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ABSTRACT

TALES OF TURBULENCE: BERT-BASED MULTIMODAL ANALYSIS
OF FED COMMUNICATION DYNAMICS AMIDST COVID-19

THROUGH FOMC MINUTES

Bilal Taşkın

Master of Science , Computer Engineering
Supervisor: Asst. Prof. Dr. Fuat AKAL

September 2023, 82 pages

Although communication of the central banks with the market was still quite limited at

the end of the 20th century, and the authorities had agreed that policymakers should

hold a more secretive attitude, this situation changed after the 2000s, in light of the

Australian example. From there on, the view that decisions should spawn surprise in

the market to increase the effectiveness of monetary policy has been replaced by the

discourse that claims that the strategy, policy, and short- and long-term goals of the central

banks should be precisely understood by the public. Moreover, communication tools

have come to the fore as vital support for the monetary policy decision-making processes,

especially in countries that have adopted inflation-targeting regimes. Consequently, today,

communication is of great importance for the central banks to realize their mission. This

study analyzes Federal Open Market Committee (FOMC) minutes using state-of-the-art

Natural Language Processing (NLP) techniques. We sought to investigate the effect of

the global COVID-19 crisis on the FOMC minutes’ pattern and the strength of the Federal

Reserve to influence inflation expectations through its primary press releases. To this end,

we first quantified minutes leveraging domain-specific pre-trained Bidirectional Encoder
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Representations from Transformers models (FinBERTs). Then, we applied Dynamic Time

Warping (DTW) to measure temporal sequence proximity over the course of time. To verify

our findings, we built multivariable Autoregressive Integrated Moving Average models by

injecting an exogenous variable as an indicator function into the time series (ARIMAX).

The results suggest that the Federal Reserve has abstained from adjusting its tone and

the forward-lookingness setting of its statements for the global epidemic. Therefore,

the longstanding association of fed tone and forward-lookingness with consumer inflation

expectation has weakened during the crisis.

Keywords: Natural Language Processing, Monetary Policy, Central Banking

Communication, COVID-19, Semantic Analysis
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ÖZET

TÜRBÜLANSIN HİKAYESİ: COVID-19 DÖNEMİNDE FED İLETİŞİM
DİNAMİKLERİNİN FOMC TUTANAKLARI ÜZERİNDEN BERT

TEMELLİ HİBRİT ANALİZİ

Bilal Taşkın

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Asst. Prof. Dr. Fuat AKAL

Eylül 2023, 82 sayfa

20. yüzyılın sonlarına kadar hakim olan merkez bankacıların ve politika yapıcıların

ketum bir davranış sergilemesi gerektiğine dair inanç, 2000’li yılların başından itibaren

Avustralya örneğinin ışığında değişime uğramıştır. Böylelikle, alınan kararların piyasalarda

sürprizle karşılanması fikri yerini merkez bankalarının stratejilerinin, politikalarının, kısa

ve uzun vadeli hedeflerinin kamu yararından tam olarak anlaşılması gerektiği görüşüne

bırakmıştır. Bunun da ötesinde, özellikle enflasyon hedeflemesi rejimi uygulayan ülkelerde

iletişim araçları politika yapım sürecinin vazgeçilmez bir parçası haline gelmiştir. Sonuç

olarak, günümüzde merkez bankalarının misyonlarını gerçekleştirmeleri için iletişim büyük

önem taşımaktadır. Bu tez, yeni nesil Doğal Dil İşleme (NLP) tekniklerini kullanarak

Federal Açık Piyasa Komitesi (FOMC) tutanaklarını analiz etmektedir. Daha spesifik

olmak gerekirse, çalismamizda modern semantik analiz tekniklerinden yararlanarak küresel

Covid-19 krizinin FOMC iletişimi üzerindeki etkisini ve Federal Rezerv’in birincil

basın bültenleri aracılığıyla enflasyon beklentilerini etkileme gücünü araştırdık. Bu

amaçla, önce alana özel önceden eğitilmiş BERT (Bidirectional Encoder Representations

from Transformers-Dönüşümleyicilerden Çift Yönlü Kodlayıcı Temsilleri) modellerinden
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(FinBERT’ler) yararlanarak FOMC tutanaklarını sayısallaştırdık. Ardından, zamansal dizi

yakınlığını zaman boyunca ölçmek için Dinamik Zaman Bükme (DTW) tekniğini uyguladık.

Bulgularımızı doğrulamak için, zaman serisilerine indikatör bir fonksiyon enjekte ederek

çok değişkenli Otoregresif Entegre Hareketli Ortalama modelleri (ARIMAX) oluşturduk.

Sonuçlar, Federal Rezerv’in tonunu ve açıklamalarının ileriye dönüklük derecesini küresel

salgın döneminde ayarlamaktan kaçındığını göstermektedir. Bu durum, tüketici enflasyon

beklentisi ile uzun dönemden süre gelen FED iletişim tonu ve tutanakların ileriye dönüklük

derecesi arasındaki ilişkide zayıflamayı beraberinde getirmiştir.

Keywords: Doğal Dil İşleme, Para Politikasi, Merkez Bankaciligi İletişimi, COVID-19,

Semantik Analiz
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1. INTRODUCTION

The significance of communicative strategies and the development of apt channels for these

strategies has been accentuated since the adoption of inflation-targeting frameworks by

numerous central banks from the 1990s onward [2]. The economic scholarly community

widely acknowledges that enduring price stability necessitates long-term policy planning.

On the other hand, central banks also endeavor to foster consistent national output growth,

minimize unemployment, and ensure the smooth operation of financial markets. However, a

central bank with the goal of maintaining price stability must adopt a long-term viewpoint,

making decisions free from political influences or other groups typically characterized by

short-term objectives. The autonomy of central banks in terms of policy formation and

institutional operations comes hand in hand with the obligation of being accountable [3].

Thus, it is imperative to establish a robust communication strategy to uphold the transparency

of the central bank [4].

Explaining the reasons behind monetary policy decisions and sharing them with the

public helps everyone better understand and support these decisions. This also sets clear

expectations about the goals of these policies, especially if they’re trustworthy. As Muth

points out, “Economic agents make optimum decisions by utilizing all of the information

that is available to them”. This means they use both new and prior information to make

decisions [5]. And what is more, Goodfriend suggests that when central banks are more

predictable, it makes it easier for markets to anticipate and react to monetary policies, leading

to better economic outcomes [6]. In essence, clear communication and being transparent can

make monetary policies work better. How well we manage expectations plays a big role in

connecting clear communication and the success of monetary policies [7].

Whenever central bankers speak, financial markets are all ears. It has been a lengthy journey

for these banks to perfect how they relay their goals and intentions [8]. In today’s age, there

is an abundance of monetary policy data for financial experts who hang on every word from

these banks. Central banks have made their processes transparent: they hold press briefings,
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release meeting summaries, offer detailed inflation insights, make public announcements,

and even address legislative assemblies. Though there is a budding effort to communicate

with the broader public via social media platforms like Twitter, the main attention is still

on the familiar faces: the financial markets and specialists. Yet, there are moves by certain

central banks to enhance the financial understanding of the household members, tapping into

the potential of current technology. An initiative that stands out in this effort is ”Economics

for All” by the Central Bank of the Republic of Turkey.

Central banks’ primary challenge in conveying their messages to the general public is the

intricate language they employ, often couched in market-specific terminologies. Recent

research suggests that more informal modes of communication tend to be more effective,

especially in elucidating monetary policy stances [9]. Yet, central banks continue to prioritize

their complex official releases as the main avenue for communication. The intricacy of this

situation is humorously encapsulated in a remark made by Alan Greenspan, the former chair

of the FED, during an address to a corporate audience as follows, “I guess I should warn you,

if I turn out to be particularly clear, you have probably misunderstood what I said.” [10].

Over the past decade, the presence of significant improvements in Natural Language

Processing (NLP) has been notably felt in various facets of our daily interactions [11]. With

advancements in artificial intelligence technology, natural language processing has steadily

improved, delivering more precise and consistent outcomes. Furthermore, Text Mining, a

closely related sub-domain, aids in deciphering the nuanced language components present in

textual data.

While text mining is widely utilized in fields like politics and marketing, its adoption in

economics has historically been more restrained [12]. Yet, text mining could be invaluable

for discerning the underlying intentions and perspectives concealed within central bank

announcements, given their profound impact on the financial sector [13]. Sentiment analysis,

also termed Opinion Mining, employs a text-mining technique designed to detect and

classify subjective sentiments within source content, utilizing text analytics, computational

linguistics, and natural language processing. Sentiment analysis endeavors to determine an
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author’s stance on a topic or gauge the overall tonal sentiment of a piece of communication

[14].

Sentiment analysis is rooted in two primary methodologies: dictionary-based approaches and

machine learning-based techniques1. The dictionary-based methods rely on a reference list

where words are tagged with predefined sentiments and associated scores. This approach’s

limitation stems from the intricate nuances of language, including metaphors, idioms, and

proverbs, making it challenging to encapsulate emotions using rigid parameters. However,

a notable merit of dictionary-based systems is that they operate without the necessity for

extensive datasets. On the other hand, machine learning techniques, contingent upon the

specific algorithm implemented, mandate substantial data for training and often exhibit

improved performance as the data input increases.

Supervised and unsupervised learning stand as the two principal approaches within machine

learning, each distinguished by its training process and data prerequisites. The choice

between supervised and unsupervised methods often depends on the particular characteristics

of the issue under consideration. Supervised learning hinges on labeled data for its

training process, guiding the model towards specific outcomes. In contrast, unsupervised

algorithms operate under the presumption that input data adheres to an unidentified statistical

distribution. The goal is to discern this distribution’s characteristics [15]. Metrics like

intra-cluster and inter-cluster distances, predicated on certain criteria (like cluster size), come

into play here. While there are emerging models like semi-supervised learning that operate

under relaxed constraints, they still necessitate certain assumptions about the data distribution

to optimize results. Such assumptions might relate to the data’s inherent distribution patterns,

whether in terms of continuity, clustering, or manifold structures.

Occasionally, dictionary-based methods might be categorized as supervised due to the

presence of an inherent ”ground truth” in lexicons. However, if an analysis employs static

weights from a lexicon without any adaptability, it does not fall under either supervised or

1Though there’s a subtle distinction between a lexicon and a dictionary in linguistic terms, we employ them
synonymously in this context.
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unsupervised learning. There are no weight adjustments, and therefore, no genuine learning

takes place, rendering it distinct from traditional machine learning paradigms.

In this research, we applied edge-cutting text mining and semantic analysis methods to

elicit quantitative information about monetary policy tendency and foresight from the FOMC

minutes between February 1993 and November 2022. We mainly questioned the potential

shifts in the communiqués.

Texts that follow Zipf’s Law are typically easier to read and understand because they

prioritize the most important words and efficiently use language [16]. Therefore, we

initially conducted a Zipfian compliance inspection to see whether FOMC releases comply

with Zipf’s Law and any significant deviation from its historical outlook. We also

glanced at the releases’ readability aspect utilizing prevalent readability algorithms. As

the last part of the exploratory analysis, we brought out the topic intensity evolution

of the documents to discover the general view of the FOMC agenda over time.

Thereafter, we analyzed the sentimental and forward-looking inclination of the minutes.

Since general-purpose dictionaries are one-size-fits-all solutions, and generally, central

bank communiqués have a high-formality level and incorporate technical expressions,

we embraced a machine-learning approach. Specifically, we exploited a financial

domain-specific pre-trained NLP model, FinBERT, to unearth the semantic orientation of

the minutes [17]. We further ran another investigation on the forward-lookingness of the

meeting releases utilizing another pre-trained and financial domain-specific BERT model,

FinBERT FLS (Forward-lookingness), which looks for soothsaying ingredients through the

texts and returns both types of forward-lookingness and its intensity [18].

To observe the possible impacts of global health crisis on the relationship between the

communication tone of the FED and market movements, we implemented a well-known

signal processing technique, Dynamic time warping (DTW). We measured the pair-wise

similarity of the time series as temporal sequences, i.e., Consumer Inflation Expectations

(CIE) for one-year and three-year ahead horizon and time series derived from the minutes
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exclusively. Finally, we modeled each time series using an autoregressive integrated moving

average method with a Covid-19 indicator as an exogenous variable.

We use advanced Natural Language Processing (NLP) methods, specifically using

”domain-specific pre-trained Bidirectional Encoder Representations from Transformers”

models (FinBERTs), to analyze the Federal Open Market Committee (FOMC) minutes.

Through the application of Dynamic Time Warping (DTW) for evaluating the proximity

of temporal sequences and the construction of multivariable Autoregressive Integrated

Moving Average models (ARIMAX), we depart from previous research by investigating

the influence of the global Covid-19 crisis on the structure of FOMC minutes and the

Federal Reserve’s capacity to impact inflation expectations through its primary press

releases. The results unveil that the Federal Reserve has maintained a consistent tone

and forward-looking perspective in its statements throughout the crisis, challenging the

previously established connection between the Fed’s tone, forward-looking stance, and

consumer inflation expectations. In conclusion, this thesis offers valuable insights into the

evolving dynamics of central bank communication and its implications for monetary policy

within the context of a global crisis.

The thesis is structured in the following manner: In Chapter 1, we outline our motivation,

contributions, and the thesis’s scope. Chapter 2 offers a comprehensive background,

encompassing the methods and techniques that form the basis of our methodology. Chapter

3 reviews the literature of opinion mining and polarity exploration research on financial and

economics-related texts, particularly central bank releases. In Chapter 4, we present the

research methodology, provide a concise overview of the data, delve into the identification

of abstract topics, and present the results of exploratory analyses. Chapter 5 presents the

empirical path for semantic and forward-lookingness modeling. Chapter 6 reports the results.

Chapter 7 concludes the results, draws some policy implications, and suggests future routes

for further research.

•
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2. BACKGROUND OVERVIEW

Natural Language Processing (NLP) is an expanding research realm situated at the crossroads

of artificial intelligence and linguistics. Its core aim is to develop computational models

and algorithms that enable machines to grasp, interpret, and fabricate human language

in a meaningful and coherent fashion. NLP seeks to narrow the divide between human

communication and machine comprehension, ushering in numerous applications across

domains like information retrieval or sentiment analysis. By arming computers with the

capability to process and scrutinize extensive volumes of text data, NLP holds the potential

to fundamentally transform our interactions with technology and our access to information.

The development of NLP has been propelled by advancements in machine learning,

particularly deep learning, and the availability of large-scale datasets. With the advent

of transformer models like BERT and GPT-4, which leverage pre-training and fine-tuning

techniques, NLP has witnessed significant breakthroughs in various language understanding

and generation tasks (see Figure 2.1). These models have demonstrated state-of-the-art

performance in tasks such as text classification, named entity recognition, sentiment

analysis, and machine translation. Consequently, NLP has garnered substantial interest from

academia, industry, and research communities, giving rise to many applications reliant on

language processing and comprehension. The continuous advancements in NLP techniques

and their practical applications hold immense potential for transforming various sectors,

improving user experiences, and enabling new avenues for innovation and discovery.

While NLP encompasses a wide array of techniques and methodologies, one of the critical

components underpinning language understanding is semantic analysis. Semantics delves

into the meaning behind words and how context can influence this meaning, a crucial

consideration when training models to comprehend language nuances. As the subsequent

sections will explore, semantic analysis is not a monolithic approach; instead, it can be

achieved through various methods. Two of the most prevalent approaches are ’machine

learning methods’ and ’lexicon-based methods.’ Machine learning methods leverage
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Figure 2.1 Various subfields within the domain of Natural Language Processing (NLP)

data-driven techniques, especially those amplified by the recent advances in deep learning.

On the other hand, lexicon-based methods, which have their roots in linguistic studies, rely

on predefined lists or dictionaries of words paired with their semantic orientations. Each

approach has its strengths and weaknesses, but together they form the bedrock of our current

understanding and implementation of sentiment analysis in NLP.

In the ensuing parts of this section of the thesis, we will embark on a comprehensive

journey exploring the intricacies of sentiment analysis. Delving deep into its primary

techniques and approaches, we will demystify the algorithms and methodologies that power

this crucial aspect of textual data analysis. Following our exploration of sentiment, we will

pivot to the realm of temporal data, providing insights into temporal sequence similarity

measurements and the vast domain of time series analysis. These techniques are pivotal

in understanding patterns, trends, and sequences in temporal data, offering a nuanced

perspective on information that evolves over time. Lastly, but certainly not least, we will

turn our attention to the foundational stage of any analytical process: data preprocessing, and

BERT (Bidirectional Encoder Representations from Transformer) models in greater detail as

well. This segment will shine a light on the vital techniques employed to cleanse, transform,

and prepare data, ensuring its optimal utility for subsequent analysis.
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2.1. Sentiment Analysis

Sentiment analysis, also known as sentiment understanding or sentiment processing, is a

branch of NLP that focuses on extracting meaning and understanding from text or speech.

Together with the smart algorithms adjusted to the semi-structured nature of text data it goes

beyond the surface-level analysis of words and sentences and delves into the deeper context

and interpretation of language. In other words, the objective of sentiment analysis is to

enable machines to comprehend and interpret human language in a way that is similar to

how humans understand it.

Various techniques and algorithms have been employed to analyze the relationships between

words, phrases, and sentences and extract the underlying meaning for opinion mining. By

applying advanced algorithms and machine learning models, the sentiment analysis aims

to derive the intended meaning, context, and implications behind the text, facilitating a

deeper level of understanding and enabling applications such as question-answering systems,

sentiment analysis in social media, document classification, and information retrieval. In a

nutshell, sentiment analysis plays a crucial role in bridging the gap between human language

and machine understanding, enabling more sophisticated and intelligent interactions between

humans and machines. In the following part, we explore the main methods used for sentiment

analysis in NLP, focusing on machine learning and lexicon-based approaches.

2.1.1. Machine Learning Methods

Machine learning techniques have played a transformative role in advancing sentiment

analysis tasks in NLP. These methods allow computers to automatically learn patterns and

extract meaningful representations from large-scale datasets. It involves training models on

labeled data to learn patterns and relationships in language, enabling them to automatically

understand and interpret the meaning of text or speech.

In machine learning-based sentiment analysis, the process typically involves several steps.

First, a dataset with labeled examples is collected, where each example is associated
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with the desired sentiment analysis task (e.g., sentiment classification, entity recognition).

Then, features are extracted from the text, which can include word embeddings, syntactic

information, or other relevant linguistic features. These features are used as input to

machine learning algorithms such as support vector machines (SVM), random forests, or

deep learning models like recurrent neural networks (RNNs) or transformers.

During the training phase, the model learns the relationships between the input features and

the target sentiment analysis task. The model is optimized by adjusting its internal parameters

to minimize the difference between the predicted outputs and the ground truth labels in the

training data. Once the model is trained, it can be used to predict the semantic properties

or interpret the meaning of unseen text or speech data. Several prominent machine-learning

methods have been employed in sentiment analysis:

2.1.1.1. Supervised Learning Supervised learning is a commonly employed

methodology in sentiment analysis, which involves training a model using annotated

data. Each instance in the data is associated with a specific sentiment analysis task, such

as sentiment analysis where each instance is labeled as positive, negative, or neutral.

Through the training process, the model captures the underlying patterns and relationships

between the input text and the corresponding labels. Various algorithms including Support

Vector Machines (SVM), Naive Bayes, Decision Trees, and Random Forests, as well as

deep learning models like Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs) can be utilized. Once trained, the model can then be utilized to predict

the semantic properties of new, unseen text.

2.1.1.2. Word Embeddings Word embeddings are condensed vector portrayals of words

crafted to encapsulate intricate semantic connections among them. These representations

are forged by subjecting models to extensive textual data sets with the aim of forecasting

the contextual utilization of words. Prominent algorithms, including Word2Vec, GloVe,

and FastText, have found widespread use in creating these word embeddings. The

resulting embeddings encode semantic similarities and interconnections, thus empowering
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various sentiment analysis tasks, including word sense disambiguation, sentiment similarity

assessment, and entity recognition. By leveraging word embeddings, models can

substantially enhance their understanding of word semantics and contextual nuances within

a given text. In Figure 2.2, we present the core concepts of word embeddings. This 2D

illustrative space visually demonstrates the fundamental principle behind embeddings: words

that share semantic meanings are closer in the vector space. While the actual embeddings

often reside in higher-dimensional spaces, this simplified representation provides a clear

intuition of the underlying idea.

Figure 2.2 Conceptual visualization of word embeddings in a 2D space. Words with perceived
semantic similarities are positioned closer together. This diagram provides an illustrative
representation and does not depict actual embeddings derived from trained models.

2.1.1.3. Recurrent Neural Networks (RNNs) RNNs, or Recurrent Neural Networks,

belong to a class of neural networks that demonstrate strong effectiveness in modeling

sequential data. They excel at capturing intricate dependencies and temporal relationships

among words within a given text. The nature of RNNs involves sequential processing, where

each word is sequentially presented as an input, along with the hidden state inherited from

the preceding word. Notably, variants of RNNs such as Long Short-Term Memory (LSTM)

and Gated Recurrent Units (GRUs) have gained popularity due to their ability to mitigate the
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vanishing gradient problem and effectively model long-term dependencies. In various tasks

where the contextual information and word order significantly impact the results, RNNs find

extensive application.

2.1.1.4. Transformers Transformers have sparked a revolution in the field of natural

language processing, profoundly impacting sentiment analysis tasks. The Transformer

architecture, epitomized by cutting-edge models like BERT (Bidirectional Encoder

Representations from Transformers), has exhibited remarkable prowess across diverse

applications. By harnessing self-attention mechanisms, Transformers possess the unique

ability to capture long-range dependencies by simultaneously attending to all positions

within an input sequence. This attention-based approach enables Transformers to effectively

gauge the importance of individual words or phrases in their contextual surroundings.

Consequently, Transformers have demonstrated exceptional proficiency in tasks such as

question answering, text classification, and language generation. Leveraging the power

of pre-trained models like BERT, practitioners can fine-tune these models to achieve

state-of-the-art performance in specific sentiment analysis tasks.

2.1.1.5. Transfer Learning Transfer learning has emerged as a cornerstone technique in

modern machine learning and, more specifically, in Natural Language Processing (NLP). At

its heart, transfer learning is the practice of leveraging knowledge gleaned from pre-trained

models on vast datasets, subsequently applying this acquired knowledge to specific tasks,

such as sentiment analysis, which might have less available data. This method is particularly

powerful due to the inherent capability of pre-trained models to encapsulate general linguistic

patterns, intricate syntactic structures, and deep semantic relationships drawn from extensive

training corpora.

Popular models like BERT or GPT stand as testament to the potency of transfer learning.

Initially trained on colossal corpora spanning billions of words, these models embed a

comprehensive understanding of language. Yet, their true versatility shines when they are

fine-tuned on more specific, smaller labeled datasets for downstream tasks, such as sentiment
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detection in product reviews or emotion classification in texts. By doing so, the models

do not start their learning journey from scratch. Instead, they build upon the linguistic

foundation laid during their pre-training phase, aligning their vast knowledge to the nuances

and specificities of the target task.

The benefits of this approach are manifold. Not only does transfer learning lead to improved

performance in tasks like sentiment analysis, but it also substantially reduces the training

time, as the models are not starting from a point of complete ignorance. This efficiency is

especially valuable when labeled data for the target task is scarce—a frequent challenge in

NLP endeavors.

2.1.1.6. Ensemble Methods In the ever-evolving landscape of sentiment analysis,

ensemble methods have risen to prominence, offering sophisticated strategies to enhance

model predictions. These techniques hinge on the principle of harnessing the collective

power of multiple models to offset individual weaknesses and amplify strengths. By

integrating a variety of models, ensemble methods aspire to achieve higher robustness,

increased accuracy, and a more nuanced understanding of sentiment across diverse datasets.

Among the pantheon of ensemble strategies, Bagging, Boosting, and Stacking stand

distinguished, each providing a unique approach to the assembly of models. Bagging—or

Bootstrap Aggregating—diversifies its approach by training multiple instances of a model on

different subsets of the training data. These instances then collaboratively decide on the final

prediction, often through an averaging mechanism or a majority vote. Such an approach is

instrumental in reducing variance, offering a more stable prediction landscape.

Boosting, contrastingly, is dynamic in its approach. Models are trained sequentially, with

each iteration paying particular attention to the mistakes made by the previous one. This

iterative correction ensures that challenging data points, which might be misclassified

initially, receive amplified attention in subsequent models, leading to a progressive

refinement of the prediction accuracy.
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Stacking, perhaps the most intricate of the trio, involves layering models. Initial

models—often from diverse algorithmic families—make predictions, and a subsequent

meta-learner then learns from these predictions to make the final decision. This hierarchical

approach leverages the expertise of multiple models, ensuring that the diverse strengths of

individual models contribute to a more robust and refined prediction.

The value proposition of ensemble methods in sentiment analysis is undeniable. Beyond the

obvious benefits of enhanced accuracy, they play a pivotal role in countering overfitting,

a notorious challenge in machine learning. Moreover, by leveraging multiple models,

ensemble methods inherently imbue the prediction process with a capacity to handle

uncertainty, ensuring more consistent and reliable sentiment interpretations across varied

textual landscapes.

2.1.1.7. Neural Attention Mechanisms Neural attention mechanisms have rapidly

become an indispensable facet of advanced machine learning architectures, pioneering a

paradigm shift in how models process and interpret vast swathes of data. Rooted in the

human cognitive process of selective focus, attention mechanisms infuse neural networks

with an ability to discern and prioritize pertinent information, much like how our brains

zoom in on critical details amidst a deluge of stimuli.

In the context of sentiment analysis, attention mechanisms serve as adept curators of

information. Traditional neural models, while powerful, often suffer from a myopic

understanding of lengthy texts, losing critical nuances as they progress through sentences.

Enter attention mechanisms, which empower these models to continuously recalibrate

their focus, dynamically weighting words or phrases based on their contextual relevance.

This selective magnification ensures that pivotal sentiments—whether subtly embedded or

glaringly apparent—are duly recognized and incorporated into the model’s interpretation.

Beyond sentiment analysis, the versatility of attention mechanisms has been showcased in

a plethora of NLP tasks. Machine translation, for instance, has been revolutionized by the

introduction of attention. Instead of processing source and target languages in isolation,
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attention-equipped models can now draw intricate relationships between individual words

or phrases across languages, resulting in translations that are not just linguistically accurate

but also contextually enriched. Similarly, in text summarization, these mechanisms enable

models to distill voluminous content into concise summaries, cherry-picking the most salient

details without sacrificing coherence or context.

The beauty of attention mechanisms lies in their adaptability. Whether incorporated into

the loops of Recurrent Neural Networks (RNNs) or the multi-headed architectures of

Transformers, they augment these structures with a refined sense of discernment. Particularly

in the latter, as seen in models like BERT and GPT, attention mechanisms have been pivotal

in capturing long-range dependencies, knitting together disparate pieces of information to

form a cohesive understanding of textual narratives.

2.1.1.8. Graph-based Methods Natural Language Processing (NLP) has long grappled

with the challenge of effectively capturing and representing the intricate web of relationships

that underpin textual content. One of the most compelling responses to this challenge has

been the advent of graph-based models. These models stand at the intersection of linguistic

semantics and structured data representation, aiming to provide a holistic view of language’s

interconnectedness.

At the core of a graph-based model lies the graph itself, a structured representation that seeks

to encapsulate the multifaceted associations among words or entities. Within this graphical

framework, individual nodes serve as anchors that represent specific words, phrases, or

more broadly, entities (see Figure 2.3). These nodes are not isolated islands; instead, they

are intricately connected via edges. These edges, far more than mere connectors, signify

semantic relationships. Whether it is a syntactic relationship, like that of a subject to its

verb, or a deeper semantic connection, like synonymy or antonymy, these edges capture the

essence of how language components relate to one another.

In practical applications, such as sentiment analysis, graph-based models offer unique

advantages. Consider a product review that praises a product’s design but critiques its
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functionality. A graph-based model could effectively discern the contrasting sentiments by

mapping positive associations to the design aspect and negative ones to functionality, all

while understanding the intricate relationship between these components. Such granularity is

pivotal in ensuring sentiment analysis results that are not only accurate but also contextually

rich.

Beyond sentiment analysis, the potential applications of graph-based models in NLP are

vast. Knowledge graphs, for instance, use a similar principle to relate entities and facts,

providing a structured representation of general knowledge. Another application is in text

summarization, where graphs can help in identifying the most salient pieces of information

by mapping dependencies and importance levels among textual elements.

Figure 2.3 A representation of sentiment propagation in graph-based analysis. Each node represents
a statement or opinion, with colors indicating the sentiment: green (positive), red
(negative), and gray (neutral). Edges illustrate the interconnectedness or influence between
statements. The graph exemplifies how sentiments can be influenced by and spread across
related nodes in complex conversational structures.

Diving deeper into the methodologies, graph-based approaches exhibit a spectrum of

strategies tailored for different NLP tasks:
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2.1.1.9. Adjacency Matrices At its core, an adjacency matrix provides a binary

representation indicating the presence or absence of a connection (edge) between pairs of

nodes. In sentiment analysis, for instance, this could map syntactic relationships between

words in a sentence.

2.1.1.10. Spectral Clustering This technique leverages the eigenvalues of the Laplacian

matrix derived from a graph to segment it into clusters. In the context of NLP, this can aid in

grouping semantically similar words or documents.

2.1.1.11. Random Walks Simulating a path that moves from one node to another

randomly, random walks can aid in tasks like word sense disambiguation, where the model

determines the most probable meaning of a word based on its neighboring context.

2.1.1.12. Graph Neural Networks (GNNs) Infusing traditional neural network concepts

with graph-based structures, GNNs have the ability to propagate information across nodes,

making them apt for tasks where context from distant words or entities needs to be

considered.

2.1.1.13. PageRank Originally designed for ranking web pages, this algorithm evaluates

the importance of nodes within a graph. In NLP, it can help prioritize the significance of

words or entities in larger texts.

While the aforementioned are just a few approaches under the vast canopy of graph-based

methods, they collectively underscore the versatility and depth of these models. Whether

it’s extracting sentiment, clustering documents, or disambiguating word meanings, the

structured, relational nature of graphs endows them with a unique capability to harness the

multifaceted dimensions of language.
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2.1.2. Lexicon-based Methods

Lexicon-based approaches in NLP involve utilizing pre-existing lexical resources, such as

dictionaries and thesauri, to analyze and understand the semantic characteristics of textual

data. These methods are especially beneficial in scenarios where there is a scarcity of

labeled data or when addressing domain-specific tasks. Prominent lexicon-based techniques

employed in NLP include:

2.1.2.1. Sentiment Lexicons Sentiment analysis commonly relies on the utilization of

sentiment lexicons, which encompass words annotated with their respective sentiment

polarities, namely positive, negative, or neutral. Through the process of matching words

from the text with entries in the lexicon, sentiment polarity can be assigned to the text.

Prominent lexicons such as SentiWordNet and VADER (Valence Aware Dictionary and

sEntiment Reasoner) are extensively employed in sentiment analysis tasks. These lexicons

serve as a foundational resource for sentiment classification and aid in discerning the overall

sentiment conveyed within a given text.

2.1.2.2. WordNet WordNet, a pervasive lexical database, serves as a fundamental

resource in the organization of words into synsets, which encompass groups of synonymous

words. This comprehensive framework not only embraces semantic associations like

hypernymy (is-a), hyponymy (part-of), and meronymy (member-of) but also plays a pivotal

role in a myriad of natural language processing (NLP) endeavors. These encompass, but are

not limited to, word sense disambiguation, semantic similarity assessment, and information

retrieval. By harnessing the power of WordNet, NLP systems gain an enhanced ability to

comprehend the intricate nuances and contextual subtleties of words, thereby empowering

more precise and refined sentiment analyses.

2.1.2.3. FrameNet FrameNet is a lexical resource that is centered around capturing the

semantic nuances of words by examining their functions within conceptual frames. These
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frames encompass a collection of interconnected words and the specific semantic roles they

fulfill in varying contexts. FrameNet proves particularly valuable in tasks such as semantic

role labeling and information extraction. By establishing associations between words and

frames, along with their corresponding roles, FrameNet enhances the comprehension of

semantic connections within textual data, thereby facilitating a more profound analysis of

textual meaning.

In essence, sentiment analysis plays a critical role in natural language processing (NLP)

by enabling machines to extract meaning and comprehend the contextual nuances of human

language. Within this domain, both lexicon-based methods and machine-learning approaches

hold significant importance. Lexicon-based methods, such as the utilization of sentiment

lexicons, WordNet, and FrameNet, offer valuable insights into semantic relationships and

contribute to a deeper understanding of textual meaning. However, the landscape of

sentiment analysis has been substantially transformed by the advent of machine learning

techniques.

Machine learning approaches, encompassing methodologies like word embeddings, neural

networks, and deep learning models, have emerged as powerful tools for advancing sentiment

analysis tasks in NLP. These techniques have exhibited remarkable performance gains and

have become integral in diverse NLP applications. By harnessing the potential of machine

learning, NLP systems can effectively capture and analyze the intricate semantics inherent

in human language, resulting in enhanced performance and more precise interpretation of

textual data.

2.2. Temporal Sequence Proximity

Temporal sequence proximity refers to the assessment of the nearness or resemblance

between events or elements arranged in a time-oriented sequence. This fundamental

concept plays a pivotal role across diverse domains, enabling the identification of patterns,

dependencies, or associations that are specific to the temporal dimension. Nevertheless,
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comparing temporal sequences with disparate frequencies poses a significant challenge due

to disparities in time scales and sampling rates.

The Euclidean distance serves as a straightforward metric for proximity, computing the

direct distance between corresponding points in the sequences. It quantifies the dissimilarity

between two sequences by considering the disparities in their values at each time instance.

Smaller Euclidean distances indicate higher similarity. However, the comparison of temporal

sequences with varying frequencies holds utmost importance in numerous scenarios. For

instance, in the domain of finance, it aids in the detection of market trends and correlations

between assets traded at distinct frequencies. In healthcare, it enables the analysis of patient

data collected with irregular frequency. In the context of language modeling, it assists

in comprehending the temporal dynamics of text, such as the occurrence of words or the

evolution of topics over time. Hence, the development of methodologies for measuring the

proximity of sequences with different frequencies becomes imperative for accurate analysis

and interpretation of temporal data. To tackle the challenge of comparing sequences with

disparate frequencies, several techniques have been devised:

2.2.1. Down-sampling

Down-sampling refers to the process of decreasing the frequency of a higher-frequency

sequence to align it with a lower-frequency sequence. This adjustment is typically

achieved by either averaging or decimating the higher-frequency data points. On the other

hand, up-sampling involves increasing the frequency of the lower-frequency sequence by

employing interpolation methods or advanced techniques like Fourier analysis. By aligning

the sequences at a comparable time scale, down-sampling and up-sampling techniques

facilitate the measurement of proximity between the sequences, allowing for meaningful

analysis of their relationships.
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2.2.2. Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is a widely utilized technique in temporal sequence analysis

to quantify the similarity or proximity between sequences of different lengths or time

scales. It enables flexible alignment by mapping corresponding elements of the sequences,

accommodating variations in timing or duration. The underlying concept behind DTW

is that sequences may exhibit similar patterns or shapes while experiencing differences in

speed or temporal progression. DTW addresses this challenge by warping or stretching the

sequences in the time dimension to achieve the best alignment that captures the underlying

similarities. This adaptive alignment capability of DTW is particularly valuable in scenarios

where precise temporal correspondence is essential for accurate analysis and interpretation

of temporal data. Through the application of DTW, researchers and practitioners gain

a powerful tool to delve into and comprehend the intricate dynamics present in diverse

temporal sequences.

DTW operates by aligning two temporal sequences in a dynamic programming framework.

The basic idea is to find an optimal warping path that aligns the sequences in a way that

minimizes the overall cost of warping. The cost of warping is typically defined as the

dissimilarity or distance between corresponding data points in the sequences. The algorithm

finds the path with the minimum cumulative cost, taking into account possible shifts in time

and scaling of the sequences.

DTW can handle time series data with different frequencies, as it allows for local time shifts,

meaning that it can align data points that occur at different time points in the sequences. This

makes it particularly useful for comparing sequences with irregular or asynchronous time

intervals. Additionally, DTW can handle sequences with different lengths, as it allows for

partial alignments and does not require sequences to have the same number of data points.

One of the advantages of DTW is its flexibility in capturing complex temporal patterns in

time series data. It can capture both linear and nonlinear relationships between data points,

making it suitable for a wide range of applications, such as speech recognition, gesture
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recognition, and financial time series analysis. Intuitively, Figure 2.4 represents the logic

behind DTW by comparing it with its Euclidian counterpart.

Figure 2.4 Graphical representation
of the comparison between
Dynamic Time Warping and
Euclidean distance [1]

Given two time series, denoted as X =

x1, x2, ..., xn and Y = y1, y2, ..., yn, where

n and m are the lengths of X and Y , and

xi and yi represent the values of the time

series at the time i and j, respectively. DTW

aims to find a mapping between the two

time series X and Y , which minimizes the

cumulative distance between corresponding

data points, subject to certain constraints [19]. Let yj as d(xi, yj) be the distance between

two data points xi, which could be any valid distance metric, such as Euclidean distance,

Manhattan distance, or any other distance measure based on the problem domain. The DTW

algorithm computes a similarity matrix, denoted as D = d(i, j), where d(i, j) represents the

distance between xi and yj . This similarity matrix has the exact dimensions as the time series

data X and Y .

The DTW algorithm uses a dynamic programming approach to compute the similarity matrix

D in an iterative manner. The key idea is to compute the minimum cumulative distance from

the starting point (0, 0) to each point (i, j) in the similarity matrix D, by considering the

minimum of the three possible previous points: (i− 1, j), (i, j − 1), and (i− 1, j − 1).

The recurrence relation for computing the similarity matrix D is given by:

D(i, j) = d(xi, yj) + min(D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)) (1)

where D(i, j) represents the minimum cumulative distance from the starting point (0, 0) to

the point (i, j) in the similarity matrix, and d(xi, yj) represents the distance between xi and

yj . Once the similarity matrix D is computed, the DTW distance between two time series X
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and Y is given by the value at the bottom-right corner of the similarity matrix, i.e., D(n,m),

where n and m are the lengths of X and Y , respectively.

2.2.3. Wavelet Transform

The motivation behind the Wavelet Transform arises from the need to analyze signals using

functions that exhibit both temporal and frequency localization. In contrast to traditional

Fourier analysis, which employs global sinusoidal functions that offer frequency information

but lack time localization, the Wavelet Transform capitalizes on functions with localized

properties.

The fundamental concept underlying the Wavelet Transform is the recognition that signals

often encompass localized features or events that possess significance for analysis. By

employing wavelet functions that exhibit temporal localization, the Wavelet Transform

adeptly captures these localized features.

From a mathematical standpoint, the Wavelet Transform entails a sequence of convolution

and downsampling operations. The wavelet function, which is small and localized,

undergoes shifting and scaling operations across the signal to extract valuable frequency

information over time.

The selection of a specific wavelet function, the determination of decomposition levels, and

the adjustment of other parameters can be tailored to the signal’s characteristics and the

analysis objectives. Different wavelet functions offer distinct properties and are well-suited

for specific types of signals or applications. Additionally, the Wavelet Transform is

frequently employed in conjunction with Downsampling techniques to reduce data size and

focus on the most pertinent frequency components.

By providing a representation that encompasses both time and frequency domains, the

Wavelet Transform has found extensive use in diverse domains, including signal processing,

image analysis, time-series analysis, and others, where localized analysis and the capture of

transient features are essential considerations.
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2.3. Time-Series Modeling

Time-series modeling is a fundamental methodology employed to analyze and predict

data that exhibits temporal dynamics. It encompasses a diverse set of statistical and

machine-learning techniques designed to capture the inherent dependencies and patterns

inherent in sequential data. These models play a vital role in numerous domains, such as

finance, economics, weather forecasting, and stock market analysis, to name a few.

A time series can be described as a sequence of data points that are collected at regular

intervals of time. It represents the progressive evolution of a variable or system as time

progresses. Time-series data typically comprises two fundamental components:

• Temporal Order: The observations in a time series are ordered chronologically, with a

clear time index associated with each data point.

• Temporal Dependencies: Time series often exhibit dependencies, meaning that the

value at a given time point is influenced by the values at previous time points. These

dependencies can manifest as trends, seasonality, cyclic patterns, or other forms of

correlation.

There are several types of time-series models, each suited for different data characteristics

and modeling objectives:

2.3.1. Autoregressive Models (AR)

These models consider that the value at a given time point depends linearly on past

observations. AR models capture the trend and serial correlation in the data.

An autoregressive model of order p(AR(p)) represents the value of a variable at a given time

point as a linear combination of its past values up to lag p. Mathematically, an AR(p) model

can be expressed as:
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Y (t) = c+ ϕ(1)Y(t−1) + ϕ(2)Y(t−2) + ...+ ϕ(p)Y(t−p) + ϵ(t) (2)

Here, Y(t) denotes the value of the variable at time t, c represents a constant term,

ϕ(1), ϕ(2), ..., ϕ(p) are the autoregressive coefficients, Y(t−1), Y(t−2), ..., Y(t−p) correspond to

the lagged values of the variable, and ϵ(t) denotes the error term at time t.

The autoregressive coefficients quantify the impact of the respective lagged values on the

current value. Positive values indicate a positive correlation, while negative values indicate

a negative correlation. The magnitude of the coefficients determines the strength of the

relationship between the variable and its past values, with larger magnitudes indicating a

stronger influence.

2.3.2. Moving Average Models (MA)

MA models assume that the value at a given time point depends on the weighted average

of past error terms. They capture short-term changes and random fluctuations. A Moving

Average model of order q(MA(q)) expresses the value of a variable at a given time point as

a weighted sum of the most recent q error terms. Mathematically, an MA(q) model can be

represented as:

Y(t) = µ+ ϵ(t) + θ(1)ϵ(t−1) + θ(2)ϵ(t−2) + ...+ θ(q)ϵ(t−q) (3)

Here, Y(t) denotes the value of the variable at time t, µ represents the mean of the series, ϵ(t)

represents the error term at time t, and θ(1), θ(2), ..., θ(q) are the MA coefficients. The MA

coefficients determine the influence of the corresponding lagged error terms on the current

value.

The MA coefficients quantify the impact of the respective lagged error terms on the current

value. Positive values indicate a positive correlation, while negative values indicate a
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negative correlation. The magnitude of the coefficients determines the strength of the

influence, with larger magnitudes implying a stronger impact.

2.3.3. Autoregressive Moving Average (ARIMA) Models

ARIMA models find extensive application in the field of time series analysis, effectively

capturing the autoregressive and moving average components inherent in the data.

Additionally, they incorporate an integration component to handle non-stationary data, where

the statistical properties change over time. By considering these essential components,

time series models enable the accurate representation and analysis of temporal patterns and

dependencies in various domains.

An ARIMA model is characterized by three components: autoregressive (AR), moving

average (MA), and integration (I). The AR component captures the linear relationship

between a variable and its past values, the MA component models the influence of the past

error terms, and the I component handles non-stationarity by differencing the data.

ARIMA model can be expressed as:

∆dY(t) = c+ ϕ(1)∆dY(t−1) + ϕ(2)∆dY(t−2) + ...+ ϕ(p)∆dY(t−p)

+θ(1)ϵ(t−1) + θ(2)ϵ(t−2) + ...+ θ(q)ϵ(t−q).
(4)

Here, ∆dY(t) represents the differenced variable at time t, c is a constant term,

ϕ(1), ϕ(2), ..., ϕ(p) are the autoregressive coefficients, DeltadY(t−1),∆
dY(t−2), ...,∆

dY(t−p)

correspond to the differenced lagged values, θ(1), θ(2), ..., θ(q) are the moving average

coefficients, and ϵ(t−1), ϵ(t−2), ..., ϵ(t−q) denote the error terms.

The integration component of ARIMA models, denoted by the differencing operator ∆d,

is used to transform the non-stationary time series into a stationary one. The parameter

d represents the order of differencing required to achieve stationarity. Differencing involves
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computing the difference between consecutive observations to remove trends and seasonality

from the data.

Parameter estimation techniques, such as maximum likelihood estimation (MLE) or least

squares, are commonly used to find the values that optimize the likelihood of the observed

data or minimize the difference between the observed values and the values predicted

by the ARIMA model. On the other hand, selecting the appropriate orders for the AR,

MA, and differencing components of an ARIMA model is crucial for accurate modeling.

Statistical measures such as the Akaike Information Criterion (AIC) or the Bayesian

Information Criterion (BIC) can be used to assess the goodness-of-fit of different models

while considering their complexity. Additionally, graphical tools such as the autocorrelation

function (ACF) and partial autocorrelation function (PACF) can provide insights into the

presence of autocorrelation and guide the selection of optimal orders.

2.4. Data Preprocessing

Text preprocessing plays a vital role in NLP and significantly impacts the efficacy of

algorithms. Prior to conducting text data preparation, several important considerations must

be addressed. These include decisions on removing punctuation marks and stop-words,

segmenting the text into sentences, words, or even individual letters, determining whether

to use words in their original form or convert them to their root, and establishing strategies

for handling misspelled words.

Accurate tokenization, for instance, enhances the precision of part-of-speech (POS) tagging,

while preserving multi-word expressions can improve reasoning and machine translation.

Preprocessing also plays a pivotal role in reducing dimensionality when working with

extensive corpora. However, it is crucial to exercise caution during preprocessing to avoid

excessive loss of information.
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2.4.1. Stop-word Removal

Stop words are available in abundance in any human language. These words are often

considered a single collection of words, which may indicate diverse matters to various

applications. However, considering all candidate words from determiners (e.g., the, a)

to prepositions (e.g., above, across) to some adjectives (e.g., good, excellent) can be

an appropriate stop word list in some cases. Removing stop words discards low-level

information from the text to give more focus to the relevant elements. Besides that, it reduces

the data set size and thus cuts down the training time due to the fewer tokens involved in the

process. Nevertheless, one should be careful while creating a stop word list and assuredly

consider domain-specific wording.

Moreover, the removal of stop words may not be a good decision at all in some specific

scenarios. That is, eliminating some words can be troublesome since these words might be

decisive in contextualizing the intention. For instance, ignoring adjectives like ”upside” or

”ongoing” as well as negations like ”not” may cause algorithms to malfunction in polarity

research as it changes the valence of the passage and omits the context. Thus, stop words are

retained when using a contextual model like BERT.

2.4.2. Normalization and Tokenization

To reduce inflectional forms and occasionally derivatively related forms of a word to a

single base form is the aim of the normalization phase of preprocessing. Lemmatization and

stemming are the two most-common normalization techniques applied in NLP to reduce data

irregularity and bring it closer to a predefined standard. Both stemming and lemmatization

algorithms share the objective of reducing words, including inflectional forms and sometimes

derivationally related forms, to a common base form. However, these two techniques differ

in their approach and characteristics. The straightforwardness and lesser computational

complexity of stemming prompted us to use it in this study. Therefore, following cleaning

redundant words from the corpora, we put the remaining part of the documents into the
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stemming process for normalization. We preferred Porter stemmer so as not to prune too

tightly and, thus, avoid any possible costly data loss2.

2.4.3. Word Embeddings

To adequately manipulate and analyze text data, it is crucial to represent the corpus

in a mathematically manipulable format. This entails converting words into numerical

representations that can be understood by computers, as computers primarily operate using

numerical data. However, the task of capturing semantic and syntactic relationships

extends beyond a simple mapping of words to numbers within a sentence or document. A

comprehensive representation that encompasses the semantic and syntactic properties of the

corpus requires sizable numerical encoding.

Various word embedding methods, such as One Hot Encoding, Bag-of-Words, TF-IDF,

Word2Vec, and FastText, have been developed to address this need. These techniques aim

to capture the context of paragraphs or preceding sentences, along with extracting their

semantic and syntactic properties and similarities. Among these methods, we opted for

the Bag-of-Words technique in this study due to its simplicity, flexibility, and scalability

in representing the text data within the documents.

It is important to note that text preprocessing procedures were exclusively conducted

for the exploratory analysis segment of this study. This happens because FinBERT

models involve contextual word representations, signifying that the input depiction of a

particular token is formed by aggregating the corresponding token, segment, and position

features. Consequently, the input data for FinBERT models does not necessitate the same

preprocessing effort as other methods.

2Lancaster algorithm, another well-known stemmer, is one of the most aggressive stem-ming methods.
Approximately, it has two times more stemming rules than the Porter method and tends to over stem a lot of
words.
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2.4.4. Transformations for Stationarity

Stationarity pertains to the constancy of statistical properties in a time series over time.

Specifically, a stationary time series maintains consistent mean, variance, and autocorrelation

characteristics. The presence of trends, seasonality, or other patterns can hinder accurate

modeling and forecasting of the data.

Non-stationarity poses a significant challenge in time series analysis, as many forecasting

methods assume stationarity. When a time series is non-stationary, its statistical properties

change over time, making it difficult to apply traditional time series models and obtain

reliable forecasts. Moreover, non-stationary time series can lead to spurious correlations,

where variables appear to be correlated due to common trends or non-stationary patterns.

Polarity or semantic analysis, commonly known as sentiment analysis, is a natural language

processing (NLP) technique that involves determining the sentiment or emotional tone

expressed in a piece of text, such as a sentence, paragraph, or document. It involves

automatically identifying and categorizing the sentiment conveyed in the text as positive,

negative, or neutral. Polarity analysis aims to understand the subjective opinion, emotion,

or sentiment expressed in text data, which can be valuable for various applications such as

social media monitoring, customer feedback analysis, brand perception analysis, and market

research. For the machine-learning approach, polarity analysis is typically performed using

algorithms that are trained on labeled data, where the sentiment of the text data is manually

annotated, allowing the model to learn patterns and associations between words, phrases, and

sentiment labels.

On the other hand, forward-lookingness, also known as future or forward-looking

information, refers to the aspect of information or data that pertains to the future or predicts

future events, trends, or outcomes. It mostly engages in analyzing and interpreting data that

provide insights or forecasts about what may happen in the future. Forward-lookingness

is often used in various fields, such as economics, finance, business, and technology, to

make informed decisions, develop strategies, and anticipate potential risks and opportunities.
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Forward-lookingness can encompass a wide range of data types, including economic

indicators, market trends, predictive analytics, scenario modeling, and expert opinions. It

allows stakeholders to proactively plan and adapt to changing circumstances, make strategic

decisions, and stay ahead in a dynamic and uncertain environment.

The following subsections introduce the tools we exploited and the route pursued throughout

the analysis.

2.5. Bidirectional Encoder Representations from Transformers

(BERT)

The development of deep learning models for sentiment analysis has undergone a significant

transition from the early use of LSTM-based models to the more recent emergence of BERT

models. LSTM models were initially used for sentiment analysis and were successful

in capturing temporal dependencies in sequential data. However, the emergence of

transformer-based models, such as BERT, enabled more effective handling of contextual

information by exploiting self-attention mechanisms. BERT’s success in capturing rich

contextual information from pre-trained language models led to the development of

BERT-based sentiment analysis models, which have consistently outperformed LSTM-based

models in recent years.

Bidirectional Encoder Representations from Transformers (BERT) is a state-of-the-art

natural language processing (NLP) model that has revolutionized the field of language

understanding and representation [20]. BERT is a pre-trained deep learning model that is

capable of capturing bidirectional contextualized representations of words and sentences,

leading to significant advancements in various NLP tasks such as text classification, named

entity recognition, question answering, and sentiment analysis.

At the heart of BERT lies the Transformer architecture, a neural network that enables efficient

and parallel processing of input sequences. Unlike traditional NLP models that process

words or sentences sequentially, BERT is designed to process input text in parallel, allowing
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for faster and more effective representations. During pre-training, BERT employs a masked

language modeling (MLM) objective, where it randomly masks out words in a sentence.

The model is trained to predict the masked words based on the contextual information from

the surrounding words. This aspect of BERT enables it to learn bidirectional contextual

representations, as it must rely on both the left and right context to predict the masked words

accurately. In contrast to traditional word embeddings that are static and do not change based

on the context, bidirectional nature allows BERT to capture the meaning of a word within

the context of the entire sentence, enabling it to grasp the intricate nuances of language, such

as word sense disambiguation, syntactic structure, and semantic relationships. By leveraging

a masked language model (MLM) training approach, BERT can predict missing words in a

sentence, forcing it to understand the dependencies between words and the context in which

they appear.

BERT’s input representation is a combination of multiple embeddings to capture different

types of information from the input text. This combination ensures that BERT not only

understands the words themselves but also their context and position in a sentence, as well

as which sentence they belong to when dealing with pair-input tasks. Figure 2.5 describes

the function of each of the embedding layers in BERT.

Figure 2.5 BERT input representation. The input embeddings is the sum of the token embeddings,
segmentation embeddings, and the position embeddings.

BERT has been widely adopted in the NLP community and has achieved state-of-the-art

results on a wide range of benchmark data sets. It has also been used as a base model

for fine-tuning specific NLP tasks. Researchers and practitioners can fine-tune BERT on
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task-specific data with minimal modifications to the model architecture. This transfer

learning capability of BERT has significantly reduced the need for large amounts of

task-specific labeled data, making it a powerful tool for many real-world NLP applications

with limited data availability.

BERT has also inspired further research and advancements in the field of NLP, leading to

the development of variants and extensions of the original BERT model, such as ALBERT,

ELECTRA, and RoBERTa. These variants have further pushed the boundaries of NLP

performance and opened up new research avenues in areas such as multilingual NLP,

low-resource NLP, and domain adaptation.

There are BERT adaptations for the finance and economics domains as well. Two notable

examples are FinBERT and FinBERT FLS [17][18]. These models are designed to

specifically cater to the unique characteristics and requirements of financial text data, making

them particularly well-suited for tasks related to financial sentiment analysis, financial event

prediction, and financial risk assessment.

2.5.1. FinBERT

FinBERT is a domain-specific adaptation of BERT that has been trained on a large corpus

of financial documents, such as financial reports, earnings calls, and news articles related

to finance and economics. By pre-training on such domain-specific data, FinBERT can

capture the nuances and domain-specific language used in financial texts, which can differ

from general-purpose language. Hence, it can perceive financial jargon, industry-specific

terminology, and domain-specific contextual information, which is critical for accurately

analyzing financial text data.

FinBERT FLS (forward-looking sentence), on the other hand, is a variant of FinBERT

that is fine-tuned to detect the forward-looking structure of the sentences in financial

documents. These models can identify phrases or sentences that indicate future events,

predictions, or expectations, which can be crucial for decision-making in finance. For
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instance, FinBERT can recognize phrases that may contain a projection into the future

and identify forward-looking information in financial text data. This enables analysts to

understand better the prospects, risks, and opportunities associated with financial entities or

events and make more informed decisions.

FinBERT and FinBERT FLS have proven to be highly effective in various financial text

analysis tasks. They have been used in applications such as sentiment analysis of financial

news, predicting stock price movements based on financial sentiment, and identifying

financial risks and opportunities. These domain-specific BERT mod-els have demonstrated

superior performance compared to general-purpose BERT mod-els in financial text analysis

tasks, showcasing the importance of domain-specific adaptations for specialized domains in

economics and finance.

3. RELATED WORK

A large part of NLP research that has been done in recent years focused on analyzing

the direction and severity of users’ thoughts and emotions on a particular topic on social

media data. Though several superimposed mechanisms have been proposed to extend the

functionality of general-purpose dictionaries for a given domain, these efforts still need the

ability to correctly interpret the true meanings of the words in highly technical documents.

One of the main reasons for this is that the standard gold dictionaries used in lexicon-based

methods cannot produce successful results in do-main-specific texts.

Lucca et al. proposed a method to measure the polarity of the content of central

bank disclosure documents. They exclusively employed Google’s and Factiva’s semantic

orientation scoring systems to extract quantified meaning at both sentence and document

levels. They conducted an empirical analysis of the statements released by FOMC after

its policy meetings [21]. Using vector autoregression (VAR) models, they found that it

takes more than a year for a significant change in the policy documents to be accompanied

by a policy interest rate change. Furthermore, according to the results of their analysis,
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they claimed that short-term nominal treasury yields are more sensitive to changes in policy

rates around policy announcements, while long-term treasuries spy on the changes in policy

communication.

Szyszko et al. scrutinized six European economies and investigated the drifts of central

banks’ tone on their consumer inflation expectations between 2010 and 2019 [22]. After

deriving the relevant content from the releases leveraging Latent Dirichlet Allocation (LDA)

technique, they took advantage of a dictionary launched by Loughran and McDonald (LM)

to quantify consumer review surveys since they have the opinion that consumers’ knowledge

is relatively low. Thus, any lexicon well-tailored for the policy texts would be too specific,

and the LM dictionary was a good option for that purpose [23].

Tumala et al. employed an opinion-mining technique to analyze the efficiency of the

Central Bank of Nigeria’s communication hand-outs by building a specific lexicon using

their previous meeting communiqués for the last fifteen years [24]. Besides readability and

word occurrence frequency check, they use topic modeling for a detailed assessment of the

subject density evolution of the documents throughout the years.

Kahveci et al. ran an investigation on a set of aspects as certainty, and opti-mism, of press

releases of three specific central banks, namely FED, European Central Bank (ECB), and

Central Bank of the Republic of Turkey (CBRT). They exploited Diction 73 to appraise the

changes in communication transparency [25]. They claimed that while there is no significant

shift in the tone of ECB and CBRT, an upward trend in certainty and a decline in the optimism

of FED declarations were remarkable.

Park et al. quantified the Bank of Korea’s meeting minutes to capture partial consequences

of the central bank’s manner for the national macroeconomic variables [26]. To this end,

they applied contiguous sequences of the word (n-gram) approach to a field-specific Korean

dictionary (eKoNLPy) since some words might mislead the results if they leave alone, e.g.,

recovery conveys an applauding meaning while sluggish recovery does not. They also built a

3A computer-assisted program for determining the tone of a verbal message using pre-defined dictionaries
to process a passage and then it compares the results to built-in norms.
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machine learning-based model leveraging Naı̈ve Bayes Classifier and replicated the analysis

for several well-known lexicons for comparison. Their study strongly suggests that the

machine learning approach outperforms other dictionary-based models to explain current

policy changes and provide insight into future movements.

Moniz et al. presented another framework that gauges the influence of central bank

communications on investors’ interest rate expectations in the United Kingdom [27]. Using

an automated summarization algorithm, TextRank, to detect word-level communities, they

adopted the LDA (Latent Dirichlet allocation) technique with a naı̈ve classifier to infer topic

clusters from the documents for verification purposes. Finally, they mined the sentiment

score with the help of the General Inquirer dictionary, a set of procedures for identifying

recurrent patterns within text documents built by the Massachusetts Institute of Technology

[28]. Giuseppe Bruno from the Bank of Italy constructed a setup similar to Moniz’s [29].

He took a close look at Bank of Italy’s previous twenty Governor’s Concluding Remarks

documents from 1996 to 2015 and analyzed the evolution of the documents for different

aspects, such as formality, memorability, polarity, etc., over time. He concluded that the

sentiment of these documents stayed relatively neutral during the period, whereas with

different short-term economic conditions, it occasionally showed slight volatility.

Sohangir et al. assessed the performance of three famed lexicons in the opinion extraction

field using StockTwits, a financial-social network data set [30]. They included a bunch

of machine learning algorithms in the scope of their study. Their experiment showed that

TextBlob4 intends to classify too many words as neutral compared to other lexicons and

machine learning models, seemingly making it inappropriate for texts that contain technical

jargon. They also found that only the VADER dictionary5 outperforms baseline machine

learning algorithms in terms of both accuracy and computational complexity.

4TextBlob is a popular open-source Python library for NLP that provides a simple interface for common
NLP tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, and translation, among
others.

5VADER (Valence Aware Dictionary and sEntiment Reasoner) is a pre-trained rule-based sentiment analysis
tool developed by Hutto and Gilbert in 2014 [31].
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Devlin et al. introduced a new language representation model called BERT, which stands

for Bidirectional Encoder Representations from Transformers [20]. They designed BERT to

pre-train deep bidirectional representations from an unlabeled text by joint conditioning on

all layers’ left and right contexts. Then, they inserted one additional output layer to create

a model that struggles with a wide range of tasks, such as question answering and language

inference, without substantial task-specific architecture modifications. They demonstrated

the importance of bidirectional pre-training for language representations and its capability

that allows the same pre-trained model to tackle a broad set of NLP tasks successfully.

Howard et al. claimed another pre-training of a language model on a target do-main corpus

enhances classification performance [32]. They conducted further pre-training processes

in pursuit of discovering whether such adaptation would be advantageous for the realm of

finance and economics. To do this, they severally conducted two experiments exploiting

TRC2-financial corpus, a subset of Reuters’ TRC2 corpora, and Financial PhraseBank from

the study of Malo et al. [33]. In the last step, 16 professionals with backgrounds in

business and finance annotated these sentences. Although Financial Phrasebank is relatively

small, they concluded that using data from the direct target provided better target domain

adaptation.

Araci et al. employed a transfer learning path and introduced a downstream language model

based on BERT, called FinBERT, to deal with financial domain-specific texts for NLP tasks

[34].

Yang et al. built another BERT model addressing domain-specific precision issues in NLP

[35]. They gathered vast financial domain corpora comprising the three most representatives

in finance and business communications, which amounts to over 4.9 billion tokens. Based

on their initial pre-training, they also developed a model that classifies a sentence according

to its forward-looking tendency. Although it varies according to the models’ fine-tuning

parameters and data set, their experiment results show a substantial improvement (between

4.3% and 29.2%) of FinBERTs over the generic BERT models.
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This study will contribute to the literature since it is the first study that questions the effects

of the recent pandemic on central banking communication by exploiting the state-of-the-art

BERT models, off-domain tools, and further statistical analysis.

4. METHODOLOGY

This thesis aims to explore the potential effects of the Covid-19 crisis on the communication

tone employed by the Federal Reserve (FED), while also examining the dynamics of the

relationship between FED statements and consumer expectations before and after the crisis.

The primary objective of this research is to conduct a thorough analysis of how the Covid-19

crisis might have impacted the way that the FED communicates and its efficacy in shaping

consumer expectations across different time periods. By doing so, this research endeavors to

address the following key inquiries:

• How have FED statements evolved regarding readability level, Zipfian compatibility,

and topic distribution over time? Is there any significant change in the trend during the

pandemic?

• What has occurred in the last decade years in the landscape of the co-movement

between the semantic orientation and forward-lookingness intensity of FED statements

and consumer inflation expectations? Has there been a change in the appearance of this

association with the Covid-19 period?

• Has the pandemic significantly impacted the polarity orientation and forward-looking

strength of the communiqués?

To answer these questions, we followed the workflow given in Figure 4.1.
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Figure 4.1 Research Workflow

4.1. Data

4.1.1. Data Acquisition

We acquired the sampling data from Federal Reserve Board’s official page using

web-scrapping techniques and then placed each meeting release in a separate text document.

That way, we obtained a corpus comprising 214 FOMC meeting minutes re-leases from

February 1992 to November 20226. Additionally, we extracted monthly consumer inflation

expectation data for the one- and three-year ahead7 time horizon from the Federal Reserve

Bank of New York. Below is the snapshot from the Committee Policy Action section of the

FOMC meeting on June 14-15, 2022:

“In their discussion of monetary policy for this meeting, members agreed that overall

economic activity appeared to have picked up after edging down in the first quarter. Job gains

had been robust in recent months, and the unemployment rate had remained low. Members

6https://www.federalreserve.gov/monetarypolicy/materials/
7https://www.newyorkfed.org/microeconomics/sce#/
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also agreed that inflation remained elevated, reflecting supply and demand imbalances related

to the pandemic, higher energy prices, and broader price pressures.”

“Members concurred that the invasion of Ukraine by Russia was causing tremendous human

and economic hardship. Members agreed that the invasion and related events were creating

additional upward pressure on inflation and were weighing on global economic activity. With

the effects of the invasion of Ukraine by Russia already materializing, members considered

it appropriate to omit from the June statement the sentence conveying the high uncertainty

associated with the implications of the invasion for the U.S. economy. Members also agreed

that COVID-related lockdowns in China were likely to exacerbate supply chain disruptions.

In light of these developments, members remarked that they remain highly attentive to the

upside risks to inflation and would be nimble in responding to incoming data and the evolving

outlook.”

Federal Open Market Committee – Minutes of the Meeting of June 14–15, 2022

In the course of our investigation, we embarked on several preprocessing measures. These

encompassed the elimination of stop-words, standardization of data, segmenting the text

into meaningful units (tokenization), and converting these tokens into a format suitable for

computation (vector representation). Furthermore, to suit our ARIMA model, we introduced

a stationary transformation to the data. These preparatory measures were crucial in refining

our data and preparing it for the in-depth analysis that followed.

For the purpose of examining the data’s stationarity, we employed two widely-recognized

tests: the Augmented Dickey-Fuller (ADF) and the Kwiatkowski–Phillips–Schmidt–Shin

(KPSS) tests, evaluating them at different levels. Nonetheless, it is imperative to recognize

that these tests are not without their challenges. Each has its constraints in pinpointing

different forms of non-stationarity and operates within specific assumptions. To elucidate,

the ADF test operates under the presumption of residuals being normally distributed and the

accurate specification of the autoregressive (AR) process. On the other hand, the KPSS test

functions on the basis of having finite variance and errors that are not serially correlated.

Given these intricacies, our approach involved a holistic review of the test outcomes, taking
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into account the inherent advantages and limitations of each. Detailed outcomes from these

tests can be referred to in Table 4.1.

A careful scrutiny of the results revealed that for the Cov-19 indicator, there was not

substantial evidence in the ADF test to dismiss the null hypothesis (H0). This insinuates

the potential stationarity of the data. Conversely, for the Cov-19 series, the hypothesis of

stationarity was dismissed across all significance thresholds. These collective findings point

towards the existence of a unit root, indicating a propensity for the series to follow a random

walk pattern without reverting to the mean. As a logical deduction, it becomes evident that

the Cov-19 series exhibits non-stationary characteristics.

Subsequently, we applied the first difference to all the series in consideration. The outcome

of this process led to the rejection of the null hypothesis (H0) in the ADF test. Yet, in the

KPSS test at a significance level of 1%, the null hypothesis was upheld. These insights were

instrumental for the modeling steps that followed.

Table 4.1 Unit-root and Stationarity Test Results

ADF KPSS

Variable test stat. p-value test stat. p-value

Specific FLS -3.622 0.032** 0.126 0.087*
non-Specific FLS -4.118 <0.01*** 0.119 0.099*
Positivity -4.235 <0.01*** 0.091 0.100
Negativity -3.235 0.083* 0.300 <0.01***
Neutrality -3.643 0.030** 0.154 0.043**
Cov-19 -1.349 0.849 0.651 <0.01***

Note: The null hypothesis of the ADF test (H0) argues the presence of unit roots, while the alternative
hypothesis (HA) asserts the absence of unit roots. Contrarily, a claim on the stationarity of the series frames the
(H0) hypothesis of the KPSS test and vice versa. A p-value less than the significance level provides evidence to
reject the null hypothesis at that significance level. Conversely, values larger than the significance level imply
insufficient evidence to reject the null.
(∗ ∗ ∗: Significant at 99 percent confidence interval, ∗∗: Significant at 95 percent confidence interval, ∗:
Significant at 90 percent confidence interval.)
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4.2. Exploratory Analysis

This part of the thesis delves into notable observations drawn from the press releases of

FOMC minutes spanning the past thirty years of committee gatherings. Initially, our focus

was directed at evaluating the quantity of paragraphs and words in these documents. The

visual depiction of these patterns over time can be observed in Figure 4.2. Interestingly,

there was a consistent volume in the committee meetings’ documentation up until 2007.

However, post-2007, there was a noticeable expansion in the length of these releases. The

surge in document size became particularly pronounced after 2010.

Subsequent to this, we embarked on a comprehensive statistical review of these documents.

This involved assessing them based on standard computational linguistic attributes,

particularly word frequency. This was then complemented by an assessment of the legibility

of the minutes, employing various readability evaluation metrics.

Figure 4.2 Word and Paragraph Volume
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4.2.1. Zipfian Compliance

Zipf’s Law theorizes that within a body of natural language texts, the occurrence of individual

words is inversely linked to their standings in the frequency hierarchy. For example, if

the most commonly occurring word appears 1,000 times, the second most frequent word

is anticipated to appear about half as frequently, and the third word approximately a third as

often, and so on. Furthermore, an associated principle from information theory proposes that

a text, to optimize its information conveyance using a restricted vocabulary, should adhere to

Zipf’s Law [36].

Upon generating Zipf’s tables for the consolidated corpus annually, we utilized the

Kolmogorov-Smirnov test8 to evaluate if the data originates from a population exhibiting

Zipfian distribution characteristics. The test results did not reject the null hypothesis,

indicating that the corpus exhibits a Zipfian nature, with a consistent significance threshold

of 5% maintained throughout all years. There is no compelling evidence to assert that the

sample data diverges from a Zipfian distribution. Consequently, our prevailing interpretation

is that the minutes align with Zipfian principles, and the emergence of the Covid-19 pandemic

has not introduced deviations negating the Zipfian essence of FOMC statements (refer to

Table 4.2).

Table 4.2 Kolmogorov-Smirnov Test Results

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

KS stat. 0.705 0.683 0.692 0.674 0.702 0.735 0.763 0.684 0.712 0.733
p-value 0.174 0.201 0.189 0.213 0.177 0.140 0.112 0.200 0.165 0.143

Note: (H0): The data follow the Zipfian distribution. (HA): The data do not follow the Zipfian distribution.
A p-value less than the significance level provides evidence to reject the null hypothesis at that significance level.
Conversely, values larger than the significance level imply insufficient evidence to reject the null.
(∗∗∗: Significant at 99 percent confidence interval, ∗∗: Significant at 95 percent confidence interval, ∗: Significant
at 90 percent confidence interval.)

8This is a non-parametric method used to determine the congruence of continuous or discontinuous
one-dimensional probability distributions, either by comparing a sample with a benchmark probability
distribution or by juxtaposing two samples.
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4.2.2. Readability Investigation

The concept of readability pertains to the ease with which a reader can comprehend a given

text. Various scoring systems have been developed to quantify the potential difficulty of a

text by considering specific attributes known to influence complexity, such as the average

length of sentences or the prevalence of intricate words. It is important to differentiate

between the readability and the intelligibility of a document. While readability assesses the

structural and linguistic aspects of the text, intelligibility might vary based on the reader’s

existing knowledge on the subject and the intrinsic qualitative and quantitative features of the

material. For our study, we utilized three prominent readability indices: the Flesch-Kincaid

grade level, the Gunning-Fog Index, and the Automated Readability Index (ARI). A visual

representation detailing the temporal variations in the readability of FOMC statements can

be observed in Figure 4.3.

Figure 4.3 FOMC Minutes Releases’ Readability Indices

The Flesch-Kincaid Grade Level is modeled on the US educational framework, implying the

educational level necessary to grasp a particular text. For instance, a score of 13 suggests that

the material is comprehensible to a college-level student. On the Gunning-Fog scale, scores

between 17-20 and above 20 represent post-graduate and advanced post-graduate levels of

understanding, respectively. Meanwhile, the Automated Readability Index (ARI) provides a

figure that approximates the reader’s age needed for clear comprehension. To contextualize,
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the 12th grade, which is the concluding year of US high school before college, aligns with a

17-year-old’s reading capability.

It is noteworthy that post-2010, ARI and Gunning-Fog measurements displayed considerable

congruence. However, during earlier times, they exhibited discrepancies, with Gunning-Fog

consistently registering higher scores than the ARI. An intriguing observation is the

diminishing readability levels of FED communications post-1990s, with a pronounced surge

presumably linked to the financial turmoil of 2008. In recent years, all metrics have plateaued

around the collegiate standard. Yet, both the Gunning-Fog and ARI metrics exhibit a subtle

decline in their trends.

4.2.3. Topic Modeling

Topic modeling, often referred to as topic extraction, is a statistical technique primarily used

to identify the primary themes within a set of documents. Typically falling under the domain

of unsupervised machine learning, topic modeling aims to uncover hidden patterns and

structures in textual data. That is, algorithms pinpoint themes based on discernible patterns,

like word clusters and their recurrence. Conversely, topic classification falls under supervised

learning. It leverages rule-driven systems, or learning algorithms, which are meticulously

trained using hand-labeled data and predetermined categories. Only upon familiarizing with

the training data can these machine learning algorithms competently categorize new, unseen

texts in accordance with these predefined categories.

For the purposes of our research, we adopted the Latent Dirichlet Allocation (LDA)

technique. This generative probabilistic model, proposed by Blei and colleagues [37],

allowed us to explore implicit themes and ascertain their prominence within documents.

Subsequently, we scrutinized the variations in these weights during the FOMC sessions over

the years.

After subjecting the words to the previously discussed preprocessing phase, we then grouped

them. Post clustering, we assigned labels to these groupings by considering the terms that
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appeared most frequently within each cluster. Figure 4.4 visually depicts the progression in

topic intensity across various periods of the FED’s FOMC minutes. Furthermore, Table 4.3

showcases the ten most recurrent words for each identified theme.

Figure 4.4 Relative Topic Intensity of FOMC minutes

The topic of ”Aggregate Demand” has consistently dominated FOMC communiqués from

1995 to 2022. It stands out, claiming precedence over other themes by consistently

maintaining a weight of more than 20 percent throughout the years under review. Following

closely, the ”Credit Market”, which represents the arena where agents negotiate and trade

debts, has often occupied the second most significant segment of the meeting discussions.

Although it retained this position for most years, there was a notable exception in 1996. In the

post-2000 era, this topic has consistently constituted approximately a fifth of the meeting’s

discourse.

Meanwhile, the theme of ”Inflation” underwent some fluctuations. Starting with a share of

16.73 percent in 1995, its prominence dwindled to nearly 11 percent in the early 2000s.

However, a resurgence was observed post-2005, stabilizing at about 15 percent in the latter

years. It is noteworthy that the proportional representation of these subjects in Fed meetings

hasn’t seen any marked alterations, especially post-2010. The discussions found a specific

trajectory post the global financial meltdown.
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Lastly, discussions related to ”Outlook” have gradually increased since the onset of the

2000s. By 2010, it consistently accounted for an estimated 18 percent of the meeting’s

agenda, a trend that has since been sustained.

Table 4.3 Word Ranking by Topics

Aggregate Credit Financial
Inflation Labour Outlook

Demand Market Market
quarter loan market inflat particip particip
increas yield fund price labor polici
spend remain financi expect rate inflat
product credit secur year busi econom
real period rate consum continu committe
busi market treasuri measur sector would
decline bank period staff employ rate
good declin asset percent market risk
manufacture bond term energi recent expect
sale intermeet feder month hous feder

5. POLARITY AND FORWARD-LOOKINGNESS

ANALYSIS

Sentiment analysis, also known as polarity or semantic analysis, is a branch of natural

language processing (NLP) dedicated to deciphering the emotional tone or sentiment

expressed within text, whether it’s a single sentence, a paragraph, or an entire document.

Its core function is to automatically identify and classify this sentiment into categories

like positive, negative, or neutral. This analytical approach aims to uncover the subjective

opinions, emotional nuances, or overall sentiment encapsulated in text data, rendering it

valuable for a wide range of applications, including social media tracking, customer feedback

evaluation, brand perception assessment, and market research. For the machine-learning

approach, polarity analysis is typically performed using algorithms that are trained on labeled

data, where the sentiment of the text data is manually annotated, allowing the model to learn

patterns and associations between words, phrases, and sentiment labels.
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On the other hand, forward-lookingness, also known as future or forward-looking

information, refers to the aspect of information or data that pertains to the future or predicts

future events, trends, or outcomes. It mostly engages in analyzing and interpreting data that

provide insights or forecasts about what may happen in the future. Forward-lookingness

is often used in various fields, such as economics, finance, business, and technology, to

make informed decisions, develop strategies, and anticipate potential risks and opportunities.

Forward-lookingness can encompass a wide range of data types, including economic

indicators, market trends, predictive analytics, scenario modeling, and expert opinions. It

allows stakeholders to proactively plan and adapt to changing circumstances, make strategic

decisions, and stay ahead in a dynamic and uncertain environment.

The following subsections introduce the specific BERT models and techniques we exploited

and the route pursued throughout the analysis.

5.1. BERT Modeling and FinBERT

We extracted quantitative information from the documents using FinBERT and FinBERT

FLS. FinBERT assigns labels to each sentence in the documents, classifying them

as positive, negative, or neutral. At the same time, FinBERT FLS produces an

outcome, categorizing sentences as either specific forward-looking-sentence, non-specific

forward-looking-sentence, or not-forward-looking-sentence. Labeling a sentence as Specific

FLS implies that it is a definitive judgment about the future of a specific entity. In contrast,

non-specific FLS spells its future-oriented structure without referring to matters pointedly.

As the name suggests, the not-FLS tags indicate that the sentence has no forward-looking

nature. We calculated the average scores for each class in a meeting-wise manner as follows:

where total scores (i.e., Total Positive Score) are simply the sum of all scores produced at the

sentence level for each class (i.e., Positive). Figures 5.1 and 5.2 illustrate the time series for

each defined variable with a joined bar graph representing the word counts on the opposite

axis.
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Figure 5.1 Scores (line graph on the left-axis) and Total Sentence Counts (bar graph on the
right-axis) -for each class- Results for Polarity Search (e.g. Positive, Negative, and
Neutral)

Figure 5.2 Scores (line graph on the left-axis) and Total Sentence Counts (bar graph on the
right-axis) -for each class- Results for Polarity Search (e.g. specific FLS and non Specific
FLS)

As Figures 5.1 and 5.2 show, there is a substantial decrease in the magnitude of the volume

of the minutes after 2004. Remarkably, the decline in the count of neutral sentences appears

to be more pronounced than positive and negative ones. This trend suggests that the Federal

Reserve (FED) has displayed a discernible inclination towards es-chewing statements that
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lack a definitive direction in following the attitude change. However, towards the culmination

of a period spanning approximately three years, there emerges a resurgence in the volume

of neutral expressions. Subsequently, in the aftermath of the 2007-2008 financial crisis, it is

discerned that the volume of sentences within minutes exhibits a state of relative stability.

Naturally, the shrinkage in the volume of the minutes goes along with the specific and

non-specific forward-looking volume. Yet, the forward-looking strength of the FOMC

releases fluctuates more than the polarity direction. Moreover, the harsh fluctuations

experienced occasionally in forward-looking scoring are interesting. We see such

fluctuations between ’99 and ’03 for specific forward-lookingness and also in 2005 and

between ’13 and ’15 for non-specific forward-lookingness. However, after the adjustment

period, as mentioned earlier, the forward-lookingness volume has kept its disheveled

appearance than the polarity.

5.2. Temporal Sequence Similarity and Dynamic Time Warping

(DTW)

A temporal sequence is a series of data points or observations ordered chronologically. It

illustrates the progression of a variable or phenomenon across time, where every data point

is linked to a particular time moment or time frame.

Measuring the similarity between two temporal sequences with different frequencies can

be challenging due to differences in the granularity or resolution. A well-known approach

is to resample or aggregate the data to a standard frequency before calculating similarity

measures. Several other methods commonly employed for measuring the similarity between

temporal sequences with different frequencies include Dynamic Time Warping (DTW),

cross-correlation, Fourier-based methods, Pearson correlation, and wavelet-based methods.

Resampling or aggregating data to a common frequency for measuring similarity between

temporal sequences with different frequencies may have limitations. It can lead to loss of

information, potential misalignment or distortion of temporal patterns, and introduce biases.
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Careful consideration should be given to the potential implications and limitations of this

approach, such as the impact on the accuracy and validity of the similarity measures and

the potential loss of fine-grained temporal dynamics. Alternative methods that account for

the inherent differences in frequency between the sequences, such as dynamic time warping

or wavelet-based methods, may be considered to mitigate these limitations. Therefore, we

employed Dynamic Time Warping method, a popular technique for measuring similarity

between two temporal sequences with different frequencies.

Using the DTW method, we attained the proximity between consumer inflation expectations

and each series. Since the consumer inflation expectation behavior can vary depending on

the time horizon, we exclusively considered the short- and medium-term expectations for our

analysis. Figures 5.3 and 5.4 show the distances between consumer inflation expectations and

each score series over the course of time.

Figures 5.3 and 5.4 show that the distance between the sequences shows extreme similarity

for the one-year and three-year consumer inflation expectations for the pre-crisis period.

We follow that the distance between the sequences has increased to 16 units for one-year

expectations and 10 units for three-year expectations with the global epidemic. Indeed, it

is not much striking since, as the literature says, consumer inflation expectations tend to be

more stable over longer time horizons. Short-term expectations can be more volatile and

subject to sudden changes in economic conditions or perceptions of economic policy. On

the other hand, while the distance between three-year inflation expectations and the FOMC

scoring series in the post-crisis period shows the normalization trend more clearly, we need

to observe more data for one-year expectations.
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Figure 5.3 Distances for one-year ahead Consumer Inflation Expectations

Figure 5.4 Distances for three-year ahead Consumer Inflation Expectations
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Specific FLS non-Specific FLS

Positivity Negativity

Neutrality

Figure 5.5 Accumulated Cost Matrices and Warping Paths for one-year ahead Consumer Inflation
Expectations
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Specific FLS non-Specific FLS

Positivity Negativity

Neutrality

Figure 5.6 Accumulated Cost Matrices and Warping Paths for three-year ahead Consumer Inflation
Expectations
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The accumulated cost matrix represents the cumulative cost of aligning the pairwise series

of sequences at each point in time. The cost at each position is computed based on a

distance metric between the elements at that position and a set of neighboring positions

in the accumulated cost matrix. The objective is to identify the most favorable warping path

within the matrix, characterized by the lowest cumulative cost. This path signifies the optimal

alignment between the two sequences.

Additionally, the warping path signifies the ideal mapping or correspondence between the

sequences, signifying that the data points in both sequences exhibit the highest degree

of similarity. A shorter path or a lower accumulated cost indicates a higher similarity

between the sequences, whereas a longer path or a higher accumulated cost indicates a lower

similarity. The warping path can be interpreted as a sequence of pairs of indices from the

two sequences that indicate which elements are matched or aligned. The warping paths can

also provide information on the time lag or shift between the two sequences, indicating any

temporal misalignment or time lag in the similarity patterns. Figures 5.7 and ?? visualize

all possible warping paths for one- and three-year ahead produced by the DTW algorithm,

respectively.

Note that a diagonal move is a match between the two sequences. In contrast, off-diagonal

moves imply either duplication of one point of one sequence (expansion) or elimination

of one of the points (contradiction). Observe that those pairwise warping paths for one- and

three-year-ahead are almost identical except for the negativity series, whose three-year-ahead

path flourishes a salient deviation from its one-year-ahead pattern. Thus, the patterns between

the series obtained from the Fed minutes and the one- and three-year ahead consumer

inflation expectations are alike. Additionally, all pair-wise series showed a phase shift once

or twice during the last decade. The accumulated similarity matrix and paths produced by

the DTW algorithm showed a non-monotonic pattern during these periods, suggesting that

the scoring series (e.g., positivity) experienced a temporal distortion or phase shift compared

to the other time series (e.g., consumer inflation expectation).
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5.3. ARIMAX Modeling

ARIMAX (AutoRegressive Integrated Moving Average with eXogenous variables) is an

extension of ARIMA that allows for the inclusion of exogenous variables, which are external

factors that may impact the time series being forecasted. Exogenous variables are included as

additional predictors in the ARIMA model, along with the autoregressive, moving average,

and integrated components. It is particularly useful when there are external factors that are

expected to influence the time series data and need to be accounted for in the forecasting

process [[38]]. Below equation constructs ARIMA(p, I, q):

Yt = c+ (ϕ1 ∗ Yt−1) + ...+ (ϕp ∗ Yt−p) + εt − (θ1 ∗ εt−1)− ...− (θq ∗ εt−q) (5)

where:

yt: The value of the time series variable at time t,

ϕ1, ..., ϕp: The parameters of the AR component,

θ1, ..., θq: The parameters of the MA component.

Let β1, ..., βm be the parameters of the exogenous variables X1, X2,..., Xm. Then the general

form of an ARIMAX(p, I, q) model can be expressed correspondingly [39]:

Yt = c+ (ϕ1 ∗ Yt−1) + ...+ (ϕp ∗ Yt−p) + (β1 ∗X1,t) + ...+ (βm ∗Xm,t)

+εt − (θ1 ∗ εt−1)− ...− (θq ∗ εt−q)
(6)

To determine the appropriate model order, we went through the autocorrelation function

(ACF) and partial autocorrelation function (PACF) plots and identified the autoregressive

(AR) and moving average (MA) components. We traveled through the possible model

neighborhoods as well and evaluated the prospective models by their AIC (Akaike

Information Criterion) values to find the best fit. And finally, we embedded a dummy variable
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into the equation as an indicator function. Tables 5.1 and 5.2 present the coefficients, standard

errors, and p values. Moreover, Figure ?? presents the residuals which are the differences

between the actual observed values and the predicted values of the time series after fitting the

models. That is, unexplained variation between the observed values of a dependent variable

and the values predicted by the model.

Based on the results in Tables 5.1 and 5.2, coefficients associated with the COVID-19

indicator variable are not statistically significant for any time series, as indicated by p-values

that are larger than any predefined significance level (e.g., α = 0.05). This implies that

including the indicator function variable did not significantly contribute to the models’

predictive performance for the respective time series. On the other hand, the residuals of

the polarity models displayed more desirable characteristics than the forward-lookingness

models, as they showed less prominent patterns and deviations from the expected behavior,

suggesting a better fit to the data.

Table 5.1 Coefficient - Standard Error and p-value Tables for Polarity Modeling

Positivity Negativity Neutrality

coeff S.E. p-val coeff S.E. p-val coeff S.E. p-val

ar(1) 0.229 0.068 0.001*** 0.862 0.071 ≈ 0 ∗ ∗∗ 0.841 0.060 ≈ 0 ∗ ∗∗
ar(2) 0.238 0.069 0.001*** - - - - - -
ma(1) -0.988 0.025 ≈ 0 ∗ ∗∗ -1.524 0.0126 ≈ 0 ∗ ∗∗ -1.443 0.098 ≈ 0 ∗ ∗∗
ma(2) - - - 0.524 0.125 ≈ 0 ∗ ∗∗ 0.443 0.097 ≈ 0 ∗ ∗∗
Xreg -0.017 0.023 0.472 -0.016 0.039 0.687 0.008 0.051 0.883

Note: Xreg: Covid-19 Indicator Function
(∗ ∗ ∗: Significant at 99 percent confidence interval, ∗∗: Significant at 95 percent confidence interval, ∗: Significant
at 90 percent confidence interval.)
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Table 5.2 Coefficient - Standard Error and p-value Tables for Forward-lookingness Modeling

Specific non-Specific

coeff S.E. p-val coeff S.E. p-val

ar(1) 0.150 0.084 0.073 0.0238 0.066 ≈ 0 ∗ ∗∗
ma(1) -0.870 0.049 ≈ 0 ∗ ∗∗ -1.000 0.018 ≈ 0 ∗ ∗∗
Xreg -0.011 0.030 0.721 0.027 0.015 0.075*

Note: Xreg: Covid-19 Indicator Function
(∗∗∗: Significant at 99 percent confidence interval, ∗∗: Significant at 95 percent confidence interval,
∗: Significant at 90 percent confidence interval.)

ARIMAX(1,1,1) on Specific FLS ARIMAX(1,1,1) on non-Specific FLS

ARIMAX(0,1,2) on Positivity ARIMAX(0,1,2) on Negativity

ARIMAX(1,1,1) on Neutrality

Figure 5.7 ARIMAX Residuals
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6. RESULTS

This section presents the results from our comprehensive examination of the Federal Reserve

(FED) communication statements, both prior to and in the aftermath of the pandemic. The

observations shed light on how FED communication evolved during these significant periods.

Firstly, there is an unmistakable rise in the volume of words and paragraphs, which remained

fairly constant up to 2007. From mid-2007 onwards, an upward trajectory became evident,

with a notable peak in 2011. An interesting observation is the recurrent trend of lengthier

texts during the first meetings each year. This repeated pattern could stem from the FED’s

annual practice of conducting a thorough assessment of financial and economic landscapes,

leading to the setting of monetary policy goals for the upcoming year. To articulate these

assessments and policy directions, more extensive communications become necessary.

Post the 1990s, the clarity of FED releases saw a dip but witnessed a sharp upswing, possibly

due to the financial turmoil of 2008. Subsequently, most readability indices settled at an

undergraduate academic level. Yet, a minor declining trend persisted in the Gunning-Fog and

ARI indices. Moreover, the consistency with Zipf’s Law suggests a logical progression in

the text, emphasizing pivotal concepts. Our evaluations confirm that this structural alignment

with Zipf’s Law remained unchanged across the timeline.

Subjects like ”Aggregate Demand” and ”Credit Market” predominantly shaped the

discussions during FOMC sessions. Notably, inflation-related issues, which saw diminished

focus in the early 2000s, regained prominence post-2005, consistently representing about

15% of the discourse in the last ten years.

Post-2004, there was a discernible reduction in the Federal Reserve’s minutes, especially in

neutral statements relative to positive or negative ones. This hints at the FED’s increased

inclination towards making more decisive statements. Nonetheless, after a triennial period,

neutral sentiments made a comeback. The 2007-2008 financial meltdown saw stabilization

in the volume of statements. This reduction was paired with variations in both specific and

vague forward-looking statements. Forward-looking language saw intriguing shifts between
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1999-2003 for specificity and 2005 and 2013-2015 for vagueness. Post an adjustment

phase, the volume of forward-looking phrases displayed sporadic changes, especially when

juxtaposed with polarity.

Our analysis indicated that the inclusion of the COVID-19 indicator did not significantly

amplify the predictive capability of our models for the associated time series, as the p-values

surpassed the set significance threshold. In other words, adding the COVID-19 indicator

did not notably boost the forecasting power of our models. Furthermore, the polarity model

residuals were more congruent with expectations than those of the forward-looking models,

indicating a better data fit.

While any residual discrepancies might pose concerns regarding the models’ precision

and robustness, our research unravels crucial nuances in FED’s communication style and

focus. For future endeavors, alternative modeling techniques could be considered, or the

current models could be enriched by incorporating new variables or refining existing ones.

Such enhancements will pave the way for a more profound understanding of central bank

communications and their ramifications for both monetary policies and the larger economic

framework.

On the other hand, even though there are now numerous domain-specific, fine-tuned versions

of BERT-based language models available, these models still face limitations when it comes

to extracting significant and contextually meaningful variations. This limitation arises from

the extensive presence of rigid structures in high-formality technical documents, such as

central bank and government announcements, which can impede their ability to capture

nuanced deviations. Further research areas may encompass exploring potential solutions

to address these weighting issues.

7. CONCLUSION

The COVID-19 pandemic has had profound and far-reaching effects on countries’ economies

worldwide, resulting in widespread disruptions in supply chains, business closures, job
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losses, and fiscal challenges. The economic impacts of the pandemic have been diverse

and complex and continue to evolve, posing significant challenges for policymakers and

necessitating unprecedented measures to mitigate the economic fallout.

On the other hand, central banks’ communication strategies play a pivotal role in shaping

consumer and market expectations. It helps to guide decision-making, influence behavior,

and manage perceptions about monetary policy and economic outlook. As the literature

tells, transparent, timely, and effective communication is crucial in enhancing credibility

and building trust, fostering stability in financial markets and the broader economy. A

valid communication strategy and the invention of tools adequately aligned with these

strategies are essential catalysts for shaping consumer perceptions and guiding economic

behavior. Therefore, central banks must adapt their communication accordingly in the face

of unexpected circumstances as they play a pivotal role for their countries in navigating

through crises.

Unprecedented challenges demand unconventional remedies. Traditional approaches to

monetary policy may not be enough to address the current economic challenges, and financial

authorities need to be open and adaptable in their communication and decision-making to

promote economic recovery. Specifically, central banks ought to embrace communication

strategies that are both transparent and forward-looking. These strategies should inform

financial markets and the public regarding their policy positions while remaining adaptable

and responsive to abrupt shifts in economic conditions.

During the Covid-19 pandemic, central banks worldwide have demonstrated their

commitment to effective communication and adaptability. They have implemented a range of

measures, including interest rate cuts, liquidity injections, asset purchases, and loan support

programs. Moreover, they have adopted proactive communication strategies to ensure that

their policy actions are well-understood and aligned with the changing economic landscape.

Central banks have engaged in frequent press conferences, issued timely policy statements,

and provided regular updates on the evolving situation. These efforts have helped to manage
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market expectations, maintain financial stability, and foster confidence in the economic

recovery process.

Looking ahead, central banks face ongoing challenges as they navigate the path to

economic recovery in a post-pandemic world. The lessons learned from the COVID-19

crisis underscore the need for central banks to continuously evaluate and refine their

communication strategies. Adapting to the evolving needs and expectations of market

participants and the public will be crucial. Central banks should prioritize transparency,

clarity, and accessibility in their communication channels, ensuring that their messages reach

a wide range of stakeholders. Embracing technological advancements and leveraging digital

platforms can enhance the effectiveness of communication efforts.

Furthermore, central banks should also recognize the importance of collaboration and

coordination with other policy authorities, such as fiscal authorities and regulatory agencies.

Integrated and synchronized policy communication can amplify the impact of policy

measures, instill confidence, and facilitate a harmonized response to economic challenges.

To conclude, the COVID-19 pandemic has underscored the pivotal importance of central

bank communication in navigating economic challenges. Central banks must adapt their

communication strategies to provide transparency, foster stability, and guide economic

behavior. The unconventional nature of the crisis necessitates flexible and responsive

approaches, with long-term foresight to ensure economic recovery. Central banks have

shown their resilience and ability to navigate through uncertain times by implementing

comprehensive communication strategies and proactive policy measures. Our study

contributes to the existing literature on central bank communication and paves the way

for further research on the effects of the pandemic and the effectiveness of different

communication strategies in navigating economic crises.

Moving forward, central banks must remain vigilant, continuously evaluate the effectiveness

of their communication efforts, and adapt to the changing needs and expectations of the

stakeholders they serve. By doing so, central banks can play a crucial role in promoting
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stability, guiding economic behavior, and fostering a resilient and inclusive post-pandemic

recovery.

Notwithstanding the constraints mentioned earlier, our research adds to the body of

knowledge on central bank communication and paves the way for future inquiries into the

potential consequences of the global pandemic. Subsequent studies could delve into the

enduring impacts of central bank communication in times of crises and evaluate the efficacy

of various communication strategies in alleviating economic and financial upheavals.

Despite the availability of specialized BERT-based models, their ability to extract

nuanced variations remains limited in highly formal technical documents like central bank

announcements. Future research could explore ways to address these challenges and enhance

their effectiveness.

Last but not least, it is essential to recognize that significant economic crises, like the Global

Financial Crisis of 2007-2008, could potentially be analyzed using a similar methodology,

allowing for comparative studies. However, delving into such analyses is beyond the scope

of this study.
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