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ABSTRACT

Unlii, A. Automated Design of Drug Candidate Molecules with Deep Graph Learning,
Hacettepe University Graduate School of Health Sciences Bioinformatics Program
Master’s Thesis, Ankara, 2023. The discovery of new drug candidate molecules is an
important step in the process of drug development. Deep generative learning, a
frequently used approach in the field of artificial intelligence in recent years, has emerged
as a promising method for generating realistic synthetic data within a defined theme.
Additionally, the utility of these models in the drug development process depends on
their ability to generate molecules specific to the biological target. In this study, a new
generative system called "DrugGEN" has been developed specifically for the de novo
design of drug candidate molecules that will interact with selected target proteins. The
system represents compounds and protein structures as graphs and processes them
using two sequentially connected generative adversarial networks (GANs) incorporating
graph transformers. The training dataset of the system was created from a large
collection of drug-like compound records and target-specific bioactive molecules
obtained from the ChEMBL database. The developed model was trained with the aim of
designing new molecules targeting the AKT1 protein, which plays a critical role in various
cancer types. The performance of the DrugGEN model was evaluated comparatively with
other methods in the literature using fundamental criteria. In addition, explanatory data
analysis was performed on the generated results. The results demonstrated the novelty
of molecules designed de novo by DrugGEN. Furthermore, it was shown that the outputs
were comparable to the known ligands of the AKT1 protein both in terms of
physicochemical properties and structure. Consequently, in this study, an artificial
intelligence model was developed using deep learning algorithms and extensive chemical
and biological data to automatically design completely novel molecules with the ability

to target selected proteins.

Keywords: Machine Learning, Drug Discovery, AKT Protein
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OZET

Unlii, A. Derin Gizge Ogrenmesi ile ilag Aday1 Molekiillerin Otomatik Sekilde Tasarimi,
Hacettepe Universitesi Saglik Bilimleri Enstitiisii Biyoinformatik Programu Yiiksek Lisans
Tezi, Ankara, 2023. Yeni ilac aday! molekiillerin kesfi, ila¢ gelistirme sirecinde 6nemli bir
adimdir. Yapay zekd alaninda son vyillarda sik¢a kullanilmaya baslanan Uretici derin
o0grenme, belirlenen bir tema iginde gergekgi sentetik veri (iretme konusunda umut vaat
eden bir yaklasim olarak 6n plana cikmaktadir. Bunun yaninda, bu modellerin ilag
gelistirme streclerinde kullanilabilirlikleri, biyolojik hedefe 6zglii molekiller (retme
yeteneklerine baghdir. Bu ¢alismada, secilen hedef proteinlerle etkilesime girecek ilag
adayi molekiillerin de novo tasarimi igin 6zel olarak olusturulmus yeni bir Gretici sistem
olan “DrugGEN” gelistirilmistir. Sistem, bilesikleri ve protein yapilarini gizgeler olarak
temsil eder ve bunlari gizge donusturicu (“Transformer”) iceren iki adet seri sekilde bagl
Uretken rekabetci ag (“Generative Adversarial Network”, GAN) kullanarak islemektedir.
Sistemin egitim veri seti, ChEMBL veri tabanindan elde edilen ilag benzeri bilesik kayitlar
ve hedefe 6zgli biyoaktif molekiilleri iceren buiylk bir veri kimesinden olusturulmustur.
Gelistirilen model, farkh kanser tiplerinde kritik dneme sahip olan AKT1 proteinini
hedefleyecek yeni molekiiller tasarlamasi amaciyla egitime tabi tutulmustur. DrugGEN
modelinin performansi temel olgltler kullanilarak, literatirdeki diger yontemlerle
karsilastirmali bicimde degerlendirilirmistir. Bunun yaninda, Uretilen sonuglar lzerinde
aciklayici veri analizi gerceklestirilmistir. Sonuclar, DrugGEN tarafindan de novo olarak
tasarlanan molekillerin orijinalligini kanitlamistir. Ayrica, ciktilarin fizikokimyasal ve
yapisal olarak AKT1 proteinin bilinen ligandlariyla karsilastirilabilir oldugu gosterilmistir.
Sonuc olarak, bu calismada derin 6grenme algoritmalari ve genis capli kimyasal ve
biyolojik veri kullanilarak secili proteinleri hedefleme yetenegine sahip tamamen yeni
molekillerin tasarimini otomatik bicimde gerceklestiren bir yapay zekd modeli

gelistirilmistir.

Anahtar Kelimeler: Makine Ogrenmesi, ila¢ Kesfi, AKT Proteini
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1. INTRODUCTION

Drug development is a complex and time-consuming process that poses
challenges to the rapid discovery of new drugs for complex diseases. The various steps
involved, from initial screening to phase studies, demand significant resources and
expertise. Traditional screening methods are labor-intensive and require extensive
human effort to evaluate a diverse range of molecules against drug targets. Similarly, the
process of designing de novo molecules using conventional methods can be time-
consuming and necessitates specialized knowledge of the target. To overcome these
limitations, emerging de novo design methods leverage advanced algorithms and
models. These approaches harness the power of machine learning and deep learning
algorithms to identify patterns in molecular data. By learning from available data, these
models can generate novel and effective molecules, bypassing the need for prolonged
timelines, extensive human involvement, and substantial funding. However, it is
important to note that de novo molecule design is not a simple and immediate solution
to drug design. Many generated de novo molecules may not be suitable for human use,
and further refinement and optimization are often necessary. Target-based de novo drug
design presents a promising approach to enhance the effectiveness of de novo design by
integrating target-specific information with molecular features. By incorporating
knowledge about the target, such as its structure and function, along with the
physiochemical properties of molecules, it becomes possible to design structurally and
physiochemically robust de novo molecules. This approach holds potential for improving

the efficiency and success rates of de novo drug design efforts.

1.1. Problem Definition

Deep learning based de novo molecule design often leads to the generation of
molecules that are not well-suited for becoming drug candidates. Models in this context
primarily learn the statistical distribution and patterns of molecular features without

considering the specific characteristics of the target. Consequently, such models tend to



replicate the physicochemical and structural features of existing molecules without
necessarily optimizing them for the desired target. It becomes essential to consider the
structural and functional properties of the target protein to guide the generation of
molecules that possess desirable characteristics. The aspect of target-based molecule
generative modeling discussed in this thesis is not extensively researched in the
literature. The completion of this thesis will contribute to the development of a target-
specific molecule generation model that has not yet been thoroughly studied in the

molecule generative models.

1.2. Hypothesis

Deep learning-based de novo drug design has the capability to create molecules
that are absent from existing databases. Within the literature, numerous studies have
been conducted, primarily focusing on the generation of random molecules or the
production of molecules possessing optimized traits. However, the efficacy of these
designed molecules hinges on their ability to interact effectively with the designated
target. Mere generation of random molecules or design according to specific
characteristics proves inadequate for creating interacting partners tailored to precise
targets. To address this, the integration of target information into the design system
becomes pivotal. However, the exploration of target-based de novo molecule design
remains limited within current research. Our hypothesis is that by incorporating target
features into molecule generation, the employment of deep learning algorithms can yield
superior design of drug-like molecules. This approach facilitates a more profound
comprehension of the interaction requirements of the selected target, enabling the

design of molecules based on this informed understanding.

1.3. Aim & Objective of the Study
The aim of this thesis is to implement an automated target-aware drug design
model. The proposed model will integrate molecule features, validated drugs, and target

characteristics into a novel deep learning-based framework. The goal is to develop a



model capable of designing potential drug candidate molecules specifically tailored to a

given drug target.

Main objectives to implement this model are:

1. To obtain molecules and drugs in the form of SMILES text from ChEMBL
and DrugBank databases.

2. To get the binding pocket structure of the AKT1 protein from PDB
database.

3. To implement a custom SMILES-to-graph-structure function.

4. To design and implement a molecule generative deep learning model is
developed using generative adversarial networks (GANs).

5. Totrain, optimize, and validate the designed model, utilizing the molecular
sets (MOSES) benchmark, which is an established benchmark for
generative models.

6. To test validated models through downstream analysis to further assess
their generative success of trained the model.

These objectives are the main steps of this thesis to implement a target-based de

novo molecules generative model.



2. GENERAL INFORMATION

The size of the chemical space encompassing potential drug candidate molecules
ranges from 1023 to 10, rendering it practically impossible to thoroughly explore its
boundaries. To initiate a search for lead molecules, one practical approach on the
experimental front involves utilizing technologies like high-throughput screening (HTS).
Nevertheless, it is important to note that such screenings are constrained to known
chemical libraries, thus restricting the ability to search for entirely new molecules.
Consequently, scientists often find themselves compelled to focus on identifying
molecules that exhibit comparable physicochemical and pharmacological properties (1).
Advancements in screening technologies have undeniably improved the rates of
synthetic accessibility and the overall speed of identifying potential drug candidates.
Nevertheless, it is worth noting that these advancements have not entirely resolved the

efficiency issues and high failure rates associated with the drug development process (2).

The availability of biomolecular data significantly grew, thereby facilitating the
development and application of advanced statistical algorithms in the field of drug
discovery, particularly in conjunction with experimental techniques such as HTS (3).
Furthermore, the increase in computational power and its associated reduced costs have
contributed to the processing of complex and voluminous biomolecular data. Machine
learning and artificial intelligence algorithms leverage these advancements to create
robust models that aid in the design of molecules (4). Machine learning models have
found utility in a wide array of tasks spanning from molecular docking to molecular
modeling. In initial studies, machine learning methods such as random forest and support
vector machines were employed to classify molecules or make predictions about their
features. However, for more intricate tasks like docking predictions, artificial neural
networks were employed. These neural networks were trained using docking poses to

enhance their predictive capabilities in docking scenarios (5).



Deep neural networks excel at complex transformations and abstract feature
learning, surpassing shallow networks. They enhance molecular representation and
compound classification without the need for complex descriptors. Additionally, deep
architectures enable feature reuse and knowledge transfer between tasks, improving
handling of missing data and multitask learning. These advancements enable efficient
bioactivity testing against multiple targets and have potential applications in drug
repurposing and identifying off-target activities (6). Deep neural networks are extensively
used in de novo molecular design. Optimization algorithms guide molecule generation
based on a given representation and objective function. Deep learning approaches,
pretrained on large molecular datasets, efficiently explore property surfaces for optimal
solutions. Various deep learning architectures, such as variational autoencoders,
generative adversarial networks, recurrent neural networks, and transformers, have
been proposed for generating molecule structures. Trained generative models enable
sampling from the learned chemical space, coupled with Bayesian optimization or
reinforcement learning, to efficiently identify desirable molecular profiles (7).

The application of artificial intelligence in generative modelling has led to the
emergence of next generation de novo drug design methods. These methods, inspired
by successful architectures in image and text generation, rapidly generate new lead
compounds with desired biological and chemical properties. While generative modeling
techniques show promise, further improvements, computational and experimental
validations, and benchmarking tests are necessary. Nonetheless, generative models are
expected to become a crucial component in de novo drug design, aiding medicinal

chemists in generating novel ideas and expediting the drug discovery process (8).



2.1. Drug Development

Drug development is a complex and time-consuming process that involves the

discovery, optimization,

and evaluation of potential

therapeutic compounds.

Traditionally, this process heavily relied on empirical methods and high-throughput

screening assays (9). Although high-throughput screening technology has enabled the

simultaneous screening of thousands of compounds, the vast size of chemical and

biomolecular spaces often hinders the discovery of optimal candidate molecules (128).

With this rapid advancement of computational techniques, computational drug

development has gained significant attention and recognition. As a result, many

identified drug candidates ultimately fail in later stages due to high toxicity or low

efficacy, leading to low success rates in drug development. By employing computational

models and algorithms, researchers can bypass such obstructions by predicting and

assessing the properties and behavior of drug candidates. This approach not only

accelerates the drug discovery process but also aids in the design of safer and more

effective treatments (10).
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This innovative discipline unites principles from computer science,
bioinformatics, and medicinal chemistry to speed up discovering and designing novel
therapeutic agents. By harnessing computational models, algorithms, and large-scale
data analysis, researchers can efficiently screen extensive chemical libraries and predict
the biological activity, pharmacokinetics, and toxicity of potential drug candidates (11).
The integration of computational methods in drug development confers several
advantages over traditional experimental approaches. It facilitates the rapid
identification of lead compounds, streamlines the optimization of their properties, and
diminishes the cost and time associated with experimental screening. Furthermore,
computational drug design enables the exploration of diverse chemical space, presenting
opportunities for the development of drugs with enhanced efficacy and reduced side

effects (12).

2.2. Molecule Design

Molecule design, also referred to as molecular design, assumes a pivotal role in
the exploration and development of novel drugs, materials, and chemical compounds
(13). It encompasses the intentional and systematic creation of molecular structures
possessing specific desired properties. By drawing upon principles from chemistry,
physics, and computational science, researchers strive to design molecules that exhibit
enhanced characteristics such as heightened efficacy, improved stability, and optimized
biological activity (14). The process of molecule design encompasses diverse approaches,
including rational design, de novo design, and fragment-based design, all of which heavily
rely on computational methods and advanced modeling techniques (15).

Computational methods have become indispensable in molecule design,
empowering scientists to traverse vast chemical spaces and predict the properties and
behavior of molecules with remarkable precision. Quantum mechanical calculations,
molecular dynamics simulations, and machine learning algorithms find extensive
application in this domain. Quantum mechanics provides insights into the electronic

structure, stability, and reactivity of molecules, guiding the design process based on



fundamental principles. Molecular dynamics simulations, on the other hand, enable
researchers to investigate the dynamic behavior and interactions of molecules, aiding in
the optimization of molecular structures and comprehension of their stability and
conformational flexibility (16,17).

Machine learning algorithms, such as deep neural networks, have emerged as
invaluable tools for expediting the molecule design process. These algorithms can be
trained by extensive databases of existing chemical compounds, facilitating the
generation of novel molecules with desired properties. Furthermore, they contribute to
property prediction, encompassing solubility, toxicity, and bioactivity, thereby
streamlining the molecule design pipeline. Through the integration of computational
methods and advanced modeling techniques, molecule design holds tremendous
promise in advancing various fields, including drug discovery, material science, and

sustainable chemistry (17,18).

2.2.1. Traditional Approaches

Traditional approaches for molecule design encompass a combination of
empirical and theoretical methods that have been widely employed in the field of
chemistry for decades. These methods rely on established chemical principles and
experimental observations to guide the design process (19). One such approach is
structure-activity relationship (SAR) analysis, which entails investigating the correlation
between a molecule's structure and its biological activity or desired property. By
systematically modifying specific functional groups or regions of a molecule and
assessing their impact on activity, researchers can gain valuable insights into the
structure-activity relationship, thereby facilitating the design of molecules with
enhanced properties (20). Another traditional method is scaffold hopping, wherein
chemists identify a known molecular scaffold with desired properties and systematically
modify it to generate novel compounds with analogous characteristics (21). Furthermore,
medicinal chemists often employ retrosynthetic analysis, wherein the desired molecule

is deconstructed into simpler building blocks, enabling the planning of a synthetic route



for the assembly of the final compound (22). Despite being time-consuming and
resource-intensive, these traditional approaches have yielded significant successes in the
development of numerous drugs and materials over the years, and they continue to serve

as invaluable tools in molecule design and optimization (23).

2.2.2. Modern Approaches

Modern approaches to molecule design have experienced remarkable
advancements, propelled by the integration of computational methods, high-throughput
screening, and data-driven techniques. One prominent modern approach is computer-
assisted molecular modeling (CAMM), which leverages computational modeling, virtual
screening, and molecular docking to identify potential drug candidates. By utilizing three-
dimensional structural information of target proteins and small molecule libraries,
CAMM enables the prediction of binding affinities and the identification of novel lead
compounds (24). Additionally, fragment-based drug design (FBDD) has gained
prominence, where small fragments are screened and combined to construct larger
molecules with optimized interactions. This approach facilitates a focused exploration of
chemical space and efficient optimization of lead compounds (25). Furthermore,
machine learning (ML) and deep learning (DL) techniques have found increasing
application in molecule design. These methods can generate and evaluate extensive
libraries of molecules, predict their properties, and guide the discovery of novel chemical
space. The integration of experimental data with ML and DL models enables the
development of more accurate predictive models for molecule design (26). Due to its
success in processing large, complex datasets such as biological/biomedical data, which
often contain errors and missing information, deep learning has recently started to be
integrated into the fields of bioinformatics and chemoinformatics (76,77). In the field of
drug discovery, computational approaches known as virtual screening are employed to
tackle problems associated with traditional methods. These studies primarily aim to

predict molecules that could be potential drug candidates or to reposition existing drugs
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for different therapeutic purposes using data obtained from bioactivity measurement

experiments (78).

2.3. Machine Learning & Deep Learning

Machine learning, a subset of artificial intelligence, encompasses the
development of algorithms and models that can learn patterns and make predictions or
decisions without explicit programming. It involves training models on extensive datasets
to uncover underlying patterns and relationships, enabling them to generalize and
provide accurate predictions on new, unseen data. Machine learning field contains
various techniques, including statistical methods, regression models, decision trees,
support vector machines, and more (27,28).

Deep learning, on the other hand, is a specialized branch of machine learning that
harnesses artificial neural networks with multiple layers to acquire hierarchical
representations of data. These deep neural networks excel at learning intricate patterns
and have revolutionized diverse domains, such as computer vision, natural language
processing, and speech recognition. Deep learning architectures have a diverse range of
models that leverage artificial neural networks with multiple layers to acquire intricate
representations of data. These architectures have propelled significant advancements in
the field of machine learning, enabling breakthroughs in various domains (29,30).

Convolutional Neural Networks (CNNs) excel in image analysis tasks by exploiting
the spatial relationships inherent in images. They employ convolutional layers to
autonomously learn hierarchical representations of features, enabling tasks such as
object recognition and image classification (31). The pioneering studies demonstrated
the effectiveness of CNNs in achieving state-of-the-art results on the ImageNet dataset
(32). Recurrent Neural Networks (RNNs) are tailored to handle sequential data, making
them well-suited for natural language processing, speech recognition, and time series
analysis (33). RNNs maintain internal states, enabling them to capture dependencies over

long sequences. The Long Short-Term Memory (LSTM) network is a widely adopted
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variant of RNNs that effectively addresses the vanishing gradient problem and facilitates
modeling of long-range dependencies (34).

In the biological sciences, machine learning and deep learning models have found
extensive applications in genomics, proteomics, and drug discovery. These models can
analyze vast genomic and proteomic datasets to identify patterns, predict protein
structure and function, and guide drug discovery endeavors (35). In the chemistry field,
machine learning and deep learning demonstrate promise in various domains. They have
been applied to quantitative structure-activity relationship (QSAR) modeling, enabling
the prediction of chemical properties and biological activities of molecules. Furthermore,
deep learning models can analyze chemical reaction data, predict reaction outcomes, and

assist in retrosynthesis planning (36).

2.4. Generative Modelling

Generative modeling with deep learning has emerged as a powerful approach for
creating new samples that resemble the training data. These models learn the underlying
distribution of the data and can generate novel samples that exhibit similar
characteristics (37). They have found applications in various domains, including computer
vision, natural language processing, and biological and chemical sciences (38,39).

One prominent generative model is the Generative Adversarial Network (GAN),
that consists of a generator network and a discriminator network that compete against
each other. The generator learns to produce realistic samples, while the discriminator
learns to distinguish between real and generated samples (40). GANs have demonstrated
remarkable success in generating realistic samples, such as images, music, and text. They
have also been applied to tasks like data augmentation and domain adaptation. GANs
showcased their potential for generating high-quality synthetic images (41).

Variational Autoencoders (VAEs) represent a widely used generative model
architecture. VAEs acquire knowledge of a low-dimensional latent space portrayal of the
input data, enabling the generation of novel samples through sampling from this space.

These models integrate an encoder network responsible for mapping the data into the
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latent space, and a decoder network responsible for reconstructing the data based on
the latent representation (42). VAEs, alongside subsequent research, have found
applications across various domains, such as image generation and molecular design (43,
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data. Adapted from (93).

In the field of biology and chemistry, generative models have shown significant
potential. For example, generative models have been employed in de novo drug design,
where they generate new molecular structures with desired properties. Studies utilized
generative models to design new molecules with desired properties, facilitating the
exploration of chemical space and accelerating the drug discovery process (45, 46).
Generative models have also been applied to protein structure prediction, which is
crucial for understanding protein function and designing therapeutics. DeepMind's
AlphaFold, based on deep learning and generative modeling principles, achieved
remarkable success in predicting protein structures with high accuracy (47). These
examples highlight the wide-ranging applications of generative modeling with deep
learning in biological and chemical sciences. These models have the potential to
revolutionize drug discovery, protein engineering, and molecular design by enabling the

generation of novel molecules and predicting important biomolecular properties (48).
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2.4.1. VAEs

Variational Autoencoders (VAEs) are powerful generative models that learn a
latent space representation of input data and enable the generation of new samples by
sampling from this latent space. VAEs consist of two main components: an encoder
network and a decoder network. The encoder network maps the input data to a latent
space, while the decoder network reconstructs the data from the latent representation
(49). In VAEs, the latent space is typically modeled as a multivariate Gaussian distribution
with @ mean and variance. During training, VAEs aim to maximize the evidence lower
bound (ELBO), which comprises a reconstruction term and a regularization term. The
reconstruction term encourages the decoder to accurately reconstruct the input data,
while the regularization term, often based on the Kullback-Leibler (KL) divergence,
ensures that the learned latent space adheres to the desired distribution (50, 51).

The effectiveness of VAEs in generating new digits from the MNIST dataset
showcased the potential of the learned latent space for data interpolation and
manipulation VAEs have found applications in various domains, including image
generation, natural language processing, and molecular design (52, 53). In image
generation, VAEs have been employed to generate realistic images across diverse
datasets (54). In the domain of natural language processing, VAEs are utilized for text
generation and demonstrated their ability to reconstruct and generate coherent
sentences (55).

Furthermore, VAEs have been employed in the field of chemistry for tasks such as
de novo drug design and molecular optimization. VAEs can be employed to generate
novel molecular structures with desired properties, showcasing their potential for
accelerating the drug discovery process. Overall, VAEs provide a powerful framework for
learning latent representations of data and generating new samples. They have been
successfully applied in various domains, demonstrating their versatility and potential for

creative applications (56).
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2.4.2. GANs

Initially introduced by Goodfellow et al. (129), GANs have recently gained
prominence in the field of generative models for their remarkable capability to generate
accurate data. Comprising two essential components, namely the discriminator and the
generator, GANs operate in a collaborative manner rather than a competitive one,
despite the term "adversarial" (40). Together, these components learn features by
leveraging each other's capabilities, without any pre-training involved. The generator
takes random noise, known as a latent random variable, as input and generates synthetic
data samples. The fundamental objective of GANs can be formulated as a minimax game,
where the generator strives to maximize the objective by producing data that
convincingly deceives the discriminator, while the discriminator aims to minimize the
objective by accurately discerning real and fake data (57). Training GANSs entails iteratively
optimizing the generator and discriminator, refining their strategies to achieve a Nash
equilibrium. At this equilibrium point, the generator generates realistic data that the
discriminator cannot differentiate from genuine data (58). Nevertheless, during the initial
stages of training, GANs may encounter difficulties due to insufficient gradients for the
discriminator. This predicament arises when the discriminator is weak, making it easy to

identify generated data and leading to gradient saturation. To overcome this challenge,
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researchers have proposed modifications such as maximizing an alternative objective

function that boosts the gradient (59, 60).
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Figure 2.4. Generation process of a generative adversarial network using noise input.

Adapted from (107).

2.4.3. Diffusion Models

Diffusion models represent a category of generative models in deep learning that
aim to produce synthetic yet realistic data by utilizing input parameters. These models
have gained significant traction due to their ability to smoothly learn complex
distributions, handle high-dimensional data, and generate diverse samples (61).
Traditionally, diffusion models have primarily been employed in continuous state spaces.
However, recent advancements have broadened their applicability to include discrete
state spaces as well. Discrete diffusion models operate with variables that are discrete,
such as text or categorical data, which possess distinct characteristics and present unique
challenges. Notably, a key distinction between continuous and discrete diffusion models

lies in the treatment of noise. Continuous diffusion models utilize additive Gaussian noise
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to perturb the data, whereas discrete diffusion models introduce discrete perturbations
or transformations to modify the discrete states. This approach facilitates exploration of
different states within discrete space and enhances the variety of generated samples
(62). Moreover, transition probabilities in continuous and discrete diffusion models also
differ. Continuous models rely on stochastic differential equations to define transition
probabilities between states, while discrete models employ conditional distributions that
capture dependencies between current and previous states. This enables information
propagation and guides the diffusion process within the discrete state space (63, 64). By
extending diffusion models to discrete state spaces, researchers can leverage these
models to address generative tasks involving text or categorical data. The specific
adaptations and techniques employed in discrete diffusion models enable effective
modeling and generation of diverse samples within the discrete domain, opening new
possibilities for applications in natural language processing and other domains involving

discrete variables (61).
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Figure 2.5. Diffusion process to noise and denoise given input. Adapted from (108).

2.4.4. Transformers
Transformers have emerged as a powerful tool in the field of deep learning,
making significant contributions across various domains such as language understanding,
image processing, and information retrieval. As a result, substantial research efforts have
been devoted to enhancing the fundamental aspects of Transformers and developing
more efficient variations. One key feature of Transformer models is the self-attention

mechanism, which can be understood as a graph-like inductive bias that connects all
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tokens in a sequence through relevance-based pooling (65). The Transformer
architecture consists of multiple components within its blocks, including a multi-head
self-attention mechanism, a position-wise feed-forward network, layer normalization
modules, and residual connections. The multi-head self-attention mechanism plays a
crucial role in the Transformer model by allowing each element in the sequence to learn
how to gather information from other tokens within the same sequence. Essentially, the
self-attention mechanism facilitates effective information exchange and aggregation
among tokens, enabling the model to capture intricate dependencies and relationships

within a sequence (65, 66).
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2.4.5. Normalizing Flow-based Models
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Normalizing Flows involve transforming a simple probability distribution, such as
a standard normal, into a more complex distribution using a sequence of invertible and
differentiable mappings. By evaluating the density of a sample through inverse
transformations and accounting for the associated change in volume, new families of
distributions can be constructed. This approach allows for sampling from the
transformed density and computing the likelihood of a sample (67). In order for
normalizing flows to be practical and effective in various applications, they should be
invertible, expressive, and computationally efficient. This approach results in a
framework for constructing new families of distributions by employing a series of
parameterized, invertible, and differentiable transformations. The process begins with an
initial density, and then a sequence of transformations is applied to create a new density.
(110). Normalizing flows can also be applied to graphs. A study proposes a novel
approach to graph neural networks (GNNs) by expanding upon the concept of
normalizing flows specifically tailored for graph-structured data called Graph normalizing
flows (GNFs). GNFs possess a noteworthy characteristic: the message passing
computation is entirely reversible, allowing for the precise reconstruction of input node
features from the GNN representation (111). Graph representation for normalizing flows
also extended to molecule generation process. A recent study proposes a model that is
called SiamFlow where normalizing flows are leveraged for molecular generation.
SiamFlow focuses on aligning the flow with the distribution of target sequence
embeddings in latent space. This is achieved by employing an alignment loss and a
uniform loss, which encourage agreement between target sequence embeddings and

drug graph embeddings while preventing collapse (109).
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2.5. De Novo Molecule Design

De novo molecular design, also known as generative chemistry, describes the
process of automatically generating new chemical structures that meet specific criteria
for desired biological responses and acceptable pharmacokinetic properties, primarily
applied in drug discovery (7). The underlying goal of de novo drug design is to identify
new drug candidate molecules that are structurally and biologically distinct from
approved drugs on the market and drug candidate compounds with information available
in chemical databases. This approach aims to overcome the diversity problem in existing
small molecules. Classical de novo drug design is a manual procedure performed by
medicinal chemists, involving modifications (additions and deletions) of atoms and bonds
on existing structures to generate different molecules. Subsequently, the new molecule
is synthesized and subjected to experimental processes. The directed approach used in
classical de novo drug design produces reliable results, but experiments are time-
consuming, the output is limited in scale, and structural diversity remains below the
desired level due to reliance on known scaffold structures (75). Deep generative
algorithms, such as RNNs, GANs, and GNNs, have been effectively employed in de novo
drug design, demonstrating the ability to learn the probability distribution of chemical
structures and generate molecules with desired properties. Techniques like transfer

learning and reinforcement learning have further enhanced the fine-tuning of pre-
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trained models to guide the generation of molecules with specific characteristics.
Additionally, advancements in 3D generative models, including those incorporating
molecular property constraints and utilizing VAE models, have aimed to generate high-
quality and diverse drug-scale molecules (68). The MGM model is based on message-
passing neural networks (MPNN) and employs a masked graph model to learn a
distribution over graphs. It captures conditional distributions over unobserved nodes and

edges based on observed ones (98).

2.5.1. Goal-Oriented Molecule Design

Goal-oriented molecular design aims to produce molecules that have specific
characteristics such as desired synthetic accessibility (SA), drug-likeness, or water
solubility. An approach called CVAE combines the benefits of latent space utilization with
the incorporation and manipulation of molecular properties during the encoding and
decoding processes. The CVAE model can generate drug-like molecules that meet specific
target properties, allowing for control over individual properties while keeping others
unchanged and even generating molecules with properties outside the database range
(69). Another method uses transcriptomic data to train a generative adversarial network,
that can automatically generate molecules with a high likelihood of inducing a desired
transcriptomic profile, offering advantages such as the ability to design hit-like molecules
without prior knowledge of active compounds, biological activity data, or target
annotations. This multifunctional approach allows the same model to design molecules
for multiple targets or biological states (70). The MolGPT model employs the Generative
Pre-trained Transformer (GPT) framework to create novel molecules, utilizing the SMILES
representation. Its primary focus lies in the generation of molecules aligned with specific
objectives. This model employs conditional codes to enhance molecules according to
predefined metrics. Furthermore, the model integrates molecular scaffold data,
effectively steering the process of molecule generation to adhere to specific scaffold
structures. Notably, the model demonstrates comparable performance to its previously

published models (99). The REINVENT model is a reinforcement learning-based method
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for fine-tuning a sequence-based generative model. It utilizes augmented episodic
likelihood to generate structures with specific desired properties (101). MARS is a
method that iteratively modifies fragments of molecular graphs using graph neural
networks (GNNs) to generate chemical candidates (102). BIMODAL introduces generative
Recurrent Neural Networks (RNNs) for molecule design based on SMILES
representations. It combines two bidirectional methods and introduces a novel approach
called bidirectional molecule design by alternate learning (103). Molecule Deep Q-
Networks (MolDQN) is a model for molecule optimization that combines domain
knowledge of chemistry with reinforcement learning techniques, specifically double Q-
learning and randomized value functions. It directly defines modifications on molecules

to ensure 100% chemical validity (104).

2.5.2. Target-Based Molecule Design

In recent years, computational methods have played a crucial role in accelerating
drug discovery by employing deep generative models for de novo drug design. These
models can be categorized based on their utilization of target information, with one
group using known compounds for guidance and the other leveraging target structure.
However, the limitations include the requirement of target-specific molecules or
predictive models, scarcity of structural information for targets, and small training
datasets, which hinder the models' generalizability (71). Generating molecules that
specifically bind to protein binding sites using machine learning approaches poses several
challenges. Firstly, there is the complexity of capturing both the 3D geometric structure
and the chemical features of the binding site as important contextual information.
Secondly, the enormous chemical space and the rarity of molecules with binding ability
to specific targets make it challenging to explore and generate relevant molecules.
Additionally, ensuring that the generative model is equivariant to rigid transformations
of the binding site, meaning the generated molecules should behave consistently when
the binding site is rotated or translated, is another important consideration (72). Several

approaches have been developed to incorporate 3D molecular geometries into deep
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learning-based generative architectures for drug design. However, while these models
consider ligand and protein features, they often fail to address important aspects such as
ligand binding patterns and pharmacophore features in the generated molecules (73,74).
The RELATION model introduces a generative model based on 3D representations. It
incorporates the bi-directional transfer learning (BiTL) algorithm to extract and transfer
desired geometric features of protein-ligand complexes into a latent space for generation
(100). QADD is a de novo drug design approach that integrates an iterative refinement
framework with a graph-based molecular quality assessment model. It evaluates the

drug potentials of generated molecules based on multiple objectives (105).

2.6. Protein Target Used in the Study

In this thesis, the AKT protein has been chosen as the designated target for the
training of the system. The AKT protein is a conserved serine-threonine kinase that and
an integral part of the PI3K/AKT signaling pathway, which regulates various cellular
processes, including cell growth, proliferation, survival, and metabolism (78). The
dysregulation of AKT signaling, characterized by its hyperactivation, is frequently
observed in many cancer types. This aberrant activation leads to enhanced cell survival
and uncontrolled proliferation. AKT comprises three isoforms: AKT1, AKT2, and AKT3,
each with distinct functions and tissue-specific expression patterns. AKT1 is implicated in
breast and ovarian cancers, where it promotes cell survival and resistance to apoptosis
(79). AKT2 is frequently overexpressed in pancreatic, colorectal, and ovarian cancers,
contributing to tumor growth and metastasis (80). AKT3 has been associated with
melanoma and lung cancer, playing a role in cell proliferation and survival (81). Targeting
the AKT signaling pathway has emerged as a potential therapeutic strategy in various
cancers, including breast, ovarian, pancreatic, and hepatocellular carcinoma. Inhibiting
this pathway could suppress tumor growth and enhance the effectiveness of other
treatments. Several small molecule inhibitors targeting AKT have been advanced to

clinical trials (82).
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3. MATERIALS AND METHODS

3.1. Data Preparation

In this thesis, a dataset of 83 biological assemblies extracted from the Protein
Data Bank (PDB) was utilized. The primary emphasis was placed on the RAC-alpha
serine/threonine-protein  kinase (AKT1), which belongs to the non-specific
serine/threonine protein kinase class (EC number: 2.7.11.1). Out of the extensive
collection of 57,925 models of biological assemblies within the PDB, we carefully selected
the ones that are associated with our target protein. The AKT1 protein is predominantly
composed of two domains: the kinase domain and the pleckstrin homology (PH) domain.
The utilization of experimental bioactivities was pivotal in the training process of our
DrugGEN system. These bioactivities encompass the quantitative assessment of the
physical interactions between compounds resembling drugs and their respective target
proteins. To ensure standardization, we retrieved the ligand data from the ChEMBL
database and implemented several filters. These filters were employed to select only
specific criteria, including "single protein" targets, "binding assay" assay types,

"standard" measurement types, and non-null pChEMBL values.

The compounds dataset contains SMILES representations of the molecules and
served as the input for both the GAN1 and GAN2 modules, representing our "real"
samples. For this study, we accessed the compound dataset from ChEMBL, specifically

ChEMBL v29, which consists of a total of 1,914,648 small molecules.

During subsequent analysis, attention was redirected towards the ligand data
linked to the AKT1 target protein. The ultimate dataset comprised interactions between
ligands and the human AKT1 protein (CHEMBL4282), with a pChEMBL value of 6 or higher
(equivalent to IC50 < 1 uM). Moreover, we integrated the SMILES notations for these
ligands. To enhance our activity dataset, we included 87 drug molecules from the

DrugBank database that are recognized for their interaction with the human AKT1
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protein. We further applied a filter to exclude molecules with more than 45 heavy atoms,

resulting in approximately 2,582 molecules for training.

3.1.1. Data Statistics
The training of the model involves three distinct types of data: ChEMBL molecular
data, ligand data, and protein data. The compound dataset utilized in the training process
was carefully selected from the ChEMBL database. It consists of a total of 1,914,648 small
molecules. To optimize the model's performance, the dataset was curated by setting a
maximum limit of 45 heavy atoms for each molecule. After applying this filter, the
remaining set contains 1,588,865 molecules. Detailed statistical summaries for both

datasets, including various metrics, can be found below for examination.

Table 3.1. Statistical summary of the compound and ligand datasets.

Dataset | QED logP SA MW Heavy Atom

ChEMBL | 0.541+£0.222 | 3.446+2.029 | 2.993+0.967 | 413.205+ | 29.350+13.090
187.211

AKT 0.460+0.180 | 4.071+1.737 | 3.051 +0.491 466.019+ | 33.73417.051
95.946

The given table provides statistical information on two datasets: ChREMBL and AKT.
These datasets contain several parameters for chemical compounds, including QED
(Quantitative Estimation of Drug-likeness), logP (Octanol-water partition coefficient), SA
(Surface Area), MW (Molecular Weight), and Heavy Atom count. In terms of QED,
ChEMBL has a mean value of 0.541 with a standard deviation of 0.222, while AKT has a
slightly lower mean of 0.460 with a standard deviation of 0.180. This suggests that, on
average, the compounds in ChEMBL may exhibit a slightly higher drug-likeness estimation
compared to AKT. Regarding logP, ChEMBL has a mean of 3.446 with a standard deviation
of 2.029, whereas AKT has a higher mean of 4.071 with a standard deviation of 1.737.
This indicates that AKT's compounds tend to have a higher octanol-water partition

coefficient, suggesting a higher hydrophobicity compared to ChEMBL. For the SA
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parameter, ChEMBL has a mean of 2.993 with a standard deviation of 0.967, while AKT
has a slightly higher mean of 3.051 with a standard deviation of 0.491. The difference is
relatively small, indicating that both datasets have similarity for ease of synthesis. In
terms of MW, ChEMBL has a mean value of 413.205 with a standard deviation of 187.211,
while AKT has a higher mean of 466.019 with a lower standard deviation of 95.946. This
suggests that the compounds in AKT tend to have a higher molecular weight and a
narrower range compared to ChEMBL. Finally, looking at the heavy atom count, ChEMBL
has a mean of 29.350 with a standard deviation of 13.090, while AKT has a slightly higher
mean of 33.734 with a standard deviation of 7.051. This indicates that the compounds in

AKT generally have a higher number of heavy atoms compared to ChEMBL.
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Figure 3.1. Histogram plots of the ChEMBL compound dataset. Left top plot shows the
molecular weight distribution, the top right plot indicates the logP distribution, bottom
left plot is the QED distribution, and bottom right is the SA distribution of the ChEMBL

compound dataset.
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Figure 3.2. Histogram plots of the AKT ligand dataset. Left top plot shows the molecular
weight distribution, the top right plot indicates the logP distribution, bottom left plot is
the QED distribution, and bottom right is the SA distribution of the AKT compound

dataset.
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3.1.2. Compound Data

DrugGEN relies on graph representations of input molecules, which consist of two
components: an annotation matrix and an adjacency matrix. These matrices capture
crucial information about atom types and atomic bonds/interactions, respectively. To
generate these matrices, we utilized the RDKit library along with the SMILES notations of
the molecules. The annotation matrix represents 8 types of atoms based on PDBQT atom
types (C, N, O, F, S, P, Br, Cl), including a category for the null case (i.e., no atoms). The
number of rows in the matrix corresponds to the maximum length (number of heavy
atoms) of the molecule to be generated, while the number of columns defines the atom
types. The adjacency matrix is a two-dimensional matrix that indicates the presence and
type of covalent bonds between atoms in the molecule. It has five dimensions
representing bond types: Oth (no bond), 1st (single bond), 2nd (double bond), 3rd (triple
bond), and 4th (aromatic bond).

3.1.3. Ligand Data
The ligand data shares similar characteristics with the compound dataset, with
the difference being that it specifically includes small molecules related to AKT1, AKT2,
and AKT3. The featurization process for this dataset follows the same rules as the
compound dataset and incorporates the same atomic and bond features. For the

summary of features, Table 3.2 can be examined.

3.1.4. Protein Data
Proteins are large biomolecules and directly presenting the entire protein
structure to the model would introduce significant computational complexity, making it
challenging to train a successful model. To prevent this, we focused on the binding
sites/regions. To obtain the binding sites, we utilized the coordinates of protein-ligand

complexes sourced from the Protein Data Bank (PDB).

In DrugGEN, target proteins are represented at the atomic resolution to align with

compound features. The atom types are standardized to the PDBQT file format, which
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utilizes reduced atom types. Additionally, hydrogen atoms were added to proteins to
replicate their natural form. To perform these operations, we utilized protein and ligand
processing scripts within AutoDockTools4 (88). The determination of protein atoms
involved setting a cutoff distance between protein and ligand atoms using Euclidean
distances, with a value of 9 Angstroms (&) chosen based on literature (89). Thus, atoms
within a maximum distance of 9 A from any ligand atom were considered part of the

binding site.

Protein adjacency matrices were constructed to accurately represent the protein
structure, encompassing both covalent bonds and non-covalent interactions between
atoms. The PDBeChem web service (https://www.ebi.ac.uk/pdbe-srv/pdbechem/) was
employed to define existing bonds at the protein's binding site. The Python library
Interfacea (https://github.com/JoaoRodrigues/interfacea/tree/master) was utilized to
identify non-intrinsic covalent interactions, including intra-residue and inter-residue
atoms. As a result, the annotation matrix for the AKT1 protein was constructed. It
includes a total of 450 atoms belonging to seven types: C (aliphatic carbon), N (non-H-
bonding nitrogen), OA (acceptor 2 H-bonds oxygen), A (aromatic carbon), SA (acceptor 2
H-bonds sulfur), NA (acceptor 1 H-bond nitrogen), HD (donor 1 H-bond hydrogen), along
with an additional type to represent the absence of atoms. The adjacency matrix contains
four types of covalent bonds and six types of non-covalent bonds: ionic, hydrogen bond,

cation-m, hydrophobic, parallel - stacking, and t-shaped -1 stacking.

Table 3.2. Atom and bond types that were used in the study.

Data Atom Types Bond Types
ChEMBL C,N,O,FS,P Br,Cl No bond, single, double, triple, aromatic
Ligand C,N,O,FS,P Br,Cl No bond, single, double, triple, aromatic

ionic, hydrogen, cation-m, hydrophobic,
AKT1 C, N, OA, A, SA, NA, HD
parallel -1t stacking, t-shaped m-mr stacking




30

3.2.  Architecture

DrugGEN is a stacked generative model specifically designed for target-based drug
candidate molecule design. The primary objective of the DrugGEN system is to generate
molecules that are both novel and tailored to interact with a selected protein. The model
employs multiple Generative Adversarial Networks (GANs) to divide the molecule
generation process into distinct tasks. The DrugGEN model consists of two stacked GAN
modules, referred to as GAN1 and GAN2. Each GAN module comprises a generator
submodule (G1, G2) and a discriminator submodule (D1, D2). The first generator, G1,
takes a molecular input and generates novel molecules that are learned from the
statistical distribution of a molecular dataset. The first discriminator, D1, compares the
generated novel molecule candidates with existing molecules and guides G1 to explore

valid molecular space.

The output of G1 is then passed to the second generator, G2, which transforms
the novel molecule to serve as an interaction partner for the selected target protein. The
transformation process incorporates protein data, enabling the redesign of the molecular
data based on the target protein. Subsequently, the finalized molecule is compared to
experimentally validated inhibitors of the chosen target in the second discriminator, D2.
This step assists in guiding the generation process of G1 to better match the statistical
distribution of the validated inhibitors. By utilizing this stacked GAN architecture and
incorporating protein data, DrugGEN aims to generate novel molecules that exhibit
desired interactions with specific protein targets. The iterative process involving the
generators and discriminators enables the model to refine the molecule generation

process and enhance the alignment with known inhibitors of the target protein.
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Figure 3.3. Target aware molecule generation schema of the DrugGEN, adapted from

Unlu et al., (2023). Part A defines the graph transformer encoder generator while part B
indicates the MLP discriminator of the GAN1 system. Part C is the graph transformer
decoder of the GAN2 system where proteins and molecules processed together. Part Cis

the MLP discriminator where finalized generated molecules are compared with

experimentally validated inhibitors.
3.2.1. GAN1

In the DrugGEN model, the first GAN (GAN1) is responsible for designing novel

molecules based on the learned molecular space. GAN1 consists of two submodules: the

generator submodule (G1) and the discriminator submodule (D1). These submodules
engage in an adversarial training process, characteristic of GANs. During training, G1 aims
to generate molecules that can deceive D1 into classifying them as real molecules, while
D1 strives to accurately discriminate between real molecules and those generated by G1.
This adversarial dynamic between the generator and discriminator leads to an iterative

improvement of both submodules. G1 becomes more adept at generating novel
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molecules, while D1 becomes more skilled at distinguishing real molecules from the

generated ones.

The input for GAN1 is the set of real molecules obtained from the molecular
dataset. G1 utilizes these real molecules to learn the underlying graph structure of the
existing molecules, capturing the essential features and patterns. Meanwhile, D1
evaluates the generated molecules produced by G1 and discriminates between real and
generated molecules. This discrimination process provides feedback to G1, encouraging
it to generate novel molecules that do not exist in the training data, while still ensuring
that the generated molecules are valid and realistic. Through this adversarial training
process, GAN1 of the DrugGEN model enables the generation of novel molecules that
extend beyond the known training data. The interplay between the generator (G1) and
the discriminator (D1) facilitates the exploration of the molecular space and the

production of valid, yet previously unseen molecules.

3.2.2. Graph Transformer Encoder Generator

The generator network of GAN1 in the DrugGEN model utilizes a graph
transformer network to process the given input, which is graph-structured data
representing molecules. The graph transformer network is derived from the classical
transformer encoder architecture, which was originally designed for text-based inputs to
handle words and sentences. In the case of the graph transformer encoder, the input
consists of annotation and adjacency matrices, which contain atom and bond
information of the molecules. The graph transformer encoder block follows a similar
structure to the transformer encoder block used for text inputs. The graph transformer
encoder block includes several components. Residual connection layers enable the
information from the previous layer to be passed directly to the next layer, preserving
important information in the network. Next, a graph multi-head attention layer is used,
and unlike the attention mechanism used in the classical transformer encoder, the multi-

head attention layer in the graph transformer encoder is specifically designed to handle
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graph-structured data. It utilizes annotation and adjacency matrices to compute
attention weights, allowing the model to capture relationships between atoms and bonds
in the molecules. Feed forward layer, at the end, applies a non-linear transformation to
the output of the multi-head attention layer, helping the model capture complex patterns

and relationships within the graph-structured data.

The graph transformer encoder block repeats these layers multiple times to
capture hierarchical representations and refine the learned features. It leverages the

residual connections to enable efficient gradient flow during training.
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Figure 3.4. Working schema of the graph transformer encoder network.

DrugGEN model can effectively process the graph-structured input data and generate

By using the graph transformer network as the generator network in GAN1, the
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novel molecules that meet the desired criteria for interaction with the chosen protein
target. In the DrugGEN model, the processing of the annotation and adjacency matrices
occurs within the same module. The input consists of randomly selected real molecule
matrices, which are then passed through individual Multi-Layer Perceptron (MLP) for the
annotation and adjacency matrices. Each MLP consists of four layers and is responsible
for creating embeddings of the respective matrices. These embeddings are designed to
have dimensions compatible with the Transformer encoder. Following the embedding
step, the input is fed into a Transformer encoder module, which contains one layer with
eight multi-head attention heads. The Transformer encoder begins by applying layer
normalization to the input. The self-attention mechanism is then utilized, where Qm1,
Km1, and Vm1 represent the variables corresponding to the annotation matrix of the
molecule. In the traditional Transformer architecture, Q, K, and V variables represent the

same input sequence.

In the graph transformer setting of the DrugGEN model, attention weights are
calculated differently. The attention weights are determined by multiplying the adjacency
matrix Am1 of the molecules with the scaled dot product of Qm1 and Km1. This modified
calculation accounts for the graph structure of the molecules. The resulting attention
weights are then multiplied with Vm1 to create the final representation of the annotation
matrix. For the adjacency matrix, the new representation is formed by concatenating the
attention weights (90,91). In the default model configuration, the output dimension size
of the Transformer is set to 128 for both the annotation and adjacency matrices. The
calculation of the attention mechanism in the DrugGEN model is as follows and can be

summed up as in equation below:

leKgrwll

W Am1)Vm1

In the equation you provided, Qm1, Km1, and Vm1 represent the annotation matrix

Attention, (Qm1, Km1, Vim1) = softmax(

of the molecules, while Am1 represents their adjacency matrix. The value dk corresponds
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to the dimension of the transformer encoder module and is used to scale the attention
weights. Multiplying the attention weights with the adjacency matrix Ani ensures that
the contribution of the adjacency information is incorporated into the attention
mechanism. By doing so, the model can capture the relationships between atoms and
bonds in the molecules and effectively use this information during the generation

process.

3.2.3. GAN2
The generator network of the second GAN, GAN2-generator, takes the de novo
molecules generated by GAN1 and processes them together with protein features. This
incorporation of protein features allows GAN2-generator to consider the specific

characteristics and requirements of the target protein while generating new molecules.

3.2.4. Graph Transformer Decoder Generator

The second generative network in DrugGEN, referred to as G2, is responsible for
modifying the molecules generated by G1 to make them interact with the target protein.
G2 utilizes the transformer decoder architecture, as introduced by Vaswani et al. (94), to
perform this task. The transformer decoder module in G2 consists of 8 decoder layers
and uses 8 multi-head attention heads. In the default model, both the input and output
dimensions of the transformer decoder are set to 128. The input to G2 includes the data
generated by G1, denoted as G1(z), and the protein features. The protein features are
processed using self-attention mechanisms within the transformer decoder module,
similar to how molecules are processed in the previous steps. The interactions between
molecules and protein features are handled inside the multi-head attention module of
the transformer decoder. The molecules and protein features are multiplied together
using the scaled dot product operation, resulting in new molecular matrices. The

attention calculation in this context can be represented by the following formula:

Qm2Kz7)w

Nen

Attention, (sz, Ky, sz) = softmax( (ApAm2)) V2
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In this equation, Qm2 represents the queries derived from the molecular matrices,

Ko represents the keys derived from the protein features, and Vm2 represents the values

associated with the molecular features. The dot product of Qm2 and the transpose of Kp
is scaled by the square root of the dimension dx. The SoftMax operation is applied to
normalize the attention weights, ensuring they sum up to 1. These attention weights are
then multiplied elementwise with the values V2, resulting in the final representation of
the molecular matrices, considering the interactions with the protein. By incorporating
the protein features and calculating the attention between molecules and protein, G2
modifies the molecular matrices generated by G1 to enable them to interact specifically

with the target protein, producing molecules that act as binders for the protein.
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Overall, the transformer decoder architecture in G2 allows for the integration of
protein information and facilitates the generation of molecules tailored to interact with

the desired protein target.

3.2.5. MLP Discriminator
In DrugGEN, the discriminator plays a crucial role in distinguishing between real
and synthetic (fake) data generated by the corresponding generators. The MLP-based
discriminators in DrugGEN, namely D1 (used in GAN1) and D2 (used in GAN2), take
flattened, one-dimensional vectors as input. These vectors are formed by concatenating

the flattened versions of the annotation and adjacency matrices.

Both discriminators, D1 and D2, are independent and do not share parameters.
However, they have the same modular structure and size. The layer sizes in the MLP
discriminators are as follows: 256, 128, 64, 32, 16, 1, from input to output. The final layer
consists of a single neuron with a hyperbolic tangent (tanh) activation function. This
activation function maps the output of the discriminator to a value between -1 and 1.
The objective of the discriminator is to discriminate between real and generated
molecules. Ideally, a perfect discriminator would assign a value of 1 to real molecules and
a value of -1 to generated molecules. By training the discriminators in an adversarial
manner, they aim to become more effective at distinguishing real and synthetic
molecules. The generator modules, G1 and G2, are trained to generate molecules that
can successfully deceive the discriminators and receive a high score close to 1, indicating

that they resemble real molecules.

By training the discriminators and generators iteratively, the GANs in DrugGEN
aim to improve the quality and realism of the generated molecules and enhance the

ability to generate molecules that interact specifically with the target protein.

3.3. Ablation Study
In the context of the DrugGEN system, alternative models were developed with

variations in their architectural design and input data. These models focus on ligand-
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based strategies for generating novel drug candidates, unlike the default model

(DrugGEN-Prot) that combines both structure-based and ligand-based approaches.

DrugGEN-Prot (Default Model): This model, as depicted in Figure 1, incorporates
protein features into the transformer decoder module of GAN2. It utilizes a combination
of structure-based and ligand-based approaches to guide the generation of target-centric
de novo molecules. The transformer decoder receives input from both GAN1 (generated
molecules) and protein features, enabling the design of molecules specifically tailored for
the target protein. The model undergoes end-to-end training, and a single overall loss is

computed by combining the losses of both GAN modules.

DrugGEN-CrossLoss: This model consists of a single GAN, specifically GAN1 from
the default model. It aims to shift the distribution of the input data towards the
distribution of real inhibitors for the target protein within a simpler system. The graph
transformer encoder-based generator network takes randomly selected real molecules
as input and transforms their molecular structures to generate new molecules that
resemble the real inhibitors. The discriminator network distinguishes between the de

novo generated molecules and the real inhibitors of the target protein.

DrugGEN-Ligand: Similar to DrugGEN-Prot, this model comprises two GANs and
follows the same training routine and hyperparameters. However, instead of using the
features of the target protein, it incorporates the features of real inhibitor molecules of
the target protein as input to the transformer decoder of GAN2. The objective of the
transformer decoder in this model is to generate molecules that exhibit similar properties
to the real inhibitors of the target protein. The generation process resembles machine

translation, where the model transforms given molecules into inhibitor-like compounds.

DrugGEN-RL is another variant of the DrugGEN system that shares a similar
overall architecture with DrugGEN-Ligand. The main objective of DrugGEN-RL is to design
structurally diverse de novo molecules by avoiding the utilization of molecular scaffolds

that are already present in the training set. To achieve this, DrugGEN-RL incorporates an
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additional penalty term in the loss function. The purpose of this penalty term is to
decrease the Tanimoto scaffold similarity, measured using the Bemis-Murcko framework,
between the generated molecules and the molecules in the training set. In GAN1, the
training set comprises molecules from the ChEMBL database, and in GAN2, the training
set consists of real inhibitors of the given target protein. By incorporating the scaffold
similarity penalty term, DrugGEN-RL encourages the generation of molecules that
possess unique structural features and differ from the molecular scaffolds present in the
training set. This modification helps promote the exploration of novel chemical space and
enhances the diversity of generated molecules by discouraging the generation of

molecules with similar molecular scaffolds to those already seen in the training data.

DrugGEN-NoTarget is a simplified version of the DrugGEN system that focuses
solely on learning the chemical properties of real molecules from the ChEMBL training
dataset. It does not involve target-specific generation or incorporate protein features into
the model. The architecture of DrugGEN-NoTarget consists of only one GAN, specifically
GAN1 from the default model. The purpose of this model is to capture and learn the
statistical distribution and chemical properties of the molecules present in the ChEMBL
dataset. By training on the ChEMBL dataset without considering any target-specific
information, DrugGEN-NoTarget aims to generate novel molecules that possess desirable
chemical properties and adhere to the learned distribution of the training data. DrugGEN-
NoTarget employs the same hyperparameters as the default model, ensuring consistency
in the training process and enabling direct comparisons with other models within the

DrugGEN framework.

These alternative models provide different perspectives on ligand-based and
structure-based drug candidate generation, exploring variations in input data and design
strategies while leveraging the GAN framework and graph transformer architectures of

the DrugGEN system.
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3.4. Training

The training of DrugGEN employs the Wasserstein Generative Adversarial
Network (WGAN) loss, which is specifically reformulated for the end-to-end training of a
two-stage GAN system. The loss function combines the losses of the two discriminators

in DrugGEN and incorporates a gradient penalty (GP) to further enhance performance.

The WGAN loss function, denoted as L, consists of four terms, as shown in Eq3.
The first term represents the difference between the average discriminator output for
real molecules, D1(x), and the average discriminator output for molecules generated by
GAN1, D1(G1(z)). The second term represents the average discriminator output for real
molecules that interact with the selected target protein, D2(X%), while the third term
represents the average discriminator output for molecules generated by GAN2 with
inputs G2(G1(z), (Kp, Ap)), where Kp and Ap are the annotation matrix and adjacency

matrix of the protein, respectively.

L = (Ex~p,0[D1X)] = Ezep,)[D1(G1(2))] + Exep, ) [D2(X)]
— Exep,10[D2(G2(G1(2), K))]

To improve the performance of the WGAN, a gradient penalty (GP) is introduced,
as shown in Equation (4). The GP loss, denoted as Lep, penalizes the gradients of the
discriminator with respect to the interpolated samples, denoted as X, which are drawn
from the real data distribution pr and the generator data distribution pg. The penalty

coefficient A is used to control the strength of the penalty.
Lep = Egep,@[(IV2D®)|2 — 1)?]

By combining the WGAN loss (L) and the GP loss (Lep), the final loss function,

denoted as Lotal, is obtained as shown in Equation (5):

Lrotar = L + Lgp
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The total loss function is used to optimize the parameters of the DrugGEN model
during training, encouraging the generation of novel molecules and improving the

discrimination between real and generated molecules.

DrugGEN was trained using the ChEMBL compounds dataset, which served as the
input of real molecules for the model. The dataset was randomly split into training and
test partitions with a ratio of 90% for training and 10% for testing. The training procedure
of DrugGEN was carried out as follows, the training began with discriminator D1 and D2
and then continued with generator G1 and G2. For the default model, a learning rate of
0.00001 was used for all components: G1, G2, D1, and D2. The batch size was set to 128,
and the model was trained for a total of 50 epochs. It was observed that the loss values
did not significantly change after 50 epochs. The Adam optimizer was utilized as the
optimizer for the model, with betal set to 0.9 and beta2 set to 0.999. The training process
for each model took approximately 2 days to complete, utilizing 10 Intel Xeon Gold 5215
CPU cores and a single NVIDIA A5000 GPU. The number of parameters in G1 of DrugGEN
was around 37 million, while G2 had approximately 640 million parameters. Both

discriminators, D1 and D2, had around 2.7 million parameters.

3.5. Performance Metrics

The performance of the models in generating molecules was evaluated using
various molecular generation metrics from the MOSES benchmark platform. These
metrics provide insights into the quality and diversity of the generated molecules. Here

are the metrics used:

Validity measures the percentage of generated molecules that can be successfully
parsed by the SMILES conversion function of the RDKit Python package. Higher validity

indicates a higher percentage of syntactically valid molecules.

Unigueness quantifies the dissimilarity of each generated molecule with respect
to other molecules in the same batch. It ensures that the generated molecules are

structurally diverse.
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Internal Diversity (IntDiv) measures the mean dissimilarity between a generated
molecule and other molecules in the same batch. It is typically computed using Tanimoto
similarity based on molecular fingerprints (e.g., ECFP). Higher IntDiv indicates a greater

structural diversity among the generated molecules.

Novelty calculates the ratio of generated molecules that are not present in the
real (training) dataset to the total number of generated molecules. It assesses the ability
of the model to generate novel molecules that differ from the molecules in the training

set.

In addition to these metrics, other measures such as Quantitative Estimate of
Drug-likeness (QED), partition coefficient (logP), synthetic accessibility (SA), and Frechet-
ChemNet Distance (FCD) are used to evaluate the fitness of the generated molecules as
potential drug candidates. These metrics assess various properties related to drug-
likeness, chemical properties, and similarity to known molecules. he basis for the QED
measure's empirical reasoning lies in the inherent distribution of molecular
characteristics, encompassing factors like molecular weight, logP, topological polar
surface area, count of hydrogen bond donors and acceptors, quantity of aromatic rings
and flexible bonds, and the existence of undesired chemical functionalities. logP metric
calculates the ratio of water and octanol solubility based on functional groups. SA is the
heuristic evaluation indicating the level of difficulty (rated 10) or simplicity (rated 1) in
synthesizing a specific molecule. The SA score is derived from a fusion of fragment-based
contributions pertaining to the molecule. The calculation of FCD involves utilizing the
activations from the second-to-last layer of a deep neural network called ChemNet. This
network is trained to forecast the biological activities of pharmaceutical compounds (96,

97).

3.6. Secondary Design
The DrugGEN model was built with a different approach and there were several

design choices that were considered for model.
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Initially, the implementation of the DrugGEN model involved using noise as input.
So that, the generator of the GAN1 would take a Gaussian noise input and tries to
transform it to a valid molecule. The discriminator of the GAN1 was getting real molecules
from ChEMBL compound set as input. System’s training was the same as it was told in
section 3.4. The generative network of the DrugGEN was implemented with graph
transformer architecture. Before that, classic transformer network was used to create
generative network. In this model annotation and adjacency matrices were multiplied in
a linearized way resembling the sequential structure of a text representation. Attention
between the annotation and adjacency matrices were calculated as described in the
Vaswani et al. (94). The DrugGEN model initially attempted to use a graph neural network
(GNN) as the discriminator to differentiate between real and generated molecules. In this
model, a standard GNN was used from the Kipf et al. (45) study. This GNN would process
the graph to create graph-level and atom-level predictions for the given input. In this
model, the graph-level predictions were used to train the DrugGEN model. Predictions
were between -1 and 1, which indicates whether and input was a real graph or a

generated one.
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4. RESULTS

Assessing the performance of DrugGEN in designing de novo molecules is crucial
for evaluating its generative capabilities. In this context, several benchmarking metrics
were employed to measure the quality and characteristics of the generated molecules.
Additionally, a comparison was made between the de novo molecules and real molecules
using physicochemical property value distribution plots and UMAP embeddings for

visualization.

The benchmarking metrics, as previously mentioned, include validity, uniqueness,
internal diversity (IntDiv), and novelty. These metrics provide quantitative assessments
of the quality and diversity of the generated molecules. Validity measures the proportion
of generated molecules that are syntactically valid, while uniqueness ensures that the
generated molecules are structurally distinct from each other. Internal diversity (IntDiv)
guantifies the dissimilarity between generated molecules within the same batch,
indicating the diversity of the generated set. Novelty assesses the proportion of
generated molecules that do not exist in the training dataset, indicating the model's
ability to produce novel molecules. In addition to these metrics, physicochemical
property value distribution plots were used to compare the properties of the de novo
molecules with those of real molecules. These plots provide insights into the distribution
and range of various physicochemical properties, such as molecular weight, logP, and
other relevant descriptors. Comparing the distributions can help identify any differences

or similarities between the generated and real molecules in terms of their properties.

Furthermore, UMAP (Uniform Manifold Approximation and Projection)
embeddings were employed to visualize and compare the de novo and real molecules in
a two-dimensional space. UMAP is a dimensionality reduction technique that preserves
local neighborhood relationships, allowing for the visualization of high-dimensional data
in a lower-dimensional space. By plotting the UMAP embeddings of the molecules, it is

possible to observe patterns, clusters, or separations between the de novo and real
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molecules, providing insights into their structural similarities or differences. These
assessment methods collectively provide a comprehensive evaluation of DrugGEN's
performance in generating de novo molecules, allowing for comparisons with real

molecules in terms of both quantitative metrics and visualizations.

4.1. Performance

In this analysis, DrugGEN is compared to other generative methods previously
reported in the literature using a range of benchmarking metrics. To conduct this
evaluation, we generated approximately 10,000 novel molecules using each of the
trained DrugGEN models, resulting in a total of 50,000 molecules. These generated

molecules evaluated on MOSES benchmarking, as described in Polykovskiy et al. (96).

In the findings, generative performance of DrugGEN is presented alongside other
models using widely adopted metrics, including validity, uniqueness, novelty, and
internal diversity. However, it is important to note that these metrics provide only
preliminary insights into the capabilities of a generative model and do not offer a
comprehensive evaluation. While achieving high scores is considered a positive outcome,
it is crucial to understand that being the top performer does not hold significant value on
its own. This is because the objectives of different generative models can vary
substantially. For instance, some models may focus on designing valid molecules,
optimizing specific physicochemical properties, or generating molecules targeting
specific biological targets. Therefore, a comprehensive assessment of a generative model
should consider its specific objectives and applications beyond the basic benchmarking

metrics.

Table 4.1 presents the performance of DrugGEN in comparison to a baseline
model (ORGAN) and other recent methods, namely MolGPT, MGM, RELATION, REINVENT,
MARS, BIMODAL, molDQN, and QADD. The selection of these methods was based on
their algorithms and datasets, specifically utilizing ChEMBL for a fair comparison.

DrugGEN demonstrates notably high performance across all metrics.
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Unlike DrugGEN-Prot, the remaining DrugGEN models do not incorporate protein
features. Instead, the transformer decoder input consists of either real AKT inhibitors or
ChEMBL molecules. This simplification reduces overall complexity and facilitates the
learning process. However, DrugGEN-Prot exhibits the highest uniqueness score among

all DrugGEN models, comparable to the best-performing methods in this analysis.

Table 4.1. Performance comparison of default DrugGEN model against chosen molecule

generative models.

Data type Model name Va(ligity No(\glty U(nTi)q. In(tE)iv Q(ITE)D
REINVENT 0.940 0.307 - 0.755 0.525
BIMODAL 0.997 0.314 - 0.720 0.541

Text RELATION 0.854 1.000 1.000 0.773 -
MolGPT 0.994 0.797 1.000 0.857 -
ORGAN 0.379 0.687 0.841 - 0.520
QADD 1.000 0.341 - 0.613 0.785
MARS 0.997 0.333 - 0.641 0.746
MGM 0.849 0.722 1.000 - 0.582

Graph
molDQN 1.000 0.360 - 0.531 0.761
DrugGEN 1.000 1.000 1.000 0.871 0.528

Unlike ORGAN, MolGPT, and MGM, which suffer from low novelty or uniqueness,
DrugGEN leverages graph transformers, a novel architecture within its GAN generators.

This approach contributes to higher novelty and validity scores. MolGPT and MGM also
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employ transformer architectures, but their usage in generative modeling may result in
lower novelty scores due to potential overfitting to training data. DrugGEN likely
mitigates overfitting issues by utilizing probabilistic discrimination instead of cross-
entropy loss. This hypothesis is an open-ended question about the generation of loss
which should be further pursued, however it is not included in the scope of this thesis.
This distinction is crucial, as the IntDiv metric reveals the diversity of structures among
generated samples. DrugGEN achieves high IntDiv scores, indicating its ability to learn
different molecular structures from the training dataset and generate diverse structural
distributions. On the other hand, models like QADD, molDQN, BIMODAL, REINVENT, and
MARS exhibit higher validity rates than DrugGEN. However, they suffer from low novelty
scores, likely attributed to overfitting. These models generate a significant number of

samples already present in their training sets.

4.2. Ablation Results

In this analysis, we conducted a comparison among various DrugGEN models, as
described in section 3.3. The comparison involved evaluating the outputs of these models
along with the molecules in the training datasets, using a set of established
benchmarking metrics, including QED, SA, and logP metrics (96). The results presented
in Table 2 indicate that all DrugGEN models exhibit high validity and uniqueness values,
although there are variations in their novelty scores. Notably, both the DrugGEN-Prot and
DrugGEN-CrossLoss models achieved a perfect novelty score of 1.000, indicating that all
generated molecules differ from those in the training dataset. Regarding the internal
diversity (IntDiv) of the generated molecules, all models demonstrated similar behavior
and achieved significantly high values, comparable to the internal diversity observed in
the entire ChEMBL dataset. While the actual AKT1 inhibitors displayed slightly lower
internal diversity, the targeted models still managed to match the diversity observed in
the larger ChEMBL training dataset. Furthermore, the DrugGEN-Prot model attained the

best (lowest) FCD score of 15.581, which measures the proximity between the
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distribution of physicochemical characteristics of the generated molecules and the

distribution of the training dataset (98).

By comparing the FCD score, we observed that DrugGEN-Prot and other targeted
models outperformed the baseline DrugGEN-NoTarget model. This improvement can be
attributed to the utilization of target features within the generator network, instead of
directly employing the features of real inhibitors. It was found that incorporating target
features enhanced the learning process of the physicochemical properties specific to the
selected target's real inhibitors. The DrugGEN-NoTarget model was excluded from this
comparison as its FCD score was evaluated against ChREMBL molecules in its training

dataset, rather than specifically focusing on AKT1 inhibitors like the other models.

Table 4.2. Ablation study results and models’ comparison against dataset.

Models / Validity | Unig. | Novelty | IntDiv FCD QED logP SA
datasets (™) (™) (™) (™) (V) (™) (V)
ChEMBL 1 1 000 | 0.999 - | 0877 | - | 0543 |3.442|3.002
Data

AKTI. 1.000 0.750 - 0.827 - 0.460 |4.071 | 3.051
inhibitors

E:;:gGEN_ 1.000 1.000 1.000 0.878 | 15.581 | 0.528 | 3.861 | 3.674
DrugGEN- 1.000 1.000 1.000 0.877 |20.440| 0.543 |4.511 | 3.281
CrossLoss

OrugGEN- | 1 000 | 1.000 | 0.981 | 0.881 |25.123| 0.506 |5.546 | 3.281
Ligand

DrugGEN-

RL 0.992 1.000 0.902 0.881 |18.573 | 0.531 |4.579 | 3.051
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DrugGEN-

1.000 1.000 0.990 0.883 |10.449| 0.572 |3.761 | 3.302
NoTarget

The variations in physicochemical property-related metrics are evident from the
QED, logP, and SA values presented in Table 2. The QED values of the DrugGEN models
differ between the ChEMBL dataset and the AKT1 dataset, which was expected since all
models, except DrugGEN-NoTarget, utilize both datasets during the learning process.
Higher QED values indicate a positive outcome, suggesting that the de novo-generated
compounds align well with the typical requirements of drug development. Therefore,
from this perspective, all models can be considered successful as they enhance the QED
value of the real AKT1 inhibitors dataset. On the other hand, when it comes to logP, there
is no universally correct value since the optimal range varies depending on the specific

ADME-related requirements of the drug under development.

4.3. Physicochemical Comparison with AKT1

Density plots are visualized for the examination of distributions of
physicochemical properties in the molecules compared to AKT1 and ChEMBL molecules.
It can be observed that the property distributions of non-targeted de novo molecules
(DrugGEN-NoTarget) are similar to the ChEMBL molecules, which represent the training
dataset of this model. On the other hand, the distributions of targeted de novo molecules
(the other DrugGEN models) resemble those of real AKT1 inhibitors. In some of the plots,
there might be a slight mean shift, where the real molecules have higher property values,
or a slight difference in the distributions in terms of a right tail. The de novo molecules
generated by these two DrugGEN models and the AKT1 inhibitors occupy a similar region

in the physicochemical property space.

Hence, LogP values can be evaluated based on their similarity to the training

datasets. In this context, DrugGEN-Prot demonstrated better scores, indicating a closer
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match between the LogP values of its generated molecules and those of both the
ChEMBL dataset and the real AKT inhibitors dataset. The synthetic accessibility (SA) score
measures the ease of synthesis, where lower values are preferable. In this regard, all
models produced comparable results except for DrugGEN-Prot, which had a slightly
higher (worse) SA score compared to both the other models and the training dataset. The
design process of DrugGEN-Prot involves modifying de novo molecules with respect to
the selected target protein by incorporating protein features into the generator network.
While the generator network does not directly consider the properties of the actual
inhibitors of the target protein, there is an indirect influence due to the incorporation of
those real inhibitors into the discriminator network. Consequently, this indirect influence
may lead to de novo designs that differ from the real inhibitors of the selected target in

terms of synthetic accessibility.

Target-specific models can be compared to the DrugGEN-NoTarget model and the
utilized datasets in terms of physicochemical distribution to assess the models' ability to
generate molecules specific to validated AKT1 inhibitors. For instance, the datasets
indicate that AKT1 inhibitors have a slightly lower average QED score compared to the
ChEMBL dataset. Therefore, it is expected that target-specific models would have an
overall average QED score closer to 0.460. However, since the generator was trained on
ChEMBL molecules, the ChEMBL dataset inevitably influences the generated molecules

as a foundational structure. Figure 4.1 provides a visual comparison of the models.

DrugGEN-RL and DrugGEN-Ligand share the overall generation process, with the
only difference being that DrugGEN-RL incorporates an additional loss value discouraging
the use of existing AKT1 scaffolds. Regarding QED, the DrugGEN-RL model exhibits a more
pronounced peak near the 0.500 value compared to DrugGEN-Ligand. This indicates that
the DrugGEN-RL model focuses its generation process on specific molecular types more
than DrugGEN-Ligand, which displays a broader distribution, suggesting the utilization of

diverse molecular structures. Both DrugGEN-RL and DrugGEN-Ligand exhibit peaks near
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the AKT1 inhibitor set, indicating that the generation process has shifted the distribution
of the ChEMBL molecules to be more aligned with the AKT1 distribution. This distinction
is evident in Figure 4.1A, as DrugGEN-NoTarget's distribution matches the ChEMBL
molecular set. On the other hand, the DrugGEN-CrossLoss model exhibits a distribution
that aligns with the ChEMBL molecules rather than AKT1 inhibitors on QED. DrugGEN-
CrossLoss employs a single GAN system to shift the distribution of the ChEMBL molecules
towards AKT1 inhibitors. However, in this case, the average QED score is nearly the same
as that of the ChEMBL molecules. Surprisingly, the DrugGEN model displays two peaks in
its distribution: one near the peak of AKT1 inhibitors and the other near the peak of the
ChEMBL molecule set.

In contrast, DrugGEN-Prot does not rely on validated molecules during the
generation process but rather focuses on protein features. In this scenario, DrugGEN-Prot
successfully replicates the distribution of both datasets. Although the molecular
information of the ChEMBL molecules is implicitly available to DrugGEN-Prot as input,
the generator network does not have direct exposure to AKT1 inhibitors. This result
indicates that DrugGEN-Prot was able to comprehend the overall drug likeness of the
AKT1 inhibitor candidates, despite not having direct access to them during the generation

process.
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Figure 4.1. A comparative analysis of the target specific DrugGEN models is performed,
evaluating their distribution against both datasets and a non-specific model, with a focus

on the QED metric.

The logP metric analysis offers valuable insights into the performance of different
models in generating compounds that align with the distribution of ChREMBL molecules.
Notably, DrugGEN-CrossLoss, DrugGEN-Prot, and DrugGEN-RL demonstrate a connection
to the distribution of ChEMBL molecules, indicating their ability to generate compounds
that align with the logP characteristics of the dataset. This suggests that these models
are effective in capturing the desired properties associated with the ChEMBL molecules.
DrugGEN-Ligand displays a broader distribution with a higher maximum value which

indicates the potential for generating compounds with higher lipophilicity.
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Figure 4.2. A comparative assessment is conducted to evaluate the distribution of the
target specific DrugGEN models in comparison to both datasets and a non-specific model,

with a specific emphasis on the logP metric.

The SA metric provides valuable insights into the performance of different models
in generating compounds that are easy or hard to synthesize. Among the models
evaluated, DrugGEN-CrossLoss, DrugGEN-RL, and DrugGEN-Ligand demonstrate a clear
connection to the AKT1 distribution, while DrugGEN-Prot exhibits higher SA values,
indicating a comparatively worse performance. This performance decline for DrugGEN-
Prot model can be associated with the usage of the protein features. This model tries to
modify the novel molecules based on the protein’s features matrices. The process itself
is computationally complex than other models and molecule generation based on the
protein features might further drive the process to generate synthetically worse

molecules in order to match the given protein features.
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Figure 4.3. The target specific DrugGEN models are subjected to a distribution
comparison against both datasets and a non-specific model, specifically analyzing their

performance in terms of the SA metric.

4.4. Exploration of the Generated Data with Dimensionality Reduction

Data reduction analysis was conducted to further analyze the molecular
embeddings. We randomly selected 1,000 real AKT1 inhibitors and 1,000 de novo
molecules from DrugGEN-Prot, DrugGEN-CrossLoss, and DrugGEN-NoTarget models. The
resulting UMAP visualization in 2D is depicted in Figure X, using UMAP parameters of
n_neighbors=50, min_dist=0.8, and metric="jaccard". Each dot in the figures represents
a molecule, and the colors indicate their respective sources.

It is observed that the models have learned the approximate structural
distribution of ChEMBL molecules, with distinct clusters of molecules corresponding to

different model variations. The proximity of the de novo molecules to the ChEMBL
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molecules suggests their similarity in structural characteristics. Notably, the UMAP
visualization using MACCS fingerprints enables differentiation between molecules based
on the model that generated them, emphasizing the diverse molecule generation
capability of the DrugGEN system.

In these plots, every data point represents a molecule, with colors displaying their
source: either de novo molecules generated by the DrugGEN models or molecules from
a real dataset. The Euclidean distances between the dots reflect the structural similarities
based on Tanimoto similarity, calculated using descriptor-based molecular fingerprints.
For representation, both the de novo generated, and training molecules are depicted
using MACCS (Molecular ACCess System) descriptors. These descriptors consist of a 166-
dimensional set of binary fingerprints, where each dimension represents the presence or
absence of specific predefined structural features, such as structural patterns or
functional groups (112).

UMAP plot specifically focuses on the de novo molecules generated by the
DrugGEN-Prot model, revealing significant overlap with AKT1 molecules. This indicates
that the DrugGEN-Prot model possesses a higher capacity to generate molecules
resembling AKT1. Conversely, the DrugGEN-NoTarget model exhibits minimal overlap
with AKT1 molecules. The UMAP plot provides valuable insights into the relationship
between the de novo molecules generated by DrugGEN-Prot and the AKT1 inhibitors,
highlighting potential structural resemblances and supporting the effectiveness of the
generative model in producing molecules with similar properties.

In Figure 4.4A, we observe distinct clusters representing molecules generated
from DrugGEN-NoTarget, DrugGEN-CrossLoss, and DrugGEN-Prot, which are located on
different sides of the plane. In contrast, ChEMBL molecules appear in the center of the
plane, with some instances positioned at the outer shell of the DrugGEN-NoTarget
molecules. The presence of separate clusters indicates structural differences among the
generated molecules. These differences arise because the embeddings utilized in this

analysis are based on MACCS fingerprints, which derive from the structural backbones
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and generate unique fingerprints for each molecule. In Figure 4.4B, a more complex
distribution of molecules is observed. There are still distinct clusters representing
DrugGEN-NoTarget and DrugGEN-CrossLoss. However, DrugGEN-Prot and the AKT1
inhibitor dataset appear to overlap on the plane, indicating that the molecules generated
by DrugGEN-Prot resemble AKT1 inhibitors more closely compared to DrugGEN-
CrossLoss and DrugGEN-NoTarget, while ensuring novelty in all generated molecules. The
separation of molecules generated by DrugGEN-CrossLoss from the AKT1 cluster suggests
that DrugGEN-Prot exhibits superior target-specific generation capabilities. This outcome
was expected for DrugGEN-NoTarget, as it lacks internal mechanisms to generate
molecules similar to AKT1.

When DrugGEN-RL and DrugGEN-Ligand are embedded with DrugGEN-NoTarget
and ChEMBL molecules, a spherical overall localization pattern becomes apparent. The
generated molecules are concentrated in the center of the visualization, while the
ChEMBL molecules form a clustered shell-like structure around them. Comparing the
generated molecules with AKT1 inhibitors, both DrugGEN-Ligand and DrugGEN-RL exhibit
a mixture of generated molecules and AKT1 inhibitors on the plane. This observation
suggests a structural similarity between the generated molecules and AKT1 inhibitors.
On the other hand, the DrugGEN-NoTarget molecules form a separate cluster, distinct
from both the target-specific models and the AKT1 dataset. This finding highlights the
distinct structural differences between the target-specific molecules and the molecules

generated by DrugGEN-NoTarget.
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Figure 4.4. UMAP embeddings of the DrugGEN-NoTarget, DrugGEN-CrossLoss, and
DrugGEN-Prot models against ChEMBL molecules and AKT1 inhibitors on separate

planes.
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Figure 4.5. UMAP embeddings of the DrugGEN-NoTarget, DrugGEN-Ligand, and

DrugGEN-RL models against ChREMBL molecules and AKT1 inhibitors on separate planes.
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4.5. Failed Model Designs

The noise input approach proved ineffective as the sparse nature of the graph
data hindered the learning process. A limited number of valid molecules were obtained,
while the system also generated atoms that were not properly connected to each other,
resulting in the formation of non- connected molecular structures. The adjacency matrix,
which represents the graph structure, is two-dimensional and contains a significant
number of zero values, with nearly 90% of the matrix being filled with zeros. As the matrix
size increases, the sparsity becomes exponentially more pronounced. This abundance of
null data within the matrix poses challenges for neural networks to learn effectively (116,
117). This lack of effectiveness becomes apparent during the training process as well.
Despite the divergence in loss values between the generator and discriminator networks,
there is a notable absence of improvement in performance metrics as training
progresses. Frequently, the validity of the system approaches zero. Furthermore, it is
crucial to acknowledge that relying solely on performance metrics for assessing model
efficacy is not consistently fruitful. Some unsuccessful models exhibit high validity scores,
yet the molecules they generate lack connectivity, producing disjointed carbon atoms.
Sparse data in graph generation remains a persistent problem that has not been fully
resolved to date. To overcome this issue, a modification was made to the input of GAN1
by changing it from Gaussian noise to real molecule input. This adjustment facilitated the
learning process of GAN1, enabling successful molecule generation. By utilizing real
molecule input instead of noise, the model's ability to learn and generate molecules was
improved. GNN discriminator proved to be unstable, resulting in a lack of effective
competition between the generator and discriminator within the GAN network. The
instability observed in GAN models led to the decision of changing the discriminator to a
multilayer perceptron (MLP) instead. By employing an MLP discriminator, the generative
network became more stable, allowing for more effective competition between the
generator and discriminator components of the GAN. This modification helped improve

the overall performance and training stability of the DrugGEN model. Using classical



60

Transformer approach came with some problems. Transformer network was designed to
process text-data (94). Using graph data with the vanilla transformer attention did not
work as intended and created mostly unconnected graphs through training. After
implementing graph transformer architecture to DrugGEN system, attention module was
able to attend both annotation and adjacency matrices creating a message-passing like
process inside attention module. This allowed DrugGEN to process and modify molecules

better than vanilla transformer approach.
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5. DISCUSSION

The assessment of DrugGEN's performance in designing de novo molecules
involved the use of various benchmarking metrics. Validity, uniqueness, internal diversity
(IntDiv), and novelty were employed to evaluate the quality and diversity of the
generated molecules. Physicochemical property value distribution plots were utilized to
compare the properties of the de novo molecules with those of real molecules. UMAP
embeddings were employed to visualize and compare the structural similarities or
differences between the de novo and real molecules. The performance evaluation
showed that DrugGEN exhibited high scores in terms of validity, uniqueness, novelty, and
internal diversity. The physicochemical comparison demonstrated that the distributions
of targeted de novo molecules resembled those of real inhibitors, while non-targeted de
novo molecules were similar to the training dataset. The UMAP analysis revealed the
approximate structural distribution of the de novo molecules, with DrugGEN-Prot
showing significant overlap with AKT1 inhibitors. These findings highlight DrugGEN's

generative capabilities and its ability to produce molecules with desired properties.

There are two commonly used benchmarking strategies for molecule generative
models, namely the MOSES and Guacamol benchmarks (96, 113). These benchmarks
incorporate various metrics such as Validity, Uniqueness, Novelty, FCD, similarity, logP,
and others. These metrics evaluate the generative capabilities of models and the
physicochemical properties of the generated molecules. While benchmarking metrics
provide initial insights, it is crucial to consider the specific objectives and applications of
a generative model beyond these metrics. Different models may prioritize different
aspects, such as validity, physicochemical optimization, or targeting specific biological
activities.

In the case of the DrugGEN model, its focus is primarily on the chemical
perspective of the generative process. DrugGEN performs exceptionally well in

generating structurally diverse molecules while ensuring novelty. Additionally, the model
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successfully reproduces the physicochemical properties of AKT1 inhibitors based on
metrics such as QED, logP, and SA. However, relying solely on quantitative metrics is
insufficient to determine the potential of a generated molecule to become a drug
candidate. Goal-oriented models evaluate their generated molecules using these
metrics, but it's important to note that these metrics are approximations and do not
correspond to experimentally validated results (99). Furthermore, these metrics are
inadequate for assessing a molecule's affinity for any specific target. Currently, there are
no metrics available for benchmarking across target-specific generative models. Indeed,
certain target-specific models utilize docking experiment results as a means of
comparative analysis, although it's important to note that not all models use the same
target (114). Traditional docking methods typically require expert knowledge, where
specialists study the target and design experiments specifically tailored to that target. In
contrast, modern deep learning-based docking techniques can be executed in a blind
manner without prior knowledge of the target (115). To enable fair comparisons and
accurate measurement of the capacity of generative models, there is a need for universal
metrics and quantitative calculations. These metrics should provide a standardized
framework for evaluating the performance of different generative models. The
development of such metrics would help establish fair and consistent benchmarks across
various generative models, allowing for meaningful comparisons and assessments. By
incorporating universal metrics and quantitative calculations, the field of generative

modeling can advance towards more objective and reliable evaluations.

The DrugGEN model excels in generating novel molecules compared to other
methods. Many of the compared models generate molecules that already exist in their
training datasets, which is not desirable. In contrast, the MARS model exhibits low
novelty, likely due to its generation process that relies on fragment modification without
allowing for atom-level changes (105). One of the key advantages of the DrugGEN model
is its implementation at the atom resolution for both molecules and proteins. This atom-

level resolution enables modifications to be made at the individual atom and bond level.
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As a result, the model has a higher probability of creating novel molecules since the
modifications are performed at such a detailed level. This atom-level flexibility enhances
the chances of generating molecules that are structurally unique and different from those

present in the training dataset.

The compound datasets used to train the DrugGEN models were derived from
ChEMBL and DrugBank. The ChEMBL dataset initially consisted of approximately 1.6
million molecules. However, for training purposes, the dataset was truncated to include
only molecules with a maximum of 45 heavy atoms, resulting in a remaining dataset of
approximately 1.4 million molecules. While this dataset size may not be considered large
for training a complex system, it was found to be sufficient for effectively training the
DrugGEN models using these molecules. In contrast, the AKT inhibitor dataset, derived
from DrugGEN, was curated to include inhibitors of AKT1, AKT2, and AKT3. This was done
to increase the dataset size. The training dataset specifically contained only 2,754
molecules that were AKT-specific inhibitors. The limited size of this dataset posed a
challenge for the discriminator in the GAN system. GANs rely on extensive training data
to effectively learn and avoid overfitting (118). When the discriminator network was
implemented using GNN, the training process was unstable, and the generator system
struggled to learn effectively. To address this issue, a simpler MLP network was employed
as the discriminator. This change significantly improved the stability of the GAN system
and facilitated a more robust and stable learning process. The use of an MLP
discriminator mitigated the potential overfitting caused by the limited AKT inhibitor
dataset, enabling the DrugGEN model to train more effectively. Curating a dataset that
has more inhibitors might come with an additional weight on the discriminator to

suppress overfitting issues.

The generator network in the DrugGEN model is built upon the graph transformer
architecture (90). This architecture enables the simultaneous processing of both

annotation and adjacency matrices within an attention module. This allows for the
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representation of bond information between atoms in the network. Various approaches
exist for generating attention based on the adjacency and annotation matrices. One
particular study utilizes a node-edge interaction module, where attention is computed
through matrix multiplication between node and edge matrices (119). However, in this
study, only the node features are updated, and there is no iterative optimization of the
edge features, unlike in the DrugGEN model. In the DrugGEN model, both the node and
edge features are updated through the learning process. Not only are the node features
updated based on the created attention weights, but the attention weights themselves
are further modified to generate an updated adjacency matrix for the next layer. This
iterative updating of both the node and edge components ensures that both aspects of
the molecular graph are dynamically adjusted during the learning process, leading to

enhanced representation and generation capabilities.

Training GAN systems, including stacked systems like DrugGEN, can be challenging
due to stability issues and the potential for mid-training collapse. The traditional training
schema of GANs involves a min-max game between the generator and discriminator, but
vanilla GANs are susceptible to inherent problems associated with their architecture

(120, 121).

One of the challenges in GAN training is achieving convergence. Since GANs are
gradient-based systems, each model updates independently, making it difficult to reach
convergence. There is a dilemma in the learning process where a poorly trained
discriminator fails to provide meaningful feedback to the generator, hindering its own
training. On the other hand, if the discriminator learns too well, the gradients can
become extremely small, resulting in vanishing gradients that impact the overall model

(122).

Another issue that can arise in GAN systems is mode collapse, where the
generator repeatedly generates the same or similar data that can deceive the

discriminator network (123). To address some of these problems, the Wasserstein GAN
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(WGAN) model was proposed. WGAN uses the Earth-Mover distance (Wasserstein-1) to
measure the cost of transforming one probability distribution into another during
training. WGAN has been reported to train more stably and mitigate mode collapse issues

(124).

In addition to WGAN, another technique called gradient penalty (GP) was
proposed to enhance the stability of GAN training. GP enforces the Lipschitz constraint
by directly constraining the gradient norm of the critic's output with respect to its input.
This soft constraint and penalty on the gradient norm for random samples help ensure
stable training and address issues related to vanishing and exploding gradients (125). By
incorporating these advancements, the DrugGEN model benefits from improved training

stability and addresses some of the inherent challenges associated with GAN training.

The DrugGEN model employs the WGAN-GP training system to enhance stability
and prevent collapse during GAN training. This training approach allows the stacked
system to be trained in a more stable manner. By aggregating the losses of both GAN1
and GAN2, the learning process becomes more end-to-end, enabling the DrugGEN model
to allocate different tasks to each GAN while maintaining a shared learning system. As a
result, the DrugGEN model is capable of generating novel molecules and target-specific

molecules through this combined training approach.

The DrugGEN model has demonstrated superior performance compared to
other models in the comparison. Despite its computational complexity, the DrugGEN
system outperformed other models in terms of generating highly diverse and novel
molecules. A direct comparison can be made between the ORGAN model and DrugGEN-
NoTarget, as neither model does not consider target features and do not generate target-
specific molecules. However, it is evident that DrugGEN-NoTarget excels in generating
molecules that are both highly novel and diverse, while also maintaining a similar level
of heavy atom count as the ORGAN model. The ORGAN model relies on SMILES

representation and does not consider spatial connectivity features in representing
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molecules. Additionally, ORGAN utilizes LSTM as the generator and CNN as the
discriminator module. In contrast, the DrugGEN model employs a more recent
architecture for the generator network, which potentially enhances its understanding of
molecular structures. As observed in the metrics, DrugGEN performs significantly better
than ORGAN, despite using the same training method and dataset. This direct

comparison highlights DrugGEN's improved production efficiency using GANs.

When compared to MolGPT, which utilizes a transformer decoder architecture,
DrugGEN performs similarly in most aspects except for novelty score. MolGPT has a
limitation in that it sometimes generates molecules that already exist in its training
dataset. During training, MolGPT uses real molecules and during the generation process,
it employs scaffolds and molecular descriptors to generate new molecules. However, the
paper does not mention a scaffold split, where scaffolds present in the training data are
not used during inference. This lack of scaffold split may hinder the novelty of the

molecules generated by MolGPT.

In contrast, DrugGEN employs a training data split that allows for the use of test
sets that were not seen during training. This enables DrugGEN to generate novel
molecules that are not present in the training set. Additionally, the DrugGEN system
utilizes a dual system to guide the molecular generation process specifically towards
molecules that would interact with AKT1. This introduces an additional layer of
complexity and manipulation of molecules to modify their structures and
physicochemical properties. Overall, while DrugGEN and MolGPT share similarities in
their transformer-based architectures, DrugGEN's training data split and target-specific
generation mechanism give it an advantage in terms of generating novel molecules that

interact with AKT1.

When comparing DrugGEN to RL-based models such as QADD, molDQN,
BIMODAL, MARS, and REINVENT, it is important to focus on their generative efficiency

and novelty. These RL models aim to generate molecules with specific desired properties
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or optimize certain physicochemical properties. In terms of generative efficiency,
DrugGEN does not employ any additional mechanisms to specifically optimize molecules
based on desired properties. Therefore, comparing DrugGEN to these RL models based
on physicochemical properties may not be meaningful. Instead, it would be more

appropriate to evaluate their generative efficiency in terms of novelty and diversity.

In this regard, DrugGEN outperforms these RL models in terms of novelty since a
significant portion of the molecules generated by these RL models already exist in their
respective training sets. This indicates that these RL models struggle to generate truly
novel molecular candidates. In contrast, DrugGEN excels at generating novel molecules,
as it employs a training data split that allows for the generation of molecules not present
in the training set. Therefore, when considering the generative efficiency and novelty of
the models, DrugGEN demonstrates superiority over RL-based models such as QADD,

molDQN, BIMODAL, MARS, and REINVENT.

The analysis of DrugGEN-Prot's performance in approximating AKT1 inhibitors
without direct exposure to the molecules is certainly impressive. By incorporating target
features within the generator network, DrugGEN-Prot is able to enhance the learning
process of physicochemical properties specific to AKT1 inhibitors. The ability of DrugGEN-
Prot to replicate the physicochemical characteristics required for an AKT1 inhibitor is a
significant accomplishment. It demonstrates that target-specific molecule generation can

be achieved by leveraging protein features and indirect guidance from molecular data.

However, it is worth noting that the complex process of incorporating protein
features may slightly affect the synthetic accessibility of the generated molecules. This
suggests that while DrugGEN-Prot excels at replicating the physicochemical needs of
AKT1 inhibitors, there might be a trade-off in terms of synthetic feasibility. Overall, the
performance of DrugGEN-Prot in replicating the physicochemical properties of AKT1

inhibitors through the incorporation of target features is a remarkable achievement,
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highlighting the potential of utilizing protein features for target-specific molecule

generation.

The UMAP embeddings further support the findings of the physicochemical
analysis. The distribution of molecules in the UMAP embeddings reveals important
insights into their structural similarities and relationships. In the case of DrugGEN-Prot,
the fact that the generated molecules are located in the same planar area as the AKT1
inhibitors, despite not directly observing the inhibitors during training, suggests that
DrugGEN-Prot was able to generate molecules that are both novel and exhibit similar
physicochemical characteristics based on MACCS fingerprints. This indicates the
successful incorporation of target features into the generation process. Similarly,
DrugGEN-Ligand and DrugGEN-RL show a mixed distribution with AKT1 inhibitors,
indicating that molecules generated from these models possess some structural
similarities to AKT1 inhibitors. On the other hand, DrugGEN-CrossLoss appears to have a
separated cluster, suggesting that the overall generation process for this model does not
produce molecules that resemble AKT1 inhibitors based on MACCS fingerprints. Overall,
the UMAP embeddings provide visual evidence that supports the physicochemical
analysis findings. They demonstrate the ability of DrugGEN-Prot, DrugGEN-Ligand, and
DrugGEN-RL to generate molecules that share certain characteristics with AKT1
inhibitors, while highlighting the distinct distribution of molecules generated by

DrugGEN-CrossLoss.

To sum up, this study provides different options and capabilities within the
DrugGEN system, allowing users to tailor their molecule generation approach based on
their specific needs and available data. The DrugGEN-Ligand, DrugGEN-CrossLoss, and
DrugGEN-RL models are suitable when protein data is not available or not necessary for
the generation process. It relies solely on the validated inhibitors of the selected
molecules to generate novel molecules. The DrugGEN-CrossLoss model can be utilized

when there are limitations in computational resources. It employs a single GAN instead
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of the stacked GANs used in other models, providing a more resource-efficient option.
The DrugGEN-RL model is designed for generating molecules with different scaffolds,
enabling the design of molecules with diverse core structures. DrugGEN-Prot is the
default and most successful model among the variations. It incorporates target-specific
features by incorporating protein data, allowing the generation of novel and diverse

molecules that exhibit structural and physicochemical similarities to existing inhibitors.

Each model has its own strengths and can be chosen based on the specific
requirements and objectives of the molecule generation task. The DrugGEN system
provides a flexible and adaptable approach for generating molecules, offering various

options to suit different scenarios.
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6. CONCLUSION

In this study, we introduced the DrugGEN system, which combines GANs and the
graph transformer architecture to automatically design target-specific drug candidate
molecules. The primary objective of DrugGEN was to generate inhibitor candidates based
on the selected target. The system encompasses multiple models aimed at exploring
target-centric generation capabilities. The DrugGEN models demonstrate comparable or
superior performance to state-of-the-art models in terms of performance metrics,
indicating their high efficiency and capacity for molecule generation. We conducted
analyses on physicochemical metrics such as QED, SA, and logP, demonstrating that
DrugGEN models can generate de novo molecules with molecular characteristics shared
with real inhibitors of the AKT1 protein. Additional computational analyses were
performed to assess the target-specific properties of these de novo molecules, which

revealed their AKT1 targeting potential.

Using graph representation carries the burden of computational complexity. High
complexity leads to increased memory usage and slower training compared to text-based
methods. Additionally, this complexity imposes a limit on the maximum number of atoms
that can be processed within the DrugGEN model. While DrugGEN can handle molecules
with heavy atom counts up to 45, processing larger molecules would exponentially

increase the computational resource requirements.

The DrugGEN model has limitations regarding the overall generation process.
These models rely either on protein features or existing inhibitor data. However, for
targets that lack any protein or inhibitor data, there is no feasible way to generate drug

candidates.

The DrugGEN model has been tested exclusively against a single target, AKT1. This
particular target benefits from having available protein data and inhibitor data from open

sources. However, modeling other targets with minimal inhibitor data can be challenging
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since the discriminator network may become overfit to the limited data within a short
timeframe. In such cases, molecular data can be constructed using inhibitors from the
same protein family. However, this approach would restrict the specificity of the

generated molecules.

As future aspects of this study, DrugGEN system can be re-implemented to
process text-based data using either SMILES, or SELFIES (127). This way both molecular
data and protein data can be handled using smaller representations which will a relief on
computational complexity and memory usage. Also, generative model benchmarks are
designed to measure text-based generation performance better than geometric ones
which would be a better way for optimizing the generation system. Even though text-
based method does not encode any spatial features, geometric features can be added as
vector codes to molecules to give additional information to the system. This way

molecule generation system can be optimized.

DrugGEN model only trained for a single target however, training this model for
multiple targets is also possible. Using multiple targets and corresponding molecular
inhibitors, systems can be trained to learn specifics of being a molecular inhibitor by
looking at protein data. This might be proven useful when studying target that does not
have any or a few known inhibitors. A system that can learn to design inhibitors based on
target data and existing respective molecular inhibitors, can theoretically design

molecular inhibitors for any given protein data.
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