M . Assume λ ∈ Λ. Let P = Mλ ∩ K and β = θ|P . Note

that β ∈ HomR(P,X) and, since X is Mλ-injective, β can be lifted to a homomorphism

γ :Mλ → X. Define θ′ :Mλ +K → X by
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θ′(m+ k) = γ(m) + θ(k), where m ∈Mλ, k ∈ K.

Suppose m ∈Mλ, k ∈ K, and m+ k = 0. Then m = −k ∈Mλ ∩K = P , so

γ(m) = β(m) = θ(m) = θ(−k) = −θ(k),

and hence θ′(m + k) = 0. Therefore, θ′ is well-defined, and it can be verified that θ′ ∈

HomR(Mλ +K,X) and θ′|K = θ. Since Mλ +K = K, we have Mλ ⊆ K. Thus M ⊆ K

and hence M = K. It follows that X is M -injective.

Corollary 2.1.4. An R-module X is said to be M-injective if and only if X is (mR)-

injective for every element m in the module M.

Proof. Evident from Proposition 2.1.3.

Proposition 2.1.5. Let R be a ring and M an R-module. An R-module X is M-injective

if and only if φ(M) ⊆ X for every φ ∈ HomR(E(M), E(X)).

Proof. Assume first that for every φ in HomR(E(M), E(X)), we have φ(M) ⊆ X. Let N

be a submodule of M and α be an element of HomR(N,X). Consider the diagram

0 N M E(M)

X

E(X)

α

ι

ι

where each ι is an inclusion mapping. Since E(X) is an injective module, there exists

β in HomR(E(M), E(X)) such that β lifts α. By the assumption, β(M) ⊆ X, and

thus the restriction γ of β to M is a homomorphism from M to X that lifts α. Hence,

X is M -injective. Conversely, suppose that X is M -injective. Let φ be an element of

HomR(E(M), E(X)). Define N as the set {m ∈ M : φ(m) ∈ X}. It is clear that N is

a submodule of M . Let φ′ denote the restriction of φ to N . By the M -injectivity of X,

there exists θ in HomR(M,X) that lifts φ′. Thus,

θ(n) = φ(n) for all n in N .
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Let φ′′ denote the restriction of φ toM . Then λ = θ−φ′′ is an element ofHomR(M,E(X))

and λ(N) = 0. Assume that λ(M) ̸= 0. Then X ∩λ(M) ̸= 0. Let m be a nonzero element

of M such that λ(m) ∈ X. Then φ(m) = φ′′(m) = θ(m) − λ(m) ∈ X, which implies

m ∈ N . However, in this case, λ(m) = 0, which is a contradiction. Hence, we have

λ(M) = 0, and therefore φ(m) = θ(m) ∈ X for all m in M . Thus, φ(M) ⊆ X. This

completes the proof.

Proposition 2.1.6. Assume R be a ring and M is an R-module. Let Y be a complement

submodule of an M-injective R-module X. Then Y is M-injective.

Proof. Without loss of generality, let’s assume that the injective envelope E(X) contains

submodules X, Y , and E(Y ). Since X ∩E(Y ) is an essential extension of Y , we have Y =

X∩E(Y ). Consider φ ∈ HomR(E(M), E(Y )). Since E(Y ) ≤ E(X), we can conclude that

φ ∈ HomR(E(M), E(X)). According to Proposition 2.1.5., we have φ(M) ⊆ X. Hence,

φ(M) ⊆ X∩E(Y ) = Y . Consequently, φ(M) ⊆ Y holds for any φ ∈ HomR(E(M), E(Y )).

Based on Proposition 2.1.5., we can assert that Y is M -injective.

Lemma 2.1.7. Assume K ⊆ N be submodules of an R-module M such that N/K is M-

injective. Then N/K is a direct summand of M/K.

Proof. Based on Proposition 2.1.2., we conclude that N/K is injective with respect to the

module M/K. The identity mapping ι : N/K → N/K can be extend to a homomorphism

θ :M/K → N/K. It can be verified that M/K = (N/K)⊕ (kerθ).

Corollary 2.1.8. Assume R be a ring and M a quasi-injective R-module. Then any

complement in M is a direct summand of M.

Proof. Using Proposition 2.1.6 and Lemma 2.1.7.

Proposition 2.1.9. The following statements are equivalent for an R-module M.

(i) M is semisimple. (i.e. M = Soc M)

(ii) Every R-module is M-injective.

(iii) Every submodule of M is M-injective.

(iv) Every submodule of a M-injective R-module is M-injective.
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Proof. (i) =⇒ (ii) Consider an arbitrary R-module X. Given a submodule N of M and

a homomorphism φ from N to X, we can find a submodule N ′ of M such that M is the

direct sum of N and N ′. We define a mapping θ from M to X as follows:

θ(n + n′) = φ(n) (n ∈ N , n′ ∈ N ′).

It can be shown that θ is a homomorphism from M to X, and it lifts φ. Therefore, X is

M -injective.

(ii) =⇒ (iii), (iv) Clear.

(iv) =⇒ (iii) Assuming condition (iv) is satisfied, we consider E(M) as an injective

envelope of M . According to (iv), every submodule of E(M), and consequently every

submodule of M , possesses the property of being M -injective.

(iii) =⇒ (i) From Lemma 2.1.7.

Lemma 2.1.10. Let R be a ring and M an R-module.

(i) Any direct summand of an M-injective R-module is M injective.

(ii) Let Xλ (λ ∈ Λ) be any non-empty collection of M-injective R-modules. Then X =

Πλ Xλ is M-injective.

Proof. Obvious.

Let P be a module property, such as ”Noetherian,” ”Artinian,” etc. A right R-module

M is referred to as being locally P if every submodule of M that is generated by a finite

set of elements exhibits the property P .

Theorem 2.1.11. An R-module M is locally Noetherian if and only if the direct sum

of any family of M-injective modules is M-injective.

Proof. Suppose M satisfies the local Noetherian property. Consider any non-empty col-

lection Xλ (λ ∈ Λ) of M -injective R-modules, and let X =
⊕

λXλ. Take any finitely gen-

erated submodule N of M , and let K be a submodule of N . Suppose φ ∈ HomR(K,X).

Since K is finitely generated, the image im(φ) is also finitely generated and is contained

in a submodule X ′ of X that is the direct sum of a finite number of the submodules Xλ.

By Lemma 2.1.10. (ii), X ′ is M -injective, and thus φ can be lifted to a homomorphism
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θ : M → X ′. It follows that θ ∈ HomR(N,X), so X is N -injective for every finitely

generated submodule N of M . Moreover, for every element m ∈ M , X is mR-injective.

By Corollary 2.1.4., X is M -injective.

Conversely, assume that the direct sum of any family of M -injective modules is M -

injective. Let L be a finitely generated submodule of M , and consider an ascending chain

N1 ⊆ N2 ⊆ N3 ⊆ . . . of submodules of L. Define N as the submodule
⋃

iNi of M , and let

X = E(M/N1) ⊕ E(M/N2) ⊕ E(M/N3) ⊕···.

Define the mapping φ : N → X

φ(n) = (n + N1, n + N2, n + N3,...).

This mapping is well-defined because for any n ∈ N , there exists k ≥ 1 such that n ∈ Nk.

Since X is M -injective, φ can be lifted to a homomorphism θ ∈ HomR(M,X). As L is

finitely generated, θ(L) is finitely generated and is contained in E(M/N1)⊕· · ·⊕E(M/Nt)

for some positive integer t. For any n ∈ N , we have

(n + N1, n + N2, n + N3,...) = φ(n) = θ(n) = (e1,...,et, 0, 0,...),

where ei ∈ E(M/Ni) for 1 ≤ i ≤ t. Thus, n ∈ Nt+1. It follows that N = Nt+1, and

hence Nt+1 = Nt+2 = Nt+3 = . . . . Therefore, L is Noetherian, implying that M is locally

Noetherian.

2.2 Lifting Submodules

On using lifting homomorphisms from submodules we build up class of lifting submodules.

To this end this section is devoted to lifting submodules and their basic properties.

Definition 2.2.1. Let M and X be right R-modules. We are interested in the class

of submodules of M for which X is relative injective with respect to each member of

that class. A submodule N of M is called a lifting submodule for X in M if, for any

φ ∈ HomR(N,X), there exists θ ∈ HomR(M,X) such that φ = θ|N . In other words, any

R-homomorphism φ from N to X can be extended or lifted to an R-homomorphism θ

from M to X that restricts to φ on N . So we set
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LiftX(M) = {N : N ≤ M and N is a lifting submodule for X in M}.

Let’s examine properties of this new class of submodules. First, observe that 0 ∈ LiftX(M),

meaning that the zero submodule is always in the lifting submodule class for X in M .

Additionally, M ∈ LiftX(M), indicating that the entire module M itself is also in the

lifting submodule class for X in M . More generally, we have

Lemma 2.2.2. Assume N be a direct summand of the module M. Then N ∈ LiftX(M).

Proof. LetM = N⊕N ′ be a decomposition ofM into submodules, where N ′ is a submod-

ule of M . Given φ ∈ HomR(N,X), we define θ : M → X as θ(n + n′) = φ(n) for n ∈ N

and n′ ∈ N ′. It is straightforward to verify that θ ∈ HomR(M,X) and φ = θ|N .

Lemma 2.2.3. The following statements are equivalent.

(i) X is M-injective.

(ii) Every submodule of M is a lifting submodule for X in M.

(iii) Every essential submodule of M is a lifting submodule for X in M.

Proof. The implications (i) =⇒ (ii) and (ii) =⇒ (iii) are obvious.

(iii) =⇒ (i) Consider a submodule N of M . Let N ′ be a complement of N in M (as

stated in Proposition 1.1.8.). We have N ⊕N ′ ≤e M . For any φ ∈ HomR(N,X), Lemma

2.2.2. guarantees the existence of θ ∈ HomR(N ⊕N ′, X) such that θ|N = φ. By property

(iii), there exists χ ∈ HomR(M,X) such that χ|N ⊕N ′ = θ. Consequently, χ|N = φ.

Therefore, X is M -injective.

Lemma 2.2.4. Let K, N be submodules of M such that K ≤ N. Then

(i) K ∈ LiftX(N), N ∈ LiftX(M) implies that K ∈ LiftX(M).

(ii) K ∈ LiftX(M) implies that K ∈ LiftX(N).

(iii) N ∈ LiftX(M) implies that N/K ∈ LiftX(M/K).

(iv) K ∈ LiftX(M), N/K ∈ LiftX(M/K) implies that N ∈ LiftX(M).

Proof. (i) and (ii) are obvious.

(iii) Consider φ ∈ HomR(N/K,X). Let π : N → N/K denote the canonical pro-

jection. Then φπ : N → X is a homomorphism. Since N ∈ LiftX(M), there exists
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θ ∈ HomR(M,X) such that θ(n) = φπ(n) = φ(n+K) for all n ∈ N . Define θ :M/K → X

by θ(m+K) = θ(m) for m ∈M .

Suppose m + K = m′ + K, where m,m′ ∈ M . Then m − m′ ∈ K, and hence

φπ(m−m′) = 0. Thus, θ(m−m′) = 0, implying θ(m) = θ(m′). Consequently, θ is well-

defined. It is clear that θ ∈ HomR(M/K,X). For any n ∈ N , θ(n+K) = θ(n) = φ(n+K).

Therefore, N/K ∈ LiftX(M/K).

(iv) Consider φ ∈ HomR(N,X). Then φ|K ∈ HomR(K,X). There exists θ ∈

HomR(M,X) such that φ|K = θ|K . Define χ : N/K → X by

χ(n+K) = φ(n)− θ(n) for n ∈ N .

It can be verified that χ is well-defined and a homomorphism. There exists ψ ∈ HomR(M/K,X)

such that χ|N/K = ψ. Let π : M → M/K denote the canonical projection. Let

α = ψπ + θ ∈ HomR(M,X). For any n ∈ N , we have

α(n) = ψπ(n) + θ(n) = ψ(n+K) + θ(n) = χ(n+K) + θ(n) = φ(n).

Therefore, α|N = φ, which implies that N ∈ LiftX(M).

Corollary 2.2.5. For any N ∈ LiftX(M), LiftX(N) = {K ≤ N : K ∈ LiftX(M).}

Proof. If K ∈ LiftX(N), then K ≤ N and, according to Lemma 2.2.4. (i), K ∈ LiftX(M).

Therefore, LiftX(N) ⊆ K ≤ N : K ∈ LiftX(M). Conversely, suppose K ≤ N and K ∈

LiftX(M). Using Lemma 2.2.4. (ii), we conclude that K ∈ LiftX(N).

Let K and N be submodules of the module M such that K ≤ N . However, it is

important to note that the inclusion of K in LiftX(M) does not necessarily imply the

inclusion of N in LiftX(M). To illustrate this point, consider the following example.

Example 2.2.6. Consider a non-injective right R-module X. There exists E ≤e RR

such that E /∈ LiftX(RR). Let M = R ⊕ R, K = R ⊕ 0, N = R ⊕ E. According to

Lemma 2.2.2., K is in LiftX(M) since it can be lifted to M . However, by Lemma 2.2.4.,

N is not in LiftX(M) since it cannot be lifted to M .
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Proposition 2.2.7. Assume N,K ≤ M be submodules such that N + K and N ∩ K

are both in LiftX(M). Then both N and K belong to LiftX(M).

Proof. Let φ ∈ HomR(N,X). The restriction φ|N ∩K ∈ HomR(N∩K,X). According to

the given condition, there exists θ1 ∈ HomR(M,X) such that θ1|N ∩K = φ|N∩K . Define

χ : N +K → X as

χ(n+ k) = φ(n) + θ1(k) for n ∈ N and k ∈ K.

Suppose n, n′ ∈ N , k, k′ ∈ K, and n + k = n′ + k′. Then n − n′ = k′ − k, implying

k′ − k ∈ N ∩ K. Consequently, θ1(k
′) − θ1(k) = θ1(k

′ − k) = φ(k′ − k) = φ(n − n′) =

φ(n)−φ(n′). This implies φ(n)+θ1(k) = φ(n′)+θ1(k
′). Hence, χ is well-defined. Clearly,

χ ∈ HomR(N +K,X). By the given hypothesis, there exists θ ∈ HomR(M,X) such that

θ|N+K = χ. For any n ∈ N , we have

θ(n) = χ(n) = φ(n).

Thus, θ|N = φ. It follows that N ∈ LiftX(M). Similarly, we can show that K ∈

LiftX(M).

Corollary 2.2.8. Let K, N be submodules of M.

(i) If N ∩ K = 0 and N ⊕ K ∈ LiftX(M), then N,K ∈ LiftX(M).

(ii) If N + K = M and N ∩ K ∈ LiftX(M), then N,K ∈ LiftX(M).

Proof. This follows directly from Proposition 2.2.7.

Lemma 2.2.9. Consider K ∈ LiftX(M), N ≤ M. Suppose N ∩ K ∈ LiftX(K) and (N

+ K)/K ∈ LiftX(M/K). Then N ∈ LiftX(M).

Proof. Using Lemma 2.2.4. (i) and (iv), we can conclude that both the intersection N ∩

K and the sum N + K are elements of LiftX(M). Applying Proposition 2.2.7. yields the

desired result.

Corollary 2.2.10. Consider K ≤ M. Then X is M-injective if and only if (i) X is K-

injective, (ii) X is (M/K)-injective, and (iii) K ∈ LiftX(M).

Proof. By utilizing Lemma 2.2.4. and Lemma 2.2.9., we can establish the given result.
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Theorem 2.2.11. Let X = Πλ∈Λ Xλ. Then LiftX(M) =
⋂

λ∈Λ LiftXλ
(M), for any

module M.

Proof. Consider an arbitrary index λ in the set Λ and let Y = Xλ. Take N as an element

of LiftX(M). Let φ belong to HomR(N, Y ). We define the inclusion mapping i : Y → X

and the canonical projection π : X → Y . It follows that iφ is an element of HomR(N,X).

Based on the given hypothesis, we can find θ in HomR(M,X) such that θ|N = iφ

0 N M

Y

X

φ

θ

iπ

We observe that πθ is an element of HomR(M,Y ). Furthermore, for any n in N , we have

πθ(n) = πiφ(n) = φ(n). This implies that φ = πθ|N . Consequently, we conclude that

N belongs to LiftY (M). Therefore, we have shown that LiftX(M) ⊆ LiftY (M). As a

result, we obtain LiftX(M) ⊆
⋂

λ∈Λ LiftXλ
(M).

ConverselyK be an element of
⋂

λ∈Λ LiftXλ
(M). Consider α as an element ofHomR(K,X).

For every λ in Λ, we have the canonical projection πλ : X → Xλ. It follows that πλα is an

element of HomR(K,Xλ) for each λ in Λ. By the assumption, for each λ in Λ, there exists

βλ in HomR(M,Xλ) such that βλ(k) = πλα(k) for all k in K. Now we define β :M → X

as

β(m) = {βλ(m)}λ∈Λ for all m in M .

For any k in K, we have β(k) = α(k). Consequently, we conclude that K belongs to

LiftX(M).

Corollary 2.2.12. Assume X = Πλ∈Λ Xλ. Then X is M-injective if and only if Xλ is

M-injective for all λ ∈ Λ.

Proof. Using Lemma 2.2.3. and Theorem 2.2.11., we can conclude.
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Proposition 2.2.13. Consider the following conditions for a any submodule N of a module

M:

(i) θ(M) ≤ X for any θ ∈ HomR(M, E(X)) with θ(N) ≤ X.

(ii) N ∈ LiftX(M).

(iii) θ(M) ≤ X for any θ ∈ HomR(M, E(X)) with θ(N) ≤ X and θ−1(X) ∈ LiftX(M).

Then (i) =⇒ (ii) =⇒ (iii).

Proof. (i) =⇒ (ii) For any φ in HomR(N,X), there exists θ in HomR(M,E(X)) such

that θ|N = iφ, where i : X → E(X) is the inclusion map. This implies that θ(N) ≤ X.

By the hypothesis, we have θ(M) ≤ X, and thus θ ∈ HomR(M,X). Consequently, N

belongs to LiftX(M).

(ii) =⇒ (iii) Suppose (ii) holds.Let θ be an element of HomR(M,E(X)) such that

N ≤ θ−1(X) ∈ LiftX(M). There exists θ′ in HomR(M,X) such that θ′(k) = θ(k) for

k in θ−1(X). Consider the function θ − θ′ : M → E(X). If (θ − θ′)(M) ̸= 0, then

(θ − θ′)(M) ∩ X ̸= 0, which implies the existence of a non-zero element x in X and an

element m inM such that x = (θ−θ′)(m) = θ(m)−θ′(m). Therefore, θ(m) = x+θ′(m) ∈

X, and hence m ∈ θ−1(X). In this case, θ′(m) = θ(m), leading to a contradiction since

x = 0. We conclude that (θ − θ′)(M) = 0, which implies θ(M) = θ′(M) ≤ X.

We provide two examples to demonstrate that the implication from (ii) to (i) in Propo-

sition 2.2.13 does not hold.

Example 2.2.14. Consider R be the ring Z of integers. Take X = M = Z and N

= 0 in Proposition 2.2.13. Then N ∈ LiftX(M). Let 0 ̸= m ∈ Z and define θ : Z → Q

by θ(n) = n/m (n ∈ Z). Then θ(N) ≤ X, but θ(M) ≰ X. Hence (ii) ⇏ (i).

Example 2.2.15. Consider R = Z, X = Z/pZ, where p be any prime integer, M =

Q and N = Z in Proposition 2.2.13.

Assume N ∈ LiftX(M). Let π : Z → Z/pZ denote the canonical epimorphism, defined

by

π(n) = n + Z/pZ (n ∈ Z).
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Then there exists a homomorphism α : Q → Z/pZ such that α|Z = π:

0 Z Q exact

Z/pZ

π α

Now α(1/p) = x + Z/pZ for some x ∈ Z. Thus

pα(1/p) = α(1) = π(1) = 1 + Z/pZ

It follows that px + Z/pZ = 1 + Z/pZ, and hence 1 ≡ 0 (mod p), a contradiction. Thus

N /∈ LiftX(M).

Next, we investigate a set of submodules within a module to derive general conclusions

regarding specific types of modules based on the category of lifting submodules.

Theorem 2.2.16. The following assertions are equivalent for a non-empty collection

M consisting of submodules of M.

(i) If N ∈ M, then N ≤d M.

(ii) M ⊆ LiftX(M) for all right R-modules X.

(iii) M ⊆ LiftX(M) for all X ∈ M.

Proof. (i) =⇒ (ii) According to Lemma 2.2.2.

(ii) =⇒ (iii) Clear.

(iii) =⇒ (i)Let B be an element of the collection M. Considering the identity mapping

iB : B → B, and using the fact that B belongs to LiftB(M) according to (iii), we conclude

the existence of θ in HomR(M , B) such that θ(m) = m for all m in M . It can be readily

verified that M can be expressed as the direct sum of B and the kernel of θ. Therefore,

we have B ≤d M .

Corollary 2.2.17. The following statements are equivalent for a module M.

(i) M is semisimple.

(ii) Every right R-module X is M-injective.
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(iii) Every submodule of M is M-injective.

Proof. Applying Theorem 2.2.16. to the collection M = {N : N ≤ M}, and utilizing

Lemma 2.2.3.

Corollary 2.2.18. The following statements are equivalent for a module M

(i) If N ≤c M, then N ≤d M.

(ii) If N ≤c M, then N ∈ LiftX(M) for all right R-modules X

(iii) If N ≤c M, then N ∈ LiftX(M) for all X ≤c M.

Proof. Applying Theorem 2.2.16. to the collection M = {N : N ≤c M}.

The conditions presented in Corollary 2.2.18. establish that if N is a complement

submodule in M , then N belongs to LiftM(M). However, it is important to note that the

converse statement, namely, N belonging to LiftM(M) implies that N is a direct summand

of M , is not always true, as exemplified by the following example.

Example 2.2.19. Consider p be any prime integer and let R be the local ring Z(p).

Let M denote the Z-module (Z/pZ) ⊕ Q. Then

(i) M is an R-module.

(ii) K ≤c M if and only if K ≤d M or K = R(1 + pZ, q) for some non-zero element

q in Q.

(iii) There exists a complement submodule in M which is not a direct summand of M .

(iv) If K ≤c M then K ∈ LiftM(M).

Proof. (i) Consider the modules M1 = (Z/pZ)⊕ 0 and M2 = 0⊕Q, which form a direct

sum M =M1 ⊕M2. The ring R is defined as the subring of Q that consists of all rational

numbers s/t, where s, t ∈ Z, t ̸= 0, and t is coprime to p. It is worth noting that for

any element m ∈ M and any s, t ∈ Z such that p does not divide t, there exists a unique

element m′ in M such that m′t = ms. We can represent this element as m(s/t). Thus, M

can be viewed as an R-module.
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(ii) Let q be a rational number and K = (1 + pZ, q)R. We first show that K is a

complement submodule of MZ. It can be observed that K is a uniform submodule of M .

Suppose there exists a submodule N of M such that K is a complement in N . Let x be

an element of N . Then the module U = xZ+ (1 + pZ, q)Z is a finitely generated uniform

Z-module and is therefore cyclic. Assuming U = (m + pZ, b)Z, where m ∈ Z and b ∈ Q,

there exists an integer n such that (1 + pZ, q) = (m+ pZ, b)n. Noting that 1−mn ∈ pZ,

we conclude that n is coprime to p, and thus (m+ pZ, b) ∈ (1 + pZ, q)R = K. Therefore,

x ∈ K, implying N = K. Thus, K is a complement submodule in M .

Now let L be a complement submodule in M and assume L ̸=M . As M has uniform

dimension 2, L is also uniform according to Proposition 1.1.27. Our aim is to show that

L is an R-submodule of M . Let L′ = m ∈M : mt ∈ L for some t ∈ Z, t coprime to p. It

can be observed that L′ is a submodule of M containing L, specifically L′ = LR. If

0 ̸= m ∈ L′, then mt ∈ L for some t ∈ Z coprime to p, implying mt ̸= 0. Consequently,

we have L ≤e L
′. Thus, L = L′, and hence L is an R-submodule of M .

Next, we prove that L can only be one of the following submodules: 0, M , M1, M2, or

(1+pZ, q)R for some q ∈ Q. Suppose L is not equal to 0,M ,M1, orM2. SinceM1 andM2

are both uniform submodules, L cannot be contained in eitherM1 orM2. Thus, there exists

(c+ pZ, d) ∈ L for some c ∈ Z coprime to p and 0 ̸= d ∈ Q. Without loss of generality, we

can assume c = 1. Since L is an R-submodule of M , we have (1 + pZ, d)R ⊆ L. However,

(1 + pZ, d)R ≤c M , implying L = (1 + pZ, d)R. This completes the proof of (ii).

(iii) Note that K = (1 + pZ, 1)R is a complement submodule in M . Suppose K is a

direct summand ofM . ThenM = K⊕L for some submodule L ofM . Let (m+pZ, b) ∈ L,

where m ∈ Z and b = m
n

∈ Q. It follows that (m + pZ, b)p = (0 + pZ, pm/n) ∈ L.

Therefore, (0 + pZ, pm/n)n = (0+ pZ, pm) = (0 + pZ, 0), since K ∩L = 0. Consequently,

npb = pm = 0, which implies b = 0. Hence, for x ∈ L, we have x = (y + pZ, 0) where

y ∈ Z. Thus, L ≤ M1, which is a simple submodule, and therefore L = M1. Thus,

M = K ⊕M1. Hence, we have

K ∼= M/M1
∼= M1

∼= Q ∼= Qp.

However, this leads to the existence of an element (c+ pZ, d) ∈ K such that (1+ pZ, 1) =
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(c+ pZ, d)p = (0+ pZ, pd), where c ∈ Z and d ∈ Q. Consequently, 1 belongs to pZ, which

is a contradiction. Therefore, K is not a direct summand of M .

(iv) To establish that if K is a complement submodule of M then K belongs to

LiftM(M), it suffices to demonstrate that for any non-zero q ∈ Q and any homomor-

phism φ : (1 + pZ, q)R → M , there exists a lift θ of φ as an endomorphism of M . Let

K = (1 + pZ, q)R. Assume that φ(1 + pZ, q) = (m + pZ, b) for some m ∈ Z and b ∈ Q.

Define the mapping θ :M →M by

θ(c+ pZ, d) = (ca+ pZ, db
q
) for c ∈ Z and d ∈ Q.

It can be readily verified that θ is well-defined. Moreover, θ :M →M is a homomorphism

and φ is the restriction of θ to K. Thus, K belongs to LiftM(M).

2.3 Ejectivity

On using essentiality of the submodule in the definition of M-injectivity, recently M-

ejectivity was defined as a generalization of relative injectivity concept and studied in

details in [1], [13].

Definition 2.3.1. Assume M and X be right R-modules. We define X to be M-ejective

if, for every submodule K ≤ M and every homomorphism φ : K → X, there exist a

homomorphism θ : M → X and an essential submodule E ≤e K such that θ(x) = φ(x)

for all x ∈ E. In other words, the restriction of θ to E is equal to the restriction of φ to

E. It is clear that if X is M -injective, then X is also M -ejective. If X is M -ejective for

all right R-modules M , then we say that X is ejective.

Proposition 2.3.2. Let M and X be R-modules. Then X is M-ejective if and only if

there exists E ≤e M such that X is E-ejective and for any R-homomorphism φ : E → X

there exists K ≤e E and an R-homomorphism θ : M → X such that θ|K = φ|K.

Proof. ( =⇒ ) For this direction, consider E to be equal to M .

(⇐=) Consider B ≤M and φ : B → X as an R-homomorphism. Let B1 = B ∩E. As

X is E-ejective, there exist B2 ≤e B1 and φ1 : E → X such that φ|B2 = φ1|B2. Moreover,

36



there exists K ≤e E and an R-homomorphism φ2 : M → X such that φ2|K = φ1|K.

Let B3 = B2 ∩K. Then B3 ≤e B and φ|B3 = φ2|B3. Hence, we can conclude that X is

M -ejective.

Theorem 2.3.3. Let M1 and M2 be modules such that M = M1 ⊕ M2. Then M1 is

M2-ejective if and only if for every K ≤ M such that K ∩ M1 = 0, there exists M3 ≤ M

such that M = M1 ⊕ M3 and K ∩ M3 ≤e K.

Proof. ( =⇒ ) Assuming that M1 is M2-ejective, let πi : M → Mi for i = 1, 2 denote the

canonical projections. ConsiderK ≤M such thatK∩M1 = 0. Observe that π2 : K →M2

is an injection. Let K = π2(K). Since M1 is M2-ejective, there exists E ≤e K and a

homomorphism θ : M2 → M1 such that θ|E = π1π
−1
2 |E. Define M3 = θ(y) + y : y ∈M2.

For m ∈M , there exist mi ∈Mi such that m = m1+m2 = (m1−θ(m2))+(θ(m2)+m2) ∈

M1 +M3. Suppose y ∈M1 ∩M3. Then there exist yi ∈Mi such that y = y1 = θ(y2) + y2.

Hence, y1−θ(y2) = y2 ∈M1∩M2 = 0. Thus,M1∩M3 = 0. Therefore,M =M1⊕M3. Now,

let 0 ̸= k ∈ K. Then k = π1(k) + π2(k). Recall that π2(k) ̸= 0 because K ∩M1 = 0. So,

there exists r ∈ R such that 0 ̸= π2(k)r = π2(kr) ∈ E. Hence, 0 ̸= kr = π1(kr) + π2(kr).

However, π1(kr) = θ(π2(kr)), so 0 ̸= kr = θ(π2(kr)) + π2(kr) ∈ K ∩ M3. Therefore,

K ∩M3 ≤e K.

(⇐=) Assuming that for everyK ≤M such thatK∩M1 = 0, there existsM3 ≤M such

that M =M1 ⊕M3 and K ∩M3 ≤ K, let L ≤M2 and φ : L→M1 be a homomorphism.

Define H = −φ(x) + x : x ∈ L. Then H ≤M and H ∩M1 = 0. By the assumption, there

exists H ′ ≤ M such that M = M1 ⊕H ′ and H ′ ∩H ≤e H. Let K = H ′ ∩H ∩ L. There

exists C ≤ L such that K ∩ C = 0 and K ⊕ C ≤e L. Let B = b ∈ C : −φ(b) + b ∈ H ′.

Note that B ≤ C. We claim that B ≤e C. Consider 0 ̸= c ∈ C. Then −φ(c) + c ∈ H.

If −φ(c) + c = 0, then c ∈ M1 ∩ L = 0, which is a contradiction. Hence, −φ(c) + c ̸= 0.

There exists r ∈ R such that 0 ̸= (−φ(c)+c)r = −φ(cr)+cr ∈ H ′∩H. Thus, 0 ̸= cr ∈ B.

Therefore, B ≤e C.

Observe that K ⊕ B ≤e L. Now let k + b ∈ K ⊕ B, where k ∈ K and b ∈ B. Let

π :M →M1 be the projection onto M1 along H
′, i.e., kerπ = H ′. Then π(k+ b) = π(b) =

π(φ(b) − φ(b) + b) = π(φ(b)) + π(−φ(b) + b) = π(φ(b)) = φ(b). Recall that k ∈ H ∩ L.
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Then there exists y ∈ L such that k = −φ(y) + y. Hence, φ(y) = y − k ∈ L ∩M1 = 0.

Thus, y = k and 0 = φ(y) = φ(k). We conclude that π(k + b) = φ(b) = φ(k + b), and

therefore M1 is M2-ejective.

Corollary 2.3.4. Let M1 and M2 be modules with Z(M1)=0 and M = M1 ⊕ M2. Then

M1 is M2-injective if and only if M1 is M2-ejective.

Proof. ( =⇒ ) Obvious.

(⇐=) Assuming M1 is M2-ejective, let K ≤ M such that K ∩M1 = 0. By Theorem

2.3.3, there exists M3 ≤ M such that M = M1 ⊕ M3 and K ∩ M3 ≤e K. Consider

0 ̸= k ∈ K. Then 0 ̸= k = π1(k) + π3(k), where π1 and π3 are the canonical projections

onto M1 and M3, respectively. There exists L ≤e R such that kL ⊆ K ∩M3. Hence,

π1(k)L = 0. Since M1 is nonsingular, π1(k) = 0. Thus, K = K ∩M3 ⊆ M3. Therefore,

M1 is M2-injective.[4].

Proposition 2.3.5. Let X and M be right R-modules. Then

(i) XR is MR-ejective for all MR ∈ R-Mod if and only if XR is injective.

(ii) Assume Z(MR)=0. Then MR is RR-ejective if and only if MR is injective.

(iii) If MR is RR-ejective and MR = DR ⊕ YR, then DR is RR-ejective.

(iv) If M/Z2(MR) is RR-ejective, then M/Z2(MR) is injective both as an R-module

and R/Z2(RR)-module. In particular, if MR is RR-ejective and M = Z2(MR) ⊕ B, then

M/Z2(MR) is injective both as an R-module and R/Z2(RR)-module.

(v) Assume that MR = Z2(MR) and Z(RR)) = 0. Then MR is RR-ejective.

(vi) Assume that soc(MR) ≤e MR and soc(RR)=0. Then MR is RR-ejective.

Proof. (i) Assuming that XR isMR-ejective for allMR ∈ R-Mod, let φ ∈ End(XR). There

exists YR ≤e XR and a homomorphism θ : E(X) → X such that θ(x) = φ(x) for all x ∈ Y .

Since YR ≤e E(X), θ is a monomorphism. Hence, θ(E(X)) is a direct summand of XR.

But Y ⊆ θ(E(X)), we have θ(E(X)) = XR. Therefore, XR is injective. The converse is

straightforward.

(ii) By part (i), if MR is injective, then MR is RR-ejective. So assume MR is RR-

ejective. Let IR ≤ RR and φ : I → M be an R-homomorphism. There exists JR ≤e IR
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and θ : R → M such that θ(x) = φ(x) for all x ∈ J . Let k ∈ I. There exists LR ≤e RR

such that Lk ⊆ J . Then L(φ(k)− θ(k)) = 0. Since Z(MR) = 0, we have φ(k) = θ(k). By

Theorem 1.2.2., MR is injective.

(iii) Assume IR ≤ RR, φ : I → D be an R-homomorphism, i : D → M the inclusion

homomorphism, and π : M → D the projection. Since MR is RR-ejective, there exists

JR ≤e IR and a homomorphism θ : R → M such that θ(x) = i(φ(x)) for all x ∈ J . Then

πθ : R → D is a homomorphism and φ(x) = π(θ(x)) for all x ∈ J . Therefore, DR is

RR-ejective.

(iv) Note that Z2(R) ⊆ lR(M/Z2(MR)). Thus, M/Z2(MR) is an R/Z2(RR)-module

where multiplication by scalars is defined by (r + Z2(RR))(m+ Z2(MR)) = mr + Z2(MR)

for all m ∈ M and r ∈ R. Let M and R denote M/Z2(MR) and R/Z2(RR), respectively.

Thus, M and R are both R and R-modules. Now, let KR ≤ RR and φ : K → M be

an R-homomorphism. By (ii), M is an injective R-module. Hence, there exists an R-

homomorphism θ : R → M . But θ is also an R-homomorphism. Thus, M is R-injective.

The particular case whenMR is RR-ejective andM = Z2(MR)⊕Y follows from (iii) and the

above argument. For (v) and (vi), let IR ≤ RR and φ : I → M be an R-homomorphism.

Suppose that there is a 0 ̸= JR ≤ IR such that J ∩ kerφ = 0. Let kerφ = K.

(v) There exists a y ∈ J such that φ(y) ̸= 0. Since Z(MR) ≤e MR, there exist r ∈ R

and LR ≤e RR such that 0 ̸= φ(y)r and φ(yrL) = 0. Then 0 ̸= yr, but yrL = 0. This is

contrary to Z(RR) = 0. Hence, KR ≤e IR. Let θ : RR →MR be the zero homomorphism.

Then φ(k) = θ(k) for all k ∈ K, and so MR is RR-ejective.

(vi) Observe that φ|J : JR → MR is a monomorphism. Hence, soc(JR) ̸= 0, which

contradicts soc(RR) = 0. Therefore, we must have KR ≤e IR. By the argument above, we

conclude that MR is RR-ejective.

Proposition 2.3.6. Let M and X be modules. Then X is M-ejective if and only if for

each φ : M → E(X) there exist E ≤e m and θ : M → X such that θ|E = φ|E.

Proof. ( =⇒ ) Let X is M -ejective and φ : M → E(X) is a homomorphism. Let K =

φ−1(N). Then K is a submodule of M . Since X is M -ejective, there exists an essential

submodule E ≤e K and a homomorphism θ :M → X such that θ|E = φ|E. Thus, we have
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found the essential submodule E and homomorphism θ satisfying the desired conditions.

(⇐=) Assuming that for every homomorphism φ :M → E(X) there exists a submodule

E ≤e M and a homomorphism θ : M → X such that θ|E = φ|E, let K ≤ M and

φ : K → X be a homomorphism. We can find a homomorphism φ : M → E(X) such

that φ|K = φ. Let Y = φ−1(X). It follows that K ≤ Y ≤e M . Therefore, there exists

a submodule E ≤e Y and a homomorphism θ : M → X such that θ|E = φ|E. Let

E = K ∩ E ≤e K. Then we have θ|E = φ|E = φ|E. This shows that X is M -ejective.

3 Extending property and some generalizations

This chapter consists of basic properties of extending (CS) modules as well as their impor-

tant generalizations which have already appeared in literature as CS, Continuous, Quasi-

Continuous and C11 modules [13].

3.1 CS-modules

In this section, we introduce the concept of CS-modules and provide a new characteri-

zation based on idempotent endomorphisms of the injective hulls. One of the intriguing

questions regarding CS-modules is whether a direct sum of CS-modules, whether finite or

infinite, is also a CS-module. We explore several results in this direction. Additionally,

we investigate the inheritance of the CS property by submodules.

Let R be any ring. A right R-module M is defined as a CS-module (or extending) if

every submodule of M is essential in a direct summand of M . From Proposition 1.1.11, it

becomes evident that a module M is a CS-module if and only if every closed (or comple-

ment) submodule of M is a direct summand. This explains the rationale behind the name

”CS-module.” Proposition 1.1.16 immediately follows, stating that any direct summand

of a CS-module is also a CS-module. These concepts have two main origins:

(i) The work of von Neumann in the 1930s focused on continuous geometries and their

realization as lattices of principal left ideals of (von Neumann) regular rings. Utumi and

others further developed this work in the context of rings and modules. [14]
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(ii) The theory of injective modules.

To understand the relationship between CS-modules and injective modules, we recall

some definitions.

A module M is considered quasi-injective (or self-injective) if it is M -injective. It can

be shown that M is quasi-injective if and only if θ(M) ⊆ M for every endomorphism θ of

E(M), where E(M) represents the injective hull of M . For any ring R, a right R-module

M is referred to as quasi-continuous if φ(M) ⊆ M holds for every idempotent endomor-

phism φ of E(M). The term ”quasi-continuous” is derived from von Neumann’s work. It

can be demonstrated that M is quasi-continuous if and only if for every finite collection

Ni (1 ≤ i ≤ k) of submodules of M such that ΣiNi is direct, there exist submodules Li

(1 ≤ i ≤ k + 1) of M such that M = L1 ⊕ L2 ⊕ ··· ⊕ Lk+1 and Ni ≤e Li (1 ≤ i ≤ k).

Thus, for any ring R and right R-module M , we have:

M is injective =⇒ M is quasi-injective =⇒ M is quasi-continuous =⇒ M is CS.

As an example, consider the Z-module Z. It is a quasi-continuous module but not quasi-

injective. Similarly, the Z-module Z⊕ Z is CS but not quasi-continuous.

Our initial result provides various characterizations of quasi-continuous modules.

Proposition 3.1.1. The following statements are equivalent for a module M with in-

jective hull E.

(i) M is quasi-continuous.

(ii) If E = E1 ⊕···⊕ En is a finite direct sum of submodules Ei (1 ≤ i ≤ n), then M =

(E1 ∩ M) ⊕···⊕ (En ∩ M).

(iii) If E = E1 ⊕ E2 is a direct sum of submodules E1 and E2, then M = (E1 ∩ M) ⊕

(E2 ∩ M).

(iv) (a) M is CS.

(b)For any K, L ≤d M with K ∩ L = 0, the submodule K ⊕ L is also a direct summand

of M (i.e., M satisfies C3).

(v) If Li ≤ M (1 ≤ i ≤ n) with L1 ⊕···⊕ Ln ≤ M, where n is a positive integer, then there
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exist Mi ≤ M (1 ≤ i ≤ n + 1) such that M = M1 ⊕···⊕ Mn+1 and Li ≤e Mi (1 ≤ i ≤ n).

(vi) If L1, L2 ≤ M with L1 ∩ L2 = 0, then there exist Mi ≤ M (1 ≤ i ≤ 3) such that M

= M1 ⊕ M2 ⊕ M3 and Li ≤e Mi (i = 1, 2).

(vii) If L1, L2 ≤ M with L1 ∩ L2 = 0, then there exist M1,M2 ≤ M such that M = M1 ⊕

M2 and Li ≤ Mi (i = 1, 2).

Proof. (i) =⇒ (ii) Let πi : E → Ei (1 ≤ i ≤ n) be the canonical projections. Each

πi is an idempotent endomorphism of E. Therefore, πi(M) ≤ M (1 ≤ i ≤ n), and

consequently, M ≤ π1(M) ⊕ . . . ⊕ πn(M) ≤ (E1 ∩M) ⊕ . . . ⊕ (En ∩M) ≤ M . Thus,

M = (E1 ∩M)⊕ . . .⊕ (En ∩M).

(ii) =⇒ (iii) This implication is straightforward.

(iii) =⇒ (i)Let φ be an idempotent endomorphism of E. We have E = φ(E) ⊕

(1 − φ)(E), and thus M = [φ(E) ∩ M ] ⊕ [(1 − φ)(E) ∩ M ]. It follows that φ(M) =

φ[φ(E) ∩M ]⊕ φ[(1− φ)(E) ∩M ] ≤ φ(E) ∩M ≤M . Therefore, M is quasi-continuous.

(i) =⇒ (iv) Let N ≤ M . Then E = E(N) ⊕ F for some F ≤ E. By (iii), M =

[E(N) ∩ M ] ⊕ [F ∩ M ]. Clearly, N ≤e E(N) ∩ M . Thus M is CS. Let K, L ≤d M with

K ∩ L = 0. Then E = E(K) ⊕ E(L) ⊕ G for some G ≤ E. By (ii), M = [E(K) ∩ M ]

⊕ [E(L) ∩ M ] ⊕ [G ∩ M ] = K ⊕ L ⊕ (G ∩ M), i.e., K ⊕ L ≤d M .

(iv) =⇒ (v) Let n be a positive integer and let Li ≤ M (1 ≤ i ≤ n) such that L1 +

··· + Ln is direct. By (iv) (a), for each 1 ≤ i ≤≤ n, there exists Mi ≤d M such that Li

≤e Mi. Then M1 + ··· + Mn is direct and, by (iv)(b), M1 ⊕ ··· ⊕ Mn ≤d M .

(v) =⇒ (vi) =⇒ (vii) This implications holds trivially..

(vii) =⇒ (iii) Suppose there exist E1, E2 ≤ E such that E = E1⊕E2. Let Li = Ei∩M

for i = 1, 2. Then M = M1 ⊕M2 for some Mi ≤ M such that Li ≤ Mi. Since Li ≤e Ei,

it follows that Li ≤e Mi for i = 1, 2. Let x ∈ M1. There exist y ∈ E1 and z ∈ E2

such that x = y + z. Suppose z ̸= 0. There exists r ∈ R such that 0 ̸= zr ∈ M .

Then zr = xr − yr ∈ M1 ∩ M2 = 0, which is a contradiction. Hence, z = 0, and

consequently, x = y ∈ E1 ∩M = L1. Therefore, L1 = M1. Similarly, L2 = M2. Thus,

M = (E1 ∩M)⊕ (E2 ∩M).

Recall that R-modulesMi (i ∈ I) are called relatively injective ifMi isMj-injective for
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all distinct i and j in I. We provide an alternative characterization of quasi-continuous

modules.

Corollary 3.1.2. A module M is quasi-continuous if and only if

(i) M is CS, and

(ii) Whenever M = M1 ⊕ M2 is a direct sum of submodules M1, M2, then M1 and M2

are relatively injective.

Proof. If M is quasi-continuous, then the implications (i) and (ii) follow from Proposition

3.1.1. Conversely, assuming (i) and (ii) hold, let L1 and L2 be submodules of M with

L1 ∩ L2 = 0. By (i), we can find M1 and M2 such that M =M1 ⊕M2 and L1 is essential

in M1. It is evident that M1 ∩ L2 = 0. Using (ii), there exists a submodule M ′ of M

satisfying M = M ⊕M ′ and L2 ⊆ M ′. By applying Proposition 3.1.1., we conclude that

M is quasi-continuous.

For a module M, consider the following relations on the set of submodules of M :

(i) X is α-related to Y if there exists a submodule N of M such that X is essential in N

and Y is essential in N .

(ii) X is β-related to Y if X ∩ Y is essential in both X and Y . (Alternatively, X is

β-related to Y if and only if whenever X ∩ N = 0, it implies Y ∩ N = 0, and whenever

Y ∩K = 0, it implies X ∩K = 0, for all submodules N and K of M .)

We can observe that if X and Y are submodules of M such that X is α-related to Y , then

X is β-related to Y .

A module M is referred to as a UC-module if every submodule has a unique closure.

(refer to Proposition 1.1.11.).

Instances of UC-modules include semisimple modules, uniform modules, and nonsin-

gular modules. However, the Z-module (Z/pZ) ⊕ (Z/p3Z) does not possess the property

of being a UC-module [13].

Lemma 3.1.3. Let M be a module. Then

(i) α is reflexive and symmetric.
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(ii) α is transitive if and only if M is a UC-module.

(iii) β is an equivalence relation.

Proof. Obvious.

Our next goal is to provide a characterization of CS-modules using the β relation.

To begin, we present an example that illustrates the distinction between the notions of

isomorphism and the β equivalence relation when applied to submodules of a module.

Example 3.1.4. (i) Let F be any field. Let RR = [ F F
0 F ]. Take the right ideals X

= [ 0 F
0 0 ] and Y = [ 0 0

0 F ] of R. Then X and Y are not β-releated. However X ∼= Y clearly.

(ii)Consider a noncommutative nonprincipal ideal domain R. Let X be any right ideal of

R. In this case, we observe that X is β-related to R, but X is not isomorphic to the right

R-module RR.

Proposition 3.1.5. Assume M be a module. The following statements are equivalent.

(i) M is CS.

(ii) For each X ≤ M, there exists a direct summand D of M such that XαD.

(iii) For each c = c2 ∈ End (E(M)) there is an e = e2 ∈ End (E(M)) such that eM

≤ M, eE(M)βcE(M), and there exists a homomorphism h : cE(M) → eE(M) such that

h|M∩ cE(M) is the inclusion homomorphism.

Proof. (i) ⇐⇒ (ii) Obvious.

(i) =⇒ (iii) Let c = c2 ∈ End (E(M)) and X = M ∩ cE(A). Then there is f =

f 2 ∈ End(M) such that X ≤e fM . Let e ∈ End(E(M)) be the projection e : E(M) →

E(fM) (i.e., for x ∈ E(M), x = x1 + x2, where x1 ∈ E(fM) and x2 ∈ E(M(1 - f))

and e(x) = x1). So X ≤e cE(M) and X ≤e eE(M). Hence eE(M)βcE(M). Now eM =

(fM ⊕ eM(1 - f)) = e(fM) ⊕ eM(1 - f) = fM gives that eM ≤ M . Since eE(M) is

injective, there is a monomorphism h : cE(M) → eE(M) that extends the inclusion i :

X → eE(M).

(iii) =⇒ (i) Let Y ≤ M . Then Y ≤e E(Y ) = cE(M) for some c = c2 ∈ End(E(M)).

So there is e = e2 ∈ End(E(M)) such that eM ≤ M , E(eM)βcE(M), and there exists
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h : cE(M) → eE(M) such that h|M∩ cE(M) is the inclusion homomorphism. Hence, for

y ∈ Y ⊆ M ∩ cE(M), h(y) = y ∈ M ∩ eE(M) = eM . Then Y ≤ eM ≤d M and since

eE(M)βcE(M), Y ≤e eM . Consequently, M is CS.

For any set I, the notation |I| represents the cardinality of the set I.

Theorem 3.1.6. Let R be a ring and let M =
⊕

i∈ I Mi be the direct sum of R-modules

Mi (i ∈ I), for some index set I with |I| ≥ 2. Then the following statements are equivalent.

(i) M is CS-module.

(ii) There exist distinct elements i, j in the index set I such that for every closed sub-

module K of M, if K has trivial intersection with either Mi or Mj, then K is a direct

summand.

(iii) There exist distinct elements i, j in the index set I such that for every complement

of Mi or Mj in M, it is both a CS-module and a direct summand of M.

Proof. (i) =⇒ (ii) Obvious.

(ii) =⇒ (iii) Consider a complement K of Mi in M . According to property (ii), we

can conclude that K is a direct summand of M . Now, let L be a closed submodule of K.

Utilizing Proposition 1.1.16., we can establish that L is a closed submodule ofM , and it is

evident that L has trivial intersection with Mi. By virtue of property (ii), we can deduce

that L is a direct summand of M and, consequently, a direct summand of K. Therefore,

K is a CS-module.

(iii) =⇒ (i)Consider a closed submodule N ofM . There exists a closed submodule H

of N such that the intersection of N with Mi is an essential submodule of H. It is evident

that H has trivial intersection with Mj. By utilizing Zorn’s Lemma, we can establish the

existence of a complement P of Mj in M such that H is a submodule of P . Applying

Proposition 1.1.16 demonstrates that H is a closed submodule of M and, consequently,

a closed submodule of P . By employing property (iii), we can deduce that H is a direct

summand of the CS-module P , and P is a direct summand of M . Thus, H is a direct

summand of M .

Furthermore, there exists a submodule H ′ of M such that M can be expressed as the
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direct sum H ⊕ H ′. By the modular law, we have N = H ⊕ (N ∩ H ′). According to

Proposition 1.1.16, N ∩H ′ is a closed submodule ofM , and it is clear that the intersection

of N ∩ H ′ with Mi is trivial. Applying the argument mentioned above, property (iii)

implies that N ∩ H ′ is a direct summand of M and, consequently, a direct summand of

H ′. Therefore, N is a direct summand of M . Consequently, we can conclude that M is a

CS-module.

Lemma 3.1.7. Consider a module M = M1 ⊕ M2, and let K be a submodule of M .

We can say that K serves as a complement of M2 in M if and only if there exists a

homomorphism φ :M1 → E(M2) such that K = {x+ φ(x) : x ∈ φ−1(M2)}.

Proof. Assume that K serves as a complement of M2 in M . Let πi : M → Mi (i = 1, 2)

denote the canonical projections. It can be observed that π1|K : K → M1 is an injective

homomorphism. By considering the inclusion mapping i :M2 → E(M2), we can establish

the existence of a homomorphism φ : M1 → E(M2) such that φ(π1|K) = i(π2|K). For

any x ∈ K, it follows that φπ1(x) = π2(x) ∈ M2. Thus, π1(x) ∈ φ−1(M2), and we have

x = π1(x)⊕π2(x) = π1(x)⊕φ(π1(x)). Hence, we obtainK ⊆ y + φ(y) : y ∈ φ−1(M2) = K1

(denoted as K1 for clarity). Since K1 is a submodule of M and K1 ∩M2 = 0, it follows

that K = K1, as desired.

Conversely, assume that θ :M1 → E(M2) is a homomorphism, and let K = {x+θ(x) :

x ∈ θ−1(M2)}. It is clear that K is a submodule of M and K ∩M2 = 0. Now, suppose

that L is a submodule of M such that K ⊆ L and L ∩ M2 = 0. Let u ∈ L be such

that π2(u) ̸= θπ1(u). Since 0 ̸= π2(u) − θπ1(u) ∈ E(M2), there exists r ∈ R such

that 0 ̸= (π2(u) − θπ1(u))r ∈ M2. However, in this case, we have θπ1(u)r ∈ M2 and

(π2(u)−θπ1(u))r = π2(ru)−θπ1(ur) = ur−(π1(ur)+θπ1(ur)) ∈ (L+K)∩M2 = L∩M2 = 0,

leading to a contradiction.

Let v ∈ L. Then θπ1(v) = π2(v) ∈M2, implying that π1(v) ∈ θ−1(M2). Thus, we have

v = π1(v)+ π2(v) = π1(v)+ θ(π1(v)) ∈ K. Consequently, we obtain L = K. Therefore, K

is a complement of M2 in M .

Theorem 3.1.8. Assume R be a ring and let M =
⊕

i∈ I Mi be the direct sum of

R-modules Mi (i ∈ I), for some index set I with |I| ≥ 2. Then the following statements
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are equivalent.

(i) M is a CS-module.

(ii) For each i ∈ I and each homomorphism φ : M−i → E(Mi), the submodule {x +

φ(x) : x ∈ φ−1(Mi)} is a CS-module and a direct summand of M.

(iii) There exist i ̸= j in I such that for each k ∈ {i, j} and each homomorphism φ :

M−k → E(Mk), the submodule {x + φ(x) : x ∈ φ−1(Mk)} is a CS-module and a direct

summand of M.

Proof. By [13, Theorem 3.9.].

Consider a module M =
⊕

i∈I Mi, where the modules Mi (i ∈ I) are relatively injec-

tive. Let i ∈ I and let φ : M−i → E(Mi) be a homomorphism. According to Proposition

2.1.3., Mi is M−i-injective, and thus φ(M−i) ⊆ Mi (by Proposition 2.1.5.). We define

K = {x + φ(x) : x ∈ φ−1(Mi)} = {x + φ(x) : x ∈ M−i}. It follows that M = K ⊕Mi.

Consequently, in Theorem 3.1.8., if the modules Mi (i ∈ I) are relatively injective, condi-

tion (ii) can be equivalently expressed as (i’) Each M−i is CS, and condition (iii) can be

equivalently expressed as (ii’) There exist distinct i, j ∈ I such that M−i and M−j are CS.

We also observe that if M =
⊕

i∈I Mi is a CS-module, where Mi (i ∈ I) is a fam-

ily of modules, and if i ∈ I, then φ−1(Mi) is a CS-module for any homomorphism

φ :M−i → E(Mi). This follows from the fact that, in Theorem 3.1.8., φ−1(Mi) is isomor-

phic to {x+ φ(x) : x ∈ φ−1(Mi)}.

Proposition 3.1.9. Assume R be a ring, M1 be an R-module with zero socle, and M2 be

a semisimple R-module. Then the R-module M = M1 ⊕ M2 is CS if and only if M1 is CS

and M2 is M1-injective.

Proof. Assume that M is a CS-module and M1 is also a CS-module. It is evident that

M2 is the socle of M . Now, consider any submodule N of M1 and a homomorphism

φ : N →M2. Let L = {x−φ(x) : x ∈ N}. Then L is a submodule of M and L∩M2 = 0.

There exist submodules K and K ′ of M such that M = K ⊕ K ′, and L is an essential

submodule ofK. Notably, the socle ofK isK∩M2 = 0, implying thatM2 = soc(M) ⊆ K ′.

Therefore, we have K ′ =M2⊕ (K ′∩M1), andM = K⊕M2⊕ (K ′∩M1). Let π :M →M2
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denote the projection with kernel K⊕ (K ′∩M1). Consider θ = π|M1 . We can observe that

θ :M1 →M2, and for all x ∈ N , we have θ(x) = φ(x). Therefore, M2 is M1-injective.

Conversely, assume that M1 is a CS-module and M2 is M1-injective. It is clear that

M1 is also M2-injective. Thus, M is a CS-module.

Lemma 3.1.10. Consider a ring R and R-modules M1 and M2, where M2 is semisimple.

The R-module M1 ⊕M2 is a CS-module if and only if every complement K of M2 in M

is both a CS-module and a direct summand of M .

Proof. By [13, Lemma 3.14.].

Theorem 3.1.11. Consider a ring R, where M1 is a CS R-module and M2 is a

semisimple R-module such that M2 is (M1/N)-injective for every non-zero submodule N

of M1. In this case, the R-module M =M1 ⊕M2 is a CS-module.

Proof. Let K be a complement of M2 in M . According to Lemma 3.1.7., there exists

a homomorphism φ : M1 → E(M2) such that K = {x + φ(x) : x ∈ φ−1(M2)}. Let

Q = φ−1(M2) and P = ker(φ). Both P and Q are submodules of M1.

Suppose P = 0. In this case, K ∩M1 = 0, and therefore M1 ⊕K =M1 ⊕φ(Q), which

is a direct summand of M since φ(Q) is a direct summand of M2. Thus, K is a direct

summand of M , and since K embeds in M/M1
∼= M2, K is semisimple and thus CS.

Now suppose P ̸= 0. By the hypothesis, M2 is (M1/P )-injective. We have Q/P ∼=

φ(Q), which is a direct summand of M2. Hence, Q/P is also (M1/P )-injective. There

exists a submodule Q′ of M1 such that P ⊆ Q′ and (M1/P ) = (Q/P ) ⊕ (Q′/P ). Define

θ : M1 → E(M2) by θ(q + q′) = φ(q) for q ∈ Q and q′ ∈ Q′. It can be easily verified

that θ is a well-defined homomorphism. Moreover, θ|Q = φ. Let K ′ = {x + θ(x) : x ∈

θ−1(M2)} = {x + θ(x) : x ∈ M1}, noting that θ(M1) = φ(Q) ≤ M2. By Lemma 3.1.7.,

K ′ is a complement of M2 in M . However, we have K ⊆ K ′, which implies K = K ′. It

is clear that M = K ⊕M2. Thus, K is a CS-module and a direct summand of M . By

Lemma 3.1.10., M is a CS-module.

Theorem 3.1.12.

(i) Suppose M is a CS-module and X is a submodule of M . If the intersection of X
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with any direct summand of M is a direct summand of X, then X is also a CS-module.

(ii) Consider a module M , where X is a CS submodule of M , and D is a direct

summand of M . If D +X is nonsingular, then D ∩X is a direct summand of X.

(iii) If M is nonsingular and X is a CS submodule, then the intersection of X with

any direct summand of M is a direct summand of X.

Proof. (i) Consider a submodule N of X. There exists a direct summand D of M such

that N is essential in D. It follows that N is also essential in D∩X, and D∩X is a direct

summand of X. Therefore, X is a CS-module.

(ii) Let D be a direct summand of M , and let Y = D ∩X. There exists a submodule

C of X such that C is a direct summand of X, and Y is essential in C. Assume Y ̸= C.

Then D ̸= D + C. Take d + c ∈ D + C such that d + c /∈ D, where d ∈ D and c ∈ C.

Since c ̸= 0, there exists an essential right ideal L of R such that 0 ̸= cL ⊆ Y . Since D

is nonsingular, we have 0 ̸= (d + c)L ⊆ D. Thus, D is essential in D + C, which is a

contradiction. We conclude that Y = C.

(iii) This part follows immediately using the same proof as in part (ii).

Let M be a module and L be the collection of all submodules of M . It is well known

that L is a lattice with respect to inclusion, intersection and sum operations.A module is

named as a distributive module if its lattice of submodules forms a distributive lattice.

Corollary 3.1.13. Let M be a CS-module.

(i) If M is a distributive module, then every submodule is CS.

(ii) If X is a submodule of M such that e(X) ⊆ X for all e = e2 ∈ End M, then X is a

CS-module. In particular every fully invariant submodule of M is CS.

Proof. (i) follows directly from (i) of Theorem 3.1.12.

(ii) Consider D be a direct summand of M and π: M → D the projection map. Then

π(X) = X ∩ D. According to Theorem 3.1.12 (i), X is a CS-module.

The following result is the most useful characterization of CS-modules in terms of de-

composition as well as relative injectivity of component direct summand.
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Theorem 3.1.14. MR satisfies CS if and only if M = Z2(M) ⊕ N and Z2(M) is N-

injective.

Proof. Assume first that M is a CS-module. Since Z2(M) is a complement in M , we can

express M as the direct sum M = Z2(M)⊕N , where N is a nonsingular module. Thus,

both Z2(M) and N are CS-modules. Let φ : X → Z2(M) be a homomorphism, where X

is a submodule of N . Consider X ′ = {x − φ(x) : x ∈ X}. By hypothesis, there exists

a direct summand L of M such that X ′ is an essential submodule of L. We can write

M = L⊕ Y , where Y is another submodule. Since X ′ ∩ Z2(M) = 0 and X ′ is essential in

L, it follows that L is nonsingular and Z2(M) = Z2(Y ). Consequently, Z2(M) is a direct

summand of Y , denoted as Y = Y ′ ⊕ Z2(M). Let π : L ⊕ Y ′ ⊕ Z2(M) → Z2(M) be the

canonical projection. It can be easily verified that π|X = φ.

Conversely, assume that M = Z2(M) ⊕N , where Z2(M) and N are CS-modules and

Z2(M) isN -injective. Let A be a complement ofM . Since Z2(A) is a complement of A, it is

also a complement ofM . However, Z2(A) ⊆ Z2(M), implying that Z2(A) is a complement

of Z2(M). Therefore, Z2(A) is a direct summand of Z2(M) and, consequently, a direct

summand of A. We can express A as A = Z2(A)⊕B, where B is a nonsingular submodule

of A. Since B ∩ Z2(M) = 0 and Z2(M) is N -injective, there exists a homomorphism

θ : N → Z2(M) such that θπ2|B = π1|B, where π1 and π2 are the projections of M onto

Z2(M) and N , respectively. Consider N ′ = {n + θ(n) : n ∈ N}. It follows that B is

contained in N ′. Since N ′ ∼= N is a CS-module, B is a direct summand of N ′. It is evident

that M = Z2(M)⊕N ′. Therefore, A is a direct summand of M .

3.2 Continuous and quasi-continuous modules

This section focuses on various concepts related to the CS property. Specifically, we ex-

amine modules that possess the CS property along with the conditional direct summand

conditions C2 and C3. These modules are of particular interest and are commonly referred

to as continuous (quasi-continuous) modules in the literature. Let us provide the defini-

tions for the C2 and C3 properties.
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(i) property C2: if X ≤ M is isomorphic to a direct summand of M , then X is a direct

summand of M ; in other words, for each direct summand N of M and each monomor-

phism φ : N → M , the submodule φ(N) is also a direct summand of M ;

(ii) property C3: if M1 and M2 are direct summands of M such that M1 ∩ M2 = 0,

then M1 ⊕ M2 is a direct summand of M ;

Let R be a ring and M a right R-module. The module M is referred to as continu-

ous if it satisfies the CS condition, as well as the condition C2. It is important to note

that any module satisfying C2 also satisfies C3. On the other hand, the module M is

called quasi-continuous if it is a CS-module and satisfies the condition C3. Therefore,

continuous modules are quasi-continuous modules. We demonstrate that continuous and

quasi-continuous modules can be characterized by the lifting of homomorphisms from cer-

tain submodules of M to M itself. It should be noted that there exists a distinct lifting

condition to characterize continuous modules. Perhaps it is preferable to begin with this

fact, which was presented in [8].

Theorem 3.2.1. The following are equivalent for a module M.

(i) M is continuous.

(ii) If B ⊕ C ≤ M and f : B ⊕ C → M is a homomorphism with im f closed in M and

ker f = C, then there exists g ∈ End (M) extending f.

(iii) If f is a partial endomorphism of M with both kerf and imf closed in M , then f

can be extended to an endomorphism of M .

Proof. i) =⇒ (iii) Let N is a submodule of M and f ∈ Hom(N,M) such that ker(f)

and im(f) are closed in M . By the given hypothesis, both ker(f) and im(f) are direct

summands of M . Therefore, there exists a submodule B of M such that M = ker(f)⊕B

and N = ker(f)⊕ (N ∩B). Using the C2 property, we have N ∩B ∼= im(f), which is also

a direct summand of M . Since continuous modules are quasi-continuous, we can conclude

that N = ker(f) ⊕ (N ∩ B) is a direct summand of M . Moreover, this direct summand

can be extended to an endomorphism of M .

(iii) =⇒ (ii) Consider f be given as in (ii). Assume D be the closure of C in M .
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Then f can be extended to f : B ⊕ D → M with f |D = 0. By applying (iii), we conclude

that f , and hence f , can be further extended to an endomorphism of M .

(ii) =⇒ (i) M is quasi-continuous [9]. To show that M satisfies property C2, suppose

B ≤d M and φ : N → B is an isomorphism. By the assumption that M is quasi-

continuous, there exists a submoduleD ≤d M such that N ≤e D. LetM = D⊕C for some

submodule C ≤M . Define f : N⊕C → B by f(n+c) = φ(n), where n ∈ N and c ∈ C. It

can be verified that ker f = C and im f = B are closed submodules ofM . Therefore, there

exists an endomorphism g ∈ End(M) extending f . Since g|N = φ is an isomorphism and

N ≤e D, it follows that g|D is also an isomorphism. Hence, B = φ(N) = g(N) ≤e g(D),

which implies g(N) = g(D) since B is closed in M . Consequently, N = D ≤d M ,

demonstrating that M satisfies property C2. Therefore, M is a continuous module.

Lemma 3.2.2. Let K be a complement in M. Then K is a direct summand of M if and

only if there exists a complement L of K in M such that K ⊕ L ∈ LiftM(M).

Proof. If K is a direct summand of M , then we can write M = K ⊕ K ′, where K ′ is a

submodule of M . It is evident that if we set L = K ′, then K ⊕ L ∈ LiftM(M).

Conversely assuming the existence of a complement L of K in M with the specified

property, we define a homomorphism φ : K ⊕ L→M as follows:

φ(x+ y) = x for x ∈ K, y ∈ L.

Given the hypothesis, there exists a homomorphism θ : M → M such that θ(x + y) = x

for x ∈ K, y ∈ L. It can be observed that K is contained in the image of θ, denoted as

im θ, and L is contained in the kernel of θ, denoted as ker θ.

Let 0 ̸= v ∈ im θ. Then there exists u ∈ M such that v = θ(u). It is important

to note that u /∈ L. Consequently, K ∩ (L + uR) ̸= 0, where R denotes the underlying

ring. There exist x ∈ K, y ∈ L, and r ∈ R such that 0 ̸= x = y + ur. Consequently,

x = θ(x) = θ(y + ur) = vr. It follows that vR ∩K ̸= 0 for all non-zero v ∈ im θ. Thus,

K is an essential submodule of im θ. However, K is also a complement in M . Therefore,

K = im θ.

From this point, it can be easily verified that M = K ⊕ ker θ. Thus, K is a direct

summand of M .
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Corollary 3.2.3. A module M is CS if and only if for every complement K in M there

exists a complement L of K in M such that K ⊕ L ∈ LiftM(M).

Proof. Immediate by using Lemma 3.2.2.

Let M be a module and n a positive integer. We define the following classes in con-

junction with respect to the conditions C2 and C3:

M ′ = {N ≤ M : there exists K ≤d M such that K ∼= N},

M (n) = {L1 + L2 + ··· + Ln: Li ≤d M for 1 ≤ i ≤ n and L1 + L2 + ··· + Ln is a direct

sum}, and

C(n) = {C1 + C2 + ··· + Cn: Ci ≤c M for 1 ≤ i ≤ n and C1 + C2 + ··· + Cn is a direct sum.

For a positive integer n, we examine the following criterion imposed on a module M :

Pn : C(n) ⊆ LiftM(M).

Obviously if M satisfies Pn, then M satisfies Pn−1, for all n ≥ 2.

Theorem 3.2.4. For a module M, the following statements are equivalent.

(i) M is quasi-continuous.

(ii) M satisfies Pn for every positive integer n.

(iii) M satisfies Pn for some integer n ≥ 2.

(iv) M satisfies P2.

Proof. (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) Clear.

(iv) =⇒ (i) This can be deduced from Proposition 4.1.16 and Corollary 3.2.3.

Consider the condition imposed on a module M for a given positive integer n:

Qn : For every K in M (n) such that K = K1 ⊕···⊕ Kn and Ki ∈ M ′ (1 ≤ i ≤ n), K ∈

LiftM(M).

It is evident that for any positive integer n ≥ 2, if a module M fulfills the condition Qn,

then it also fulfills the condition Qn−1. Additionally, for every positive integer n ≥ 1, if a

module M satisfies Qn, it also satisfies Pn.
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Theorem 3.2.5. For a module M, the following statements are equivalent.

(i) M is continuous.

(ii) M satisfies Qn for every positive integer n.

(iii) M satisfies Qn for some integer n ≥ 2.

(iv) M satisfies Q2.

(v) M is CS and satisfies Q1.

Proof. (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) Obvious.

(iv) =⇒ (i) From Corollary 3.2.3. and Proposition 4.1.15.

(i) =⇒ (v) Obvious.

(v) =⇒ (i) From Proposition 4.1.15.

The validity of the following implications is demonstrated by Theorems 3.2.4 and 3.2.5.

quasi− injective continuous quasi− continuous

Qn Q2 P2 Pn

Q1 P1 CS

For any integer n ≥ 2 no other implications can be added to this table in general.

Example 3.2.6. Consider the ring Z, which represents the set of rational integers. In

this context, the Z-module Z fulfills the condition P2. However, it does not satisfy Q1.

Proof. Consider the module M = ZZ. It is evident that M satisfies the condition of being

a completely reducible module (CS) and also fulfills C3, thereby satisfying the property

denoted by P2 according to Theorem 3.2.4. Assume N denote the submodule 2Z of Z.

Remarkably, N is isomorphic to M . However, the homomorphism φ : N → M defined

by φ(2n) = n (for n ∈ Z) cannot be extended to a homomorphism on M . Consider there

exists a homomorphism θ : M → M such that θ|N = φ. Then, for any m ∈ M , there

exists x ∈ M such that θ(m) = mx. Consequently, 2mx = θ(2m) = φ(2m) = m. Thus,

2x = 1, which leads to a contradiction. Hence, M does not satisfy Q1.
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Example 3.2.6 illustrates that none of the implications

quasi-continuous =⇒ continuous, P2 =⇒ Q2, P1 =⇒ Q1,

hold universally. Specifically, there exists a commutative local ring R for which the R-

module R satisfies Q1 but is not CS [9].

3.3 C11-modules

In this section, we present C11-modules as a generalization of CS-modules. The pri-

mary emphasis of our discussion revolves around exploring the properties of C11-modules.

Throughout this section, we will highlight the similarities and differences between C11-

modules and CS-modules. The majority of the material covered in this section can be

found in references[10], [13], and [11].

Definition 3.3.1. A module M satisfies C11 if every submodule N of M has a com-

plement that is a direct summand of M . In other words, for each submodule N of M ,

there exists a direct summand K of M such that K is a complement of N in M ..

To facilitate comparison, we start by proving the given proposition.

Proposition 3.3.2. A module M is CS if and only if, for every pair of submodules

N and L satisfying N ∩ L = 0, there exists a direct summand K of M such that L is a

submodule of K and N has no intersection with K. Furthermore, in such cases, it holds

that N ⊕K ≤e M .

Proof. Let’s first consider the case where M is CS. Let N and L be submodules of M

such that N ∩ L = 0. There exists a complement K of N in M such that L ≤ K. By the

assumption, we conclude that K is a direct summand of M .

Conversely, let M satisfies the given condition. Let L be a complement in M . There

exists a submodule N of M such that L is a complement of N in M . By the given

hypothesis, there exists a direct summand K of M such that L ≤ K and N ∩ K = 0.

Consequently, we have L = K. It follows that every complement inM is a direct summand.
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Therefore, M is CS. The last part can be deduced from Proposition 1.1.9 (also referred to

in the proof of Lemma 3.3.3 below).

Lemma 3.3.3. Consider a submodule N of a module M and a direct summand K of M .

The following condition holds: K is a complement of N in M if and only if K ∩ N = 0

and K ⊕N ≤e M .

Proof. Assume that K is a complement of N in M . Therefore, it follows that K ∩N = 0.

Now, consider an element x ̸= 0 in M . If x ∈ K, then we have 0 ̸= xR = xR ∩ K ⊆

xR ∩ (K ⊕ N). On the other hand, if x /∈ K, then N ∩ (xR + K) ̸= 0, which implies

xR ∩ (K ⊕N) ̸= 0. Consequently, we can conclude that xR ∩ (K ⊕N) ̸= 0 for all x ̸= 0

in M . Therefore, K ⊕N ≤e M .

Conversely, let us suppose that K and N possess the properties stated. We can find a

submodule K ′ of M such that M = K ⊕K ′. Suppose there exists a submodule K1 of M

such that K ⊆ K1 and K1 ∩ N = 0. Then, we have K1 = K1 ∩M = K1 ∩ (K ⊕K ′) =

K⊕(K1∩K ′). Assume that y ̸= 0 belongs toK1∩K ′. Consequently, we have 0 ̸= yr = n+k

for some n ∈ N , k ∈ K, and r ∈ R. This implies that yr − k = n ∈ K1 ∩N = 0. Hence,

yr = k ∈ K ∩ K ′ = 0, which leads to a contradiction. Therefore, we conclude that

K1 ∩ K ′ = 0 and hence K = K1. In other words, K serves as a complement of N in

M .

Proposition 3.3.4. For a module M the followings are equivalent.

(i) M is a C11-module.

(ii) Every complement submodule L in M has a corresponding direct summand K in

M that acts as a complement for L in M .

(iii) For any submodule N of M , there exists a direct summand K of M where N and

K have no intersection (N ∩K = 0), and their direct sum N ⊕K is included in M with

essential inclusion (N ⊕K ≤e M).

(iv) For any complement submodule L in M , there exists a direct summand K of M

where L and K have no intersection (L∩K = 0), and their direct sum L⊕K is included

in M with essential inclusion (L⊕K ≤e M).
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Proof. (i) =⇒ (ii), (iii) =⇒ (iv) Clear.

(i) ⇐⇒ (iii), (ii) ⇐⇒ (iv) Obviously by Lemma 3.3.3.

(iv) =⇒ (i) Consider any submodule B of M . We can find a complement submodule

C in M such that B is essentially included in C (B ≤e C). By the given hypothesis, there

exists a direct summand K of M satisfying C ∩ K = 0 and C ⊕ K ≤e M . According

to Lemma 3.3.3, we can deduce that K is a complement of C in M . Furthermore, it is

important to note that K and B have no intersection (K ∩B = 0). Suppose there exists a

submodule K ′ of M that properly contains K. Consequently, we have K ′ ∩C ̸= 0, which

implies K ′ ∩ C ∩ B ̸= 0. In other words, K ′ ∩ B ̸= 0. This implies that K serves as a

complement of B in M .

Theorem 3.3.5. The condition C11 is preserved under direct sums of modules. In other

words, any direct sum of modules, each satisfying C11, also satisfies C11

Proof. Let Mλ (λ ∈ Λ) be a non-empty collection of modules, each satisfying the C11

condition. Consider the module M =
⊕

λ∈ΛMλ. Let N be an arbitrary submodule of

M . For each λ ∈ Λ, observe that N ∩Mλ is a submodule of Mλ, and since Mλ satisfies

C11, Proposition 3.3.4. guarantees the existence of a direct summand Kλ of Mλ such that

(N ∩Mλ) ∩ Kλ = 0 and (N ∩Mλ) ⊕ Kλ ≤e Mλ. Furthermore, note that N ∩Mλ = 0,

(N⊕Kλ)∩Mλ = (N∩Mλ)⊕Kλ, and (N⊕Kλ)∩Mλ ≤e Mλ. Let Λ
′ be a non-empty subset

of Λ that contains λ and also satisfies the condition that there exists a direct summand

K ′ of M ′ =
⊕

λ∈Λ′ Mλ with N ∩ K ′ = 0 and (N ⊕ K ′) ∩M ′ ≤e M
′. Suppose Λ′ ̸= Λ.

Choose µ ∈ Λ such that µ /∈ Λ′. Now, consider L = (N ⊕K ′)∩Mµ, which is a submodule

of Mµ. According to Proposition 3.3.4, there exists a direct summand Kµ of Mµ such that

L ∩ Kµ = 0 and L ⊕ Kµ ≤e Mµ. Let Λ′′ = Λ′ ∪ µ and M ′′ =
⊕

λ∈Λ′′ Mλ = M ′ ⊕Mµ.

Notice that K ′ ∩Kµ = 0. Define K ′′ = K ′ ⊕Kµ. Then K ′′ is a direct summand of M ′′

and moreover N ∩K ′′ = 0.

Consider the submodule N ⊕ K ′′. It is worth noting that (N ⊕ K ′′) ∩M ′ contains

(N ⊕ K ′) ∩M ′, implying that (N ⊕ K ′′) ∩M ′ ≤e M
′. Additionally, (N ⊕ K ′′) ∩Mµ =

(N ⊕K ′ ⊕Kµ)∩Mµ = [(N ⊕K ′)∩Mµ]⊕Kµ = L⊕Kµ, which is an essential submodule

of Mµ. Therefore, it follows that (N ⊕ K ′′) ∩M ′′ is an essential submodule of M ′′. By
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repeating this process, we can find a direct summand K of M such that N ∩K = 0 and

N ⊕K ≤e M . According to Proposition 3.3.4., M satisfies the C11 condition.

Corollary 3.3.6. Any direct sum of CS-modules provides the property C11.

Proof. By applying Theorem 3.3.5., the result follows immediately.

Corollary 3.3.7. Any direct sum of uniform modules provides property C11.

Proof. By applying Corollary 3.3.6., the result follows immediately.

Next results provides characterization of C11-modules in terms of decomposition like

CS-modules (See Theorem 3.1.14.) Observe that this characterization does not contain

relative injectivity which is unlike to the situation of CS-property.

Theorem 3.3.8. An M module satisfies C11 if and only if it can be expressed as the

direct sum of Z2(M) and a nonsingular submodule K of M , where both Z2(M) and K

individually satisfy C11.

Proof. The sufficiency is an immediate consequence of Theorem 3.3.5. For the converse,

let us begin by assuming that M satisfies C11. Firstly, we show that Z2(M) is a direct

summand of M . Let L = Z2(M). By Proposition 3.3.4., there exist submodules K and

K ′ of M such that M = K ⊕ K ′, L ∩ K = 0, and L ⊕ K ≤e M . Now, we have L =

Z2(M) = Z2(K ⊕K ′) = Z2(K)⊕ Z2(K
′). Since Z2(M) = 0, we obtain L = Z2(K

′) ⊆ K ′.

As L⊕K is essential in M , we conclude that L is essential in K ′, implying that K ′/L is

singular. Hence, L = K ′, and L is a direct summand of M .

We have established that M = L⊕K. Next, we prove that L satisfies C11. Let N be

any submodule of L. Then, N⊕K is a submodule ofM . SinceM satisfies C11, there exist

submodules P and P ′ ofM such thatM = P⊕P ′, (N⊕K)∩P = 0, and N⊕K⊕P ≤e M .

Notably, P ∩ K = 0, and thus P embeds in M/K ∼= L. This implies P = Z2(P ) and

P ≤ L. Consequently, P is a direct summand of L (specifically, L = P ⊕ (L ∩ P ′)), and

N ⊕ P ≤e L. According to Proposition 3.3.4., L satisfies C11.

Lastly, we demonstrate that K satisfies C11. Let π : M → K denote the canonical

projection. Consider any submodule H of K. We have L ∩ H = 0, and there exist

58



submodules Q and Q′ ofM such thatM = Q⊕Q′, (L⊕H)∩Q = 0, and L⊕H⊕Q ≤e M .

Note that L = Z2(M) = Z2(Q)⊕Z2(Q
′) = Z2(Q

′) since Q∩L = 0. Consequently, L ≤ Q′,

and we can express Q′ = L ⊕ (Q′ ∩ K). Now, M = Q ⊕ Q′ = Q ⊕ L ⊕ (Q′ ∩ K). This

shows that L ⊕ Q is a direct summand of M . Moreover, L ⊕ Q = L ⊕ π(Q). Therefore,

the submodule π(Q) of K is a direct summand of M and, hence, a direct summand of K.

As H ⊕ π(Q) ⊕ L ≤e M , we conclude that H ⊕ π(Q) ≤e K. By Proposition 3.3.4., K

satisfies C11.

Lemma 3.3.9. Let M be a module which satisfies C11. Then M = M1 ⊕ M2 where M1 is

a submodule of M with essential socle and M2 a submodule of M with zero socle.

Proof. Let S represent the socle of module M . We can find submodules K and K ′ of

M such that M = K ⊕ K ′, S ∩ K = 0, and S ⊕ K ≤e M . Consequently, we have

S = soc M = (soc K) ⊕ (soc K ′). It is evident that soc K = 0, implying that S ≤ K ′.

Additionally, since S ⊕K ≤e M , we can conclude that S ≤e K
′. Thus, we have proved

the desired result.

Theorem 3.3.10. A module M is nonsingular and satisfies C11 if and only if it can be

decomposed as the direct sum M = M1 ⊕M2, where M1 is a module satisfying C11 and

possesses an essential socle, and M2 is a module satisfying C11 and has a socle that is zero.

Proof. The sufficiency is clear from Theorem 3.3.5. Conversely, assume that M satisfies

C11. According to Lemma 3.3.9., we can write M as the direct sum M =M1⊕M2, where

M1 has an essential socle and M2 has a zero socle. Let S represent the socle of M . It is

evident that M1 = c(S). We now proceed to prove that M1 satisfies C11. Consider any

submodule N of M1. By Proposition 3.3.4., there exists a direct summand P of M such

that (N ⊕M2)∩P = 0 and N ⊕M2 ⊕P is an essential submodule of M . Since P embeds

in M1, it follows that P has an essential socle, denoted by S ∩ P . Consequently, we have

P = c(S ∩ P ) ≤ c(S) = M1. Hence, P is a direct summand of M1, and N ⊕ P is an

essential submodule of M1. By applying Proposition 3.3.4., we conclude that M1 satisfies

C11.

Let’s now consider the module M2. We denote the canonical projection from M to
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M2 as π : M → M2. Let H be an arbitrary submodule of M2. According to Proposition

3.3.4., there exist submodules Q and Q′ of M such that M = Q⊕Q′, (M1 ⊕H) ∩Q = 0,

and M1 ⊕ H ⊕ Q is an essential submodule of M . Since S ∩ Q = 0, we have S ⊆ Q′.

Consequently, we obtain M1 = c(S) ⊆ Q′. This implies that M1 is a direct summand of

Q′, and thusM1⊕Q is a direct summand ofM . As a result, we can deduce thatM1⊕π(Q)

is a direct summand of M , π(Q) is a direct summand of M2, and H ⊕π(Q) is an essential

submodule of M2. By utilizing Proposition 3.3.4., we conclude that M2 satisfies C11.

Lemma 3.3.11. Consider a module M with a direct summand N and an injective sub-

module K such that N ∩K = 0. We claim that N ⊕K is a direct summand of M .

Proof. Let N ′ be a submodule of M such that M = N ⊕ N ′. Consider the canonical

projection π : M → N ′. Since N ∩K = 0, we have K ∼= π(K), which implies that π(K)

is injective. Hence, π(K) is a direct summand of N ′. Now, we observe that N ⊕ K =

N ⊕ π(K) since π(K) ⊆ N ′. Therefore, N ⊕K is a direct summand of M .

Proposition 3.3.12. Suppose M is a module that fulfills the property C11, and let N be

a direct summand of M such that the quotient module M/N is injective. Then, N also

satisfies C11.

Proof. Consider any submodule L of N . Let N ′ be an injective submodule ofM such that

M = N ⊕N ′. Now, consider the submodule L⊕N ′. There exists a direct summand K of

M such that (L⊕N ′)∩K = 0 and (L⊕N ′)⊕K is an essential submodule ofM (according

to Proposition 3.3.4.). By Lemma 3.3.11., N ′ ⊕ K is a direct summand of M . Notably,

N ′ ⊕ K = N ′ ⊕ π(K), where π : M → N is the canonical projection. Consequently,

π(K) is a direct summand of N . Moreover, L ⊕ π(K) ⊕ N ′ is an essential submodule of

M . Hence, L⊕ π(K) is an essential submodule of N . According to Proposition 3.3.4., N

satisfies C11.

Lemma 3.3.13. Assume M = M1 ⊕M2. It follows that M1 satisfies C11 if and only

if, for every submodule N of M1, there exists a direct summand K of M such that M2

is contained in K, N intersects K trivially (K ∩ N = 0), and K ⊕ N is an essential

submodule of M .
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Proof. Assume that M1 satisfies C11. Let N be any submodule of M1. According to

Proposition 3.3.4., there exists a direct summand L ofM1 such that N intersects L trivially

(N∩L = 0) and N⊕L is an essential submodule ofM1. It is evident that (L⊕M2)∩N = 0,

and (L⊕M2)⊕N is an essential submodule of M .

Conversely, assume thatM1 satisfies the given property. Let H be a submodule ofM1.

By hypothesis, there exists a direct summand K of M such that M2 is contained in K,

K intersects H trivially (K ∩H = 0), and K ⊕H is an essential submodule of M . Now,

observe that K = K ∩ (M1 ⊕M2) = (K ∩M1)⊕M2. This implies that K ∩M1 is a direct

summand of M , and thus a direct summand of M1. Additionally, H ∩ (K ∩M1) = 0, and

H ⊕ (K ∩M1) = M1 ∩ (H ⊕ K), which is an essential submodule of M1. According to

Proposition 3.3.4., M1 satisfies C11.

Theorem 3.3.14. Suppose that M =M1 ⊕M2 is a C11-module such that for every direct

summand K of M with K ∩M2 = 0, K⊕M2 is a direct summand of M . Then M1 is also

a C11-module.

Proof. Consider any submodule N of M1. According to the given hypothesis, there exists

a direct summand K of M such that (N ⊕M2)∩K = 0 and (N ⊕M2)⊕K is an essential

submodule ofM , as stated in Proposition 3.3.4.. Additionally,M2⊕K is a direct summand

of M . Now, by applying Lemma 3.3.13., we can conclude that N satisfies C11.

Corollary 3.3.15. If M is a module satisfying C11 and K is a direct summand of M with

the property that M/K is K-injective, then K also satisfies C11.

Proof. We can find a submodule K ′ of M such that M = K ⊕K ′ and K ′ is K-injective,

as assumed. Let L be a direct summand of M such that L ∩ K ′ = 0. There exists a

submodule H of M with H ∩ K ′ = 0, M = H ⊕ K ′, and L ⊆ H. Since L is a direct

summand of H, it follows that L⊕K ′ is a direct summand of M = H ⊕K ′. By Theorem

3.3.14., we conclude that K satisfies C11.

Corollary 3.3.16. Assume M = M1 ⊕ M2 be a direct sum of a submodule M1 and an

injective submodule M2. Then M satisfies C11 if and only if M1 satisfies C11.
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Proof. By Corollary 3.3.15., ifM satisfies C11, thenM1 satisfies C11. Conversely, according

to Theorem 3.3.5., if M1 satisfies C11, then M satisfies C11.

4 Module classes with conditional summand proper-

ties

In this chapter firstly we collect some basic results on conditional direct summand proper-

ties secondly we consider C11-modules with a special conditional direct summand property.

For a good source of references, please look at [12], [14].

4.1 Conditional direct summands

Direct summands of a module hold significant importance in Ring and Module Theory

and play a crucial role in our work. In this section, we specifically concentrate on this

type of submodules. Following a common algebraic approach, we begin with the direct

summand(s) of a module and introduce a condition that utilizes these direct summands

to generate a new direct summand.

Let M be a right R-module. Recall the following properties of M :

(i) property C2: if X ≤ M is isomorphic to a direct summand of M , then X is a direct

summand of M ; in other words, for each direct summand N of M and each monomor-

phism φ : N → M , the submodule φ(N) is also a direct summand of M ;

(ii) property C3: if M1 and M2 are direct summands of M such that M1 ∩ M2 = 0,

then M1 ⊕ M2 is a direct summand of M ;

Furthermore, we also recall the following another type of conditional direct summand

property:

(iii) the summand intersection property, SIP: if M1 and M2 are direct summands of

M , then M1 ∩ M2 is a direct summand of M [5], [3], [7].

We can establish a correspondence between direct summands and idempotent endo-

morphisms of a module. Let MR = K ⊕ K ′. The canonical projection π : M → K is

an idempotent endomorphism of M with π2 = π ∈ End(MR), and K = πM (where π
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is a left operator on M). Thus, each direct summand of M corresponds to the image of

an idempotent endomorphism of M . Conversely, if e2 = e ∈ End(MR), then 1 − e is an

idempotent in End(MR), and MR = eM ⊕M(1− e).

Before establishing the relationships between the C2, C3, and SIP properties, we shall

now present a straightforward lemma that will be employed at various points throughout

our subsequent analysis.

Lemma 4.1.1. Suppose M = N ⊕ N ′. Let K ≤ M with N ∩ K = 0. We have

N ⊕K = N ⊕ π(K), where π :M → N ′ is the canonical projection.

Proof. Consider x ∈ N ⊕K. Then x = n+k, where n ∈ N and k = y+y′ for some y ∈ N

and y′ ∈ N ′ such that y′ = π(k). Hence, x = n+ y + π(k) ∈ N + π(K). This implies that

N ⊕K ≤ N + π(K) = N ⊕ π(K).

Now, let m ∈ N ⊕ π(K). Then m = b+ c, where b ∈ N , c ∈ π(K), and c = π(d) for some

d ∈ K where d = e + c for some e ∈ N . Hence, m = b + (d− e) = (b− e) + d ∈ N ⊕K.

Thus, we have N ⊕K = N ⊕ π(K), as required.

Lemma 4.1.2. If a module M satisfies property C2, then it also satisfies property C3.

Proof. Let K and L be direct summands of M with K ∩L = 0. We have M = K⊕K ′ for

some K ′ ≤M . Let π :M → K ′ denote the canonical projection. Since K∩L = 0, we have

π(L) ∼= L and π(L) ≤ K ′. By C2, π(L) is a direct summand of M , i.e., M = π(L) ⊕ L′

for some L′ ≤ M . Thus, K ′ = π(L)⊕ (K ′ ∩ L′) and M = K ⊕ π(L)⊕ (K ′ ∩ L′). Hence,

K ⊕ π(L) is a direct summand of M . Moreover, K ⊕ L = K ⊕ π(L). Thus, M satisfies

property C3.

The following example demonstrates that none of the implications C3 =⇒ C2, SIP

=⇒ C3, and C3 =⇒ SIP hold in general.

Example 4.1.3.

(i) Assume Z be the Z-module. Then Z satisfies C3 but Z does not satisfy C2.

(ii) If M is a free Z-module of non-zero finite rank k, then M satisfies C3 if and only

if k = 1. Consequently, if M =
⊕k

i=1 Z with k ≥ 2, then M has SIP but does not satisfy
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C3.

(iii) Assume Z-module M = Z ⊕ (Z/pZ), where p is a prime integer, satisfies C3 but

does not satisfy SIP.

Proof. (i) The module Z satisfies C3 since it is indecomposable. However, the submodule

N = 2Z is isomorphic to Z but is not a direct summand of Z, illustrating that Z does not

satisfy C2.

(ii) For k ≥ 2, let M =
⊕k

i=1 Z and consider the submodules K1 = f1Z and K2 =

(f1+2f2)Z. We haveM = K1⊕L = K2⊕L, where L = f2Z+ . . .+fkZ, and K1∩K2 = 0.

However, K1 ⊕K2 = f1Z⊕ 2f2Z is not a direct summand of M , illustrating that M does

not satisfy C3. Thus,
⊕k

i=1 Z (k ≥ 2) does not satisfy C3, but it has the strong exchange

property (SIP) as shown in [13].

(iii) Consider the Z-module M = Z ⊕ (Z/pZ), where p is a prime integer. Let B =

Z(1, 0+ pZ) and C = Z(1, 1+ pZ) be direct summand submodules of M . However, B ∩C

is not a direct summand of M .[13].

Lemma 4.1.4. Assume M be a module and N ≤d M. Then

(i) If M satisfies C2 then N satisfies C2.

(ii) If M satisfies C3 then N satisfies C3.

(iii) If M satisfies SIP then N satisfies SIP.

Proof. (i) Assume X and K be submodules of N such that X is isomorphic to K and K

is a direct summand of N . By C2, we have X is a direct summand of M . Therefore, M

can be decomposed as M = X ⊕ X ′ for some submodule X ′ of M . Using the modular

law, we can show that N can also be decomposed as N = X ⊕ (N ∩ X ′). This implies

that X is a direct summand of N .

(ii) Assume K1 and K2 be direct summands of N such that K1 ∩K2 = 0. According

to C3, we have K1 ⊕K2 is a direct summand of M . Therefore, M can be decomposed as

M = (K1 ⊕ K2) ⊕ K3 for some submodule K3 of M . By applying the modular law, we

find that N = (K1 ⊕K2)⊕ (N ∩K3), which implies that K1 ⊕K2 is a direct summand of

N .

(iii) Assume K, L be direct summands of N . So K, L modules are direct summands
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of M . By hypothesis, K ∩ L ≤d M . Hence M = (K ∩ L) ⊕ X for some X ≤ M . By

applying the modular law, N = (K ∩ L) ⊕ (N ∩ X), i.e., K ∩ L ≤d N .

Lemma 4.1.5. Let M be a right R-module, where R = ReR for some idempotent e in R

and S = eRe. For submodules K,K ′ ≤MR and N,N ′ ≤ (Me)S, we have the following:

(i) K = KeR and N = NeR.

(ii) K ∩K ′ = 0 if and only if Ke ∩K ′e = 0.

(iii) N ∩N ′ = 0 if and only if NR ∩N ′R = 0.

Proof. (i) Due to the fact that K is a submodule of M , we can express K as K = KR =

KReR = KeR. Similarly, we can express N as N = NS = NeRe = NeR.

(ii) If K ∩ K ′ = 0, then the condition Ke ∩ K ′e ≤ K ∩ K ′ implies that Ke ∩ K ′e

= 0. Conversely, if Ke ∩ K ′e = 0, let x ∈ K ∩ K ′. Then xRe ≤ Ke ∩ K ′e = 0, which

implies xReR = 0. Consequently, xR = 0, and hence x = 0. Thus, we conclude that K

∩ K ′ = 0.

(iii) From (i) and (ii).

Lemma 4.1.6. Let R = ReR and S = eRe for some idempotent e in R, and let M be a

right R-module. Suppose L and N are submodules of (Me)S. Then L is a complement of

N in (Me)S if and only if LR is a complement of NR in MR.

Proof. Let L be a complement of N in Me. Then L and N have disjoint intersections,

i.e., L ∩ N = 0, and consequently, LR ∩ NR = 0. Assume LR ≤ K ≤ MR and K ∩ NR

= 0. By Lemma 4.1.5. (i), we have L = LRe ≤ Ke ≤ Me and Ke ∩ N ≤ K ∩ NR =

0. Hence, we conclude that L = Ke and LR = KeR = K, which implies that LR is a

complement of NR in M .

For the converse, suppose that LR is the complement of NR in M . This implies that

the intersection of L and N is the zero element. Suppose we have the following inclusion

relations: L ≤ H ≤ (Me)S, and H ∩ N = 0. According to Lemma 4.1.5, we know that

LR ≤ RH, and RH ∩ NR = 0. Consequently, we can conclude that LR = RH. By

transitivity, we have L = LRe = HRe = H, once again utilizing Lemma 4.1.5. Thus, we

can assert that L is the complement of N in Me.
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Proposition 4.1.7. Assume M be a right R-module, and consider L as a submodule of

M , where R = ReR for some idempotent element e in R, and S = eRe. Then

(i) L ≤e MR if and only if Le ≤e (Me)S,

(ii) L ≤c MR if and only if Le ≤c (Me)S,

(iii) L ≤d MR if and only if Le ≤d (Me)S.

Proof. (i) Suppose L ≤e MR, where L is a submodule of M and R = ReR for some

idempotent element e in R. Let N be a nonzero submodule of (Me)S, such that 0 ̸= N ≤

(Me)S. Using Lemma 4.1.5, we have K = KRe for any nonzero submodule K ≤ MR.

Applying this lemma, we find that 0 ̸= Ke ≤ (Me)S. Therefore, we have Ke ∩ Le ̸= 0.

Conversely, if Le ≤e (Me)S, then for any nonzero submodule K ≤MR, we have K = KRe

according to Lemma 4.1.5. Thus, 0 ̸= Ke ≤ (Me)S. Consequently, Ke ∩ Le ̸= 0. So K ∩

L ̸= 0. Then L ≤e MR.

(ii) From Lemma 4.1.6.

(iii) Let L is a submodule of M such that L ≤d MR. Then M can be expressed as the

direct sumM = L⊕L′ for some submodule L′ satisfying L′ ≤MR. Consequently, we have

Me = Le + L′e. However, it is true that Le ∩ L′e ≤ L ∩ L′ = 0. Hence, we can conclude

that Me = Le ⊕ L′e. Conversely, let’s assume that Me = Le ⊕ K for some submodule

K satisfying K ≤ (Me)S. According to Lemma 4.1.5, we know that L ∩ KR = 0.

Furthermore, we have M = MRe = (Le +K)R = LeR +KR = L +KR. Thus, we can

express MR as the direct sum MR = L⊕KR, which implies that L ≤d MR.

Proposition 4.1.8. Let M be a right R-module where R = ReR for some idempotent e

in R and S = eRe. Then

(i) e soc(MR) = soc((Me)S). In particular, MR is semisimple if and only if (Me)S is

semisimple,

(ii) Ze(MR) = Z((Me)S). In particular, MR is nonsingular if and only if (Me)S is

nonsingular.

Proof. (i) By Lemma 4.1.5. and Proposition 4.1.7.

(ii) Assume me ∈ Ze(MR). Then m ∈ Z(MR). There exists an essential right ideal F

of R such that meF = 0. By Proposition 4.1.7. (i), Re ∩ F is essential in Re and hence
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(Re ∩ F )e is essential in (eRe)S = S. But me ∈ Me and (Re ∩ F )e ≤ Fe ≤ F . Thus

me[(Re ∩ F )e] = 0, and so me ∈ Z((Me)S). Now, let me ∈ Z((Me)S). Then meG = 0

for some essential right ideal G of S. By Proposition 4.1.7., RG is essential in Re. Thus

RG ⊕ R(1 - e) is essential in RR. Since me[RG ⊕ R(1 - e)] = 0, we have me ∈ Z(MR)

and hence me ∈ Ze(MR). The second part is clear.

Theorem 4.1.9.. Assume M be a right R-module, where R = ReR for some idempotent

e in R and S = eRe. Then

(i) the right R-module M satisfies C2 if and only if the right S-module Me satisfies C2,

(ii) the right R-module M satisfies C3 if and only if the right S-module Me satisfies C3,

(iii) the right R-module M has the SIP if and only if the right S-module Me has the

SIP.

Proof. (i) Assume K and L be submodules of M such that K ∼= L, where L is a direct

summand of MR. Consider an R-isomorphism f : K → L. Then Le is also a direct

summand of (Me)S. Let φ = f |Ke : Ke → Le be an isomorphism. Thus, Ke is a direct

summand of Me, and consequently, K is a direct summand of MR. Conversely, let B

and C be submodules of Me such that B ∼= C, and C is a direct summand of (Me)S.

Hence, CR is a direct summand of MR. Suppose φ : B → C is an isomorphism. Define

θ : BR → CR and θ′ : CR → BR by θ (
∑
i = 1nribi) =

∑n
i=1 riφ(bi) and θ

′ (
∑n

i=1 rici) =∑n
i=1 riφ

−1(ci) for all n ≥ 1, bi ∈ B, ci ∈ C, and ri ∈ R (1 ≤ i ≤ n). Now, suppose∑n
i=1 ribi = 0. Then

∑n
i=1 seribi = 0 for all s ∈ R. Therefore,

∑n
i=1 seriebi = 0, and hence∑n

i=1 serieφ(bi) = 0. Thus,
∑n

i=1 seriφ(bi) = 0. It follows that Re (
∑n

i=1 riφ(bi)) = 0,

implying ReR (
∑n

i=1 riφ(bi)) = 0. That is,
∑n

i=1 riφ(bi) = 0. Therefore, we see that θ is a

well-defined mapping. It can be easily verified that θ is an R-homomorphism. Similarly, θ′

is an R-homomorphism. Clearly, θ′θ = 1|RB and θθ′ = 1|RC . Hence, θ is an isomorphism.

By the hypothesis, BR is a direct summand ofMR. Then, using Proposition 4.1.7, we can

conclude that B is a Let B and C be direct summands of (Me)S with B ∩ C = 0. Thus,

we have B = BRe and C = CRe. Consequently, BR and CR are direct summands ofMR.

Since BRe∩CRe = B∩C = 0, it follows that BR∩CR = 0 inMR. Hence, BR⊕CR is a

direct summand of MR. By Proposition 4.1.7, we can deduce that B ⊕ C = (BR⊕ CR)e
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is a direct summand of (Me)S. Conversely, let K and L be direct summands of MR

with K ∩ L = 0. Thus, Ke and Le are direct summands of (Me)S. Consequently,

Ke∩Le ≤ K ∩L = 0, which implies that (Ke⊕Le)R = KeR⊕LeR = K ⊕L is a direct

summand of MR.

(iii) Clear from Proposition 4.1.7.

Corollary 4.1.10. Consider a ring R such that R = ReR for an idempotent element e

in R. Then, the right R-module RR satisfies property C2 (resp., C3 or SIP) if and only if

the right eRe-module Re satisfies property C2 (resp., C3 or SIP).

Proof. By Theorem 4.1.9, this result follows immediately.

Proposition 4.1.11. The following statements are equivalent for a module M.

(i) M has C2.

(ii) M ′ ⊆ LiftX(M) for all right R-modules X.

(iii) M ′ ⊆ LiftX(M) for all X ∈ M ′.

(iv) M ′ ⊆ LiftM(M).

Proof. (i) ⇐⇒ (ii) ⇐⇒ (iii) based on Theorem 2.2.16.

(iii) =⇒ (iv) is clear.

(iv) =⇒ (i) LetN ′ ∈M ′. Then there existsN ≤d M and an isomorphism φ : N ′ → N .

According to Theorem 2.2.11, LiftM(M) ⊆ LiftN(M). Hence, by (iv), N ′ ∈ LiftN(M),

and there exists θ ∈ HomR(M,N) such that θ|N ′ = φ. For any m ∈ M , θ(m) ∈ N ,

so we have θ(m) = φ(n′) for some n′ ∈ N ′. Consequently, θ(m) = θ(n′), and thus

m − n′ ∈ ker θ. It follows that M = N ′ + (ker θ). However, N ′ ∩ (ker θ) = ker φ = 0.

Therefore, M = N ′ ⊕ (ker θ). Hence, M satisfies C2.

Proposition 4.1.12. The following statements are equivalent for a module M.

(i) M has C3.

(ii) M (2) ⊆ LiftX(M) for all right R-modules X.

(iii) M (2) ⊆ LiftX(M) for all X ∈M (2).

(iv) M (2) ⊆ LiftM(M).
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Proof. (i) ⇐⇒ (ii) ⇐⇒ (iii) based on Theorem 2.2.16.

(iii) =⇒ (iv) is clear.

(iv) =⇒ (i) Assume K,L ≤d M with K∩L = 0. Consider the canonical projection π :

K⊕L→ K. By (iv) and Theorem 2.2.11, we haveK⊕L ∈ LiftM(M) ⊆ LiftK(M), which

implies the existence of θ ∈ HomR(M,K) such that θ|K⊕L = π. Consequently, we have

M = K ⊕ ker θ. Moreover, since θ(L) = π(L) = 0, we have L ⊆ ker θ. Considering that

M = L⊕L′ for some submodule L′ of M , we can express ker θ as ker θ = L⊕ (ker θ∩L′).

Consequently, we obtain M = K ⊕ L⊕ (ker θ ∩ L′). Thus, M satisfies C3.

Corollary 4.1.13. Assume M be a module. If M has C3, then for any integer n ≥ 3,

every element of M (n) is a direct summand of M.

Proof. Consider L ∈ M (n). Then L = L1 ⊕ L2 ⊕ · · · ⊕ Ln, where Li ≤d M for 1 ≤ i ≤ n.

Using induction, we can establish that L1⊕L2⊕· · ·⊕Ln−1 ≤d M . Therefore, by applying

property C3, we conclude that L1 ⊕ L2 ⊕ · · · ⊕ Ln ≤d M .

Proposition 4.1.14. Let X be any right R-module. Then the following statements are

equivalent for a module M.

(i) C(2) ⊆ LiftX(M).

(ii) C(n) ⊆ LiftX(M) for all n ≥ 2.

Proof. (ii) =⇒ (i) Clear.

(i) =⇒ (ii) Assume that (i) holds. Let k ≥ 3 and Ni ≤c M (1 ≤ i ≤ k) be

submodules such that N1+N2+ · · ·+Nk is a direct sum. Let N = N1+N2+ · · ·+Nk and

φ ∈ HomR(N,X). There exists a submodule N ′ ≤c M such that N2 +N3 + · · · +Nk ≤e

N ′. By induction, we have N2 + N3 + · · · + Nk ∈ LiftX(M), and therefore there exists

α ∈ HomR(M,X) such that α(m) = φ(m) for m ∈ N2+N3+ · · ·+Nk. Now, N1∩N ′ = 0

because N1 ∩ (N2 + N3 + · · · + Nk) = 0. Hence, we can define β ∈ HomR(N1 ⊕ N ′, X)

by β(n + n′) = φ(n) + α(n′) for n ∈ N1 and n′ ∈ N . Then, according to (i), there

exists δ ∈ HomR(M,X) such that δ|N1⊕N ′ = β. For any ni ∈ N (1 ≤ i ≤ k), we

have δ(n1 + n2 + · · · + nk) = β(n1 + n2 + · · · + nk) = φ(n1) + α(n2 + · · · + nk) =

φ(n1) + φ(n2 + · · · + nk) = φ(n1 + n2 + · · · + nk). Thus, δ|N = φ. It follows that

N ∈ LiftX(M). Hence, C(k) ⊆ LiftX(M).
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Corollary 4.1.15. C2 ⊆ LiftM(M) if and only if M has SIP.

Proof. By Proposition 4.1.14.

4.2 C11-modules with conditional direct summand properties

In this section, we discuss several results concerning C11 modules with a conditional direct

summand property. It is worth noting that direct summands of modules with C11 may

not necessarily satisfy C11 themselves. This is in contrast to the behavior observed in

CS-modules. Let P be a property of modules. We define the notion of ”P+” for a module

M , indicating that every direct summand of M satisfies property P . For instance, an

indecomposable module satisfies P+ if and only if it satisfies property P . In the case of

C1 (i.e., CS), a module M satisfies C1 if and only if it satisfies C+
1 . This equivalence can

be abbreviated as C+
1 = C1 [13].

Before proceeding further, let us consider the following example.

Example 4.2.1. Consider the Z-module M = (Z/pZ) ⊕ Q, where p is a prime num-

ber. We observe that M satisfies C+
11 and C2, but it does not satisfy C1.

Proof. According to Corollary 3.3.7, the module M satisfies C11. Since M has uniform

dimension 2, it also satisfies C+
11. However, M does not satisfy C1 as it contains a comple-

ment submodule K = R(1 + pZ, 1) that is not a direct summand. Here, R represents the

local ring Z(p).

Now we will establish that M satisfies C2. Let L be a non-zero direct summand of M .

If L ̸= M , then L is uniform due to M having a uniform dimension of 2. Specifically, L

can be expressed as (Z/pZ) ⊕ 0, 0 ⊕ Q, or R(1 + pZ, q), where q is a non-zero element

in Q [13].

We have M = L ⊕ L′, where L′ is a submodule of M . Suppose L = R(1 + pZ, q) for

some nonzero q ∈ Q. Then pL ∩ L′ = 0, which implies R(0, pq) ∩ L′ = 0. Consequently,

L′ ∩ (0⊕Q) = 0. This implies that L′ embeds in Z/pZ, which is a simple module. There-

fore, L′ = (Z/pZ)⊕ 0. Thus, M = L⊕L′ = (Z/pZ)⊕ qR, which contradicts the fact that

Q ̸= qR. Hence, we conclude that L = (Z/pZ)⊕ 0 or L = 0⊕Q.
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Assume φ : L → M be a monomorphism. If L = (Z/pZ) ⊕ 0, then φ(L) is a simple

submodule, so φ(L) = L. If L = 0 ⊕ Q, then φ(L) is torsion-free injective, and hence

φ(L) = L. If L = M , then φ(L) = (Z/pZ) ⊕ Q = L. Thus, φ(L) = L holds for every

direct summand L of M and monomorphism φ : L→M . Hence, M satisfies C2.

Proposition 4.2.2.. AssumeM is a C11-module and X is a submodule. If the intersection

of X with any direct summand of M is itself a direct summand of X, then X is also a

C11-module.

Proof. Consider a submodule B of X. We can find a direct summand N of M such that

B ∩ N = 0 and B ⊕ N is an essential submodule of M . Since M = N ⊕ K for some

submodule K ofM , we have X∩ (B⊕N) = B⊕ (X∩N), which is an essential submodule

of X. Based on the given hypothesis that X ∩N is a direct summand of X, we conclude

that X satisfies the C11 condition.

Corollary 4.2.3. Let M be a C11-module.

(i) If M is a distributive module, then every submodule of M is a CS-module.

(ii) If X is a submodule of M such that Xe ⊆ X for all idempotent endomorphisms

e2 = e ∈ End(MR), then X is a C11-module. In particular, every fully invariant submodule

of M is a C11-module.

(iii) If M has the SIP property, then M satisfies the C+
11 condition.

Proof. (i) Let N be a complement submodule of M . We can find an idempotent en-

domorphism e2 = e ∈ End(MR) such that Me is a complement of N . Then we have

N = N∩M = N∩(Me⊕M(1−e)) = (N∩Me)⊕(N∩M(1−e)) = N∩M(1−e) ≤M(1−e).

Since N is a complement submodule in M , it follows that N = M(1− e). Hence, M is a

CS-module. By Corollary 3.1.13, every submodule of M is also a CS-module.

(ii) Consider a direct summand D of M , and let e : M → D be the canonical projection.

We have Xe = D ∩ X. According to Proposition 4.2.2, since Xe = D ∩ X, X is a C11-

module.

(iii) This is a direct implication of Proposition 4.2.2.
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Theorem 4.2.4. If M is a module satisfying C11 and C2, then the quotient ring S/∆ is

a von Neumann regular ring, and ∆ is equal to the Jacobson radical J .

Proof. Let α ∈ S and K = ker(α). By the C11 condition, there exists a direct summand

L of M that is a complement of K in M . Since α|L is a monomorphism, α(L) is a direct

summand of M by the C2 condition. Hence, there exists β ∈ S such that βα = i|L. Then

(α − αβα)(K ⊕ L) = (α − αβα)(L) = 0, which implies K ⊕ L ≤ ker(α − αβα). Since

K ⊕L is an essential submodule of M , it follows that α− αβα ∈ △. Therefore, S/△ is a

regular ring. This also proves that J ≤ △.

Consider m ∈ △. Since ker(m)∩ker(1−m) = 0 and ker(m) is essential in M , we have

ker(1−m) = 0. Thus,M(1−m) is a direct summand ofM by the C2 condition. Moreover,

M(1 −m) is also essential in M since ker(m) ≤ M(1 −m). Therefore, M(1 −m) = M ,

implying that 1−m is a unit in S. Consequently, we conclude that m ∈ J , which implies

△ ≤ J .

Lemma 4.2.5. For a nonsingular right R-module M , we have △ = 0.

Proof. Consider f ∈ △ and let N = ker(f). For any x ∈ M , there exists an essential

right ideal L of R such that 0 ̸= xL ≤ N . Consequently, we have f(x)L = 0. Since M is

nonsingular, we conclude that f(x) = 0. Since x was arbitrary, it follows that f = 0.

Corollary 4.2.6. For a nonsingular right R-module M satisfying C11 and C2, the ring S

is a von Neumann regular ring.

Proof. Based on Lemma 4.2.16, we have △ = 0. Therefore, the result follows from Theo-

rem 4.2.5.

5 Conditional direct summand properties relative to

fully invariant submodules

This last chapter consists of two sections. First section exhibits basic properties of the

class of fully invariant submodules of a module. Section two provides approaches to build

up new classes of modules on using fully invariant submodules.
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5.1 Fully invariant submodules

In module and ring theory, using basic and elite submodules to learn about the module

or starting from these special submodules and researching a new module class are the

rooted problems. Research in this direction is still being carried out for different classes

of invariant submodules. In this context we will introduce fully invariant submodules in

this section. [6], [12].

Definition 5.1.1. Let M be a right R-module and S be the ring of End(MR). A

submodule X of M is called fully invariant written X ⊴ M if f(X) ⊆ X for all f ∈

S. According to this the Jacobson radical J(R) of a ring R, the socle submodule soc(MR)

of a moduleM , the singular submodule Z(M), the second singular submodule Z2(M), the

torsion submodule T (M) are examples of fully invariant submodules [4], [6], [12].

Lemma 5.1.2. Let R be a ring and M be a right R-module. Then,

(i) A right ideal I is fully invariant in R if and only if I is an ideal in R.

(ii) Let M be a multiplicative module. Then every submodule of M are fully invariant.

Proof. (i) Since R ∼= End(RR) the proof is clear.

(ii) Let M be a multiplicative module and N ≤ M . Hence there exists an ideal I of R

such that N = IM . Since f(N) = f(IM) ⊆ If(M) ⊆ IM = N for all f ∈ End(MR) we

get N ⊴ M .

Proposition 5.1.3. Let M be a right R-module and S = End(MR). So the followings are

provided.

(i) If {Ni : i ∈ I} family of fully invariant submodules of M, then
⋂

i∈ I Ni ⊴ M and∑
i∈ I Ni ⊴ M.

(ii) Let X ≤ Y ≤ M submodules given. If X ⊴ Y and Y ⊴ M then X ⊴ M.

(iii) If M =
⊕

i∈ IMi and N ⊴ M for Mi ≤ M(i ∈ I) then N =
⊕

i∈ I (N ∩ Mi).

(iv) If M =
⊕n

i=1Mi and N ≤d M for Mi ⊴ M (i = 1, ... , n) then N =
⊕n

i=1 (Mi ∩ N).

Proof. (i) Let {Ni : i ∈ I} family of fully invariant submodules ofM . Take f ∈ S. f(
⋂

i∈ I

Ni) ⊆
⋂

i∈ I f(Ni) ⊆
⋂

i∈ I Ni and hence we get
⋂

i∈ I Ni ⊴ M . Similarly, since f(
∑

i∈ I
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Ni) =
∑

i∈ I f(Ni) ⊆
∑

i∈ I Ni we get
∑

i∈ I Ni ⊴ M .

(ii) Let X ⊴ M and Y ⊴ M for X ≤ Y ≤ M . Hence α(Y ) ⊆ Y for all α in S. If α|Y
: Y → α(Y ) since α|Y ∈ End(YR) then (α|Y )(X) ⊆ X. Thus α(X) ⊆ (α|Y )(X) ⊆ X and

X ⊴ M .

(iii) LetM =
⊕

i∈ I and N ⊴M . Hence it is clear that since N ∩Mi ⊆ N then
⊕

i∈ I

(N ∩ Mi) for all i ∈ I. Now πi : M → Mi being a projection mapping, then from the

definiton πi(n) = mi ∈ Mi. Moreover since N ⊴ M then πi(N) ⊆ N and we get πi(n) =

mi ∈ N ∩ Mi. Thus n =
∑

i∈ I πi(n) and this implies that n ∈
⊕

i∈ I (N ∩ Mi). Hence

N =
⊕

i∈ I (N ∩ Mi).

(iv) Let M =
⊕n

i=1 Mi and N ≤d M for Mi ⊴ M (i = 1,..., n). Hence there exists

V ≤ M such that M = N ⊕ V . Since Mi ⊴ M by (iii), we get Mi = (Mi ∩ N) ⊕ (Mi

∩ V ) for all i = 1,..., n. So M =
⊕n

i=1 Mi = [
⊕n

i=1 (Mi ∩ N)] ⊕ [
⊕n

i=1 (Mi ∩ V )]. By

modular law, we get N = [
⊕n

i=1 (Mi ∩ N)] ⊕ [
⊕n

i=1 (Mi ∩ V ) ∩ N ]. Hence since V ∩ N

= 0 N =
⊕n

i=1 (Mi ∩ V ).

Example 5.1.4. (i) Let R be a ring and MR = R ⊕ R. Take the submodule X = R ⊕ 0

of M . It is clear that X is a direct summand in M . Now define a map f : M → M , f(x,

y) = (y, x). Then f is an R-homomorphism and we obtain f ∈ End(MR). Since f(X) =

0 ⊕ R then f(X) ⊈ X. Thus X is a direct summand in M but X is not a fully invariant

submodule.

(ii) Let F be a field, V be a F -vector space and dim(V ) ≥ 1. Hence let say RR =

[
F V
...

0 F

]
= {[ 0 v

0 a ] : m ∈ F , v ∈ V }. We take Iv = [ 0 vF
0 0 ] ≤ RR with v ∈ V . Since R is a commu-

tative ring, every submodules of R are fully invariant. So Iv is fully invariant submodule.

On the other hand since RR is indecomposable, direct summands of R are only 0 and R.

So Iv is not a direct summand of RR.

Theorem 5.1.5. Let M be a right R-module and M = B ⊕ C and B ⊴ M. Then B

⊕ F ⊴ M for F ⊴ C.

Proof. Let h ∈ End(MR) and b + c ∈ B ⊕ F for b ∈ B, c ∈ C. Then h(b + c) = h(b) +

h(c) = h(b) + b1 + c1 for h(c) = b1 + c1 with b1 ∈ B and c1 ∈ C. Now π : M → C denote
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the projection and since c1 = π(h(c)) and B ⊴ M then h(b) + b1 ∈ B. Hence πh|C : C

→ C is an endomorphism. Since F ⊴ C then (πh)c = c1 ∈ F for c ∈ F . Thus h(b + c) ∈

B ⊕ F and we get B ⊕ F ⊴ M .

Example 5.1.6. Let R = T2(Z) = [ Z Z
0 Z ]. Let’s find the left and right semicentral idem-

potent elements of R. Directly set P = {[ 0 0
0 0 ] , [

1 0
0 1 ] , [

0 b
0 1 ], [

1 b
0 0 ] : b ∈ Z} is the set of

idempotent elements of R. Now take [ x y
0 z ] ∈ R and [ 0 b

0 1 ] ∈ P . Hence [ 0 b
0 1 ] [

x y
0 z ] = [ 0 bz

0 z ].

On the other hand since [ 0 b
0 1 ] [

x y
0 z ] [

0 b
0 1 ] = [ 0 bz

0 z ] we get [ 0 b
0 1 ] ∈ Sr(R). If similar ways

apply [ 0 b
0 1 ] ∈ P then [ 0 b

0 1 ] /∈ Sr(R). Hence the set of right semicentral idempotent elements

of R is Sr(R) = {[ 0 0
0 0 ], [

1 0
0 1 ], [

0 b
0 1 ] : b ∈ Z}. Similarly we get the set of left semicentral

idempotent elements of R is Sl(R) = {[ 0 0
0 0 ], [

1 0
0 1 ], [

1 b
0 0 ] : b ∈ Z}.

5.2 FC2, FC3 and FSIP-modules

In this section, we define new generalizations of C2, C3 and SIP conditional direct summand

properties on using fully invariant submodules and obtain their most basic properties. The

detailed examination of such new module classes and their implications in the literature

will form the basis for future studies.

Let’s continue by giving the new definitions we mentioned above.

Definition 5.2.1.

FC2 property: if X ⊴ M is isomorphic to a direct summand of M , then X is a direct

summand of M .

FC3 property: if M1 is any fully invariant submodule and M2 is any direct summand of

M such that M1 ∩ M2 = 0, then M1 ⊕ M2 is a direct summand of M .

FSIP property: if M1 is any fully invariant submodule and M2 is any direct summand of

M , then M1 ∩ M2 is a direct summand of M .

Obviously C2 =⇒ FC2. However the Z-module M = Z ⊕ Z does not satisfy C2. It

can be checked that MR has FC2.

75



Lemma 5.2.2. If MR satisfies FC2 then MR satisfies FC3.

Proof. Let K, L ≤d MR with K ∩ L = 0, L ⊴ MR. Then MR = K ⊕ K ′ for some

submodule K ′ ≤ MR. Let λ : M → K ′ be the projection map. Since K ∩ L = 0, λ(L) ∼=

L and λ(L) ≤ K ′. By FC2 assumption M = λ(L) ⊕ L′ for some L′ ≤ MR. Hence K
′ =

λ(L) ⊕ (K ′ ∩ L′) and M = K ⊕ λ(L) ⊕ (K ′ ∩ L′). Thus K ⊕ λ(L) is a direct summand

of MR. By Lemma, K ⊕ L = K ⊕ λ(L). It follows that MR has FC3.

The following example shows that the converse of Lemma 5.2.2. does not true in gen-

eral.

Example 5.2.3. (i) Let R = [K K
0 K ] where K is a field. Then RR has FC3. But RR

does not have FC2.

(ii)Let MR = ZZ. Then MR has FC3. But MR does not have FC2.

Proof. (i) Let N = [ 0 K
0 0 ]. Since N is an ideal of R then N ⊴ RR. Define an isomorphism

φ : [ 0 K
0 0 ] → [ 0 0

0 K ], [ 0 x
0 0 ] 7→ [ 0 0

0 x ]. Then N∼= [ 0 0
0 K ] ≤d RR. But N ≰d RR.

(ii) Let N = 2Z. Since N is an ideal of Z then N ⊴ MR. Define an isomorphism φ : N

→ Z, 2x 7→ x. Assume 2Z ⊕ X = Z. Then X = m.Z. But 2m ∈ 2Z ∩ mZ = 0. So m =

0, a contradiction. 2Z ≰d Z.

Theorem 5.2.4. Let MR be a module and N is a fully invariant direct summand of M.

Then

(i) If M satisfies FC2 then N satisfies FC2.

(ii) If M satisfies FC3 then N satisfies FC3.

(iii) If M satisfies FSIP then N satisfies FSIP.

Proof. (i) Let X, K ≤ N such that X fully invariant in N , K is a direct summand of

N and X ∼= K. Now K is a direct summand of M . By FC2 assumption, X is a direct

summand of M . Hence M = X ⊕ X ′ such that X ′ ≤ M . By the Corollary 1.1.31., N =

N ∩ M = N ∩ (X ⊕ X ′) = X ⊕ (N ∩ X ′). Thus X is a direct summand of N . So N

satisfies FC2.
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(ii) Let K1, K2 be direct summands of N such that K1 is fully invariant in N and K1 ∩

K2 = 0. Since K1, K2 are direct summands of M , by FC3 assumption, K1 ⊕ K2 is a

direct summand of M . Hence M = (K1 ⊕ K2) ⊕ K3 for some K3 ≤ M . By the Corollary

1.1.31., N = N ∩ M = N ∩ [(K1 ⊕ K2) ⊕ K3] = (K1 ⊕ K2) ⊕ (N ∩ K3). Thus K1 ⊕

K2 is a direct summand of N . Hence N satisfies FC3.

(iii) Let K, L be direct summands of N such that K is fully invariant in N . Therefore K,

L be direct summands of M . By Proposition 5.1.3. (ii), K is a fully invariant submodule

of M . By FSIP assumption, K ∩ L is a direct summand of M . Thus M = (K ∩ L) ⊕ X

for some X ≤ M . By Corollary 1.1.31., N = (K ∩ L) ⊕ (N ∩ X). So K ∩ L is a direct

summand of N .

It is natural to think of whether any direct summand of a module with FC2 (FC3,

FSIP) satisfies FC2 (FC3, FSIP) or not. So far we could not obtain counter example and

left this situation for future work.

To this end we complete this section with the following problem:

Open Problem: Is N being fully invariant in Theorem 5.2.4. superfluous or not?
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