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Knowing the mechanical behavior of fiber-reinforced composites are important since 

unidirectional (UD) composite materials have been widely used in many industries. 

Different methods in macro-scale and micro-scale have been used to determine the 

properties of the composite. While macro-scale methods fail to predict properties under 

transverse loading, many studies were done in micro-scale methods where the fiber and 

matrix are modeled separately. Finite element method is the most widely used method for 

micro-scale analysis.  

It is known that matrix properties dominate the failure behavior of the UD composites. 

Since these distributions are affected by the composite material properties, it is important 

to see the relation between them. The stress distribution is highly dependent on the 

distribution of the fiber. Therefore, random packing methods were developed to capture 

the real composite structure. With each run, fiber locations changes. Understanding the 

stresses and concentrations due to selected material properties is possible with a 

sensitivity analysis. 
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In this thesis, the effect of material parameters on micro-scale stress distribution in fiber 

reinforced composites in transverse loading was analyzed. Different micro-scale models 

were generated due to generated fibers in the matrix being different than the actual 

structure. The models were prepared and solved by a commercial finite element software, 

ABAQUS. Material parameters that can be selected by the designer or engineer were 

analyzed within a preliminary analysis and were defined to the models. Their results were 

compared to see their importance in the sensitivity analysis. It was seen that fiber 

Poisson’s ratio does not have any meaningful effect on stress concentration within the 

ranges given in the study. Chosen material parameters and their values taken from the 

literature were defined to the models. To calculate the relation between the stress 

concentration results gathered and the material parameters, a commonly known statistical 

analysis method called parametric correlation was used and correlation coefficients were 

interpreted. It was seen that composites Young’s modulus ratio has lower relation with 

stress concentration than fiber’s volume ratio. A parameter called overstressed volume 

percentage was introduced in the thesis. The correlation coefficient of this parameter with 

the input parameters was also calculated and interpreted. 

 

 

Keywords: Composite materials, finite element method, sensitivity analysis, monte carlo 

simulation, parametric correlation, micro-scale modelling. 

 

 

  



 

 

 

iii 

ÖZET  

 

 

FİBER TAKVİYELİ KOMPOZİTLERİN MİKRO-ÖLÇEKLİ GERİLME 

DAĞILIMINDA MALZEME PARAMETRELERİNİN DUYARLILIK ANALİZİ 

 

Berkay BEKTAŞ 

 

 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Danışmanı: Doç. Dr. Barış SABUNCUOĞLU 

Ocak 2023, 78 sayfa 

 

 

Tek yönlü (UD) kompozit malzemeler birçok endüstride yaygın olarak kullanıldığından, 

fiber takviyeli kompozitlerin mekanik davranışlarını bilmek önemlidir. Kompozitin 

özelliklerini belirlemek için makro ölçekte ve mikro ölçekte farklı yöntemler 

kullanılmıştır. Makro ölçekli yöntemler, enine yükleme altındaki özellikleri tahmin 

etmekte başarısız olurken, fiber ve matrisin ayrı ayrı modellendiği mikro ölçekli 

yöntemlerde birçok çalışma yapılmıştır. Sonlu elemanlar yöntemi, mikro ölçekli analizler 

için en yaygın kullanılan yöntemdir.  

Matris özelliklerinin UD kompozitlerin kırılma davranışına hakim olduğu bilinmektedir. 

Bu dağılımlar kompozit malzeme özelliklerinden etkilendiği için aralarındaki ilişkinin 

bilinmesi önemlidir. Gerilme dağılımı büyük ölçüde fiberin dağılımına bağlıdır. Bu 

nedenle, gerçek kompozit yapıyı yakalamak için rastgele paketleme yöntemleri 

geliştirilmiştir. Her çalıştırmada, fiber konumları değişir. Hassasiyet analizi ile seçilen 

malzeme özelliklerinden kaynaklanan gerilmeleri ve konsantrasyonları anlamak 

mümkündür.  
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Bu tezde, malzeme parametrelerinin enine yüklemede fiber takviyeli kompozitlerde 

mikro ölçekli gerilme dağılımı üzerindeki etkisi analiz edilmiştir. Matriste oluşturulan 

fiberlerin gerçek yapıdan farklı olması nedeniyle, çeşitli mikro ölçekli modeller 

oluşturulmuştur. Modeller, ticari bir sonlu elemanlar yazılımı olan ABAQUS ile 

hazırlanmış ve çözülmüştür. Tasarımcı veya mühendis tarafından seçilebilen malzeme 

parametreleri bir ön analiz ile analiz edilerek modellere tanımlanmıştır. Duyarlılık 

analizindeki önemlerini görmek için sonuçları karşılaştırılmıştır. Çalışmada verilen 

aralıklarda fiberin Poisson oranının stres konsantrasyonu üzerinde önemli bir etkisinin 

olmadığı görülmüştür. Seçilen malzeme parametreleri ve literatürden alınan değerleri 

modellere tanımlanmıştır. Toplanan gerilim konsantrasyonu sonuçları ile malzeme 

parametreleri arasındaki ilişkiyi hesaplamak için yaygın olarak bilinen parametrik 

korelasyon adı verilen istatistiksel analiz yöntemi kullanılmış ve korelasyon katsayıları 

yorumlanmıştır. Kompozitlerin Young modül oranının, fiberin hacim oranına göre 

gerilme konsantrasyonu ile ilişkisinin daha düşük olduğu görülmüştür. Tezde aşırı 

gerilmiş hacim yüzdesi adı verilen bir parametre tanıtılmıştır. Bu parametrenin giriş 

parametreleri ile korelasyon katsayısı da hesaplanmış ve yorumlanmıştır. 

 

Anahtar Kelimeler: Kompozit malzemeler, sonlu elemenlar yöntemi, monte carlo 

simülasyonu, parametrik korelasyon, micro-ölçekli modelleme 
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1. INTRODUCTION 

1.1. Aim of the Study 

For engineers, it is vital to know the mechanical behavior of fiber-reinforced composites 

since unidirectional (UD) composite materials have been widely used in the automotive 

and defense industry due to their ability to provide high stiffness with relatively low 

weight. Their properties can be tailored according to the needs of the designer. Various 

methods in macro-scale have been used to determine the properties of the composite. 

Although these methods can predict composite material properties in the fiber direction 

under transverse loading, prediction of these are challenging.  In transverse loading, 

matrix properties dominate the failure behavior of the UD composites. These behaviors 

cannot be accurately predicted by homogenized properties.  Therefore, many studies have 

been performed in which the fiber and surrounding matrix are modeled separately. Such 

a modelling type is called micro-scale as the dimensions of fibers generally vary between 

3-15 microns. Finite element method is the most widely used method for micro-scale 

analysis.  

Since the matrix properties dominate the failure behavior of the UD composites, the 

distribution of the stresses in the matrix are important. These distributions are 

significantly affected by the composite material properties. The effects of these 

parameters and their evaluation are significant for the designers and engineers. The 

distribution of the fiber in the matrix significantly affects the stress distribution. Regular 

packing methods are used in various studies, but these methods cannot properly reflect 

the distribution of the fiber in matrix. Because of this, different techniques and algorithms 

were developed to generate randomly distributed fibers in the matrix. With these 

algorithms, generated fibers in the matrix will be different than the actual structure, and 

with each run, their location will be changed. Therefore, statistical analysis is needed to 

understand the stresses and concentrations due to selected material properties. 

The aim of this study is to analyze the effect of material parameters on micro-scale stress 

distribution in fiber reinforced composites in transverse loading. Due to generated fibers 

in the matrix being different than the actual structure, different micro-scale models were 

generated. The models are prepared and solved by a commercial finite element software, 

ABAQUS. Material parameters that can be selected by the designer or engineer are 
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analyzed within a preliminary analysis and are defined to the models. Their results are 

compared to see their importance in the sensitivity analysis. Chosen material parameters 

and their values taken from the literature are defined to the models. To calculate the 

relation between the stress concentration results gathered and the material parameters, a 

commonly known statistical analysis method called parametric correlation was used and 

correlation coefficients were interpreted. 

1.2. Research Methodology 

This study starts with a brief introduction to composite materials and methods to 

determine their properties. Then, the finite element analysis of composite materials, 

examples, and applications are investigated. Statistical analysis performed on the 

composite materials in order to understand the mechanical behavior is investigated. 

Parametric correlation and its methods are explained in detail. After these, the 

micromechanical model used in this study is described. Chosen materials parameters for 

the sensitivity analysis are presented. In section 6, the sensitivity analysis method used in 

the study is described in detail. Gathered results are proposed and discussed. At last, 

conclusions upon this study are given. 

1.3. Outline of the Study 

There are 8 chapters in this thesis. A short explanation of all chapters can be found below: 

Chapter 1: Introduction 

 A brief introduction about the thesis study is given. 

Chapter 2: Numerical and Statistical Analysis of Composites 

 Information about composite materials and their analysis methods are given. 

Macro-scale analysis methods and micro-scale analysis methods are explained. Statistical 

analysis done in composite materials in literature are given and described in detail. The 

literature review about the study is also given in this chapter. 

Chapter 3: Monte-Carlo and Parametric Correlation Methods 

 Monte-Carlo method, parametric correlation, and its methods are explained. The 

parametric correlation method used in this study is also explained in this chapter. 
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Chapter 4: Micromechanical Models Used in The Study 

 Generated micromechanical model is given and explained in detail. Key 

properties of the model are given. 

Chapter 5: Selection of Material Parameters 

 Material parameters and why they are chosen are explained in detail. Preliminary 

analyses are given in this chapter. 

Chapter 6: Sensitivity Analysis Method 

 The sensitivity analysis method that is used for this thesis study is presented in 

detail.  

Chapter 7: Results 

 Obtained results from the sensitivity analysis are presented and discussed in this 

chapter. 

Chapter 8: Conclusion 

 A summary of the analysis and conclusions are given in this chapter. 

Appendix 

 TBD 
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2. NUMERICAL AND STATISTICAL ANALYSIS OF 

COMPOSITES 

2.1. Introduction to Composite Materials 

Composite materials are made by combining two or more components to produce a 

material with superior qualities to those materials used alone.  The two components are 

normally a matrix and a fiber. Glass and carbon are the most widely used fibers, which 

can be continuous or discontinuous. Polymers, epoxy, or ceramics are widely used 

matrices [1]. Mechanical properties of some fibers and matrices are given in (Table 2.1) 

and (Table 2.2), respectively. The reinforcement material lies in the matrix, increasing 

the overall material stiffness and other mechanical properties. Unidirectional composite 

materials have been widely used in automotive, defense, and other industries (Figure 2.1, 

Figure 2.2). 

 

Figure 2.1. Landing gear brake discs constructed of carbon composite material for aircraft [2]. 
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Figure 2.2. Ivan-30 (Catamaran yacht) made from carbon-epoxy composite [3]. 

 

Composite materials exhibit complex mechanical behaviors, and this manufacturing can 

be expensive due to the need for complex production tools. Thus, it is crucial to know the 

mechanical behavior of these materials. Therefore, analysis of the composite materials is 

critical. 
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Table 2.1. Typical mechanical properties of fibers 

Fiber 

Mechanical Properties 

Reference Tensile Strength 

(GPa) 

Elastic Modulus 

(GPa) 

E-glass 3.8 75 [4] 

S-glass 4.5 85 [4] 

P-25 Carbon 1.38 159 [5] 

P-120 Carbon 2.41 827 [5] 

XN-50A Carbon 3.83 520 [5] 

Flax 0.457 41.6 [6] 

 

Table 2.2. Typical mechanical properties of matrices 

Matrix 

Mechanical Properties 

Reference Tensile Strength 

(MPa) 

Elastic Modulus 

(GPa) 

Epoxy 6.2 - 103 2.8 - 3.4 [7] 

Polyimide 55 - 110 3.2 [3] 

Polyester 21 - 69 3.4 - 5.6 [7] 

Polysulfone 69 2.8 [7] 

PEEK 90-100 3.1 - 3.8 [3] 

Al 1024 414 72 [7] 
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2.2. Finite Element Method 

Examining the mechanical behavior of materials using analytical methods can be 

practically impossible due to having to solve complex partial differential equations. 

Therefore, numerical methods are developed. Finite element method (FEM) is a 

numerical method aiming to approximate the analytically challenging distribution of field 

variables in the application. FEM divides the problem domain into numerous elements 

and performs a solution to each element [8]. Solving a problem by using FEM is 

illustrated in (Figure 2.3). 

 

Figure 2.3. Finite element method schematic 

Governing Equations and Boundary Conditions 

The differential equations that govern the behavior and the related boundary condition 

must be determined in order to achieve an approximate solution for the problem. The 

behavior of the problem can be explained via mathematical modeling. Afterward, the 

approximate finite element formulation can be used. 

Domain Discretization 

The entire solution domain of the problem is divided into small elements in this step. It is 

called meshing. Care must be taken to use sufficient elements to obtain the behavior of 

the solution. Although a larger number of elements in smaller sizes provides better 

convergence to the result, it increases computation time to solve the problem. Therefore, 

attention should be paid to the balance between for the solution domain. 

Determining Element Equations 

The algebraic equations that must be solved for each element are created after the meshing 

is complete. The form of these equations are all the same for every element.  
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Global Equation Assembly 

Combining the created element equations creates a system of equations for the solution 

domain. Interelement continuity conditions are identified between primary variables by 

associating element nodes with global nodes. Between secondary variables, the 

equilibrium conditions are identified. Then, elements are assembled. 

Application of Boundary Conditions 

Constraints necessary to solve the boundary value problem are defined.  

Solution of Global Equations 

The system of equations is solved. Depending on the problem type, numerous differential 

equations are approximated.  

Results Presentation 

In this step, the results are represented in tabular and/or graphical form. 

2.3. Macro-Scale and Micro-Scale Analysis 

Analysis of composite materials has been studied in the literature for many years. At first, 

macro-scale methods in which the fiber and matrix properties are combined using 

analytical methods. Various methods have been used in the literature to analyze UD 

composite materials in macro-scale. Although in the fiber direction, due to fibers having 

very high stiffness and strength values, their properties can be predicted with these 

theories; under transverse loading, prediction of these behaviors are challenging. The 

properties of the matrix material dictate the failure mode of these UD composites under 

transverse loading. Rule of mixtures, one of the most used theory in homogenization 

methods, given in equation (2.1), is a weighted mean of a material property according to 

the material volume fractions. 

 Ec = fEf + (1 − f)Em  (2.1) 

 f =
Vf

Vm + Vf
  (2.2) 

Where Ec, Ef and Em are Young’s moduli of the composite, fiber and matrix, respectively 

for transverse loading. f is the volume fraction (2.2), where Vf  and Vm are the volume 

fraction of fiber and matrix, respectively. 
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Halpin-Tsai model [9] is commonly used to predict the effective stiffness for fiber 

reinforced composites. Although the model predicts stiffnesses very well at low-volume 

fractions, it cannot sufficiently predict some stiffnesses at high-volume fractions. 

Common form is given in equation (2.3) 

 
𝑃

𝑃𝑚
=

1 + 𝜉𝜁𝑉𝑓

1 − 𝜂𝑉𝑓
 , 𝜂 =

(𝑃𝑓 𝑃𝑚⁄ ) − 1

(𝑃𝑓 𝑃𝑚⁄ ) + 𝜁
 (2.3) 

Where 𝜁 is the measure of the reinforcement geometry, 𝜉 is the reinforcement parameter, 

𝑃, 𝑃𝑓 and 𝑃𝑚 are the properties of the composite, fiber and matrix, respectively. 

Chamis model [10] gives formulation for all five independent elastic properties, 

longitudinal and transversal Young’s moduli 𝐸11  and 𝐸22 , major Poisson’s ratio 𝑣12 , 

longitudinal and transversal shear moduli 𝐺12 and 𝐺23. In this model square root of the 

fiber volume fraction is used to calculate shear and transverse elastic properties. 

Mori-Tanaka [11] developed a model which is widely used for modeling different kinds 

of composite materials. In this model, inclusions are buried in a homogeneous medium 

to simulate fibers. Hill [12] and Budianski [13] proposed an iterative model called the 

self-consistent model (S-C) to predict the elastic properties of composite materials 

reinforced by isotropic spherical fibers. 

Composite materials have weak properties under transverse loading. Hence prediction of 

these properties, especially failure behavior, is complex and challenging. It is known that 

the properties of matrix material dominate the failure mode of the UD composites. These 

failure modes are generally fiber-debonding and matrix cracking (Figure 2.4). Prediction 

of these cannot be made accurately with homogenized properties.  
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Figure 2.4. Crack-tip and crack-wake debonding schematic representation [14]. 

For composites, if the fiber and matrix properties are modeled separately, it is called 

micro-scale as the fibers have dimensions in microns. In particular, the finite element 

approach has become the predominant method for micro-scale analysis (Figure 2.5, 

Figure 2.6) [15-18]. 

 

Figure 2.5. Nano-reinforced interphase around fibers having (a) hexagonal; (b) circular cross-

sections [16]. 
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Figure 2.6. Unit cell quadrants of square and hexagonal array for finite element analysis [18]. 

Many studies to predict the stresses and failures have been done in micro-scale in the 

literature. While modeling composites, the distribution of these fibers significantly affects 

the distribution of stresses in the matrix. Regular packings such as square or hexagonal 

packing (Figure 2.7) [19-21] cannot reflect composite distributions properly. Therefore, 

different algorithms and techniques were developed to generate randomly distributed 

fibers in the matrix [22]. Randomly distributed fibers with the periodic structure are 

generated with material input parameters, such as fiber diameter, representative volume 

element (RVE) size, and fiber volume fraction (Figure 2.8). Melro et al. [23] presented a 

new constitutive damage model for an epoxy matrix on micro-mechanical analyses of 

polymer composite materials. The algorithm developed by Melro et al. [22] was used for 

random microstructure generation. Periodic boundary conditions (PBCs) were applied to 
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the RVEs [24]. Different fiber distributions with different fiber volume fractions were 

analyzed throughout the study (Figure 2.9).  

 

 

(a) 

 

(b) 

Figure 2.7. (a) Square RVE, (b) Hexagonal RVE [25]. 

 

Figure 2.8. RVE models graphical illustration [26]. 
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Figure 2.9. Generated RVEs and mesh structure [23]. 

Danzi et al. [27] performed a finite element micromechanical study of carbon/epoxy 

material (Figure 2.10). Because of the small thickness of the inter-phase with respect to 

fiber and matrix dimensions, they proposed 3-D cohesive elements governed with a 

traction separation constitute behavior to this critical zone in the model.  
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Figure 2.10. Fiber distribution examples for different volume fractions [27]. 

 

To effectively simulate the interaction between constituents, there should be continuity 

between discretized elements. Providing continuity does not become an issue when 

simple-shaped materials are used. An example of mesh structure with a circular cross-

section is given in Figure 2.11. 

 

Figure 2.11. Mesh structure for a circular cross-section model [17]. 

Sabuncuoglu et al. [16] evaluated the effect of nano-reinforced interphase on the stress 

concentration. Study was carried out using FEM, in micro-scale. Intermediate 

homogenization step was used to obtain elastic properties of the nano-reinforced 

interphase. 
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Figure 2.12. Mesh structure of the hexagonal model [16]. 

 

Under quasi-static tensile loading, De Greef et al. [28] investigated at how carbon 

nanotubes affected the initiation and progression of damage in woven carbon fiber/epoxy 

composites.  

2.4. Statistical Analysis of Composite Materials 

The previous section states that fibers are randomly distributed with an algorithm through 

the matrix while modeling the composite. Therefore, with each run, they are generated in 

different locations. Statistical analysis is required to understand the stresses and 

concentrations caused by the chosen material attributes. 

In order to understand the mechanical behavior of composites, various types of statistical 

analysis were performed. Seung-Pyo Lee et al. [29] used the homogenization method and 

Monte-Carlo simulation to probabilistically estimate the equivalent properties of glass 

fiber-reinforced composite materials. The Monte-Carlo methods are an algorithm that 

depends on repeated random sampling to obtain numerical results. The core is to use 

randomness to find deterministic solutions to the problem. In this study, the mechanical 

properties of composite materials are treated as probabilistic instead of deterministic. 

Firstly, a randomly distributed set of basic properties of fiber and matrix is generated. 

Then, calculations based on the homogenization method using the generated properties 
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are done. Lastly, the probability is determined from a large number of repetitions.  A 

linear correlation analysis was done between the constituent’s basic properties (Figure 

2.13). However, in the study, a micromechanical model with periodic fiber arrangement 

was used (Figure 2.14).  

 

Figure 2.13. Linear correlation results for constituent’s basic properties [29]. 
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Figure 2.14. Square-packed array unit cell [29]. 

 

Wu et al. [30] studied discontinuous fiber-reinforced composite under thermal and 

mechanical loads. RVE was created with respect to the 3D X-ray CT image of the 

composite (Figure 2.15). Therefore, the effect of the randomness of the fiber distribution 

is excluded from the analysis. The probability density functions (PDF) of Von Mises 

stress (Figure 2.16) were compared. They showed that Von Mises stress on the fiber 

increases with Young’s modulus of the resin where the fibers have a much higher 

Young’s modulus than the resins. PDF represents a continuous random variable's density 

between a particular range of values. 
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Figure 2.15. Finite element model of discontinuous fiber-reinforced composite [30]. 

 

Figure 2.16. PDF of Von Mises stress on mechanical loading. [30] 

Barbero et al. [31] presented a formulae based on Weibull statistics to analyze the 

variability of the composite material's mechanical properties. Based on two-parameter 

Weibull distribution, a three-parameter Weibull distribution is proposed for composite 

materials.  
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Figure 2.17. Unit Cell models used [32]. 

Mustafa et al. [32] presented an approach for stiffness properties prediction of composite 

materials used in wind turbine blades. For the estimation of composite equivalent 

properties, square and hexagonal unit cells were used (Figure 2.17). The results from the 

numerical analysis are compared with the modified rule of mixture method results and 

the test data (Figure 2.18). With the help of Monte Carlo simulation, a probabilistic 

analysis was performed. Monte Carlo simulation was coupled with a homogenization-

based stiffness calculation procedure. First, random variables for unidirectional properties 

of fiber and matrix were generated via the Latin Hypercube Sampling method. Secondly, 

they simulated the UD properties against each set of realizations using the representative 

unit cell and homogenization method. Last, statistical response sensitivities of the output 

response parameters were calculated (Figure 2.19). The method was then applied to a 5 

MW wind turbine blade structural analysis. The study concluded that the sensitivity 

analysis highlights the most influenced input properties of the composite. Therefore, 

unimportant variables can be disregarded from the designer’s analysis to reduce the time 

and expensive testing for these parameters. However, an idealized fiber distribution is 

used in the analysis to reduce the computation time. 
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Figure 2.18. Stiffness properties comparison for hexagonal unit cell (HEX), square unit cell 

(SQR), Simple Rule of Mixture (SROM), Modified Rule of Mixture (MROM) and test data  [32]. 
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Figure 2.19. Spearman Rank Order correlation coefficient matrix [32]. 

 

In this study, the effect of material parameters on the micro-scale stress distribution in 

fiber reinforced composites in transverse loading is statistically determined via a 

commonly known statistical analysis method called parametric correlation. This method 

reveals the relation between the design inputs and stress concentration outputs by 

calculating correlation values that show their level of effect on each other. In order to 

reduce the workload, glass fiber was chosen as the fiber material.



 

 22 

3. MONTE-CARLO AND PARAMETRIC CORRELATION 

METHODS 

In this thesis, Monte-Carlo simulations were used for the sensitivity analysis. Monte Carlo 

simulations use random distributions to find a solution to mathematical problems. An 

example of Monte Carlo simulation is given below (Figure 3.1). 

To compute the value of 𝜋; 

• In a square domain, define a circle. 

• Generate random points lying inside the square domain and count the points that 

lie in the circle. 

• The ratio of the number of points inside the circle to the total number of points 

generated is the 𝜋/4. [33] 

 

Figure 3.1. Monte Carlo simulation example [33]. 

 

 Monte Carlo methods are widely used in the simulation of physical, chemical, and 

biological systems [34]. In engineering, Monte Carlo methods are widely used for 
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sensitivity analysis. As described, Monte Carlo methods use random numbers. Therefore, 

a source of random numbers is required [35]. In this thesis, random numbers are generated 

from fibers Young’s modulus values. A more detailed explanation was given in the 

following chapters. 

After performing the Monte Carlo method, results need to be examined. Moreover, the 

relation between design inputs and the mechanical behavior of the composite is analyzed 

in this thesis. Therefore, the correlation between these parameters are used in this thesis 

study. Correlation is an analysis that measures the degree of the relation between two 

variables. The relationship is measured as a correlation coefficient. The value of the 

correlation coefficient varies between −1 and +1, where the ±1 value indicates perfect 

relation between the two variables. +  and –  signs indicate a positive and negative 

relationship, respectively (Figure 3.2). There are different types of correlation methods, 

such as Pearson correlation, Kendall rank correlation, and Spearman correlation. 

Correlation methods can generally be divided into parametric and non-parametric 

correlation. Depending on the data, a particular statistical method should be used.  

Parametric correlation assumes that the used data corresponds to a specific distribution 

(such as Gaussian distribution, Weibull distribution) (Figure 3.3).  

 

 

(a) 

 

(b) 

Figure 3.2. (a) +1 correlation coefficient example, (b)−1 correlation coefficient example. 

Y

X

Y

X
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Figure 3.3. Normal (Gaussian) distribution [36]. 

 

3.1. Pearson Correlation 

The Pearson correlation coefficient (r) is one of the most used methods to measure a 

linear correlation. It is also known as, the correlation coefficient, Bivariate correlation. It 

describes the relation and direction of the linear relationship between the two variables. 

If the r value is between 0 and 1, when one of the corresponding variables changes, the 

other variable changes in the same direction. If the r value is 0, there is no relation 

between the related variables. If the r  value is between 0 and -1, when one of the 

corresponding variables changes, the other variable changes in the opposite direction. +1 

and -1 indicate a perfect positive and negative association, respectively. A general rule of 

thumb rules for the r value is given in Table 3.1. 
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Table 3.1. General Rule of Thumb for r values 

r value Relation Direction 

0.5 < r High Positive 

0.3 < r ≤ 0.5 Moderate Positive 

0 < r ≤ 0.3 Low Positive 

0 No Relation No Relation 

0 > r ≥ −0.3 Low Negative 

−0.3 > r ≥ −0.5 Moderate Negative 

−0.5 > r High Negative 

 

r can be calculated via the following Eqn. 3.1 

 
r =

n ∑ xy − (∑ x) − ∑(y)

√[n ∑ x2 − (∑ x)2][n ∑ y2 − (∑ y)2]
 (3.1) 

where n is the sample size, x and y are the variables investigated. 

Pearson correlation coefficient gives accurate results if the following are met: 

1. The relationship between the variables is linear. 

2. All of the data has similar pattern. 

3. Variable data are approximately normally distributed. 

4. Both variables are quantitative. 

3.2. Spearman Correlation 

Spearman’s rank correlation coefficient (rS) is the non-linear version of the Pearson 

correlation. As in Pearson correlation coefficient, +1 and -1 rs value indicates perfect 

association, respectively, where 0 indicates no relation between variables. 

As stated in the Pearson correlation coefficient, it is better to use Spearman’s rank 

correlation: 

1. If the relationship between the variables are non-linear 

2. If all of the data does not have the same pattern. 

3. Variable data are not normally distributed. 

4. If the variables are ordinal. 
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rS can be calculated via the following Eqn. 3.2 

 
rs = 1 −

6 ∑ di
2

n(n2 − 1)
 (3.2) 

Where 𝑑𝑖 is the difference between two ranks of each observation and 𝑛 is the number of 

observations. An input-output graph is plotted after the sensitivity analysis to determine 

which correlation should be used. Although the input 1 (composite Young’s modulus 

ratio) - output (maximum stress concentration) graph (Figure 3.4) for only one RVE and 

matrix Young’s moduli value of 1 GPa shows a linear relation, the input 1 (composite 

Young’s modulus ratio) - output graph (Figure 3.5) for only one RVE and all matrix 

Young’s modulus values shows a non-linear relation. Therefore, Spearman’s Rank 

correlation is more convenient for the analysis since it is a non-linear correlation method.  

Also, input 2 (overstressed volume percentage) – output graph is given in (Figure 3.6). 

Therefore, Spearman’s Rank Correlation Coefficient will be used in the sensitivity 

analysis of the glass fiber reinforced composite due to input and output parameters have 

non-linear relation with each other.  

 

Figure 3.4. Input 1 - Output Graph for only 1 RVE and matrix Young’s moduli of 1 GPa. 
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Figure 3.5. Input 1 - Output Graph for one of the RVE and all matrix Young’s modulus values. 

 

Figure 3.6. Input 2 - Output Graph for one of the RVE and all matrix Young’s modulus values.
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4. MICROMECHANICAL MODELS USED IN THE STUDY 

4.1. RVE Used in the Analysis 

As mentioned in previous sections, all micromechanical models used in the study were 

generated with fibers randomly distributed in the matrix. Random microstructure 

generation (RMG, [22]) method was used to create fiber distributions. First, preliminary 

analyses were performed to see the effect of fibers Young’s moduli (Ef) and matrix 

Young’s moduli (Em). Various RVE models with different fiber numbers and Vf values 

were modeled for preliminary analyses. A total of 9 different RVEs (Table 4.1) were 

modeled with corresponding fiber diameters, fiber numbers and Vf given in Table 4.2. 

An example of the RVE model with Vf value of approximate 0.45 can be seen in (Figure 

4.1). RMG algorithm makes iterations to reach the requested Vf . Thus, the generated 

models Vf’s are not whole numbers. To represent the realistic behavior of the composites 

all models used in the sentivity analysis includes 30 to 35 fibers [37]. The effect of fiber 

diameter was normalized due to RVE size automatically adjusted according to the fiber 

diameter and number of fibers. Isotropic material properties were assigned to glass fibers 

and the surrounding epoxy matrix.   

Table 4.1. RVE models used in the sensitivity analysis. 

Vf Front Face Isometric View 

0.30258 
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0.30279 

 

 

0.30423 
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0.45368 

 

 

0.45437 
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0.45689 

 

 

0.58884 
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0.60410 

 

 

0.61829 
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Table 4.2. RVE model properties used in the sensitivity analysis. 

Vf No. of fibers  df (µm) 

0.30258 35 18.0 

0.30279 35 17.9 

0.30423 35 16.6 

0.45368 35 16.6 

0.45437 35 17.9 

0.45689 35 18.0 

0.58884 35 18.0 

0.60410 35 17.9 

0.63219 35 16.6 

 

  

 

Figure 4.1. Example RVE model with Vf = 0.45. 
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Four-noded elements with a reduced integration scheme were used as these elements have 

shown accurate results [17]. In order to eliminate sudden stress jumps due to sudden 

changes in Young’s modulus, relatively small elements are used in the fiber/matrix 

interface (Figure 4.2).  

 

Figure 4.2. Example mesh structure used for the RVE model. 
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4.2. Application of Periodic Boundary Conditions 

The position of the nodes are adjusted to be the same on the opposite sides to apply 

periodic boundary conditions (PBC, Figure 4.3) properly on the vertical and horizontal 

sides of the RVE. 

 

Figure 4.3. Graphical representation of PBC [38]. 

 

The mathematical explanation of PBC is as follows. The periodic structure's displacement 

field can be written as: 

 𝑢𝑖 = (𝑥1, 𝑥2, 𝑥3) = 𝜀𝑖𝑗
0 𝑥𝑗 + 𝑢𝑖

∗(𝑥1, 𝑥2, 𝑥3) (4.1) 

where 𝜀𝑖𝑗
0  is the global strain tensor, 𝜀𝑖𝑗

0 𝑥𝑗  is the linear distributed displacement field and 

𝑢𝑖
∗(𝑥1, 𝑥2, 𝑥3)  is the periodic function that runs from one unit cell to the next and 

represents a modification to the linear displacement field brought on by the composite's 

heterogeneous nature. Periodic array of the repeated unit cell represents a continuous 

physical body. Therefore, two continuities must be satisfied at the boundaries of the 

adjacent unit cells. The displacement must be continuous, and that the traction 

distributions at a unit cell's opposing parallel boundaries be identical. In equation (4.1) 

the latter assumption is not satisfied. The opposite boundary surfaces of each unit cell 
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must be observed in parallel pairs, and the displacement between them can be expressed 

as follows: 

 𝑢𝑖
𝑘+ = 𝜀𝑖𝑗

0 𝑥𝑗
𝑘+ + 𝑢𝑖

∗ (4.2) 

 𝑢𝑖
𝑘− = 𝜀𝑖𝑗

0 𝑥𝑗
𝑘− + 𝑢𝑖

∗ (4.3) 

where 𝑘+ and 𝑘− depict the 𝑘𝑡ℎ couple of two opposite parallel boundary surfaces of a 

repeated unit cell. Since 𝑢𝑖
∗(𝑥1, 𝑥2, 𝑥3)  is the same at two parallel boundaries, the 

difference between equation (4.2) and equation (4.3) is 

 𝑢𝑖
𝑘+ − 𝑢𝑖

𝑘− = 𝜀𝑖𝑗
0 (𝑥𝑗

𝑘+ − 𝑥𝑗
𝑘−) = 𝜀𝑖𝑗

0 ∆𝑥𝑗
𝑘 (4.4) 

where ∆𝑥𝑗
𝑘 is constant for each pair of parallel boundary surfaces with specified 𝜀𝑖𝑗

0 , the 

right side of the equation becomes constants. Equation (4.4) does not guarantee traction 

continuity conditions.  Traction continuity condition is 

 𝜎𝑛
𝑘+ − 𝜎𝑛

𝑘− = 0, 𝜎𝑡
𝑘+ − 𝜎𝑡

𝑘− = 0 (4.5) 

where 𝜎𝑛  and 𝜎𝑡  are normal and shear stresses at the corresponding parallel boundary 

surfaces, respectively. For general purposes, equation (4.4) and equation (4.5) are a 

complete set of boundary conditions [39]. 

4.3. Loading and Boundary Conditions 

A strain (ε0 = 0.5 %) in the transverse direction on the vertical sides of the RVE were 

applied to stimulate the transverse load. Since the stress results were normalized with the 

average applied stress and stress concentrations were calculated, strain value does not 

have any effect on the results, as long as it is not very high to cause plastic deformation. 

PBC was applied to all faces of the RVE to represent periodicity in the structure. Standard 

/ Implicit solver was used in ABAQUS/CAE. Boundary conditions can be seen in Figure 

4.4. 
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• +Z face is 

fixed. 

• Periodic 

boundary 

conditions 

applied to 

the faces. 

• (-X, -Y) 

edge is fixed. 

Figure 4.4. Boundary conditions of the RVE model. 

4.4. Stress Concentration Calculation 

Maximum principle stress (S1max) in the matrix was chosen to be the critical stress type 

because of matrix brittle nature. S1max distribution for one of the models used in the 

sensitivity analysis can be seen in Figure 4.5. As mentioned previously, the principle 

stress values are normalized as in equation 4.6 to eliminate the effect of the applied load. 

 Saverage =
∑ (Vj) × S1max(j)𝑁

𝑗

∑ (𝑉𝑗)𝑁
𝑗

 (4.6) 

where S1max(j) is the principal stress of the respected element (at node j), Vj  is the 

volume of each element and N is total number of elements in the RVE. This was 

performed by a Python subroutine in the post-process stage of each analysis.  

Average stress concentration from every element defined in FEM was calculated via 

equation 4.7 to normalize the stresses with the applied load and generate the stress 

concentration histograms for the matrix. 

 K =
S1max

Saverage
 (4.7) 
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Figure 4.5. Maximum principle stress result for a RVE used in the sensitivity analysis, Vf ≅ 0.60. 
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5. SELECTION OF MATERIAL PARAMETERS 

The effect of the material parameters was considered in the thesis study. 

Therefore, the required material parameters need to be determined. First, chosen 

parameters must be adjustable for the need in the design. Secondly, with preliminary 

analyses, it should be understood that the parameter affects the stress distribution. Five 

material parameters were chosen for the preliminary analyses (Table 5.1). 

Table 5.1. Preliminary Analysis Material Parameters 

Material Parameter 

Fiber Young’s Modulus (Ef) 

Matrix Young’s Modulus (Em) 

Fiber Poisson’s Ratio (vf) 

Matrix Poisson’s Ratio (vm) 

Fiber Volume Ratio (Vf) 

 

For the preliminary analyses, distributions for Ef and Em (Figure 5.1) were created via 

MATLAB®. Number of occurrence shows the frequency of the Young’s modulus values 

in the distribution. For the Ef distribution, analysis was performed with a constant Em 

value of 3 GPa. For the Em distribution, analysis was done with a constant Ef value of 

120 MPa. 6 different RVE models with Vf in the range of 0.30 to 0.60 were created for 

only this purpose. Similar mesh structure and boundary conditions explained in the 

previous section were used.  
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(a) 

 

(b) 

Figure 5.1. (a) Ef distribution, (b) Em distribution. 

As can be seen from the overstressed volume percentage (OVP)  histograms for Ef 

distribution (Figure 5.2), std values are large enough to say that Ef parameter affects the 

OVP in every Vf value. OVP is the percentage of volume of elements with an average K 

value greater than 2. OVP is explained in more detail in Chapter 6. OVP histograms for 

Em distribution (Figure 5.3) also indicates the same effect for Em. 
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Figure 5.2. Ef distribuion OVP histograms. 
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Figure 5.3. Em distribution OVP histograms. 
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For the Poisson ratio of fiber (vf), a distribution for the range between 0.2 and 0.4 values 

was created (Figure 5.4) and defined in the RVE models. These RVE models were 

solved, and the histograms of Kmax values are plotted in (Figure 5.5). It reveals that vf 

does not have much impact on stress concentration and was not included in the sensitivity 

analysis. Variation in the Poisson’s ratio of matrix (vm ) was not considered as it is 

expected to have negligible influence similar to vf. 

 

Figure 5.4. vf distribution defined to the RVE models. 
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(a) 

 

(b) 

 

(c) 

Figure 5.5. Kmax distribution of Vf ≈ (a) 0.30, (b) 0.45, (c) 0.60 for Poisson’s ratio distribution. 

With the preliminary analyses in mind, 
Ef

Em
 ratio and Vf  was chosen for the sensitivity 

analysis. For the sake of reducing the computation time to solve the models, Vf  was 

selected to be 0.30, 0.45, and 0.60. Skudra et al. [40] showed that 
Ef

Em
 ratio governs the 

stress concentration instead of Ef and Em as two separate parameters. Therefore, in this 
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thesis, 
Ef

Em
  ratio is used as a material parameter. To this end, the uniformly distributed five 

discrete Em values (1-5 GPA) are normalized with randomly generated 50 Ef values with 

mean and std of 73.6 MPa and 3.73 MPa, respectively (Figure 5.6) [41-43]. 

 

Figure 5.6. Ef distribution used in the sensitivity analysis. 

 

  

mean = 73.6 MPa 

std = 3.73 MPa 
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6. SENSITIVITY ANALYSIS METHOD 

6.1. Monte-Carlo Method 

A Monte-Carlo simulation was used to perform the sensitivity analysis with material 

parameters on stress distribution and concentration. Ef distribution given in Figure 5.6 is 

defined for RVE models shown in Table 4.2. The procedure is repeated for five discrete 

Em values. Therefore, a total of 2250 simulations were performed. The structure of the 

analysis can be seen in Figure 6.1. Although Kmax  is analysed in this thesis, this 

parameter cannot represent the stress distribution correctly. Therefore, K depending on 

the volume of elements, was visualized via Normalized Volume − K  histograms 

(Figure 6.2). In order to represent these histograms in parametric correlation, a parameter 

called overstressed volume percentage (OVP) is introduced. OVP is selected to be the 

volume of elements with an average K  value greater than 2. It was calculated from 

histogram bins with Eqn. 6.1 and Eqn. 6.2. 

 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 =

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒
 (6.1) 

 

OVP = ( ∑
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒

Max K

K≥2

) × 100 

(6.2) 

To analyze the relation between design inputs and outputs, the correlation between those 

parameters was calculated in pairwise. As mentioned in the earlier chapters, Spearman’s 

rank correlation coefficient was calculated between parameters. 
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Figure 6.1. Structure of the Sensitivity Analysis for a single Em 

 

 

Figure 6.2. Normalized Volume –  Stress Concentration histogram of Vf = 0.40675 RVE 

model. Ef = 70.9 GPa 
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6.2. Fibers Young’s Modulus Variance 

With the Monte-Carlo method, many analyses were performed with various Young’s 

moduli for fibers. But in all of them, all the fibers had the same single value of Young’s 

modulus in a RVE, meaning that values did not vary within a single model. It is known 

that this is not the case for fibers. Therefore, analyses with fibers in the RVE having 

different Young’s modulus value was performed. They are defined so that the value 

defined to the RVE is equal to the mean value of the Ef distribution in the compared RVE 

(Figure 6.3). 

 

Figure 6.3. Ef distributed RVE model. Each color represents a different Young’s Modulus 

value. 

Four different Ef values with given in Table 6.1 were considered for the analysis. Ranges 

were taken from Lefeuvre et al. [44]. Distributions were created with to respect to the 

ranges (Figure 6.4). Since no distribution was given in the literature, normal distribution 

type was used. All models have the same Em to compare the results with each other. Same 

boundary conditions were applied for the models.  
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Table 6.1. Glass fiber properties used in the fiber variance analysis. 

Name Ef (GPa) 

G1 70.9 (± 6.2) 

G2 77.8 (± 4.8) 

G3 72.6 (± 5.2) 

G4 70.3 (± 5.8) 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.4. Ef distributions defined to the RVE models. (a) G1, (b) G2, (c) G3 and (d) G4. 
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7. RESULTS 

7.1. Fibers Young’s Modulus Variance Results 

Different Young’s modulus values were defined to the RVE in order to see the effect of 

fiber Young’s modulus variance in GFRC. Kmax  results were gathered from all the 

analyses and compared with the respected RVE model having only one Young’s moduli 

for the fibers. In Figure 7.1, symbols of the same shape and color represents the 

difference between maximum stress concentrations of distributed Ef and constant Ef. Ef 

variance has very low impact on stress concentration. Kmax values are very close to each 

other. However, in some cases, in Vf ≅ 0.60 RVE model, there were more differences 

than the other cases. The reason was attributed to the fact that Young’s modulus values 

corresponding to the fibers, where the stress concentration is high, are larger than the 

average value in the distribution. In order to investigate in more detail, simulations were 

performed with different 
Ef

Em
  ratios while keeping the same Ef  distribution that was 

defined to the RVE. As the 
Ef

Em
 ratio goes lower, K decreases. A comparison was made 

again with the constant Young’s modulus defined to the fibers (Table 7.1). Although the 

% difference between the two cases goes higher as the 
Ef

Em
 ratio goes lower, the difference 

between the Kmax value is still low. 

Table 7.1. Maximum stress concentration results for the fiber Young’s modulus variance 

analysis. 

Description Ef Em⁄ = 145.2 Ef Em⁄ = 24.2 Ef Em⁄ = 14.52 Ef Em⁄ = 7.26 

Kmax for 

distributed Ef 

6.7465 4.5538 3.6654 2.5810 

Kmax for 

constant Ef 

6.7081 4.4539 3.5631 2.4948 

% Difference 0.57 2.2 2.8 3.35 
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(a) 

 

(b) 



 

 52 

 

(c) 

Figure 7.1. Maximum stress concentration differences in fibers distributed RVE models for (a) 

Vf ≅ 0.30, (b) Vf ≅ 0.45, (c) Vf ≅ 0.6. (DXX.X represents the fiber diameter used while 

creating the RVE). 
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7.2. Monte-Carlo and Sensitivity Analysis Results 

For 2250 simulations, solutions were gathered, and stress concentration histograms were 

created. S1max results and their 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒/𝐾 histograms of RVEs for 𝐸𝑓 ≅

73.6 (𝑀𝑃𝑎) (mean value of the Young’s modulus distribution) can be seen in (Figure 

7.2 - Figure 7.16) and (Figure 7.17 - Figure 7.25), respectively.  

 

Figure 7.2. Vf = 0.30258, S1max result for Em = 1 GPa 
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Figure 7.3. Vf = 0.30258, S1max result for Em = 2 GPa 

 

Figure 7.4.  Vf = 0.30258, S1max result for Em = 3 GPa 
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Figure 7.5. Vf = 0.30258, S1max result for Em = 4 GPa 

 

Figure 7.6. Vf = 0.30258, S1max result for Em = 5 GPa 
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Figure 7.7. Vf = 0.45368, S1max result for Em = 1 GPa 

 

Figure 7.8. Vf = 0.45368, S1max result for Em = 2 GPa 
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Figure 7.9.  Vf = 0.45368, S1max result for Em = 3 GPa 

 

Figure 7.10. Vf = 0.45368, S1max result for Em = 4 GPa 
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Figure 7.11. Vf = 0.45368, S1max result for Em = 5 GPa 

 

Figure 7.12. Vf = 0.60410, S1max result for Em = 1 GPa 
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Figure 7.13. Vf = 0.60410, S1max result for Em = 2 GPa 

 

Figure 7.14. Vf = 0.60410, S1max result for Em = 3 GPa 
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Figure 7.15. Vf = 0.60410, S1max result for Em = 4 GPa 

 

Figure 7.16. Vf = 0.60410, S1max result for Em = 5 GPa 
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Figure 7.17. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒/𝐾 histogram of 𝑉𝑓 = 0.30258 

 

Figure 7.18. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒/𝐾 histogram of 𝑉𝑓 = 0.30279 
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Figure 7.19. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒/𝐾 histogram of 𝑉𝑓 = 0.30423 

 

Figure 7.20. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒/𝐾 histogram of 𝑉𝑓 = 0.45368 
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Figure 7.21. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒/𝐾 histogram of 𝑉𝑓 = 0.45437 

 

Figure 7.22. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒/𝐾 histogram of 𝑉𝑓 = 0.45689 
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Figure 7.23. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒/𝐾 histogram of 𝑉𝑓 = 0.58884 

 

Figure 7.24. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒/𝐾 histogram of 𝑉𝑓 = 0.60410 
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Figure 7.25. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒/𝐾 histogram of 𝑉𝑓 = 0.61829 

A probability histogram plot including all K results can be seen in (Figure 7.26).With the 

Kmax and OVP results, a parametric correlation was done between the parameters chosen 

in the earlier chapters. In order to determine the number of simulations required for the 

parametric correlation, simulation numbers were increased until the difference between 

the previous results was acceptable. The parametric correlation matrices and their values 

for 450, 900, 1350, 1800, and 2250 simulations can be seen in Figure 7.28-Figure 7.32. 
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Figure 7.26. Probability Histogram for all K results 

𝑂𝑉𝑃 output histogram can be seen in (Figure 7.27). 

 

Figure 7.27. OVP histogram of the sensitivity analysis. 
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(a) 

(b) 

 

𝑬𝒇

𝑬𝒎
 1.0000 0.1721 0.8848 0.8957 

𝑽𝒇 0.1721 1.0000 0.5869 -0.2483 

𝑶𝑽𝑷 0.8848 0.5869 1.0000 0.6067 

𝑲𝒎𝒂𝒙 0.8957 -0.2483 0.6067 1.0000 

 
𝑬𝒇

𝑬𝒎
 𝑽𝒇 𝑶𝑽𝑷 𝑲𝒎𝒂𝒙 

Figure 7.28. Parametric correlation matrix. (a) Graphic representation and (b) Spearman’s 

correlation values for 450 simulations. 

In (Figure 7.28), the correlation between 𝐸𝑓/𝐸𝑚  ratio and 𝑉𝑓  is 0.1721. Since these 

parameters are chosen by the designer/user, it is known that they are not related to each 

other. Therefore, their correlation should be zero. Also 𝑉𝑓  and 𝐾𝑚𝑎𝑥  having negative 

correlation is not realistic. With more fiber concentration in the matrix, stress 

concentration in the matrix should increase.  

 

(a) 

(b) 

 

𝑬𝒇

𝑬𝒎
 1.0000 0.1727 0.7031 0.4761 

𝑽𝒇 0.1727 1.0000 -0.0305 -0.0681 

𝑶𝑽𝑷 0.7031 -0.0305 1.0000 -0.1098 

𝑲𝒎𝒂𝒙 0.4761 -0.0681 -0.1098 1.0000 

 
𝑬𝒇

𝑬𝒎
 𝑽𝒇 𝑶𝑽𝑷 𝑲𝒎𝒂𝒙 

Figure 7.29. Parametric correlation matrix. (a) Graphic representation and (b) Spearman’s 

correlation values for 900 simulations. 
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In addition to the same problems, 𝑂𝑉𝑃 and 𝐾𝑚𝑎𝑥, 𝑂𝑉𝑃 and 𝑉𝑓 have negative correlation 

in (Figure 7.29). 𝑂𝑉𝑃 and 𝐾𝑚𝑎𝑥 are expected to have high positive correlation. 

 

(a) 

(b) 

 

𝑬𝒇

𝑬𝒎
 1.0000 0.1255 0.5840 0.5017 

𝑽𝒇 0.1255 1.0000 0.5243 0.4524 

𝑶𝑽𝑷 0.5840 0.5243 1.0000 0.5710 

𝑲𝒎𝒂𝒙 0.5017 0.4524 0.5710 1.0000 

 
𝑬𝒇

𝑬𝒎
 𝑽𝒇 𝑶𝑽𝑷 𝑲𝒎𝒂𝒙 

Figure 7.30. Parametric correlation matrix. (a) Graphic representation and (b) Spearman’s 

correlation values for 1350 simulations. 

 

In (Figure 7.30), although the correlation between 𝐸𝑓/𝐸𝑚 ratio and 𝑉𝑓 is still not 0; 𝑂𝑉𝑃 

and 𝑉𝑓 , 𝑂𝑉𝑃  and 𝐾𝑚𝑎𝑥  have positive correlation. Compared with (Figure 7.29), the 

correlation between 𝐸𝑓/𝐸𝑚  ratio and 𝐾𝑚𝑎𝑥  and correlation between 𝐸𝑓/𝐸𝑚  ratio and 

𝑂𝑉𝑃 got lower.  
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(a) 

(b) 

 

𝑬𝒇

𝑬𝒎
 1.0000 0.06524 0.4036 0.4542 

𝑽𝒇 0.06524 1.0000 0.7716 0.6745 

𝑶𝑽𝑷 0.4036 0.7716 1.0000 0.7676 

𝑲𝒎𝒂𝒙 0.4542 0.6745 0.7676 1.0000 

 
𝑬𝒇

𝑬𝒎
 𝑽𝒇 𝑶𝑽𝑷 𝑲𝒎𝒂𝒙 

Figure 7.31. Parametric correlation matrix. (a) Graphic representation and (b) Spearman’s 

correlation values for 1800 simulations. 

In (Figure 7.31), the correlation between 𝐸𝑓/𝐸𝑚 ratio and 𝑉𝑓 is very close to zero. From 

the previous results, the correlation between 𝑂𝑉𝑃  and 𝐾𝑚𝑎𝑥  got higher and the 

correlation of 𝐸𝑓/𝐸𝑚 ratio with 𝑂𝑉𝑃 and 𝐾𝑚𝑎𝑥 got lower. 

 

 

(a) 

(b) 

 

𝑬𝒇

𝑬𝒎
 1.0000 0 0.3904 0.4100 

𝑽𝒇 0 1.0000 0.7551 0.7693 

𝑶𝑽𝑷 0.3904 0.7551 1.0000 0.8261 

𝑲𝒎𝒂𝒙 0.4100 0.7693 0.8261 1.0000 

 
𝑬𝒇

𝑬𝒎
 𝑽𝒇 𝑶𝑽𝑷 𝑲𝒎𝒂𝒙 

Figure 7.32. Parametric correlation matrix. (a) Color Graph and (b) Spearman’s correlation 

values for 2250 simulations. 
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Between (Figure 7.31) and (Figure 7.32), there are no significant changes in the 

correlations. As stated before, the correlation between 𝐸𝑓/𝐸𝑚 ratio and 𝑉𝑓 is expected to 

be zero. This is confirmed for the accuracy of the analyses from the correlation matrix 

values in (Figure 7.32). Also, Vf  having more correlation with OVP  and Kmax  than 

𝐸𝑓/𝐸𝑚’s correlation with OVP and Kmax contributes to that the analysis is done correctly. 

Therefore, 1850 simulations were determined to be enough for the analysis. 

• 𝐸𝑓/𝐸𝑚 has 0.3904 and 0.4100 correlation with OVP  and Kmax , respectively. 

Thus, 𝐸𝑓/𝐸𝑚 seems to have slightly more influence on Kmax then OVP.  

 

• Vf  has 0.7551 and 0.7693 correlation with OVP and Kmax , respectively. Same 

conclusion for influence on Kmax and OVP can be said for the Vf. 

 

• As mentioned before, Vf’s correlation with OVP and Kmax is higher than 𝐸𝑓/𝐸𝑚’s 

correlation with OVP and Kmax. This indicates that changing Vf will have more 

effect on changing stress distribution and stress concentration then 𝐸𝑓/𝐸𝑚 . 

 

• OVP  and Kmax  has 0.8261 correlation. Although this shows that these two 

parameters' relation is very high with each other, it also indicates that having a 

high OVP does not always mean having high Kmax. 
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8. CONCLUSION 

8.1. Summary of the Study 

Engineers need to understand the mechanical behavior of the composite material. Various 

micro-scale methods have been used in the literature to understand the mechanical 

behavior. FEM is the most widely used method for the micro-scale. While creating the 

RVE for the finite element analysis, to capture the actual conduct of the composite, 

random distributed fibers are created via algorithms. Therefore, sensitivity analysis is 

needed to understand the mechanical behavior. In this thesis study, a sensitivity analysis 

with the help of the Monte-Carlo method was done to analyze the effect of material 

parameters on the micro-scale stress concentrations. RVE models were created with 

different Vf values. Glass fiber was chosen as the fiber material. Stress concentrations and 

over-stressed volumes were calculated with the help of FEM. Results were gathered, and 

Spearman’s correlation coefficients between “ Ef/Em , Vf ” and “ Kmax , OVP ” were 

calculated. A further analysis was done with Young’s modulus variance of fiber.   

 

8.2. Outcomes of the Study 

According to the results, the following conclusions were obtained, 

1. Parametric correlation between material parameters and stress concentration was 

calculated and given.  

 

2. Because of the randomness of the composite, different models and many 

simulations are needed to calculate the parametric correlation truly. 

 

3. Input and output parameters show non-linearity between each other. Therefore, 

Spearman’s rank correlation coefficient was suitable for calculating the 

correlation. 

 

4. As seen from the preliminary Poisson’s ratio analysis, 𝑣𝑓  does not have any 

significant effect on stress concentration within realistic ranges.  
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5. Fiber’s Young’s modulus and Matrix Young’s Modulus can only be taken into 

account separately on effecting stress concentration if Ef value is much higher 

than the Em and vice versa. 

 

6. Ef/Em ratio has almost the same influence on the OVP  and Kmax . Therefore, 

Ef/Em  ratio can be changed to reach the desired stress concentration and its 

distribution. 

 

7. Vf  has a higher influence on the OVP and Kmax  then Ef/Em  ratio. This means 

changing Vf instead of Ef/Em ratio will have more effect on changing Kmax and 

OVP. 

 

8. Young’s modulus variance of glass fiber only makes a difference on the maximum 

stress concentration if Young’s modulus of the fiber and matrix Young’s modulus 

values are close. Although the difference is higher; since the stress concentration 

compared with higher Ef/Em ratio results are lower, and it is concluded that this 

will have very little change in the maximum stress concentration value. 

 

8.3. Further Studies 

In this study, only glass fiber material was considered in the sensitivity analysis to reduce 

the computation time. For future work, different fiber materials can be used and compared 

within. Future studies can be done with varying types of loading. 

Fiber diameter was not included in this thesis due to problems while creating the RVE. 

Therefore, for future work, a sensitivity analysis including the fiber diameter can be done. 
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