
MULTI-OBJECTIVE APPROACH FOR INTRUSION
DETECTION IN RPL-BASED INTERNET OF THINGS

RPL TABANLI NESNELERİN İNTERNETİNDE İZİNSİZ
GİRİŞ TESPİTİ İÇİN ÇOK KRİTERLİ YAKLAŞIM

ALİ DEVECİ

PROF. DR. SEVİL ŞEN AKAGÜNDÜZ

Supervisor

ASST. PROF. DR. SELİM YILMAZ

2nd Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

January 2023

ABSTRACT

MULTI-OBJECTIVE APPROACH FOR INTRUSION DETECTION IN
RPL-BASED INTERNET OF THINGS

the the the the the the the the

Ali DEVECİ

Master of Science, Computer Engineering
Supervisor: Prof. Dr. Sevı̇l ŞEN AKAGÜNDÜZ
2nd Supervisor: Asst. Prof. Dr. Selı̇m YILMAZ

January 2023, 98 pages

In the last decade, humanity has witnessed a tremendous increase in the number of

life-saving applications such as smart home or automated industrial systems. This is mainly

due to recent advances in resource-constrained sensory devices that have low power and

low computational capabilities, as well as the achievements in communication technology

between such devices using the IPv6 protocol. Recent rapid integration has led to the

development of a new paradigm known as the Internet of Things (IoT). The Internet of

Things enables resource-constrained and heterogeneous devices to communicate and access

information. This special IoT network called Low Power and Lossy Networks (LLN) enable

this communication effectively. The low throughput and packet loss of LLNs characterize

them as lossy links. Until now, many routing protocols have been proposed to ensure

effective routing between the heterogenous devices in LLN. It is widely considered that

the Routing Protocol for Low Power and Lossy Networks (RPL) are the most reliable

routing protocols for LLNs, and therefore it has widely been adopted in a diverse range

of IoT applications today. Proposed by the IETF-ROLL group in RFC-6550 documents,

multipoint-to-point (MP2P) communications are ensured by RPL. Moreover, RPL enables

i

two different kind of communication called point-to-point (P2P) that enables communication

one device to one device, and called point-to-multipoint (P2MP) that enables communication

between one device to more than one devices (also called nodes), too.

Although effective and efficient routing can be found by RPL, it is very susceptible

to malicious attacks that mainly stem from the intruders. This is because the security

measurements specified in the protocol are not sufficient, and even they can easily be

evaded by the attackers today. When considering the life-threatening consequences of insider

attacks, it is of very high importance to develop reliable security solutions, which is the major

reason researchers are working on it for a long while now.

Being an indispensable part of security systems, Intrusion Detection Systems (IDSs) have

also been integrated into the LLNs operated by RPL. However, most of these solutions

disregard the constrained nature of devices and the network, leading the IDS to be too costly,

particularly in terms of memory and power consumption. This becomes even problematic as

more and more nodes are in charge of the detection task. Therefore, in this thesis, we propose

a centralized IDS in which a central node as well as collaborator nodes participate. In contrast

to existing solutions, our objective is to make the our proposed IDS model lightweight in

terms of battery and memory consumption so that not only effectiveness but also efficiency

are guaranteed to secure LLN against four types of RPL attacks, including version number,

hello flood, worst parent, and decreased rank.

This thesis employs Genetic Programming (GP), which is an evolutionary-based algorithm,

as well as Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), in order to

simultaneously achieve the objectives with the lightweight IDS model generated (i.e.,

effectiveness and efficiency). Here, the performance of the proposed IDS model is

extensively explored in a large number of network scenarios with varying topologies and

mobility patterns. The results showed the applicability of GP to evolve a low-cost IDS model

against various RPL-specific attacks.

Keywords: RPL, RPL Attacks, IoT, intrusion detecting, communication cost, genetic

programming, multi-objective approach,

ii

ÖZET

RPL TABANLI NESNELERİN İNTERNETİNDE İZİNSİZ GİRİŞ
TESPİTİ İÇİN ÇOK KRİTERLİ YAKLAŞIM

Ali DEVECİ

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Sevı̇l ŞEN AKAGÜNDÜZ

Eş Danışman: Dr. Selim YILMAZ
Ocak 2023, 98 sayfa

Son yıllarda (son on yılda) insanlık, akıllı ev veya otomatik endüstriyel sistemler gibi

hayat kurtaran uygulamaların sayısında muazzam bir artışa tanıklık etmiştir. Bunun başlıca

nedeni, düşük güce ve düşük hesaplama yeteneklerine sahip kısıtlı kaynaklara sahip sensör

cihazlardaki son gelişmeler ile IPv6 protokolünü kullanan bu tür cihazlar arasındaki iletişim

teknolojisindeki başarılardır. Son hızlı entegrasyon, Nesnelerin İnterneti (IoT) olarak bilinen

yeni bir paradigmanın gelişmesine yol açmıştır. Nesnelerin İnterneti, kaynakları kısıtlı

ve heterojen cihazların iletişim kurmasını ve bilgilere erişmesini sağlar. Low Power and

Lossy Networks (LLN) adı verilen bu özel IoT ağı, bu iletişimi etkin bir şekilde sağlar.

LLN’lerin düşük çıktısı ve paket kaybı, onları kayıplı bağlantılar olarak nitelendirir. Şimdiye

kadar, LLN’deki heterojen cihazlar arasında etkili yönlendirmeyi sağlamak için birçok

yönlendirme protokolü önerilmiştir. Güç açısından düşük ve aynı zamanda kayıplı ağlarda

kullanıma uygun olarak geliştirilen yönlendirme protokolünün (RPL), LLN’lerde kullanılan

en güvenilir yönlendirme protokolleri olduğu yaygın olarak kabul edilmekte ve bu nedenle

günümüzde çok çeşitli IoT uygulamalarında geniş çapta benimsenmektedir. IETF-ROLL

grubu tarafından RFC-6550 belgelerinde önerilen, çok noktadan noktaya (MP2P) iletişim

iii

RPL ile sağlanır. Ayrıca RPL, noktadan noktaya diye adlandırılan (P2P) yani bir cihazdan

diğer bir cihaza iletişim sağlayan ve noktadan çok noktaya (P2MP) diye adlandırılan yani bir

cihazdan birden fazla cihaza (veya düğümlere) iletişimi de sağlayabilmektedir.

Etkili ve verimli yönlendirme RPL tarafından sağlanabilse de, esas olarak ağ içindeki

düğümlerden kaynaklanan kötü niyetli saldırılara karşı çok hassastır. Bunun nedeni,

protokolde belirtilen güvenlik ölçümlerinin yeterli olmaması ve hatta günümüzde

saldırganlar tarafından kolayca atlatılabilmesidir. İçeriden gelen saldırıların yaşamı tehdit

eden sonuçları düşünüldüğünde, araştırmacıların şu an için üzerinde çalışmalarının en büyük

nedeni olan güvenilir güvenlik çözümleri geliştirmek oldukça önemlidir.

Güvenlik sistemlerinin vazgeçilmez bir parçası olan Saldırı Tespit Sistemleri (IDS’ler), RPL

tarafından işletilen LLN’lere de entegre edilmiştir. Bununla birlikte, bu çözümlerin çoğu,

cihazların ve ağın kısıtlı doğasını göz ardı ederek, IDS’nin özellikle bellek ve güç tüketimi

açısından çok maliyetli olmasına yol açar. Giderek daha fazla düğüm tespit görevinden

sorumlu olduğu için bu durum daha da sorunlu hale gelmektedir. Bu nedenle, bu tezde,

işbirlikçi düğümlerin yanı sıra merkezi bir düğümün katıldığı merkezi bir saldırı tespit

sistemi öneriyoruz. Amacımız, mevcut çözümlerin aksine, önerilen IDS modelimizi enerji ve

bellek tüketimi açısından düşük maliyetli hale getirmektir. Böylece LLN’yi sürüm numarası,

merhaba sel, en kötü ebeveyn ve decreased rank dahil olmak üzere dört tür RPL saldırısına

karşı korumak için yalnızca etkinlik değil, verimlilik de garanti edilmektedir.

Bu tez çalışmasında, oluşturulan hafif IDS modeli ile hedeflere (yani etkinlik ve verimlilik)

eş zamanlı olarak ulaşmak için, evrim tabanlı bir algoritma olan Genetik Programlama (GP)

ve Sıralamayı Baskınlık içermeden icra eden Algoritma-II(NSGA-II) kullanıldı. Burada,

önerilen IDS modelinin performansı, değişen topolojilere ve hareketlilik modellerine sahip

çok sayıda ağ senaryosunda kapsamlı bir şekilde araştırılmıştır. Sonuçlar, GP’nin çeşitli

RPL’ye özgü çeşitli saldırılara karşı düşük maliyetli bir IDS modeli geliştirmek için

uygulanabilirliğini gösterdi.

Keywords: RPL, RPL Atakları, Nesnelerin İnterneti, Izinsiz Giriş Tespiti, Haberleşme

Maliyeti, Genetik Programlama, Çok Kriterli Yaklaşım.

iv

ACKNOWLEDGEMENTS

To begin with, I would like to thank my supervisor, Prof. Dr. Sevil Şen Akagündüz, for

her guidance, inspiration, and criticism throughout the process. Her motivating approach,

comprehensive vision, sincere attitude motivated me and gave me strength. I would also like

to thank her for the support she has given me throughout my graduate education.

For his excellent advice, I would like to express my gratitude to my 2nd advisor, Dr. Selim

Ylmaz, who guided me throughout my research with practical solutions and outstanding

academic knowledge. I was able to develop practical solutions to problems because of his

patience and solution-oriented approach.

Finally, I would like to express my deep appreciation for my wife Aynur and my children

Selvi Su and Nehir Göksu, who always supported me before and during the preparation of

this thesis, as well as in every aspect of my life.

v

CONTENTS

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGEMENTS . v

CONTENTS . vi

TABLES . ix

FIGURES . xi

ABBREVIATIONS. xii

1. INTRODUCTION . 1

1.1. Scope Of The Thesis . 4

1.2. Contributions . 4

1.3. Organization . 5

2. BACKGROUND OVERVIEW .. 6

2.1. RPL. 7

2.1.1. RPL Repair Mechanisms . 10

2.1.2. Routing Attacks against RPL . 11

2.2. Intrusion Detection Systems (IDSs) . 12

2.2.1. Intrusion Detection Placement . 13

2.2.2. Intrusion Detection Techniques . 13

2.2.3. Intrusion Detection Architectures . 14

2.3. Optimization . 15

2.3.1. Multi-objective Optimization . 16

2.3.2. Genetic Programming (GP) . 17

2.3.3. Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) 19

3. RELATED WORK . 21

3.1. Attack Analysis for RPL-based IoT Networks . 21

3.2. Intrusion Detection for RPL-based IoT Networks . 24

4. MULTI OBJECTIVE-BASED INTRUSION DETECTION SYSTEM 31

vi

4.1. RPL-specific attacks . 31

4.1.1. Decreased Rank Attack (DR). 32

4.1.2. Increased Version Attack (IV) . 33

4.1.3. Hello Flood Attack (HF) . 34

4.1.4. Worst Parent Attack (WP) . 35

4.2. Intrusion Detection Architecture . 36

4.3. Evolving Intrusion Detection Algorithms . 37

4.3.1. The Features . 38

4.3.2. The Representation . 41

4.3.3. Fitness Function . 42

4.3.3.1. Detection Accuracy. 43

4.3.3.2. Communication Cost . 43

5. EVALUATION OF THE PROPOSED APPROACH . 45

5.1. Settings for Experiments . 45

5.1.1. Simulation Environment . 45

5.1.2. Simulation Environment with Mobile Attackers . 47

5.1.3. Performance Metrics . 50

5.2. Experimental Results . 51

5.2.1. The Performance of IDS on Detecting Worst Parent Attack 51

5.2.2. The Performance of IDS on Detecting Hello Flood Attack 53

5.2.3. The Performance of IDS on Detecting Increased Version Attack 55

5.2.4. The Performance of IDS on Detecting Decreased Rank Attack 56

5.2.5. The Performance of IDS on Detecting Worst Parent Attack with Mobile

Attackers. 58

5.2.6. The Performance of IDS on Detecting Hello Flood Attack with Mobile

Attackers. 60

5.2.7. The Performance of IDS on Detecting Increased Version Attack with

Mobile Attackers . 61

5.2.8. The Performance of IDS on Detecting Decreased Rank Attack with

Mobile Attackers . 63

vii

5.3. General Discussions . 64

6. CONCLUSION . 69

viii

TABLES

Page

Table 4.1 The feature set [1]. 40

Table 4.2 The values for the parameters of GP. 42

Table 5.1 Parameters for Simulation.. 46

Table 5.2 Position settings of the monitoring ID nodes and the attacker nodes

used in the experiments. 47

Table 5.3 The best performances with respect to accuracy (ACCR) and number

of features (NoF) obtained in the Pareto front set for WPA. 52

Table 5.4 The trade-offs between objectives obtained in the Pareto set of each

GP run for Worst Parent Attack. 52

Table 5.5 The best performances with respect to accuracy (ACCR) and number

of features (NoF) obtained in the Pareto front set for HFA. 54

Table 5.6 The trade-offs between objectives obtained in the Pareto set of each

GP run for Hello Flood Attack. 54

Table 5.7 The best performances with respect to accuracy (ACCR) and number

of features (NoF) obtained in the Pareto front set for IVA. 56

Table 5.8 The trade-offs between objectives obtained in the Pareto set of each

GP run for Increased Version Attack. 56

Table 5.9 The best performances with respect to accuracy (ACCR) and number

of features (NoF) obtained in the Pareto front set for DRA. 57

Table 5.10 The trade-offs between objectives obtained in the Pareto set of each

GP run for Decreased Rank Attack. 58

Table 5.11 The best performances with respect to accuracy (ACCR) and number

of features (NoF) obtained in the Pareto front set for WPA with mobile

attackers. 59

Table 5.12 The results (R) of ten experiments in Scenario-1 when the network is

under Worst Parent Attack and the attackers are mobile.. 59

ix

Table 5.13 The extreme results of experiments when the network is under Hello

Flood Attack with Mobile Attackers. 60

Table 5.14 The best performances with respect to accuracy (ACCR) and number

of features (NoF) obtained in the Pareto front set for HFA with Mobile

Attackers. 61

Table 5.15 The extreme results of experiments when the network is under

Increased Version Attack. 62

Table 5.16 The best performances with respect to accuracy (ACCR) and number

of features (NoF) obtained in the Pareto front set for IVA with Mobile

Attackers. 62

Table 5.17 The extreme results of experiments when the network is under

Decreased Rank Attack with Mobile Attackers. 63

Table 5.18 The best performances with respect to accuracy (ACCR) and number

of features (NoF) obtained in the Pareto front set for DRA with

Mobile Attackers. 64

Table 5.19 The best performances with respect to accuracy (ACCR) and number

of features (NoF) obtained in the Pareto front set. 65

Table 5.20 The best performances with respect to accuracy (ACCR) and number

of features (NoF) obtained in the Pareto front set when the attackers

are mobile. 65

Table 5.21 The extreme points with respect to ACCR and NoF in the Pareto front

sets obtained by the standalone architecture. 67

Table 5.22 The extreme points with respect to ACCR and NoF in the Pareto front

sets obtained by the standalone architecture when the attackers are

mobile. 67

x

FIGURES

Page

Figure 2.1 A node’s operations in a DODAG topology. 8

Figure 2.2 RPL non-storing and storing mode [2]. 9

Figure 2.3 The taxonomy of attacks against RPL [3]. 12

Figure 2.4 The classification of IDSs [4]. 13

Figure 2.5 NSGA-II procedure [5].. 20

Figure 4.1 An exemplar RPL topology under no attack [2]. 32

Figure 4.2 The topology under decreased rank attack [2]. 33

Figure 4.3 The topology under increased version attack [6]. 34

Figure 4.4 The topology under hello flood attack [7]. 35

Figure 4.5 The topology under worst parent attack [2]. 36

Figure 4.6 Grouping of nodes according to hop numbers. 37

Figure 4.7 The conceptual scheme of the proposed approach. 38

Figure 4.8 An example GP tree. 41

Figure 4.9 The change in average power consumption with varying number of

packets. 44

Figure 5.1 Simulation network. 46

Figure 5.2 Mobility area of attacker nodes for Scenario-1. 50

xi

ABBREVIATIONS

ACCR : Accuracy

6LoWPAN : IPv6overLowPowerWirelessPersonalAreaNetwork

CC : Communication-Cost

DAG : DirectedAcyclicGraph

DAO : Destination-AdvertisementObject

DR : DecreasedRank

DRA : DecreasedRankAttack

DIO : DODAGInformationObject

DIS : DODAGInformationSolicitation

DODAG : DestinationOrientedDirectedAcyclicGraph

DoS : DenialofService

FANET : FlyingAd-HocNetwork

FP : FalsePositive

FPR : FalsePositiveRate

GUI : GraphicalUserInterface

GA : GenneticAlgorithm

GP : GenneticProgramming

HF : HelloFlood

HFA : HelloFloodAttack

ID : IntrusionDetection

IDS : IntrusionDetectionSystem

IEEE : Institute-of-Electrical andElectronicsEngineers

IETF : InternetEngineeringTaskForce

IoT : InternetofThings

IV : IncreasedVersion

IVA : IncreasedVersion-Attack

xii

IVN : IncrementedVersion-Number

LLN : Low-Power-Lossy-Networks

MAC : MediaAccessControl

MANET : MobileAd-Hoc-Network

MRHOF : MinimumRank with Hysteresis ObjectiveFunction

MP2P : MultiPointtoPoint

NoF : Number-ofFeatures

NSGA-II : Non-dominated-SortingGeneticAlgorithmII

OFO : ObjectiveFunctionZero

OSI : Open-SystemInterconnection

PF : ParetoFront

PFS : ParetoFrontSet

P2MP : PointtoMultiPoint

P2P : PointtoPoint

PDR : PacketDeliveryRatio

RC : ResourceConstraint

RFC : RequestForComments

RPL : RoutingProtocol-for-Low-Power and Lossy-Network

TP : TruePositive

TPR : TruePositiveRate

UDP : UserDatagramProtocol

VN : VersionNumber

VNA : VersionNumberAttack

WP : WorstParent

WPA : WorstParentAttack

xiii

1. INTRODUCTION

IoT, which enables a variety of devices to be connected to each other, is one of the most

breakthrough advancements in our era. A great deal of IoT applications has found use in

various domains including smart homes, smart cities, logistic monitoring, e-health, and the

like. That is why the number of smart devices (nodes) enabling such IoT applications has

long been increasing. Totaly, in ten years, installed base of these nodes is estimated to

achieve 75 billion, a five-fold increase, and the connections of machine-to-machine (M2M)

are estimated to constitute 50% of world’s hybrid connections until 2030 [8, 9]. As a result of

the rapid development of the IoT paradigm, attackers have moved their targets to IoT-enabled

devices, arising some security issues in IoT-based networks. Therefore, in recent years, the

importance of securing the IoT has increased significantly [10]. Having too many devices

connected to IoT necessitates keeping a lot of data together securely, which can be achieved

with robust security mechanisms.

The Internet of Things consists of a wide variety of heterogeneous devices, such as mobile

devices, smart watches, and wearables. They are characterized as resource-constrained IoT

devices (also IoT nodes) in terms of battery, power and storage. In the literature, traditional

network protocols are shown to be not suitable for such resource-constrained devices in IoT.

The Internet Protocol (IP), which is one of the most common and well-known communication

protocols, is not applicable for IoT. Therefore, the need for a less complex mechanism and

less resources is achieved by developing a layer called 6LoWPAN [11]. Thanks to this

layer, which works in accordance with IEEE’s 802.15.4 [12] standards, resource-constrained

devices can communicate and connect to the Internet using fewer resources.

LLNs are a type of IoT that provides lossy communication between IPv6-enabled

resource-constrained devices. They are characterized by their constrained communication

with high packet loss, low throughput, and limited frame size [13]. In a typical LLN

implementation, each resource-constrained node communicates with another, but also

connects to a special more powerful device called the LLN Border Router (LBR) in order

1

to connect to the internet. In order to build routes among nodes in such a constrained

network, Routing Protocol for Low-Power and Lossy Network (RPL) was developed by

IETF-ROLL in 2012 [13], and is today adopted as a standard routing protocol for LLNs

today. This important protocol is designed to optimally select the routing path and avoidance

of unnecessary routing loops for resource-constrained devices in the IoT network. In

addition, RPL works efficiently in these IoT devices, which have low bandwidth, low

computing power, and limited energy, and also work in harmony with the changing network

topology.

Although RPL is good at building efficient routes between nodes in an LLN, it is still very

susceptible to attacks, especially insider attacks. Attacks based on resources, topology, and

data traffic can damage the system [14]. The results of such attacks can be vital considering

the applications of LLNs in critical systems such as healthcare, and smart home. Therefore,

researchers have been working on developing effective intrusion detection systems for

RPL-based IoT. However, most studies in the literature deal mainly with detecting RPL

specific attacks and overlook the suitability of developed IDS to such LLNs. However, the

proposed security solutions for such resource-constrained devices require a balance between

security and the usage of limited resources. On the other hand, the existence of many

different types of devices introduces complexity to the problem, naturally leading to the

formation of complex security solutions. Currently, there is no adequate security solution for

IoT networks in the literature. Therefore, there is still a need for new, effective and efficient

security solutions. Therefore, the main aim of this thesis is to explore the development of

intrusion detection systems that show both high accuracy and low cost.

In our proposed ID program, a collaborative and centered ID system architecture is explored

in which a global ID node is placed at the root node and some other nodes called monitoring

nodes participate for intrusion detection sending their local information to the root node.

Although involving the monitoring nodes brings about an additional burden to the network

and devices, they enable the global ID node to capture intrusions on a global scale, hence

more effectively. In this study, the data required for intrusion detection is collected not

only from the root node but also from 1-3 hop neighbor nodes and 4-6 hop neighbor nodes

2

of the root node. Here, the size of the information collected and sent by the monitoring

nodes becomes important in terms of resource consumption. In addition to increasing

communication cost, large packets sent by monitoring nodes can also lead to fragmentation.

Therefore, in this thesis, while developing intrusion detection systems, beside their accuracy,

the information used and sent by the monitoring nodes is taken into account. For simplicity,

this information regarding the cost of intrusion detection and communication is taken as the

number of features used for training in this study. Therefore, the detection accuracy and

the number of features extracted from both the ID node and the monitoring nodes must be

tuned simultaneously to generate an effective and efficient IDS, which is the main motivation

of this study. It is emphasized that a trade-off between detection accuracy and cost of

communication has not yet been discovered in the literature [1]. The motivation point of

the study is to fill this gap by developing effective intrusion detection algorithms taking into

account communication cost. In order to overcome this complex and difficult multi-objective

optimization problem, we employ genetic programming (GP) due to its ability to explore

search space efficiently for complex environments such as LLNs and to also handle multiple

objectives (i.e., accuracy and the number of features in this study) simultaneously. GP’s

main goal is to evolve a detection program (or model) that finds a good trade-off between

accuracy and the minimum number of features used. Only evolved features are extracted

and sent by the monitoring ID nodes to the central ID node, which then periodically runs the

evolved program. To handle multiple objectives by GP, we employ Non-dominated Sorting

Genetic Algorithm II (NSGA-II) [5], one of the most popular Pareto-based evolutionary

multi-objective algorithms. The following four attacks are covered in this study: “worst

parent”, “hello flood”, “increased version” and “decreased rank” attacks. Various network

scenarios with these four attacks in which attackers are placed in different locations are

evaluated and discussed. As expected, the experimental results show that the increase in the

number of nodes and the number of data packets used in intrusion detection also increases the

number of features (NoF) used, resulting in an increase in power consumption and a decrease

in network performance. For WP, HF, and IV type attacks, GP can produce a satisfactory ID

program with an average detection accuracy of 94%. On the other hand, limiting the number

of features has an adverse impact on the detection of DR.

3

1.1. Scope Of The Thesis

In this thesis, genetic programming (GP) is employed to develop and evolve intrusion

detection algorithms. The main reason for using GP is that it is good at discovering complex

environments such as RPL. Moreover, it is good at discovering trade-offs such as accuracy

and communication cost that is aimed to be optimized in this study. GP is a population-based

algorithm which optimal (close to optimal) solutions for the current problem and usually the

best one is chosen for testing [1]. This feature of GP ensures that the evolution is completed

by transferring the subpopulation of the best individuals of each generation to the next

generation. Mutation and cross-over operators of GP also make a tremendous contribution

to providing better and fitter individuals in each generation. Although there are a number

of studies in the literature for prevention and detection of RPL attacks, they do not consider

limited resources of devices. In this thesis, a GP-based multi-objective approach is proposed

to not only detect the following RPL-specific attacks but also do that efficiently: i) Worst

Parent, ii) Hello Flood iii) Increased Version, and iv) Decreased Rank. To the best of our

knowledge, it is the first study in the literature to discover trade-offs between communication

cost and accuracy of intrusion detection algorithms developed for RPL-based IoT networks.

1.2. Contributions

Contributions of this study include the following:

• In the study, the detection of RPL-specific attacks by using GP based on the

multi-objective approach is explored. According to the results, GP is able

to evolve effective detection algorithms for “hello-flood”, “increased-version”,

“decreased-rank”, and “worst parent” attacks.

• Our evolved intrusion detection program has been proposed not only to detect the

RPL-specific attacks (WP attack, HF attack, IV attack, and DR attack), but also to

do that efficiently. Minimizing the communication cost is of vital importance in

4

resource-constrained devices and networks created with these devices. In this study, it

is aimed to minimize communication costs and therefore to use less resources.

• As far as we know, there is no study that covers both accuracy and communication-cost

objectives together in this research area yet.

1.3. Organization

Following is a description of the thesis’ organization:

• We outline our motivation, scope, contributions, and organizational structure in

Chapter 1.

• Chapter 2 gives basic information about RPL, RPL repair mechanism, specific

RPL Routing Attacks, optimization, multiobjective-optimization, intrusion

detection pragrams (systems), classification of intrusion detection systems, genetic

programming (GP), non-dominated sorting genetic algorithm-II(NSGA-II).

• Chapter 3 presents related studies in the literature related to intrusion detection and

attack analysis in RPL.

• Chapter 4 introduces the multi-objective based intrusion detection system

(ID program), focused RPL-specific attacks (“decreased-rank-attack”,

“increased-version-attack”, “hello-flood-attack”, “worst-parent-attack”), intrusion

detection architecture, evolving intrusion detection algorithms (the features, the

representation, fitness function, detection accuracy, communication cost) in detail.

• Chapter 5 presents the evaluation of the proposed approach, experimental settings,

simulation environment, simulation environment with mobile attackers, performance

metrics, experimental results, the performance of IDS on the targeted attacks, and

general discussion.

• Summarizing and concluding the thesis is presented in Chapter 6.

5

2. BACKGROUND OVERVIEW

The IoT, Internet of Things, is a state-of-the-art network structure that allows various devices

(also nodes) to connect to each other and open the Internet according to certain rules and

protocols, and also embraces very different applications [15, 16]. In 1999, the concept of

IoT was proposed by Kevin Ashton and was referred to as unique objects identified by radio

frequency identification (RFID) [17]. With each passing day, the number of IoT devices

and networks that these devices connect increases rapidly. According to Statista [18], the

number of devices connected to the Internet of Things (IoT) worldwide is expected to reach

around 25 billion by 2030, representing a three-fold increase in eleven years. Although

some IoT applications are still in their infancy, advanced IoT applications are emerging in

many areas and excite the world. However, the main IoT architectures are still being defined

today, IoT basically aims to keep devices or objects in interaction [19]. As a result of this

interaction, objects are brought together and, after that, data can be shared, and eventually

communication with the outside world can be established [20].

The Low-Power and Lossy-networks (LLNs) are the special networks that consist of many

integrated nodes with low power, limited memory and resources, interconnected by lossy

links. It has a wide range of uses, from smart devices to space technologies. These LLN

networks have resource constraints such as memory and battery (energy). In addition,

such resource-constrained devices, unfortunately, constantly consume resources to keep their

connection active and to become a member of the network. These disadvantageous features

of LLNs necessitate the emergence of new communication protocols. LLN routing protocols

are often designed to simplify the design and hence reduce energy consumption [21]. The

Low Power and Lossy Network Routing Protocol (RPL) [13] is a well qualified routing

protocol designed specifically for LLN networks [13], which has become a standard protocol

today [22]. Therefore, this section presents RPL specifications and discusses specific

RPL routing attacks. Furthermore, the fundamental information about intrusion detection

systems is covered in the section. Finally, the optimization algorithms which are used for

6

evolving effective and efficient ID programs (IDSs) for RPL-based networks, namely GP

and NSGA-II, are given in this section.

2.1. RPL

A loop-free and standart state-of-the-art distance vector routing protocol, RPL, is also a

proactive routing protocol that was defined and explained in RFC 6550 [13]. Since RPLs are

designed for low power and lossy networks (LLNs), in an IoT architecture that has limited

resources such as energy and bandwidth, RPL can be used effectively [23]. RPL allows

new paths to be established when existing paths are no longer available, and it allows one to

optimize existing paths.

RPL enables these types of communication: i) “point-to-point (P2P)”, ii)

“point-to-multipoint (P2MP)” and iii) “multipoint-to-point (MP2P)”. In an IoT network,

communication between sensor nodes is called P2P, communication between root node and

sensor nodes is called P2MP, and communication between sensor nodes and root node is

called MP2P. The main aim of RPL is to create a DODAG topology. DODAG is a special

and well-qualified combination of both mesh and tree topology. The LLN nodes can connect

to each other and 6BR thanks to RPL. Three different types of nodes are defined in this

protocol: i) “LLN border router (LBR)”, ii) “router”, and iii) “host”. A node’s operations in

the DODAG topology are shown in Figure 2.1 LBR, the root node of DODAG, collects data

from the network. This collection point also creates a “Destination Acyclic Graph” (DAG).

In addition, the LBR provides a connection between the remaining nodes and Internet. As

part of the IoT, routers produce data traffic and send data packets. Destination Acyclic Graph

(DAG) cannot be created by routers, but they can be joined by network messages. However,

the host is responsible for producing data traffic over a network. In a DODAG topology,

each node has some information and features: i) an IPv6 address of the node called node

ID, ii) a rank value, iii) a neighbours list, and iv) a parent node selected according to the

Objective Function (OF). As illustrated in Figure 2.2, RPL has two different route discovery

modes: i) mode of storing and ii) mode of non-storing. Only the 6BR device keeps the

7

Receive DIO

Receive
DIO for
1st time

Satisfy
Criteria

Discard the packet

Add sender to parent
list Compute the rank Forward DIO to other

nodes in multicast

Process DIO Rank<Own-Rank Improve location,
get lower rank

Discard parents
with lower rank

Maintain location in
DODAG

Yes

No

Yes

No

Yes

No

Figure 2.1 A node’s operations in a DODAG topology.

routing information, in non-storing mode. This mode contains all the path information

that the packet follows to navigate the network. However, in storage mode, all nodes have

routing information for nodes in their subgraph. A DODAG topology is created using RPL

control messages. Here, the control messages: i) DODAG-Information-Object (DIO), ii)

DODAG-Information-Solicitation (DIS), iii) Destination-Advertisement-Object (DAO), and

iv) Destination-Advertisement-Object-Acknowledgment (DAO-ACK).

• DIO : Root node, responsible for creating the DODAG structure. It initially broadcasts

this control message to all other DODAG’s devices in this topology. The DIO messages

carry some network information, such as rank value, node ID, version number, and

OF. All nodes receiving DIO messages from root node add the information of sender

to their parent list and calculate own rank. Nodes receiving DIO control message also

forward the message to its neighbors. Nodes in the graph are ranked based on how far

they are from the root node. Therefore, the rank value has to do with the quality of their

8

(a) RPL non-storing mode (b) RPL storing mode

Figure 2.2 RPL non-storing and storing mode [2].

routes to the root. In order to calculate the rank value, each node uses OF that defines

rule on the parent node selection so that the optimum route to the root node in DODAG

is established according to driven routing metric [23] [24]. While calculating the rank,

OF may not only consider the physical path length. For example, the most important

parameter in a network may be the number of hops, load balancing, or another metric.

Consequently, due to the OF metric, even if the nodes are physically near the node, it

may not select this node as its parent node due to OF. Nodes are required to update their

DIO status messages when their parent or rank changes. In addition, DIO messages

play a prominent role to built default upward paths.

• DIS: In order to request a DIO from a node, DIS control message may be used.

Candidate nodes hoping to join a DODAG topology broadcast DIS control messages

to their neighbors. Here, a DIO message is sent as a response to the nodes that receive

the DIS message. In addition, a node can use DIS messages to search its neighborhood

for nearby DODAGs [13].

• DAO: It is used to build downward routes between root node and the sensor nodes.

Here, the preferred mode of operation determines a child nodes send unicast DAO

9

control messages to the selected parent node or to the root node. Thanks to the DAO

control messages, this stores downward paths into own routing table.

• DAO-ACK: After receiving a DAO message from a node, a child node sends

DAO-ACK message as an acknowledgement response to the sender node.

As a way of building upward paths, in RPL, nodes send messages to their neighbours when

they get a message. However, if this node is not in its list, the packet is forwarded to the

parent nodes. Of course, in order to prevent increasing routing loops, the rank value is used.

The rank value also allows nodes to know the parent and child nodes in the neighbourhood.

If the existing connection is lost with the currently selected parents, new parents can be

found using the neighbour list available on all nodes. The new route is found according to

the metrics defined in OF. As a result, to create a DODAG topology, all nodes decide which

node their parent is, based on the best path they have chosen up to the root node.

2.1.1. RPL Repair Mechanisms

Two different repair systems are specified in RPL: “local-repair mechanism” and

“global-repair mechanism”. If any failure occurs with any node or routing topology in the

network, RPL runs its mechanism, called local repair. After the nodes disconnect from the

parent nodes, they check the neighbour lists and try to select alternatives. However, if this

node cannot find an alternative for the parent node, it uses a neighbouring node that has the

same rank value to forward packets. If network sustainability cannot be achieved with the

local repair mechanism, the global repair mechanism can be used. In order to control this

global repair mechanism, the root node uses the DODAG version number. If a root node

chooses to run global repair mechanisms in the RPL network, it increments the DODAG

version number. The incremented version number is carried by the DIO message that is

broadcast to the network by the root node. A node that receives the DIO control message

with the incremented version number executes the parent selection algorithm. As a result of

the operation of the parent selection algorithm, the parent node is updated. In fact, the trigger

10

for the global RPL repair mechanism can vary depending on the implementation created [25].

Therefore, users should define the trigger status of the global repair mechanism in the RPL

network. This trigger can be either threshold-based or specification-based.

2.1.2. Routing Attacks against RPL

Even though RPL has some security specifications specified in the RFC [13], that is still open

to internal attacks such as worst-parent and increased-version attacks [1]. The taxonomy of

specific RPL attacks is shown in Figure 2.3 [3]. Such attacks may be categorised into three

types [26]:

• Attacks targeting resources: In these attacks, the malicious node(s) force the victim

node to take continuous actions different from their aims. In this way, the malicious

node(s) goal to consume the available restricted resources such as battery, power and

memory, while at the same time causing the established connections to be disabled. As

stated above, the resources in such networks are unfortunately very limited.

• Attacks targeting topology: In this type of attack, the attacker(s) dramatically

affect(s) the construction of RPL topology in a non-optimal way. Here, the attacker(s)

aim to distort the RPL topology. The “‘Worst Parent Attack“, a type of rank-specific

attack, is one of the attacks in this group. In this type of attack, the attacker selects the

node with the non-real rank as its parent node, thus ensuring that the nodes now have

a path containing the malicious node when they select a path up to the root node. The

topology is a vital element for the systematic operation of a network. Attackers who

aim for this attack can sometimes also isolate legitimate nodes within the network.

In this way, they can achieve their goals by keeping the legitimate nodes they want

out of the network, albeit temporarily. Another attack type in this group is “blackhole

attack”. In this attack type, an attacker announces that he has the shortest route (i.e.

the best rank) to attract victim nodes for sending their packets through the attacker.

Therefore, this node will always be able to respond to the routing request and will

11

capture and retain data packets. Sometimes, the attacker node does not allow the

packets passing over itself to go to the root node and causes the packets to drop. Hence,

it can isolate many legitimate nodes from the network, especially if the attacker is at a

critical position in the network.

• Attacks targeting traffic: With this type of attack, the attackers are trying to disrupt

the network traffic by attempting to interfere with the traffic. This can change the

traffic patterns and enable attackers to achieve their goals. In fact, this type of attacks’

basic aim is to prepare the infrastructure for more complex attacks.

RPL Attacks

Placement Topology Traffic

Direct Attacks

Indirect Attacks

Sup-optimization

Isolation

Eavesdropping

Misappropriation

Routing Table Falsification
Sinkhole

Wormhole
RI Replay

Worst Parent

Blackhole
DAO Inconsistency

Decreased Rank Attack
Identity Attack

Sniffing
Traffic Analysis

Flooding
Routing Table Overload
Increased Rank Attack

DAG Inconsistency
Version Number Modification

Figure 2.3 The taxonomy of attacks against RPL [3].

2.2. Intrusion Detection Systems (IDSs)

It has been stated in previous sections that some security mechanisms are needed for

protection LLNs from attacks. The first priority in the security mechanisms is the prevention

of both internal and external attacks. However, there is a trade-off between usability and

security. Therefore, a system might not prevent the system from all types of attacks.

Moreover, such mechanisms cannot prevent insider attackers who have legitimate access

to the system. Therefore, Intrusion Detection Systems (IDSs), which detect attacks and

12

responds, are introduced as a second line of defence. As shown in Figure 2.4, we can

basically divide IDSs into three main categories, according to i) placement, ii) technique,

and iii) architecture[4].

Intrusion Detection
Systems

Placement

Technique

Architecture

Network-based
Host-based

Hybrid

Anomaly-based
Signature-based

Specification-based
Hybrid

Centralized
Distributed

Hybrid

Figure 2.4 The classification of IDSs [4].

2.2.1. Intrusion Detection Placement

Depending on its location, intrusion detection systems fall into two categories: i) based

on networks and ii) based on hosts. This type of IDS is placed in an area to monitor

the entire network or parts of it. While such systems have global knowledge, they do not

have individual nodes’ information such as their resource consumption. On the other hand,

host-based detection systems focus only on collecting network information from a node,

and they do not have information about the entire network. Hence, they might not detect

distributed and collaborative attacks.

2.2.2. Intrusion Detection Techniques

There are three main classes of intrusion detection techniques: i) anomaly-based, ii)

signature-based, and iii) specification-based [27].

13

Malicious activities are detected on networks by first identifying normal network behavior,

patterns, and rules, and then comparing the current system profile to this baseline in

anomaly-based systems. Therefore, observations that deviate more than the normal range

of normal profile patterns are marked as abnormal behaviors [28]. Anomaly-based attack

detection systems have capabilities that can be adapted to all attack types. Anomaly-based

attack detection systems can detect new types of attacks. However, it is difficult to

define normal behaviour which can changed over time. Signature-based detection systems,

compares the behaviour of a system with signatures created based on known attacks.

Therefore, this technique cannot detect new attacks, hence the signature database should

be updated frequently. In specification-based systems, the specifications of a system are

defined, and violations of such specifications are tagged as attacks. For example, whenever

any node in an IoT network fails to follow the routing protocol specifications, IDS generates

an attack alarm. In spite of this, defining specifications for every protocol used in the system

is not an easy task.

2.2.3. Intrusion Detection Architectures

We can divide intrusion detection architectures into two main groups: i) centralized and

ii) distributed systems. In centralized systems [29], the monitoring tools are located in

central locations to observe the network. In an IoT network, taking into account the resource

constraints of the devices, the IDS is placed in the most appropriate location, often a higher

power node, for the running of the intrusion detection (ID) program. A centralized intrusion

detection system has two options: i) a centralized device monitors the network data flow that

passes through it, or ii) the central node collects data from other nodes. The first approach

is largely suitable for a wired network because the IDS can be placed on a border router to

monitor the entire network data flow. However, this approach can be quite unsuccessful in

highly mobile wireless networks such as MANETs [30] and FANETs [31] (Mobile Ad Hoc

Networks and Flying Ad Hoc Networks). Since the entire network flow cannot be monitored

by a central node. Although RPL is proposed mainly for static networks, many devices

in RPL-based networks are mobile in real life. In the second approach, where the central

14

node collects data from other nodes, communication overhead may occur due to excessive

data flow, since the monitoring nodes have to send information to the central node. Here,

communication overhead is the main disadvantage. In this approach, malicious nodes can

block the monitoring information from reaching the central node. As a result, this can greatly

reduce the performance of IDS.

In distributed systems, all nodes work as monitoring nodes [32]. Since all nodes are used and

the resource constraints of the devices are taken into account, the system should be carefully

designed. With this approach, system overhead could increase as the nodes share information

between themselves. However, if the system is not collaborative, there is no communication

overhead, but each node makes its own evaluation based on its own observation. The main

aim of these hybrid systems is to make use of centralized and distributed systems and take

advantage of these systems [33].

2.3. Optimization

Optimization is a search for the best solution or at least accepted from an infinite number

of candidates in a search space, which may also be limited by certain equality or inequality

constraints [34]. The optimization problem that involves equality and inequalities limitations

can be written as follows:

minimize
X

f(#»x),

subject to

g(#»x) = [g1(
#»x), g2(

#»x), . . . , gp(
#»x)] ≤ 0,

h(#»x) = [h1(
#»x), h2(

#»x), . . . , hq(
#»x)] = 0

As seen from the formulation, the objective function (f) characterizes the search space,

and therefore, plays a key role for an optimization algorithm to find local optimum (
»

x∗ =

[x∗
1,x

∗
2, . . . ,x

∗
n]) of the optimization problem by gradually developing a given decision

15

variable vector (#»x). Apart from the objective function, the p inequality constraints (g(#»x))

and the q equality constraints (h(#»x)) define the feasible region (Ω) of the search space, and

any solution vector within the feasible region (i.e., #»x ∈ ω) is called a feasible solution [35].

The optimization problems in real life are characterized by a number of complexities

including non-differentiability, non-linearity, and the like. That’s why, it is very hard, and

even impossible, to solve such optimization problems by using the traditional optimization

algorithms. In order to effectively deal with these complexities, nature-inspired metaheuristic

algorithms have gained popularity over the past few decades. Based on the metaphor of

natural processes, several metaheuristics have been developed until now, and the majority

of them are inspired by intelligent behavior of the creatures. Depending on the number of

objectives described for the optimization problem, these algorithms are mainly classified into

single-objective and multi-objective heuristics. Here, multi-objective heuristic optimization

methods are often can be classified: swarm- and evolutionary based [35]. In this study,

a multi-objective heuristic approach is used to find an intrusion detection model called

the ID program in RPL. Background information regarding the concept of multi-objective

optimization, and the optimization algorithms adopted in this thesis are introduced briefly in

the subsequent sections.

2.3.1. Multi-objective Optimization

Unlike the single-objective optimization where the aim is to find the global minimum

(for minimization problems) or maximum (for maximization problem) for a given

single-objective function, in multi-objective optimization the handled problem may involve

a number of conflicting objectives and the main aim here is to solve multiple objectives

simultaneously. The search algorithms for handling multi-objective problems can be pretty

much in the literature and are categorized according to the way that these algorithms

adopt. Among them, the Pareto-based strategy is the most popular. Here, the solution

developed for a targeted multi-obective optimization problem isn’t only a single solution, but

also an optimal solution vectors set or Pareto optimal solutions (nondominated solutions).

16

Therefore, the determination of dominated solutions is the core operation of this strategy.

Here, a solution vector #»x ‘dominates’ another solution vector #»y as long as no criterion

in the objective vector of #»x , f(#»x), is worse than that of f(#»y) and at least one criterion

is better [35]. By adopting this domination-based comparison operator, one can reach a

final set in the end that contains only the solutions that are not dominated. So, the main

goal of the Pareto-based approaches is to have Pareto optimal set. Taking into account the

Pareto front set, decision-makers choose the best solution depending on their requirements

after evaluating different trade-offs among conflicting objectives. An example of the basic

concept definition used in a Pareto-based MO optimization using the minimization problem

is presented below:

Pareto Dominance: An n-dimensional solution #»x = [x1, . . . , xn] dominates another

n-dimensional solution #»y = [y1, . . . , yn] (denoted as #»x ≺ #»y); if f(#»x) is partially less

than f(#»y) , i.e., ∀i : fi(
#»x) ≤ fi(

#»y) ∧ ∃i : f(
#»x) < f(#»y) | i ∈ {1, . . . ,m} ; #»x , #»y ∈ Ω.

Pareto Optimal: If no other solution dominates #»x in Ω, then #»x is said to be Pareto-optimal

solution; i.e., ¬∃
#»

x′ ∈ Ω :
#»

x′ ≺ #»x . The Pareto optimal solutions comprise Pareto optimal set

(P∗).

Pareto Front: A set PF∗ containing all objective vectors from Pareto optimal set (P∗), i.e.,

PF∗ = {f(#»x) | #»x ∈ P∗} [35]

2.3.2. Genetic Programming (GP)

GP is a popular evolutionary-based optimization algorithm and this is inspired from the

Darwinian survival-of-the-fittest theory. It relies on a population in which a pre-defined

number of agents, called individuals, take part, and each individual is in charge of the

optimization task by performing a search in the space. Individuals are encoded with a tree

structure, called GP tree, where terminal and non-terminal types of node take part. The

terminals and non-terminals form the leaf and intermediate nodes of the GP tree, respectively.

The individuals are attributed by a fitness score, which is an indicator in GP to measure

17

how well the solution is reached by an individual. The population is sorted by ranking the

individuals, and for the next generation only the fittest individuals, called elite individuals,

will survive. In this study, the elite individual rate is set 10% of the population size. In

addition, it is more likely for fitter individuals to breed their offspring, which enables GP to

find the better solution at the end of generations. Here, this solution is expected to be the best

solution. The main parts of a genetic programming are shown in Algorithm 1 [1].

Algorithm 1: Main parts of GP [1].
Initialize population randomly;
repeat

Calculate all individuals’ fitness;
Sort and rank populations by fitness value;
Reproduce new population using genetic operators (mutation, crossover etc.);

until a termination criterion is satisfied;
return best-of-run individual

As also shown from this algorithm, in the current generation the parent individuals undergo

three consecutive genetic functions: i) selection, ii) crossover, iii) mutation to evolve new

children for the next generations. In selection, a pair of individuals is selected, and the

fitness value of an individual plays a key role here to determine if it is reproduced in the next

generation. The selection is made depend on the operators of selection process, for instance

roulette wheel, tournament-, elite-, random-selection, and the like. Among them, tournament

selection is widely adopted in the literature because it well balances a trade-off between the

random selection and elite selection depending on the tournament size. In this strategy, a

number of individuals is picked randomly first, then the fittest individual is selected from

that subpopulation. At a point called crossover point, two new offsprings are produced by

crossover operator with replacing the subtrees randomly determined. By the way, subtrees of

the offspring individuals are also replaced by, contrary to crossover, randomly generated new

subtrees in mutation. Hence, better individuals are aimed to be evolved through generations.

GP reaches the end of the generation once the termination condition is satisfied. There may

be different conditions such as reaching the total number of generations, approximating well

to the ideal or optimum solutions, and the like.

18

2.3.3. Non-Dominated Sorting Genetic Algorithm-II (NSGA-II)

This algorithm was developed on the basis of NSGA [36] to ensure a more effective

and efficient search procedure than that in NSGA and NSGA-II algorithm is one of the

multi-objective evolutionary-based approach proposed in [5]. Because multi-objective

problems’ solution spaces are not affected, the genetic operators can also be applied to the

population in NSGA-II. However, in objective space, unlike single-objective evolutionary

algorithms NSGA-II uses Pareto domination and crowding distance, an additional diversity

metric, of the solution sets to determine which individuals will survive and breed for the next

generations. Therefore, individuals are attributed with these metrics in this algorithm.

In order to evaluate the population in the objective space, the individuals are first ranked

into different Pareto fronts according to their level of dominance. While the non-dominated

individuals are ranked as 0 and placed at the first front, the non-dominated individuals are

ranked as 1 and placed at the second front, and so on.

After the individuals are ranked into different Pareto fronts, NSGA-II allows only the

individuals that belong to the better Pareto fronts, and where the count of individuals of a

Pareto front surpassed the size of population, only a portion of individuals in that front are

accepted according to their evulation of crowding distance metrics. The crowding distance

in NSGA-II is used to show how close two individuals are to each other. That’s why, this

metric is very useful to indicate the variety of population in the objective space. Here,

the population is first consecutively sorted according to every dimension in the objective

space for calculating the individuals’ crowding distance score. Individuals having extreme

objective values (i.e., minimum or maximum) are assigned to an Infinite crowding distance

value, so NSGA-II selects more likely them, that also increases the divergence of all

population belongs to their solution space. For other individuals between the extreme points,

a distance value is calculated with respect to the nearest two individuals. Here, an individual’s

total crowding distance metric score is can be found with adding the distances calculated for

each value in the objective space. The selection strategy proposed in NSGA-II that based on

crowding distance metric is demonstrated in Figure 2.5.

19

Non-dominated
sorting

Crowding distance
sorting

Rejected

Pt

Qt

Rt

F1
F2

F3

Pt+1

Figure 2.5 NSGA-II procedure [5].

Here, Pt is the parent population and Qt is the offspring population at generation t obtained

from Pt using genetic operators. The parents and offspring are merged into a set denoted

Rt. Individuals are then classified into different fronts (e.g., F1, F2 and so on). While all

the individuals at F1, F2 survive to the next generation by allowing them to pass Pt+1, only

a portion of the individuals at F3 is selected according to the value of crowding distance

metric. However, the rest of the lower front is eliminated.

20

3. RELATED WORK

Due to the lack of adequate security mechanisms in its specifications, many studies have been

carried out for securing RPL-based IoT networks in the literature. Until now, for wired and

wireless networks, although many security solutions such as IDSs have been proposed, such

traditional IDSs are not suitable for LLNs due to their very nature. Therefore, new solutions

are proposed or existing solutions are adapted to these low-power and lossy-networks in

this research area. We summarize the proposals in this section and show the contribution

of the current study. In this section, we firstly present the studies carried out on analysis of

RPL-specific attacks, then the proposals for detecting such attacks.

3.1. Attack Analysis for RPL-based IoT Networks

There are many analysis studies on different routing attack types in the literature and one

of the most focused attacks are Version number attacks (VNAs). The performance of

mobile RPL-based IoT networks under version number attack is analyzed in [37]. Here, the

performance of these RPL-based network is analyzed in terms of PDR, delay, and battery

consumption. Contiki Cooja simulator is used and different scenarios are generated by

putting the attacker node at different locations. In addition, the study includes a number

of nodes (50% mobile nodes, and 50% are not mobile nodes) and multiple attackers. Hence,

because of mobility, a hybrid network is created. Different numbers of nodes are used when

performing experiments (ranging from ten to fifty in increments of 10). With increasing

number of malicious nodes, PDR drops dramatically. Here, the version number is changed,

if the malicious node is not far away from the root node and this root node forcefully

repairs the DODAG topology. Not surprisingly, mobility with the attacker or other nodes

significantly reduces the PDR. Having no attack results in a very low delay; on the other hand,

at different hops level the malicious nodes number increases and also the latency increases.

The results also show that when mobile networks and static networks are compared to each

other, generally the power consumption for mobile networks tends to increase. Furthermore,

not surprisingly, the attackers at 1-hop distance are more likely to consume energy.

21

In [6], the performance of RPL-based IoT is analyzed against multiple version number

attackers (VNA). Version-number attacks are a kind of damaging DoS attack that targets

IoT network availability. Therefore, it can easily affect network performance and quickly

misuse resources. Here, the Contiki Cooja simulator [38] is used for the experiments.

Various criteria, except from the performance metrics, are taken into account for analyzing

and understanding multiple version number attacks, including architecture and attacker

mechanism. Here, a grid network architecture consisting of 16 static Tmote Sky nodes is

constructed, and UDP protocol is utilized. Here, the created DODAG topology is limited to

three malicious nodes corresponding to 20% of the nodes. The position of the attacker is

considered to find the best effective place. They developed a novel strategy called DODAG

leveling according to the position of nodes, since thousands of experiments were required

to determine the most suitable location for the attacker. Therefore, the root node is always

at level 1, while its child nodes are at level 2. Here, they acted on the assumption that

attackers at the same level logically have the same characteristics and adopted the brute-force

approach. Therefore, the DODAG topology was logically leveled up into four different parts

according to the parent-child relationship. In the study, the attackers are independent from

each other and increment the version number in their DIO messages. Packet delivery ratio

(PDR) are used to analyse the effects of the attacks. In addition the following metrics are

used: averag-network delay and -power consumption(APC). These results, based on the

attackers’ position, show that the attackers cause the lowest PDR if they are at the center

of topology. On the other hand, surprisingly, three attackers case cause shorter average delay

than one or two attackers cases and the amount of successfully delivered packets results show

that they have the relation of one attacker > two attackers > three attackers. In addition, the

findings show that the effect of an attack is proportional to the position of the attacker.Hence,

in order to effect the average delay, it cannot be said that the attacker should be close or far

from each other. On the other hand, if the attacker nodes are placed on DODAG’s edges, they

cause more delays than attackers nodes inside of the topology. With regard to the attacker’s

position, results show that the closer the attacker’s position, the more power consumption

has an effect. Finally, in future work, an analysis of the effectiveness of VNA mitigation

techniques and how multiple attackers affect more complex topologies is provided.

22

The rank value is changed by the malicious nodes in a rank attack. The rank system of

RPL makes it vulnerable to internal attacks. Due to it’s nature, RPL assumes that all nodes

in the network are non-malicious therefore there is no mechanism to check the behavior of

nodes. In this attack, the nodes are attracted to choose the attacker node as their parent

node. First analysis that includes several types of internal attacks that target rank feature

and the effects of them at network efficiency is given in [39]. This study focuses on various

rank attack mechanisms depending on the attacker’s location. Here, different types of rank

attacks are analyzed. Contiki Cooja’s simulator performs a 100 node grid topology. The

following metrics are used for measuring the network performance: average end-to-end delay

and delivery ratio. The experimental results for this study are as follows: i) When malicious

nodes are in the right location, they downgrade network performance. ii) There is no RPL

mechanism for children to verify their parents other than routing information carried by DIO

packets. iii) The average-delay and delivery ratio is very susceptible to rank attacks. iv) If

the malicious node is choosen as a node’s parent, all nodes in its range will suffer adversely

from performance.

The objective function plays a critical role in determining the optimal route in RPL.

Therefore, it can be targeted and impacted by attacks. A comprehensive analysis is given

in [23] to investigate how the performance of RPL with different objective functions is

affected under varying types of attack. In this study, the four performance metrics are used

for evaluating the experimental results (PDR, traffic overhead, latency, battery) and three

different attacks against RPL are analyzed: VN attack, DIS flooding attacks, WP attacks.

A variety of attacks scenarios are implemented in simulated networks to analyze the effect

of specific routing attacks, and to simulate each scenario the Cooja Simulator is used. In

the simulation environment these objective functions are selected: OF0, MRHOF-ETX and

MRHOF-ENERGY and the experiment are conducted under version number, DIS flooding,

and worst parent attacks. In addition, to simulate real lossy links environment in LLN,

UDGM is used. Here, ten different networks are simulated with different percentages

of attackers (0%, 2%, 6%, and 10% percentages of attackers) for these three types of

attacks. The experimental results show that version number attacks result in a big increase

23

according to the control packets’ number. On the other hand, MRHOF-ENERGY produces

the biggest control messages number for all attacks types, particularly DIS flooding attacks.

In the network, when there are more attackers MRHOF-ETX results in less overhead than

objective-function-zero. The number of attackers that affects MRHOF-ETX is less than

OF0. OF0 and MRHOF-ETX values have the approximately satisfactorily PDR scores if

the network is under no attack. In a benign network, there are no significant performance

differences between objective functions when it comes to average latency. However, when

the network under version number or DIS flooding attacks, the average latency values are

greater than the worst parent attack. The overall results show that MRHOF-ENERGY uses

more power than MRHOF-ETX. In addition, energy consumption of version number and

DIS flooding attacks is bigger than the worst parent attack. Another study [40] was carried

out to evaluate the effect of local repair attack, worst parent attack, neighbour attack, and HF

attack(hello flood). Here, the performance metrics are: i) end-to-end delay, ii) delivery ratio

and iii) control overhead. In this study the results provide that, compared to the others, the

hello flood attack has the most harmful effects on the RPL-based IoT network.

3.2. Intrusion Detection for RPL-based IoT Networks

In the literature, the first lightweight IDS study, SVELTE [41], proposed one of the security

architecture for sinkhole and selective forwarding attacks. The study is based on a distributed

monitoring architecture, and the proposed solutions have three parts: i) “6LoWPAN-mapper”

, ii) “intrusion-detection”, iii) “distributed-mini-firewall”. Here, the first part, the Root Node

requests some information from all other nodes. The information are “rank”, “parent and

node ID” and “information of neighbours”. Here, in order to detect the intrusion, this

information is used. Intrusion detection rules are predefined and integrated into the model.

These rules are checked for intrusion detection. If suspicious intrusions or illegal attempts

are observed, the malicious nodes are deactivated from network topology. Last part of this

IDS, the distributed mini-firewall, is a kind of filtering mechanism that filters the malicious

data flow. In the study, the proposed model is evaluated in lossless and lossy networks with

nodes from 8 to 32. The results of the study show that in a lossless network with eight nodes,

24

the TPR is calculated as 100%. When the settings are a lossy network with 32 nodes, the

TPR is calculated as 65-70%. While the study admitted that there were false positives, no

numerical data were disclosed.

Another anomaly-based study based on a game-theoretic model is proposed in [42]. It

relies on two parts: i) for detection: stochastic game, ii) for confirmation: an evolutionary

game. Here, this stochastic model for game calculates the general rules of RPL such one

zero-sum-game, and a proposed scheme confirms the accuracy value of detection by applying

evolutionary methods. Another study based on evolutionary computation [43] use genetic

programming in order to detect HF attacks and VN attacks. Here, this study’s first goal

is to show the effectiveness of “evolutionary-computation-based techniques” in RPL-based

IoT networks. When comparing centralised with distributed models, especially for the Hello

flood attack, the centralised model performs better than the distributed model.

In [44], an attack detection system based on machine learning approach is explored. Here,

this model consists of five parts: i) dataset creation and analysis, ii) pre-processing, ii) feature

engineering, iv) model development, v) training. Contiki Cooja Simulator has used and

three different models including different use cases in terms of node numbers and node

mobility (20 nodes, 50 nodes, and mobile nodes), are developed: i) the benign model ii)

protocol-specific attack models (PSAM), iii) Sensor Network (SN)-Inherited attack models.

For PSAM simulations, two network models are developed depending on the uses case

scenarios and the number of nodes. For the first scenario, the first use case, there are 20 nodes

including 1 malicious node, and for the second use case, 50 nodes including 2 malicious

nodes are created. The second is based on state, static or mobile, of the node. Here, the

rank attacks for the protocol-specific attack category are simulated. Similar scenarios are

created for SN-inherited attacks, with the same use cases as protocol-specific attacks. Here,

a wormhole attack is simulated from the SN-inherit attack category. Wireshark [45] is used

to analyze the deep network traffic. After data-set creation and data preparation part of

the model, an extensive dataset called LIoTN-RPL is created. Here, a machine learning

technique called “one-hot encoding” is used to convert categorical data into numerical data.

In the classification performance analysis, the “light gradient boosting machine model”

25

developed by Microsoft for binary classification in 2016 [46], is used. In order to evaluate the

proposed approach, the following performance metrics are used: confusion matrix, accuracy,

precision, recall, cross-entropy, Cohn’s kappa, and Matthews correlation coefficient. The

information for the overall performance of the model is given as: 99.7% accuracy, 0.927%

MCC, 0.93% Cohn’s Kappa, 99% precision, 0.116% cross-entropy, and 99.7% detection

rate.

In order to detect version number and the hello flood attack, an anomaly-based IDS model

has been proposed by Muller et al. [47]. Here, the KDE (”kernel density estimation”)

algorithm is used. The number of different types of routing control messages is used as

their features. Simulations were carried out using a maximum of 12 nodes and one time

interval of 800–1400 seconds. For the hello flood attack, the TPR results reach 90% and

96% for the version number attack.

Another version number attack detection model is proposed in [48]. Here, in RPL-based

networks, an approach depend on a distributed monitoring structure [49] is proposed

to label malicious nodes and detect VN attacks. The proposed architecture passively

observes the network. Two participating node types are used in this study: “monitored-” ,

“monitoring-nodes”. Monitored nodes are the regular nodes that are highly constrained. On

the other hand “monitoring nodes” are the higher-order nodes that have higher capabilities.

Monitoring nodes can detect abnormal traffic and monitor network flow without affecting

their ability to function normally in the network. Hence, these nodes can analyze the data

packets coming from the regular nodes. In this model, monitoring nodes have the monitoring

ability to monitor only their neighbours. A distributed detection system relays the collected

observing data from the monitoring nodes to the root node in intervals of time. Here, to

avoid consuming more resources, these nodes use a second network architecture called a

“monitoring-network”. These two different topologies can work independently of each other.

Here, if a monitoring node detects any incremented version number (IVN), this monitoring

node can not decide whether this is the result of an attack or not. Here, two algorithms are

proposed: the local assessment algorithm and the distributed detection algorithm. The first

algorithm detects the intrusion and collects whole information come from the monitoring

26

nodes. After analysing the information collected, the second algorithm is run to identify

the attacker according to this information. In the study, Contiki Cooja Simulator, which

creates a 20 nodes network grid topology, is used. In order to perform the proposed model,

two metrics are defined: Cov-i (defines how many regular nodes are monitored by exactly i

nodes) and Ca-i (measures the percentage of regular nodes monitored by i or more monitors).

Additionally, for each simulated scenario, the FPR is calculated. Based on the results,

detecting version number attacks with the proposed model performs satisfactorily.

Rank and black hole attacks are among the most effective attacks on disrupting the topology

of RPL. In order to detect rank and black hole attacks a Security-, Mobility-, and Trust-based

model (SMTrust) is proposed in [50]. Here, a trust-based approach is proposed for the

detection and isolation of attacker nodes. In the study, the term “trust” is used for affiliating

between two endpoints. Trust metrics, i) “success rate”, ii) “energy level”, iii) “historical

observations”, iv) “location and link stability”, v) “mobility”, and vi) “recommended trust”

are selected to make secure RPL in a mobile environment. Here, the model evaluation metrics

are “topology stability”, “packet loss rate”, “throughput”, and “power consumption”. The

proposed model mainly has two parts: “trust formation” and “attack detection”. The trust

formation part includes i) “trust metric identification”, ii) “trust metric calculation”, iii) “trust

index calculation” iv) “trust rating” and v) “trust monitoring”. The second part includes i)

detection and ii) isolation of malicious nodes. In order to evaluate the trust rating, a fuzzy

threshold-based mechanism is used. After evaluating fuzzy judgment, the trust index is

defined as trust levels: “No trust”, “Poor Trust”, “Fair Trust”, “Good Trust” and “Full Trust”.

Here, an attack detection procedure is used to attack detection. For detection of black hole

attacks, the success threshold and the trust index are used. Whereas, for the detection of rank

attacks, the DIO sequence number and the rank of nodes are checked. Therefore, if a selected

parent node is detected as a malicious node or the selected parent node is not trustworthy, it is

added to the suspicious parent list. Therefore, only legitimate nodes are allowed to run in an

IoT network. In the experiments, the Contiki Cooja Simulator is used and a centralised smart

hospital architecture is simulated. Compared to MRHOF, SecTrust, DCTM, and MRTS, the

proposed model provides better performance [51, 52].

27

In [53], an ensemble-based machine learning IDS model called ELNIDS is proposed in order

to detect “clone ID attacks”,“sink-hole attacks”, “black-hole attacks”, “selective forwarding

attacks”, “hello flood attacks” and “local repair attack”. Here, the classifiers “Boosted

Trees”, “ Bagged Trees”, “Subspace Discriminant” and “RUSBoosted Trees” are used. The

results show that the boosted trees reach the highest accuracy of 94.5% and the Subspace

Discriminant classifier has the lowest accuracy of 77.8%.

Artificial Neural Networks can be effectively used for detecting the intrusion in the

RPL-based networks [54]. A recent neural network-based IDS is proposed in [4]. In this

study, compared to previous studies, feature extraction is done by focusing not only on the

routing layer, but also on the link layer. In this model, the false positive value is reported to

be decreased as a result of including the link layer-related features.

In another ML-based IDS, a deep ANN approach has been used in [55] for the detection of

DR attacks, HF attacks, and VN attacks. Moreover, they introduce a dataset called IRAD.

Here, the model has five hidden layers that use features, especially, packet counts (received

and transmitted), and number of DIO/DAO packet in 1000-ms window size. Contiki Cooja

simulator [38] and the varying number of nodes from 10 to 1000 are used. The results show

that the precision and recall are 94% when the network is under version number attack, 97%

under hello flood attack. Another deep learning-based model is developed in order to detect

HF attacks in [56]. Here, the Gated Recurrent Unit (GRU)-based deep learning model with a

Recurrent-Neural-Network(RNN) approach has been used to classify nodes. Another neural

network-based system is proposed in [57] to identify the normal behaviour of the nodes.

Very recently, for smart and RPL-based industries, a “fog-assisted deep-learning-empowered

IDS” called “Cu-DNNGRU” is proposed [58]. Here, this proposed model uses the N-BaIoT

dataset [59]. This model has three layers: i) “edge layer”, ii) “fog layer”, iii) “cloud

layer”. This layer (edge layer) is a kind of basic layer that consists of interconnected

industrial IoT devices and runs under the fog layer (FL). The devices (nodes) in the edge

layer are similarly connected to the Fog Nodes which are evolved in this fog-layer (FL).

Here, this FL, acts like the first security part of the layers, runs under the Cloud Layer

28

and has some data flow management operations. The process of these operations is as

follows: “packet capturing”, “processing”, “packet analysis”, “IDS”, and finally “labeling

(malicious or benign)”. By doing so, it manages the data flows from the edge layer. In

this layer, by using “Cu-LSTMDNN, Cu-BLSTM, Cu-GRU” classifiers, the data packets are

labelled as malicious or benign. After that, the cloud layer, acts as the second security layer,

consisting of the root node dismantled unaddressed security concerns for detecting malicious

packets. The four performance metrics used in the study are: i) “accuracy”, ii) “precision”,

iii) “recall”, and iv) “F1-score”. The results show that the evolved IDS Cu-DNNGRU reaches

99.09% precision, 99.21% F1 score, 98,89% recall, and 99.39% accuracy.

There are also rule-based security solutions in the literature. A recent rule-based study

proposes an IDS model using “Logistic Regression”, “Gaussian Naive Bayes”, “Artificial

Neural Networks”, “Support Vector Machine”, and simulated data in [60]. Here, three

attacks against RPL are targeted: i) rank attack, ii) selective forwarding attack, and iii) DoS

attack. Here the IEEE-IoT-IDS dataset (is developed by Avast AIC lab.) [61], WSN-DS

dataset (developed by Iman et al.) [62], and simulated data are used. Here, the WSN

data is simulated using the Contiki Cooja simulator. The WSN data include both benign

and malicious activity, and MRHOF has been selected for OF. The WSN data set includes

390,230 samples, and 362,521 samples are normal. Since M2P flow is required for the

experiments, the RPL is set to “NO-DOWNWARD-ROUTE”. Multiple attack detection

results show that the Selecting Forwarding attack has an 88.4% detection rate and 90.4%

accuracy, DoS Attack has an 84.7% detection rate and 85.2% accuracy, the Rank Attack has

89.3% detection rate and 88.4% accuracy.

Transfer-learning-based approaches have also been proposed for intrusion detection in the

IoT. A deep transfer learning (DTL) approach called MultiMaximum Mean Discrepancy AE

(MMD-AE), based on AutoEncoder (AE) and allows transfer knowledge, is proposed in [63].

Here, although no IoT protocol is targeted, general attacks such as TCP/UDP flooding attacks

are targeted, and a labelled dataset is transferred to an unlabelled dataset in accordance with

the proposed model. The results clearly indicate that the developed transfer learning model

produced better experimental results (Area Under the Curve (AUC) score) than the classic

29

models. In [1], knowledge has been transferred to detect new attack models and to evolve ID

algorithms for new types of devices with different limited resources. Here, when the devices’

energy usage is minimized, the detection accuracy is maximized.

Although there are some studies based on evolutionary computation in the literature [1, 43],

the current study differs from those by exploring different trade-offs between detection

intrusion accuracy and the cost of the developed algorithm in terms of power usage and

cost of communication. Therefore, a different intrusion detection architecture is explored

here, and communication cost is taken into account for the first time.

30

4. MULTI OBJECTIVE-BASED INTRUSION

DETECTION SYSTEM

This study is aimed at developing a suitable IDS for RPL-based IoT-networks. Therefore,

a central ID node is placed at the root-node, which runs our evolved intrusion detection

algorithm. In order to analyse the data traffic far from this central ID node, some monitoring

nodes in which periodically collect the local data in their neighbourhood and sent to the

central ID node are participated in intrusion detection. Although these monitoring nodes

enable the central ID node to detect attacks with a more satisfactory performance, it can

have an adverse impact on the average lifetime of the network due to collecting their local

information and on the communication cost due to their sending such information regularly

to the central node. Therefore, the trade-offs between detection accuracy and cost need

to be investigated. Hence, this study aims to evolve a lightweight ID model in terms of

communication cost and energy consumption while effectively detecting malicious network

traffic. Hence, both accuracy and communication cost among IDS nodes are taken into

consideration in this study by employing multi-objective evolutionary computation. Here,

firstly, the attacks targeted in this study are given. Then, the details of the proposed approach

including the features used, the representation of individuals, and the fitness functions are

described.

4.1. RPL-specific attacks

The following four specific attacks against RPL are aimed to be detected in this study :

• Decreased Rank Attack (DRA), the the the the the the the the the the

• Worst Parent Attack (WPA), the the the the the the the the the the

• Increased Version Attack (IVA) and the the the the the the the the the the

• Hello Flood Attack (HFA).the the the the the the the the the the

31

1

2

4

5

6

3

7

9

8

10 11 12

Figure 4.1 An exemplar RPL topology under no attack [2].

An exemplar RPL network topology, which is under no attack, is shown in Figure 4.1. The

attacks will be explained as taken this topology as the baseline.

4.1.1. Decreased Rank Attack (DR)

This type of attack, which is illustrated in Figure 4.2, directly targets the DODAG topology

and goals to change the topology, and this is one of the most dangerous attacks in this

category. Each node advertises its rank value to its neighbour nodes. This value determines

the quality of a path between the node and the DODAG root node. The rank value has

very important effects, such as creating the most optimal topology in RPL and preventing

unnecessary loop formation. Since RPL assumes that all nodes are trustworthy and does not

have a security mechanism to protect that, this ranking value could be exploited by attackers.

In rank attacks, the attacker manipulates the information of nodes’ rank, then a message

is sent to neighbours nodes with wrong rank value different from the actual value sent in

control messages (DIO). In the decrease-rank attack case, illegitimately, the malicious node

decreases the value and tries to attract nodes for them to select itself as the parent node.

Hence, it is generally carried out as the first step of subsequent attacks, such as dropping

attacks.

32

1

2

4

5

6

3

7

9

8

10 11 12

Figure 4.2 The topology under decreased rank attack [2].

4.1.2. Increased Version Attack (IV)

Version numbers are specified in the DIO messages in the RPL. A change in this number,

which is only carried out by the root node, triggers DODAG global repair. Since the global

repair reconstructs the DODAG topology, it consumes a lot of resources and puts a lot

of overhead on the network due to excessive message traffic. In increased-version attack,

malicious node(s) illegally alters this version number into given DIO control message and

allows the DIO message to be distributed in this way. Therefore, re-creating the DODAG

structure again and again causes unnecessary use of limited resources. As a result of the

attack, performance and efficiency loss are experienced in the network, packet losses, and

unwanted routing loops may occur in the network. Node 12 shown in red in Figure 4.3

[6] illegally increases the version number carried by DIO messages and allows it to be

distributed in this way. It creates excessive message traffic by causing the DODAG global

repair mechanism to work repeatedly.

33

1

2

4

5

6

3

7

9

8

10 11 12

Figure 4.3 The topology under increased version attack [6].

4.1.3. Hello Flood Attack (HF)

In the DODAG structure, any candidate node that wants to join this DODAG, broadcasts DIS

control messages to notify its neighbouring nodes. In RFC 6550 [25], there are no defined

time intervals for DIS messages. Therefore, DIS messages are triggered as defined in the

application layer, hence it may differ from one application to another. Hence, a new candidate

node broadcasts DIS (HELLO) messages and waits for a response from neighbouring nodes

in its transmission range. If a neighbouring node sends a DIO (HELLO response) message

in response to the DIS message, the new candidate node responds with a DAO message

and joins the network. Here, the attacker node behaves like as the new candidate device

for joining the DODAG topology and continuously broadcasts DIS messages to neighbour

nodes to force them responds with DIO messages, with more power than the root node at a

certain time frequency. In this way, the attacker node forces its neighbour nodes not only to

respond with a DIO message, but also to reset their trickle timers. In this attack scenario,

which is illustrated in Figure 4.4, the main aim is to generate heavy network traffic and keep

existing paths busy. In Figure 4.4 [7], the attacker node broadcasts DIS messages with more

power than the root node (left side of this figure). Directions of the responses sent to this

fake DIS control messages are illustrated at the right side of this figure. Here, the nodes

34

1
2

4

5

6

3

7

9

8

10 11 12

1
2

4

5

6

3

7

9

8

10 11 12

Figure 4.4 The topology under hello flood attack [7].

assume that the attacker node is a new legitimate node. Thus, the resources of the network

are unnecessarily consumed.

4.1.4. Worst Parent Attack (WP)

Worst Parent Attack, which is illustrated in Figure 4.5 [2], is a kind of rank attack and goals to

change the DODAG network topology. As stated above, the quality of paths to the root node

is determined according to rank value. This rank value is calculated by all nodes. A DODAG

topology has very important mechanisms such as maintaining optimal paths and preventing

loop formation, and the continuity of these mechanisms is provided by the calculated rank

values. In this type of attack, the malicious node sents any different rank score than their

current rank values in the DIS values. By sending higher rank values, differently than in

decreased rank attack, it causes non-optimal paths to be built.

In this type of attack, the goal is to choose the worst parent node (this node is the attacker

node as illustrated with number 3 and red color in Figure 4.5) to change the network topology

according to the objective function. Since the node chooses a path that it should not normally

choose according to the objective function (OF), the performance of the network decreases

and the DODAG structure is adversely affected by this process. Since neighbouring nodes

35

1

2

4

5

6

3

7

9

8

10 11 12

Figure 4.5 The topology under worst parent attack [2].

can only see the rank value of a node, they cannot decide what its true rank should be.

Therefore, monitoring and detecting worst parent attack is very difficult.

4.2. Intrusion Detection Architecture

In order to create an effective and highly accurate IDS, data collected only from the root node

may be insufficient. Therefore, in order to benefit from the data collected from other nodes

(monitoring nodes) and increase the efficiency of the proposed IDS, the data was collected

not only from the root node but also from monitoring nodes. Here, the main purpose is to

control the entire network with a global ID node, it is also to determine how the monitoring

nodes affect the performance of the evolved IDS. Here, a grid topology-based network model

of 27 sensor nodes, 1 of which is the root node, and 3 malicious nodes is used in this

study. The nodes in the model are grouped as the first group nodes (close nodes) and the

second group nodes (far nodes), as illustrated in Figure 4.6. Here root-node is shown in

blue. The first group of nodes shown in yellow are the nodes 1-3 hops close to the root

node. The second group nodes shown in purple are the nodes 4-6 hops far from this root

node. According to this grouping, the feature values collected from the nodes belonging to

the relevant group were brought together just before the simulation run, and their average

36

 0 5 10

 1 6 11

12 7 2

 3 8 13

 4 9 14

15 20 25

16 21 26

272217

18 23 28

19 24 29

First Group Nodes Second Group Nodes

Figure 4.6 Grouping of nodes according to hop numbers.

values were calculated. For this, a node was selected from each node group and the average

values of the data of these selected nodes were calculated.

4.3. Evolving Intrusion Detection Algorithms

The proposed approach conceptual scheme is shown in Figure 4.7. First, to construct the

training and testing data sets, the pcap files that capture the network traffic are extracted by

running Contiki Cooja Simulation[38]. As will be explained in Section 5.1., the simulation

was run both in attack mode and without attack mode (benign mode), and the data were

labelled malicious (the label is 1) and benign (the label is 0) using the generated pcap and

log files. Then, the features collected from monitoring nodes and the root node are extracted

using these files.

After running simulation files and obtaining the pcap and log files, feature extraction is

carried out. Then the candidate solutions based on these features and some operators as

explained in the subsequent sections are generated randomly. The GP algorithm is run

and tries to evolve better solutions, in other words, intrusion detection (ID) programs in

37

Cooja Feature
Extracter

Communication Cost Detection Accuracy

Multiobjective
Fitness

IDS

Pareto Front
Sets

GP Individual

pcap csv

Figure 4.7 The conceptual scheme of the proposed approach.

each generation. In order to evaluate the evolved solutions, two fitness functions are used:

detection accuracy and communication cost (i.e. number of features). Finally, GP outputs the

best individual according to its fitness value. This output is our intrusion detection program.

In the following, the details of the evolution process, including the features and operations

used for representation of the candidate solution, the GP algorithm, and the fitness functions,

are given in detail.

4.3.1. The Features

Choosing appropriate features in solving of complex problems is vital for training machine

learning algorithms. In order to develop security mechanisms and detect attacks against

RPL-based IoT networks, selecting features that could help to distinguish malicious traffic

38

from benign one, is very critical and important. On the other hand, the use of more features

than necessary might negatively affect the training of the machine learning algorithm or

increase its training time [4]. Since each attack type might require different features besides

generic features such as the number of data packets, all features that is considered to be

useful for intrusion detection are included in this study. Hence, in this study, all the features

proposed in a recent study [1] shown in Table 4.1 are used.

39

Table 4.1 The feature set [1].

No Feature Description
1 DataPacketCount The total count of data packets
2 CountDIO The total count of DIO control packets
3 CountDIS The total count of DIS control packets
4 CountDAO The total count of DAO control packets
5 CountDAOACK The total count of DAO-ACK control packets
6 MaxVersion The versions’ maximum value
7 MinVersion The versions’ minimum value
8 AvgVersion The versions’s average value
9 Maxrank The ranks’ maximum value
10 MinRank The ranks’ minimum value
11 AvgRank The ranks’ average value
12 MaxIntervalMin The maximum value of interval min. for DIO
13 MinIntervalMin The minimum value of interval min. for DIO
14 AvgIntervalMin The average value of interval min. for DIO
15 MaxIntervalDoub The greatest value for DIO interval doublings
16 MinIntervalDoub The lowest value for DIO interval doublings
17 AvgIntervalDoub The average value for DIO interval doublings
18 MaxRplIns The rpl instances’ maximum value
19 MinRplIns The rpl instances’ minimum value
20 AvgRplIns The rpl instances’ average value
21 MaxTimeBtwDATA The greatest time value
22 MinTimeBtwDATA The lowest time value
23 AvgTimeBtwDATA The average time for data packets
24 MaxTimeBtwDIO The greatest time value for DIO messages
25 MinTimeBtwDIO The lowest time value between DIO messages
26 AvgTimeBtwDIO The average time between DIO messages
27 MaxTimeBtwDIS The greatest time value for DIS messages
28 MinTimeBtwDIS The lowest time value for DIS messages
29 AvgTimeBtwDIS The average time for DIS messages
30 MaxTimeBtwDAO The greatest time value for DAO messages
31 MinTimeBtwDAO The lowest time value for DAO messages
32 AvgTimeBtwDAO The average time between DAO messages
33 MaxTimeBtwDAOACK The greatest time value for DAO-ACK messages
34 MinTimeBtwDAOACK The lowest time value for DAO-ACK messages
35 AvgTimeBtwDAOACK The average time for DAO-ACK messages

40

4.3.2. The Representation

As stated above, the solutions are represented by GP trees in genetic programming.

Therefore, a candidate solution, which is an intrusion detection (ID) program in this study,

is represented by a GP tree and essentially returns a conditional (if) statement to detect the

attack and raise an alarm. In this tree representation, the terminal nodes, i.e. leaf nodes in the

GP tree, are the features collected by the nodes. As mentioned above, in this study we used

35 different features [1] that are extracted from the RPL control and data packets. Traffic

flows are used to build these features. To do that, the flows are first windowed within the

specific time intervals by both the root and the monitoring nodes. Here, the optimum interval

time of the window is found to be 60 s. The windowed feature data is then collected by

the monitoring nodes and aggregated at the root node and provided to the GP tree as input

data. In addition to RPL-related features, randomly generated numbers are also assigned

to leaf nodes to enable a more effective search by GP individuals. The non-terminal nodes

correspond to arithmetic, comparison, and logical operators given in Table 4.2. It is worth

stating that this GP tree’s root node can be either a comparison or a logical operator, since

it returns a Boolean value. An example of a GP tree that represents a candidate solution is

given in Figure 4.8, and the ID program corresponding to this tree is given in Algorithm 2.

>=

+

COUNT_DIO MAX_RPL_INS

COUNT_DIS

Figure 4.8 An example GP tree.

Eventually, the evolution process should come to an end, for instance after the specified

steps of generations. In this study, GP-algorithm is run for 1000 generations. A total of 100

individuals are kept in each generation. The other GP parameters used in this study are given

41

Algorithm 2: A conditional tree algorithm of GP.
if ((COUNT DIO + MAX RPL INS) >= COUNT DIS) then
alert(attack)
stop

in Table 4.2. For the GP implementation, “Evolutionary Computing Toolkit (ECJ)” [64], a

kind of java-based toolkit, is used. Please note that, Table 4.2 does not show other parameters

that are normal settings for ECJ. Fitness functions are used to evaluate each individual as

explained in the following sections.

Table 4.2 The values for the parameters of GP.

Parameter Value
Non-terminals Non-terminals in [1]
Generations 1,000
Population Size 100
Elite Fraction 10%
Crossover probability 0.9
Mutation probability 0.1
Selection strategy Tournament with the size of 7
Max. depth of the tree 20
Terminals features in [1] and rnd(0,1)

4.3.3. Fitness Function

The fitness functions are used to assign a fitnes value to individuals. This value determines

which are the most effective solutions in solving the problem at hand. In GP, as stated earlier,

in order to create a new generation individuals are selected from the existing population

according to their fitness value and then modifying these individuals via genetic operators

such as recombination, mutation. Following that, the algorithm is iterated again with the

new set of candidate solutions. The GP algorithm terminates when a population or algorithm

reaches a specified number of generations or a desired satisfactory fitness level [65, 66].

In this study, in order to evaluate evolved algorithms, two fitness functions are employed:

detection accuracy and communication cost (number of features).

42

4.3.3.1. Detection Accuracy This metric is used to measure the effectiveness of the

evolved ID programs. It can be said that the higher the attack detection accuracy of the

ID program, the more effective it is. The formula of this metric is given in Equation-1 :

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Here, TP corresponds to true positives, FP corresponds to false positives, TN corresponds

to true negatives, and FN corresponds to false negatives.

4.3.3.2. Communication Cost When developing ID programs, communication cost,

another objective is of critical importance. Because if communication costs are not

minimized on a network composed of resource-limited devices, the network can die much

faster. As communication cost increases, the amount of energy and resources consumed by

the network also increases. However, since our IoT network is already resource-constrained,

our aim is to propose a lightweight solution as much as possible in this study. Therefore,

communication cost is also taken into account as another objective.

The number of features employed in the ID model is of very high importance in determining

to what extent the model leads to additional cost in terms of the memory and battery usage

of the monitoring-nodes and also communication load in any networks. Moreover, the

high number of features might result in fragmentation and the increase in the number of

packets [4]. As shown in the results of the preliminary experiment given in Figure 4.9,

the overall power consumption of the nodes increases linearly with increasing data packets.

Therefore, in addition to the detection accuracy, the number of distinct features employed in

the intrusion detection algorithm is taken as the second objective which should be optimized

simultaneously for ensuring an efficient and high-performance ID model. To optimize

these objectives simultaneously, as stated earlier, the NSGA-II’s selection and survival

strategies [5] are integrated into the GP algorithm. Hence, each individual that represents

a candidate program is evaluated according to the Pareto dominance.

43

5 15 25 35 45 55 65 75 85 95 105

Number of data packets

0

2

4

6

8

10

12

14

16

18

P
ow

er
 C

on
su

m
pt

io
n

(in
 m

W
)

CPU
Listen
Transmit
Total

Figure 4.9 The change in average power consumption with varying number of packets.

44

5. EVALUATION OF THE PROPOSED APPROACH

Experimental settings and information about the simulation environment are given in detail

in this section, and simulation parameters and performance metrics are explained. Finally,

the experimental results are thoroughly presented and discussed.

5.1. Settings for Experiments

5.1.1. Simulation Environment

In this study, a java based simulator, Cooja Simulation [67] running on the Contiki OS

[68] is used to simulate RPL. Contiki OS is a “state-of-the-art open-source” OS primarily

targeted at sensor networks and other embedded network domains [69]. Cooja is a Java-based

simulation that has flexible and ubiquitous network capability and can emulate various nodes

such as the Z1 mote [70], the Sky mote [71], and the AVR mote [72]. Thanks to Cooja,

researchers can debug their software, observe or test the behaviour of the systems they create,

and, with Cooja, have the opportunity to control code without using hardware. Cooja allows

developers to simulate different RPL features. In order to simulate the most realistic RPL

mechanism, the RPL protocol, called ContikiRPL in Contiki OS, can be implemented in

Cooja. The RPL attack framework [73] is integrated into the Cooja simulation to simulate

attack environments.

In the experiments, a grid topology, shown in Figure 5.1, is used with 30 nodes, including the

root node. Among them, three nodes (10% of the total nodes) are set as attacker nodes, where

their positions are randomly chosen. The nodes in the topology are positioned in the network

so that each node is 20 m away from another node with a maximum distance (transmission

range) of 25 m between each node, so that the nodes can communicate with their neighbour

nodes. The arrows in Figure 5.1 represent the preferred parent of the child nodes in DODAG

in a benign environment.

45

Table 5.1 Parameters for Simulation.

Parameter Value
Tool Contiki 2.7 Cooja Simulator
Mote type Z1 Motes
Simulation time 180 mins
Sender Nodes 26
Malicious Nodes 3
Root Node 1
Radio medium UDGM : Distance Loss
Transmission range 25m
Positioning Grid Positioning
Framework RPL Attacks Framework

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Figure 5.1 Simulation network.

Supported by Cooja for the emulated nodes, the Contiki 0perating System [67] (version 2.7)

that also involves the implementation of RPL is used. Zolertia (Z1) [70] platform is chosen

as the mote type for the nodes. By adopting this experimental environment and the settings,

the performance of the proposed evolutionary-based IDS against these four targeted routing

attacks has been thoroughly evaluated; WP, HF, IV, and DR. To do that, eight different

scenarios are generated, and the learning is repeated 10 times for each scenario that is

individually simulated for three hours. The main motivation of the scenario-based evaluation

is to thoroughly discuss how well the evolved ID program can detect when monitoring or

attacker nodes are re-positioned after the learning step. Therefore, these scenarios differ

46

from each other in terms of the location of the monitoring and malicious nodes in training

and testing simulation environment. These scenarios are outlined in Table 5.2. This table

shows that the monitoring nodes in the network are grouped according to their proximity

to network’s root (node 0 in Figure 5.1). The monitoring nodes are either placed closely

to root node (1-3 hops away from the root node, represented with yellow in Figure 5.1) or

far (4-6 hops away, represented with purple in Figure 5.1) from the root node. It is worth

pointing out here that each of the monitoring nodes is randomly chosen from a different hop

level (that is, a single monitoring node is chosen per hop and the average of these nodes’

data is used in the experiments). Hence, in each scenario 10% the nodes are responsible

for monitoring. In Scenario-1, 3, 5 and 7, the attacker nodes were randomly selected and

remained the same location in training and test environments. In addition, in order to see

the effect of attackers’ positions, in some scenarios, the attackers are placed randomly, but

differently from its corresponding training setting.

Table 5.2 Position settings of the monitoring ID nodes and the attacker nodes used in the
experiments.

Scenario Location of monitoring ID nodes Location of attackers
In training In testing in training and testing

S1 close close same
S2 close close different
S3 far far same
S4 far far different
S5 close far same
S6 close far different
S7 far close same
S8 far close different

5.1.2. Simulation Environment with Mobile Attackers

The same experiments are repeated with mobile attackers. Even though RPL is not designed

for mobility, most of the real-world scenarios include mobile attackers. To simulate

real-world scenarios, we expanded our study by adding mobility characteristics to attacker

nodes. Here, our aim is to evaluate the performance of our proposed ID program if the

47

malicious nodes have mobility and to show whether the proposed ID program still produces

effective results.

A plug-in called “Mobility” [74] has been added to the Contiki Cooja simulator in order to

make attacker nodes mobile and the simulator has been provided with a mobility tool [74]

that is designed for simulating and testing MANET protocols. With this tool, the mobility in

the experiments can be stopped at any time. Therefore, mobility can wait still for any second

and then start running without reinstalling or generating new movement data [75]. This tool

has the ability to read the relevant parameters from a file in order to make nodes mobile.

The mobility parameters file is created by using BonnMotion [76]. Thanks to this tool,

environments belonging to different models such as “Boundless Simulation Area Model”,

“Chain Model”, “Column Mobility “, “Disaster Area”, “Random Street”, and “Random

Walk Model” can be created [76]. Here, a mobility model based on random speeds and

random direction, called random walk model, which is most commonly preferred to simulate

mobility in MANETs, is used in this mobility included experiments. In this model, nodes

move from the their current location to the new location randomly. The new speed or location

can be selected from predefined ranges consisting of [speedmin,speedmax] and [0, 2π].

The mobility of each node is defined with the following information [76]:

• “the number of node”,

• “the time of simulation (in seconds)”,

• “X and Y coordinates of the nodes’ position”.

Contiki Cooja Mobility tool uses this interval-by-line based file named positions.dat and

takes the information about the mobility of the nodes from there as a parameter. This

parameter file was first created in the BonnMotion environment in accordance with the

random walk model and converted into a format that the Cooja Mobility tool can use. An

example of the positions.dat file including mobility parameters are shown as follows:

48

#node time(s) x y

1 0.0 20 10

1 1.0 20 20

1 2.0 0 0

1 3.0 0 25

1 4.0 10 15

1 5.0 10 20

The first, second, third and fourth columns show respectively: the ”node number”, the

”time-stamp”, the ”x-coordinate” and finally the ”y-coordinate”[74].

The same scenarios for the location of attacker and monitoring nodes given in Table 5.2 are

used. For four attack types, ten simulations for each scenario were run and the feature values

of these simulations were averaged. Here, the attacker nodes are selected randomly and the

mobility pattern of these nodes are determined based on the random walk model. Here, for

Scenario-1 the nodes 6, 13, and 23 are randomly selected as attacker nodes as illustrated in

Figure 5.2. The default parameters of speed (4 m/s) and directions ([0, 2π]) for the random

walk model are used. Other than the coordinates of nodes due to their mobility, the same

parameters given in Table 5.1 are used. Please note that in these experiments, nodes other

than the attacker do not have mobility features.

The mobility areas of attacker nodes are shown in Figure 5.2. The point where the attackers

start to move is the current location shown in Figure 4.6. Then, after the start of the

simulation, the attacker nodes were allowed to move according to the random walk model

so that they remain within the movement circle (they are limited to neighbouring nodes at a

distance of 1-hop count). This mobility was continued until the end of the simulation.

49

 0 5 10

 1 6 11

12 7 2

 3 8 13

 4 9 14

15 20 25

16 21 26

272217

18 23 28

19 24 29

First Group Nodes Second Group Nodes

Figure 5.2 Mobility area of attacker nodes for Scenario-1.

5.1.3. Performance Metrics

In this study, we have considered the Pareto front set that represents the objectives of the

Pareto dominant individuals found for each simulated scenario in order to evaluate the our

evolved IDS’s performance. In this study, eight different scenarios were studied for each type

of attack. The GP algorithm was run 10 times for each attack type in each scenario. Here,

accuracy (ACCR) and number of features (NoF) are used as performance metrics in order to

show and compare the results.

• ACCURACY: The equation for calculatin accuracy of an ID program is given in

Equation-2. Here, (TP) or (TN) prove that the predictions are correct. (FP) and

(FN) similarly show that these predictions are incorrect [77].

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

50

• NUMBER OF FEATURES (NoF): When creating Pareto-dominant individuals, the

GP finds the optimum solutions according to the objective functions. In a GP tree,

some features which corresponds to different GP nodes can be repeated. Therefore, this

study considered the distinct number of features to calculate the NoF. For instance, for

the GP tree formed as ((fA + fB) < (fA X fB)), the number of features is calculated

as 3. These features are fA, fB, and fC. Even though there are two nodes that have

fA, it is counted as 1 unique feature. Similarly, the Number of Features value for the

GP tree formed as ((fA + fB) < ((fC X fD) < fA)) is equal to 4 and these features

are fA, fB, fC, and fD.

5.2. Experimental Results

This section of the study explores the performance of proposed IDS under the targeting

attacks, namely worst parent, hello flood, increased version, and decreased rank. Here,

for each attack type, all eight scenarios regarding the placements of monitoring nodes and

attacker nodes listed in 5.2 are evaluated. In these scenarios, both attacker nodes and

monitoring nodes are placed randomly. Please note that, for monitoring the most realistic

packet flow of the network (data or control packets), the attackers were placed randomly. GP

algorithm is run ten times for each case. Hence, in total, we performed 4 (attack type) x 8

(scenarios) x 10 (GP runs) x 2 (training & testing) x 2 (attackers are mobile & not mobile) =

1280 experiments. Then the Pareto Front sets, in other words the Pareto dominant individuals

are extracted for evaluating the performance of IDS for each scenario. Results for each attack

type are first given and general discussions are then presented.

5.2.1. The Performance of IDS on Detecting Worst Parent Attack

The best performances obtained with respect to each objective, namely accuracy (ACCR)

and number of features (NoF) are presented for each scenario (S) in Table 5.3. The trade-offs

(TO) between ACCR and NoF for each GP run for an exemplar scenario (S1) is given Table

5.4. As shown in the results, while the highest accuracy rate (94.5%) for scenario 1 (S1) is

51

achieved by using eight features, it drops to 85% when only one feature is used (1 (0.850)).

Moreover, for each scenario we can obtain high accuracy for this attack type. Hence, the

location of monitoring or attacker nodes does not affect the accuracy results considerably.

Table 5.3 The best performances with respect to accuracy (ACCR) and number of features (NoF)
obtained in the Pareto front set for WPA.

Objective S1 S2 S3 S4 S5 S6 S7 S8
ACCR 0.945 0.940 0.950 0.940 0.935 0.935 0.930 0.925
NoF (8) (7) (11) (8) (8) (12) (9) (8)
NoF 1 1 1 1 1 1 1 1

ACCR (0.850) (0.840) (0.845) (0.840) (0.835) (0.830) (0.835) (0.825)

Table 5.4 The trade-offs between objectives obtained in the Pareto set of each GP run for Worst
Parent Attack.

GP Run Objective TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8

1 ACCR 0.850 0.850 0.850 0.850 0.855 0.855 0.855 -
NoF 1 1 1 1 2 2 2 -

2 ACCR 0.870 0.870 0.870 0.870 0.870 0.870 - -
NoF 3 3 3 3 3 3 - -

3 ACCR 0.870 0.870 0.870 0.872 0.872 0.872 0.873 -
NoF 1 1 1 2 2 2 3 -

4 ACCR 0.870 0.870 0.870 0.870 0.870 0.870 - -
NoF 3 3 3 3 3 3 - -

5 ACCR 0.940 0.940 0.945 0.945 0.945 0.945 0.945 0.945
NoF 7 7 8 8 8 8 8 8

6 ACCR 0.870 0.870 0.870 0.870 0.870 - - -
NoF 3 3 3 3 3 - - -

7 ACCR 0.905 0.905 0.905 0.930 0.937 0.937 0.937 0.937
NoF 1 1 1 3 4 4 4 4

8 ACCR 0.870 0.870 0.870 0.870 0.870 0.935 0.935 0.940
NoF 3 3 3 3 3 6 6 7

9 ACCR 0.870 0.870 0.870 0.870 0.870 0.935 0.940 0.940
NoF 3 3 3 3 3 6 7 7

10 ACCR 0.940 0.940 0.945 0.945 0.945 0.945 0.945 -
NoF 7 7 8 8 8 8 8 -

52

5.2.2. The Performance of IDS on Detecting Hello Flood Attack

The best performances obtained with respect to each objective, namely accuracy (ACCR)

and number of features (NoF) are presented for each scenario (S) in Table 5.5. The trade-offs

(TO) between ACCR and NoF for each GP run for an exemplar scenario (S1) is given Table

5.6. As shown in the results, while the highest accuracy rate (95%) for scenario 1 (S1)

is achieved by using thirteen features, it drops to 86.5% when only one feature is used (1

(0.865)).

When comparing S1 with S7, and S2 with S8, a decrease of 2.5% is seen in the accuracy

rates. Here, in the four scenarios’ designs, the data collected from close node group are used

in testing environment. On the other hand, in the training environment, in S1 and S2 data

collected from the close node group and the location of the attackers are both the “same”.

In S7 and S8 data collected the nodes far from the root node and the location of attackers

are both “different”. In the light of the designs of the scenarios here, it can be said that the

slight decrease is caused by the distance of the nodes collected in the training environment

to the root node. In other words, it can be said that the accuracy performance of the ID

program decreases as the node that is “close” in the test environment, the attacker position

remains the same in the train and test environment, as it moves far from the root node in

the train environment. In addition, S1, S2, S6 and S7 results show that more features are

used for better performance than other scenarios in Table 5.5. In the S1 and S2 scenarios’

designs, the data collected from the close node group are used both in training and testing

environment. However, in S6 design, the data collected from the close node group in training

environment and far node group for testing environment. In the S7 design, this data collected

from far nodes group for learning and the data collected from the close node group for testing

environment. These results can be evaluated that for this attack type, both attacker positions

and monitoring nodes positions (even if they change in learning and test environment) affect

the number of feature usage very slightly. Considering the number of features usage in all

scenario results, it can be said that it is necessary to use approximately 10 (the average value

53

for NoF is 10,375) features for a good ID program performance. For each scenario, we can

still obtain high accuracy for this attack type.

Table 5.5 The best performances with respect to accuracy (ACCR) and number of features (NoF)
obtained in the Pareto front set for HFA.

Objective S1 S2 S3 S4 S5 S6 S7 S8
ACCR 0.950 0.945 0.945 0.940 0.930 0.925 0.925 0.920
NoF (13) (12) (10) (9) (9) (11) (12) (7)
NoF 1 1 1 1 1 1 1 1

ACCR (0.865) (0.855) (0.860) (0.855) (0.845) (0.840) (0.830) (0.830)

Table 5.6 The trade-offs between objectives obtained in the Pareto set of each GP run for Hello
Flood Attack.

GP Run Objective TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8

1 ACCR 0.865 0.865 0.865 0.870 0.870 - - -
NoF 1 1 1 2 2 - - -

2 ACCR 0.935 0.935 0.935 0.940 0.940 0.950 0.950 0.950
NoF 10 10 10 12 12 13 13 13

3 ACCR 0.865 0.865 0.865 0.870 0.870 - - -
NoF 1 1 1 2 2 - - -

4 ACCR 0.950 0.950 0.950 0.950 - - - -
NoF 13 13 13 13 - - - -

5 ACCR 0.945 0.945 0.950 0.950 0.950 - - -
NoF 12 12 13 13 13 - - -

6 ACCR 0.865 0.865 0.870 0.870 0.870 0.870 - -
NoF 1 1 2 2 2 2 - -

7 ACCR 0.945 0.945 0.950 0.950 0.950 0.950 0.950 0.950
NoF 12 12 13 13 13 13 13 13

8 ACCR 0.865 0.865 0.870 0.870 0.870 0.870 - -
NoF 1 1 2 2 2 2 - -

9 ACCR 0.865 0.870 0.890 0.915 0.935 0.940 0.950 0.950
NoF 1 2 4 6 10 11 13 13

10 ACCR 0.890 0.890 0.915 0.915 0.940 0.940 - -
NoF 4 4 6 6 11 11 - -

54

5.2.3. The Performance of IDS on Detecting Increased Version Attack

The best performances obtained with respect to each objective, namely accuracy (ACCR)

and number of features (NoF) are presented for each scenario (S) in Table 5.7. The trade-offs

(TO) between ACCR and NoF for each GP run for an exemplar scenario (S1) is given Table

5.8. As shown in the results, while the highest accuracy rate (95.5%) for scenario 1 (S1) is

achieved by using twelve features, it drops to 87% when only one feature is used (1 (0.870)).

Interestingly, the number of features used in S1, S2 and S6 is twelve for accuracy

performance of 94.5% and above. Here, S1, S2, S5 and S7 results show that more features

are used for better performance than other scenarios in Table 5.7. In the S1 and S2 scenarios’

designs, the data collected from the close nodes group are used both in the training and

test environment. However, in S5 design, all data collected from the close nodes group for

training environment and far nodes group for testing environment. In the S7 design, the data

collected from the far nodes group for learning environment and the data collected from the

close nodes group for testing environment. These results can be evaluated that for this attack

type, both attacker positions and monitoring nodes positions (even if they change in learning

and test environment) affect the number of feature usage very slightly. These results are also

similar to the hello flood attack results described just before. Considering the number of

features usage in all scenario results, it can be said that it is necessary to use approximately

9-10 (the average value for NoF is 9,875) features for a good ID program performance. In

addition, for scenarios S1, S2, S5, S6, S7 and S8, attacker positions do not cause a serious

change in the number of features (as well as accuracy values) used. Moreover, considering

the NoF for scenarios S3 and S4, it is seen that the NoF values calculated for these two

scenarios are below the average value (9) for the whole scenario (NoF=8 for S3 and NoF=6

for S4). This is because, in both scenarios, the collected data (for both learning and testing)

may be collected from nodes far from the root node.

55

Table 5.7 The best performances with respect to accuracy (ACCR) and number of features (NoF)
obtained in the Pareto front set for IVA.

Objective S1 S2 S3 S4 S5 S6 S7 S8
ACCR 0.955 0.950 0.935 0.925 0.940 0.945 0.935 0.910
NoF (12) (12) (8) (6) (10) (12) (10) (9)
NoF 1 1 1 1 1 1 1 1

ACCR (0.870) (0.870) (0.860) (0.850) (0.830) (0.825) (0.835) (0.810)

Table 5.8 The trade-offs between objectives obtained in the Pareto set of each GP run for Increased
Version Attack.

GP Run Objective TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8

1 ACCR 0.870 0.870 0.872 0.872 0.872 0.873 0.873 -
NoF 1 1 2 2 2 3 3 -

2 ACCR 0.905 0.905 0.905 0.937 0.937 0.945 - -
NoF 1 1 1 2 2 5 - -

3 ACCR 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945
NoF 5 5 5 5 5 5 5 5

4 ACCR 0.945 0.945 0.945 0.950 0.950 0.955 0.955 0.955
NoF 5 5 5 8 8 12 12 12

5 ACCR 0.870 0.870 0.872 0.872 0.872 0.873 0.873 -
NoF 1 1 2 2 2 3 3 -

6 ACCR 0.945 0.945 0.945 0.950 0.950 0.955 0.955 0.955
NoF 5 5 5 8 8 12 12 12

7 ACCR 0.870 0.870 0.872 0.872 0.872 0.873 0.945 0.945
NoF 1 1 2 2 2 3 5 5

8 ACCR 0.945 0.945 0.945 0.950 0.950 0.955 0.955 0.955
NoF 5 5 5 8 8 12 12 12

9 ACCR 0.870 0.870 0.872 0.872 0.873 0.873 0.873 0.947
NoF 1 1 2 2 3 3 3 6

10 ACCR 0.935 0.945 0.947 0.950 0.950 0.955 - -
NoF 4 5 6 8 8 12 - -

5.2.4. The Performance of IDS on Detecting Decreased Rank Attack

The best performances obtained with respect to each objective, namely accuracy (ACCR)

and number of features (NoF) for detecting decreased rank attacks are presented for each

scenario (S) in Table 5.9. The trade-offs (TO) between ACCR and NoF for each GP run for

an exemplar scenario (S1) are given in Table 5.10. As shown in the results, while the highest

56

accuracy rate (88%) for scenario 1 (S1) is achieved by using thirteen features, it drops to

81% when only one feature is used (1 (0.810)).

When comparing the S1 with the S7 and S8, it is seen that the S7 and S8 have higher

performance. It would be a more consistent assessment to mention that such a result occurs

because the attacker locations are close or far from the root node, changing the transmission

load. As stated in [39], the cooperation of the attackers can significantly reduce network

performance when the attackers are positioned “high-forwarding load area”. Moreover, in

this type of attack, it is seen that the entire network is affected rather than the local area

effect. Here, the S7 and S8 results show that more features are used for better performance

than other scenarios in Table 5.9. In the S7 and S8 scenario designs, the data collected

from the far nodes group for the training environment and close nodes group for the testing

environment. Considering the NoF values in all scenario results, it can be said that it is

necessary to use approximately 10 (the average value for NoF is 10,5) features for a good ID

program performance. In this study, it is also seen that it is very difficult to detect the DR

attack type compared to other attack types.

Table 5.9 The best performances with respect to accuracy (ACCR) and number of features (NoF)
obtained in the Pareto front set for DRA.

Objective S1 S2 S3 S4 S5 S6 S7 S8
ACCR 0.880 0.875 0.870 0.865 0.880 0.875 0.900 0.890
NoF (11) (10) (10) (8) (11) (10) (12) (12)
NoF 1 1 1 1 1 1 1 1

ACCR (0.810) (0.800) (0.820) (0.820) (0.835) (0.810) (0.800) (0.805)

57

Table 5.10 The trade-offs between objectives obtained in the Pareto set of each GP run for
Decreased Rank Attack.

GP Run Objective TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8

1 ACCR 0.810 0.810 0.810 0.872 0.872 0.872 0.873 0.873
NoF 1 1 1 2 2 2 3 3

2 ACCR 0.810 0.872 0.872 0.873 0.873 0.875 0.877 -
NoF 1 2 2 3 3 5 6 -

3 ACCR 0.810 0.872 0.872 0.873 0.873 0.875 0.877 0.880
NoF 1 2 2 4 4 5 6 11

4 ACCR 0.810 0.872 0.873 0.875 0.877 0.878 0.880 -
NoF 1 2 3 4 5 6 11 -

5 ACCR 0.878 0.878 0.878 0.880 0.880 0.880 - -
NoF 6 6 6 11 11 11 - -

6 ACCR 0.875 0.875 0.878 0.880 0.880 0.880 - -
NoF 5 5 6 11 11 11 - -

7 ACCR 0.810 0.810 0.810 0.872 0.872 0.872 0.873 0.873
NoF 1 1 1 2 2 2 3 3

8 ACCR 0.810 0.872 0.872 0.873 0.873 0.875 0.877 0.880
NoF 1 2 2 4 4 5 6 11

9 ACCR 0.810 0.872 0.873 0.875 0.877 0.878 0.880 -
NoF 1 2 3 4 5 6 11 -

10 ACCR 0.810 0.810 0.872 0.872 0.872 0.873 0.873 0.878
NoF 1 1 2 2 2 3 3 6

5.2.5. The Performance of IDS on Detecting Worst Parent Attack with Mobile

Attackers

The best performances obtained with respect to each objective, namely accuracy (ACCR) and

number of features (NoF) for detecting worst parent attacks when the attackers are mobile

are presented for each scenario (S) in Table 5.11. The trade-offs (TO) between ACCR and

NoF for each GP run for an exemplar scenario (S1) is given Table 5.12. As shown in the

results, while the highest accuracy rate (94%) for scenario 1 (S1) is achieved by using thirteen

features, it drops to 84% when only one feature is used (1 (0.840)). A comparison with results

when attacker nodes are not mobile will be provided shortly. Here, the accuracy results show

a slight decrease, and the NoF values show a slight increase compared to the scenarios’

results where the attackers are not mobile. However, the changes here are not significant

changes. The average NoF values have a slight increase is seen from 8.875 to 10.125 and the

58

average accuracy values have a slight decrease from 93.75% to 92.70%. However, for each

scenario, we can still obtain high accuracy for this attack type.

Table 5.11 The best performances with respect to accuracy (ACCR) and number of features (NoF)
obtained in the Pareto front set for WPA with mobile attackers.

Objective S1 S2 S3 S4 S5 S6 S7 S8

ACCR 0.940
(9)

0.940
(8)

0.950
(12)

0.945
(9)

0.930
(8)

0.935
(13)

0.930
(10)

0.925
(12)

NoF 1
(0.840)

1
(0.825)

1
(0.825)

1
(0.825)

1
(0.825)

1
(0.825)

1
(0.835)

1
(0.810)

Table 5.12 The results (R) of ten experiments in Scenario-1 when the network is under Worst Parent
Attack and the attackers are mobile.

GP Run Objective TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8

1 ACCR 0.840 0.840 0.840 0.840 0.855 0.855 0.855 -
NoF 1 1 1 1 2 2 2 -

2 ACCR 0.860 0.860 0.860 0.860 0.870 0.870 - -
NoF 3 3 3 3 4 4 - -

3 ACCR 0.870 0.870 0.870 0.875 0.875 0.875 0.880 -
NoF 1 1 1 2 2 2 3 -

4 ACCR 0.860 0.860 0.860 0.860 0.860 0.860 - -
NoF 5 5 5 5 5 5 - -

5 ACCR 0.935 0.935 0.940 0.940 0.940 0.940 0.940 0.940
NoF 8 8 9 9 9 9 9 9

6 ACCR 0.870 0.870 0.870 0.870 0.870 - - -
NoF 4 4 4 4 4 - - -

7 ACCR 0.905 0.905 0.905 0.930 0.937 0.937 0.937 0.937
NoF 2 2 2 4 5 5 5 5

8 ACCR 0.865 0.865 0.865 0.865 0.865 0.870 0.875 0.875
NoF 3 3 3 3 3 6 6 7

9 ACCR 0.910 0.910 0.910 0.910 0.910 0.915 0.925 0.925
NoF 3 3 3 3 3 6 7 7

10 ACCR 0.925 0.925 0.930 0.930 0.935 0.935 0.935 0.940
NoF 7 7 8 8 8 8 8 9

59

5.2.6. The Performance of IDS on Detecting Hello Flood Attack with Mobile Attackers

The best performances obtained with respect to each objective, namely accuracy (ACCR) and

number of features (NoF) are presented for each scenario (S) in Table 5.13. The trade-offs

(TO) between ACCR and NoF for each GP run for an exemplar scenario (S1) is given Table

5.14. As shown in the results, while the highest accuracy rate (94.5%) for scenario 1 (S1)

is achieved by using thirteen features, it drops to 85.5% when only one feature is used (1

(0.855)). A comparison with results when attacker nodes are not mobile will be provided

shortly. Here, the accuracy results show a slight decrease, and the NoF values show a slight

increase compared to the scenarios’ results where the attackers are not mobile. However,

the changes here are not significant changes. The average NoF values have a slight increase

is seen from 10.375 to 11.625 and the average accuracy values have a slight decrease from

93.75% to 93.3%.

Table 5.13 The extreme results of experiments when the network is under Hello Flood Attack with
Mobile Attackers.

Objective S1 S2 S3 S4 S5 S6 S7 S8

ACCR 0.945
(14)

0.940
(13)

0.935
(12)

0.940
(12)

0.925
(9)

0.930
(12)

0.920
(12)

0.915
(9)

NoF 1
(0.855)

1
(0.845)

1
(0.855)

1
(0.845)

1
(0.835)

1
(0.835)

1
(0.830)

1
(0.815)

60

Table 5.14 The best performances with respect to accuracy (ACCR) and number of features (NoF)
obtained in the Pareto front set for HFA with Mobile Attackers.

GP Run Objectives TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8

1 ACCR 0.840 0.840 0.840 0.840 0.855 0.855 0.855 -
NoF 1 1 1 1 2 2 2 -

2 ACCR 0.870 0.870 0.870 0.870 0.870 0.870 - -
NoF 3 3 3 3 3 3 - -

3 ACCR 0.870 0.870 0.870 0.872 0.872 0.872 0.873 -
NoF 1 1 1 2 2 2 3 -

4 ACCR 0.870 0.870 0.870 0.870 0.870 0.870 - -
NoF 3 3 3 3 3 3 - -

5 ACCR 0.940 0.940 0.940 0.940 0.945 0.945 0.945 0.945
NoF 12 12 12 12 14 14 14 14

6 ACCR 0.870 0.870 0.870 0.870 0.870 - - -
NoF 6 6 6 6 6 - - -

7 ACCR 0.915 0.915 0.915 0.930 0.935 0.935 0.935 0.935
NoF 2 2 2 3 4 4 4 4

8 ACCR 0.870 0.870 0.870 0.870 0.870 0.935 0.935 0.940
NoF 3 3 3 3 3 6 6 7

9 ACCR 0.890 0.890 0.890 0.890 0.890 0.925 0.925 0.930
NoF 4 4 4 4 4 6 6 7

10 ACCR 0.935 0.935 0.940 0.940 0.945 0.945 0.945 -
NoF 12 12 13 13 14 14 14 -

5.2.7. The Performance of IDS on Detecting Increased Version Attack with Mobile

Attackers

The best performances obtained with respect to each objective, namely accuracy (ACCR) and

number of features (NoF) are presented for each scenario (S) in Table 5.15. The trade-offs

(TO) between ACCR and NoF for each GP run for an exemplar scenario (S1) is given Table

5.16. As shown in the results, while the highest accuracy rate (94.5%) for scenario 1 (S1) is

achieved by using thirteen features, it drops to 86% when only one feature is used (1 (0.860)).

A comparison with results when attacker nodes are not mobile will be provided shortly. Here,

the accuracy results show a slight decrease, and the NoF values show an increase compared

to the scenarios’ results where the attackers are not mobile. The average NoF values increase

from 9.875 to 11.625, which means that IDS needs more features to detect the attack when

61

attackers are mobile. The average accuracy values have a slight decrease from 93.7% to

92.7%.

Table 5.15 The extreme results of experiments when the network is under Increased Version Attack.

Objective S1 S2 S3 S4 S5 S6 S7 S8

ACCR 0.945
(13)

0.945
(14)

0.920
(10)

0.910
(8)

0.935
(12)

0.930
(14)

0.925
(10)

0.905
(12)

NoF 1
(0.860)

1
(0.860)

1
(0.855)

1
(0.845)

1
(0.825)

1
(0.820)

1
(0.835)

1
(0.820)

Table 5.16 The best performances with respect to accuracy (ACCR) and number of features (NoF)
obtained in the Pareto front set for IVA with Mobile Attackers.

GP Run Objective TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8

1 ACCR 0.860 0.860 0.860 0.860 0.865 0.865 0.865 -
NoF 1 1 1 1 2 2 2 -

2 ACCR 0.870 0.870 0.870 0.870 0.870 0.870 - -
NoF 4 4 4 4 4 4 - -

3 ACCR 0.870 0.870 0.870 0.872 0.872 0.875 0.875 -
NoF 4 4 4 5 5 7 7 -

4 ACCR 0.880 0.880 0.880 0.880 0.880 0.880 - -
NoF 4 4 4 4 4 4 - -

5 ACCR 0.940 0.940 0.945 0.945 0.945 0.945 0.945 0.945
NoF 11 11 13 13 13 13 13 13

6 ACCR 0.870 0.870 0.870 0.870 0.870 0.870 0.870 -
NoF 4 4 4 4 4 4 4 -

7 ACCR 0.900 0.900 0.900 0.915 0.915 0.940 0.940 0.940
NoF 1 1 1 3 3 4 4 4

8 ACCR 0.870 0.870 0.870 0.870 0.870 0.935 0.935 0.940
NoF 3 3 3 3 3 6 6 7

9 ACCR 0.870 0.875 0.875 0.880 0.880 0.910 0.910 0.910
NoF 3 4 4 5 5 6 6 6

10 ACCR 0.930 0.930 0.930 0.935 0.935 0.940 0.945 -
NoF 6 6 6 11 11 11 13 -

62

5.2.8. The Performance of IDS on Detecting Decreased Rank Attack with Mobile

Attackers

The best performances obtained with respect to each objective, namely accuracy (ACCR) and

number of features (NoF) are presented for each scenario (S) in Table 5.17. The trade-offs

(TO) between ACCR and NoF for each GP run for an exemplar scenario (S1) is given Table

5.18. As shown in the results, while the highest accuracy rate (87.5%) for scenario 1 (S1)

is achieved by using fourteen features, it drops to 80% when only one feature is used (1

(0.800)). A comparison with results when attacker nodes are not mobile will be provided

shortly. Here, the accuracy results show a noticeable decrease, and the NoF values show a

slight increase compared to the scenario results where the attackers are not mobile. Average

NoF values have increased from 10.5 to 12.125, and average accuracy values have a slight

decrease from 87.9% to 87.7%. As stated previously, IDS cannot detect this type of attack as

effectively as other types. On the other hand, the mobility of attackers have a lower impact

on accuracy as well.

Table 5.17 The extreme results of experiments when the network is under Decreased Rank Attack
with Mobile Attackers.

Objetive S1 S2 S3 S4 S5 S6 S7 S8

ACCR 0.875
(14)

0.865
(12)

0.865
(11)

0.860
(9)

0.875
(13)

0.865
(12)

0.910
(12)

0.900
(14)

NoF 1
(0.800)

1
(0.790)

1
(0.810)

1
(0.810)

1
(0.830)

1
(0.805)

1
(0.800)

1
(0.815)

63

Table 5.18 The best performances with respect to accuracy (ACCR) and number of features (NoF)
obtained in the Pareto front set for DRA with Mobile Attackers.

GP Run Objective TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8

1 ACCR 0.850 0.850 0.850 0.850 0.855 0.875 0.875 -
NoF 4 4 4 4 5 14 14 -

2 ACCR 0.870 0.870 0.870 0.870 0.870 0.870 - -
NoF 12 12 12 12 12 12 - -

3 ACCR 0.800 0.800 0.800 0.800 0.810 0.810 0.820 -
NoF 1 1 1 1 2 2 3 -

4 ACCR 0.870 0.870 0.870 0.870 0.870 0.870 - -
NoF 10 10 10 10 10 10 - -

5 ACCR 0.800 0.800 0.850 0.855 0.855 0.870 0.870 0.870
NoF 1 1 4 5 5 12 12 12

6 ACCR 0.870 0.870 0.870 0.870 0.870 - - -
NoF 13 13 13 13 13 - - -

7 ACCR 0.820 0.820 0.820 0.820 0.820 0.820 - -
NoF 3 3 3 3 3 3 - -

8 ACCR 0.870 0.870 0.870 0.870 0.870 0.875 0.875 0.875
NoF 12 12 12 12 12 14 14 14

9 ACCR 0.850 0.850 0.850 0.850 0.850 - - -
NoF 4 4 4 4 4 - - -

10 ACCR 0.800 0.800 0.850 0.855 0.855 0.870 0.870 0.875
NoF 1 1 4 5 5 12 12 14

5.3. General Discussions

In this study, for evaluating our proposed IDS’s performance, we have considered the set

of Pareto front that represents the objectives of the Pareto dominant individuals found for

each simulated scenario. Because we have run the GP algorithm 10 times for each scenario,

we have aggregated 10 Pareto front sets and extracted the extreme points from these sets to

reveal how well the GP algorithm could achieve maximum optimal performance according to

the accuracy (ACCR) and the number of features (NoF). These extreme points are shown in

Table 5.19 separately for each of the two objectives. The results for networks when attackers

are mobile are given in Table 5.20. For example, ‘0.945 (8)’ stated for the ACCR implies that

the GP could reach 0.945 accuracy with a model that has eight distinct features. Similarly,

‘1 (0.850)’ stated for NoF implies that the GP model has only one distinct feature and could

reach 0.850 accuracy.

64

Table 5.19 The best performances with respect to accuracy (ACCR) and number of features (NoF)
obtained in the Pareto front set.

Scenario Objective WP HF IV DR

S1 ACCR 0.945 (8) 0.950 (13) 0.955 (12) 0.880 (11)
NoF 1 (0.850) 1 (0.865) 1 (0.870) 1 (0.810)

S2 ACCR 0.940 (7) 0.945 (12) 0.950 (12) 0.870 (10)
NoF 1 (0.840) 1 (0.855) 1 (0.870) 1 (0.800)

S3 ACCR 0.950 (11) 0.945 (10) 0.935 (8) 0.870 (10)
NoF 1 (0.845) 1 (0.860) 1 (0.860) 1 (0.820)

S4 ACCR 0.940 (8) 0.940 (9) 0.925 (6) 0.865 (8)
NoF 1 (0.840) 1 (0.855) 1 (0.850) 1 (0.820)

S5 ACCR 0.935 (8) 0.930 (9) 0.940 (10) 0.880 (11)
NoF 1 (0.835) 1 (0.845) 1 (0.830) 1 (0.835)

S6 ACCR 0.935 (12) 0.925 (11) 0.945 (12) 0.875 (10)
NoF 1 (0.830) 1 (0.840) 1 (0.825) 1 (0.810)

S7 ACCR 0.930 (9) 0.925 (12) 0.935 (10) 0.900 (12)
NoF 1 (0.835) 1 (0.830) 1 (0.835) 1 (0.800)

S8 ACCR 0.925 (8) 0.920 (7) 0.910 (9) 0.890 (12)
NoF 1 (0.825) 1 (0.830) 1 (0.810) 1 (0.805)

Table 5.20 The best performances with respect to accuracy (ACCR) and number of features (NoF)
obtained in the Pareto front set when the attackers are mobile.

Scenario Objective WP HF IV DR

S1 ACCR 0.940 (9) 0.945 (14) 0.945 (13) 0.875 (14)
NoF 1 (0.840) 1 (0.855) 1 (0.860) 1 (0.800)

S2 ACCR 0.940 (8) 0.940 (13) 0.945 (14) 0.865 (12)
NoF 1 (0.825) 1 (0.845) 1 (0.860) 1 (0.790)

S3 ACCR 0.950 (12) 0.935 (12) 0.920 (10) 0.865 (11)
NoF 1 (0.825) 1 (0.855) 1 (0.855) 1 (0.810)

S4 ACCR 0.945 (9) 0.940 (12) 0.910 (8) 0.860 (9)
NoF 1 (0.825) 1 (0.845) 1 (0.845) 1 (0.810)

S5 ACCR 0.930 (8) 0.925 (9) 0.935 (12) 0.875 (13)
NoF 1 (0.825) 1 (0.835) 1 (0.825) 1 (0.830)

S6 ACCR 0.935 (13) 0.930 (12) 0.930 (14) 0.865 (12)
NoF 1 (0.825) 1 (0.835) 1 (0.820) 1 (0.805)

S7 ACCR 0.930 (10) 0.920 (12) 0.925 (10) 0.910 (12)
NoF 1 (0.835) 1 (0.830) 1 (0.835) 1 (0.800)

S8 ACCR 0.925 (12) 0.915 (9) 0.905 (12) 0.900 (14)
NoF 1 (0.810) 1 (0.815) 1 (0.820) 1 (0.815)

The results allow us to evaluate our proposed IDS’s performance from different points of

view. The first is that DR is a harder-to-detect routing attack as compared to other attacks

65

when considering the average of the accuracies from eight scenarios (it is 0.88 overall when

the attackers are not mobile, and 0.84 overall when the attackers are mobile). The difference

in the average accuracy performances obtained from the other attacks is not significant, and

GP succeeds to evolve a satisfactory ID program for these attacks (it is 0.94 overall when the

attackers are not mobile, and it is 0.93 when the attackers are mobile). As for the evaluation

according to the average of NoF, it is seen that the ID program requires the more features

for the DR attack (when the attackers are not mobile it is 10.5 in overall, and when the

attackers are mobile it is 10.625 in overall). This clearly suggests that GP is unable to

evolve an ID program that gives higher detection accuracy even after a rigorous evaluation of

massive feature data. Furthermore, when attackers are not mobile, the difference in accuracy

performances obtained from extreme points with respect to ACCR and NoF ranges from

4.5% to 12.0%. They are the WP and DR attacks that give the highest and least difference in

performance, respectively. Similarly, when the attackers are mobile these values are ranges

from 4.5% to 12.5%. Here, the result shows that limiting the number of features in the ID

program has an adverse impact on the detection capability to some degree, as expected, and

this varies according to the targeted attack. Note that these give the largest difference in

the performances of GP, and even a few increases in the number of features in ID program

yield much better accuracy. Moreover, mobility increases the number of features required

for effective detection for all attack types. On the other hand, whether the attacker nodes

are mobile or not does not make a significant difference in the accuracy results. Because,

even if the attacker nodes are mobile, they remain in a certain region in terms of their area

of influence. In the future, a study can be carried out by expanding the range of motion of

attacker nodes.

When it comes to the change in IDS performance when only attackers are repositioned with

the same configurations of the monitoring nodes (that is, the comparison of S1 with S2, S3

with S4, and so forth) a slight performance degradation is often observed, and the change

here is no more than 2.5% (when the attackers are not mobile) and 2% (when the attackers

are mobile). This is not surprising because the locations of attackers are positioned randomly

from the entire network, and there are cases studied in these scenarios where the ID program

66

evolved and tested when the attacker nodes are, respectively, in the vicinity and away from

the monitoring or root node. Regarding the change in IDS performance according to different

configurations of monitoring nodes by keeping attacker’s positions the same and different

(that is, comparison of S1 with S3 and S2 with S4), it is seen that the performance of the

evolved ID program slightly improves (up to 2.5%, when the attackers are not mobile, and

3% when the attackers are mobile) when monitoring nodes are positioned within the first

three hops.

In order to reveal how monitoring nodes are helpful in improving the attack detection

capability of the ID program, we replicated the simulations by adopting a standalone

architecture where the root node is in charge of intrusion detection alone. The simulation

here is run with two attacker configurations that are denoted ‘same’ and ‘different’ which

again represent the cases where attackers are positioned at the same and different locations

when ID program is evaluated in the testing environment. Respectively, the results for

static and mobile attackers are shown in Table 5.21-Table 5.22. Note that S1 through S4

in Table 5.19 and Table 5.20 should only be considered to ensure a fair comparison between

the performance of collaborative and standalone architectures.

Table 5.21 The extreme points with respect to ACCR and NoF in the Pareto front sets obtained by
the standalone architecture.

Position Objective WP HF IV DR

Same ACCR 0.910 (9) 0.920 (12) 0.935 (11) 0.865 (10)
NoF 1 (0.835) 1 (0.840) 1 (0.830) 1 (0.790)

Different ACCR 0.905 (8) 0.915 (11) 0.925 (12) 0.860 (9)
NoF 1 (0.825) 1 (0.830) 1 (0.825) 1 (0.780)

Table 5.22 The extreme points with respect to ACCR and NoF in the Pareto front sets obtained by
the standalone architecture when the attackers are mobile.

Position Objective WP HF IV DR

Same ACCR 0.905 (10) 0.915 (12) 0.920 (13) 0.855 (15)
NoF 1 (0.820) 1 (0.815) 1 (0.805) 1 (0.770)

Different ACCR 0.900 (10) 0.910 (12) 0.910 (13) 0.850 (10)
NoF 1 (0.815) 1 (0.820) 1 (0.815) 1 (0.765)

67

The results suggest that the performance of the ID program increases with the collaborative

architecture, and when attackers are not mobile, the difference reaches 4%. On the other

hand, when attackers are mobile, this difference increases to 4.5%. However, no significant

differences are observed in terms of NoF.

In order to evaluate how early the proposed IDS system can detect intrusions, we inspect the

behavior of the IDS on individual flows that are split for 60 s. Note that, as stressed earlier,

the network traffic is split into the individual flows that capture the feature from the sub-traffic

within a predefined time interval, and the extracted features are evaluated by IDS just after

the flow. Experimental results show that the proposed IDS can detect 50%, 46.875%, and

3.125% of attacks at the end of the first, second, and third window interval, respectively.

Finally, the importance of the features is also assessed to reveal which features greatly

influence the detection ability of the evolved IDS. For this, the Weka [78] toolkit is

used. It has been observed that PacketCountDIS (97.5%), MaxIntervalMin (96.42%),

PacketCountData (94.5%), MinTimeBtwDAO (92.5%), PacketCountDIO (91.25%),

PacketCountDIO (91.25%) are important for WP attack whereas PacketCountDIS

(97.25%), PacketCountDIO (97.25%), MinTimeBtwDAO (96%), AvgIntervalDoubling

(93.5%), AvgTimeBtwData (91%), MaxIntervalMin (88%) are important for HF attack.

As for IV attack, PacketCountDIO (96%), PacketCountData (95.5%), AvgTimeBtwData

(94.5%), MinTimeBtwDIO (93%), MaxIntervalMin (90%) are found important features.

Finally, PacketCountDIS (97.5%), PacketCountDIO (96.25%), PacketCountData (95.25%),

MaxIntervalMin (93%), AvgTimeBtwData (92%), MinTimeBtwDIO (91%) are important

for DR attack.

68

6. CONCLUSION

The rapid development of IoT, which gradually increases its impact and frequency of use in

all areas of life, unfortunately has brought security concerns with it. IoT devices share and

transfer data among themselves due to the nature of the network they are in. In many cases,

this data may be proprietary or confidential information. A specific purpose of an IoT device

may require it to connect to the Internet or stay connected to the network. However, these

devices also have some resource (memory, energy etc.) limitations. These limitations are the

weakest link for IoT devices. Currently, these systems exist in a wide range of applications

and usage areas due to the requirements of our age. From smart hospital projects to space

technologies; it is in a long range from wearable technologies to smart phones. This wide

usage area and different system requirements cause traditional security mechanisms and

candidate solutions for IoT security to not meet the security needs most of the time, and

often create a so-called security system. In addition, in resource-constrained networks, it is

very important to calculate the communication cost and keep it at a minimum. However,

current security solutions are not suitable for such complex networks problems.

RPL, one of the routing protocol, is designed for resource-constrained IoT networks. The

lack of security mechanisms in the RPL structure is highly susceptible to internal and external

attacks. The network structure of RPL-based networks has made this network too complex

for various intrusion detection to be performed by traditional methods. There are many

solutions and approaches for these complex optimization problems. Pareto-based approaches

are one of the most popular approaches in this area, for producing satisfactory solutions

and solving multi-objective problems. Since more than one candidate offers a solution,

Pareto-based approach gives the researcher a chance to evaluate by adding real-life concrete

or abstract constraints.

In this thesis, we explore the use of the Pareto-based multi-objective approach to efficiently

and effectively detect four different attack types (WP attack, HF attack, IV attack, and DR

attack) specific to RPL.

69

To the best of the author’s knowledge, this thesis is the first study which goals to

simultaneously optimize detection accuracy (ACCR) of ID programs and their costs

including communication cost of ID nodes. To do that, a massive number of simulations are

generated, and the different ID programs are evolved from these simulations. The evaluations

are made on the basis of Pareto sets obtained from the evolved programs. The proposed

approach has been shown to ensure satisfactory performance in the detection accuracy of the

attacks covered in this study.

70

REFERENCES

[1] Selim Yılmaz, Emre Aydogan, and Sevil Sen. A transfer learning approach for

securing resource-constrained iot devices. IEEE Transactions on Information

Forensics and Security, 16:4405–4418, 2021.

[2] Ahmed Raoof, Ashraf Matrawy, and Chung-Horng Lung. Routing attacks and

mitigation methods for rpl-based internet of things. IEEE Communications

Surveys & Tutorials, 21(2):1582–1606, 2018.

[3] Anthea Mayzaud, Remi Badonnel, and Isabelle Chrisment. A taxonomy of

attacks in rpl-based internet of things. International Journal of Network Security,

18(3):459–473, 2016.

[4] Erdem Canbalaban and Sevil Sen. A cross-layer intrusion detection system for

rpl-based internet of things. In International Conference on Ad-Hoc Networks

and Wireless, pages 214–227. Springer, 2020.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective

genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,

6(2):182–197, 2002.

[6] Ahmet Arış and Sema F Oktuğ. Analysis of the rpl version number attack

with multiple attackers. In 2020 International Conference on Cyber Situational

Awareness, Data Analytics and Assessment (CyberSA), pages 1–8. IEEE, 2020.

[7] Virendra Pal Singh, Sweta Jain, and Jyoti Singhai. Hello flood attack and its

countermeasures in wireless sensor networks. International Journal of Computer

Science Issues (IJCSI), 7(3):23, 2010.

[8] Internet of things (iot) connected devices installed base worldwide from 2015

to 2025 (in billions). https://www.statista.com/statistics/

471264/iot-number-of-connected-devices-worldwide/.

Accessed: 2020-04-01.

71

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

[9] Cisco. Cisco visual networking index: Forecast and trends,

2017–2022 white paper. https://www.cisco.com/c/

en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white-paper-c11-741490.

html. Accessed: 2020-04-01.

[10] Alex Koohang, Carol Springer Sargent, Jeretta Horn Nord, and Joanna

Paliszkiewicz. Internet of things (iot): From awareness to continued use.

International Journal of Information Management, 62:102442, 2022.

[11] Jonathan Hui and Pascal Thubert. Compression format for ipv6 datagrams over

ieee 802.15. 4-based networks. Technical report, 2011.

[12] IEEE Standards Association et al. Ieee std 802.15. 4-2011, ieee standard for

local and metropolitan area networks—part 15.4: Low-rate wireless personal area

networks (lr-wpans), 2011.

[13] Roger Alexander, Anders Brandt, JP Vasseur, Jonathan Hui, Kris Pister, Pascal

Thubert, P Levis, Rene Struik, Richard Kelsey, and Tim Winter. RPL: IPv6

Routing Protocol for Low-Power and Lossy Networks. RFC 6550, 2012.

doi:10.17487/RFC6550.

[14] Akshaya Dhingra and Vikas Sindhu. A study of rpl attacks and defense

mechanisms in the internet of things network. In 2022 International Conference

on Computing, Communication, Security and Intelligent Systems (IC3SIS), pages

1–6. IEEE, 2022.

[15] YP Raiwani. Internet of things: a new paradigm. International Journal of

Scientific and Research Publications, 3(4):1–4, 2013.

[16] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of things (iot): A vision, architectural elements, and future

directions. Future generation computer systems, 29(7):1645–1660, 2013.

72

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

[17] Pradyumna Gokhale, Omkar Bhat, and Sagar Bhat. Introduction to

iot. International Advanced Research Journal in Science, Engineering and

Technology, 5(1):41–44, 2018.

[18] Number of internet of things (iot) connected devices worldwide

from 2019 to 2030(in billions). https://www.statista.com/

statistics/1183457/iot-connected-devices-worldwide/.

Accessed:2022-06-06.

[19] Cleber M de Morais, Djamel Sadok, and Judith Kelner. An iot sensor and

scenario survey for data researchers. Journal of the Brazilian Computer Society,

25(1):1–17, 2019.

[20] Hao Chen, Xueqin Jia, and Heng Li. A brief introduction to iot gateway. In IET

international conference on communication technology and application (ICCTA

2011), pages 610–613. IET, 2011.

[21] Ulrich Herberg and Thomas Clausen. A comparative performance study of the

routing protocols load and rpl with bi-directional traffic in low-power and lossy

networks (lln). In Proceedings of the 8th ACM Symposium on Performance

Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, PE-WASUN

’11, page 73–80. Association for Computing Machinery, New York, NY, USA,

2011. ISBN 9781450309004. doi:10.1145/2069063.2069076.

[22] Ulrich Herberg and Thomas Clausen. A comparative performance study of the

routing protocols load and rpl with bi-directional traffic in low-power and lossy

networks (lln). In Proceedings of the 8th ACM Symposium on Performance

evaluation of wireless ad hoc, sensor, and ubiquitous networks, pages 73–80.

2011.

[23] Cansu Dogan, Selim Yilmaz, and Sevil Sen. Analysis of rpl objective functions

with security perspective. In SENSORNETS, pages 71–80. 2022.

73

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[24] Ibtissem Zaatouri, Nouha Alyaoui, Awatef Benfradj Guiloufi, Francoise Sailhan,

and Abdennaceur Kachouri. Design and performance analysis of objective

functions for rpl routing protocol. Wireless Personal Communications,

124(3):2677–2697, 2022.

[25] Tim Winter, Pascal Thubert, Anders Brandt, Jonathan Hui, Richard Kelsey, Philip

Levis, Kris Pister, Rene Struik, Jean-Philippe Vasseur, and Roger Alexander. Rpl:

Ipv6 routing protocol for low-power and lossy networks. Technical report, 2012.

[26] Anthéa Mayzaud, Rémi Badonnel, and Isabelle Chrisment. A taxonomy of

attacks in rpl-based internet of things. Int. J. Netw. Secur., 18:459–473, 2016.

[27] Sevil Şen, John A Clark, and Juan E Tapiador. Power-aware intrusion detection

in mobile ad hoc networks. In Ad Hoc Networks: First International Conference,

ADHOCNETS 2009, Niagara Falls, Ontario, Canada, September 22-25, 2009.

Revised Selected Papers 1, pages 224–239. Springer, 2010.

[28] Behnam Farzaneh, Mohammad Ali Montazeri, and Shahram Jamali. An

anomaly-based ids for detecting attacks in rpl-based internet of things. In 2019

5th International Conference on Web Research (ICWR), pages 61–66. IEEE,

2019.

[29] Jaspreet Kaur and Gagandeep Singh. A blockchain-based machine learning

intrusion detection system for internet of things. In Principles and Practice of

Blockchains, pages 119–134. Springer, 2023.

[30] Pankaj Pal, Sachin Tripathi, and Chiranjeev Kumar. Bandwidth estimation in

high mobility scenarios of manet using nsga-ii optimized fuzzy inference system.

Applied Soft Computing, 123:108936, 2022.

[31] Safia Lateef, Muhammad Rizwan, and Muhammad Abul Hassan. Security threats

in flying ad hoc network (fanet). Computational Intelligence for Unmanned

Aerial Vehicles Communication Networks, pages 73–96, 2022.

74

[32] Mohsen Sheibani, Behrang Barekatain, and Erfan Arvan. A lightweight

distributed detection algorithm for ddao attack on rpl routing protocol in internet

of things. Pervasive and Mobile Computing, 80:101525, 2022.

[33] Aryan Mohammadi Pasikhani, John A Clark, and Prosanta Gope. Adaptive

hybrid heterogeneous ids for 6lowpan. arXiv preprint arXiv:2205.09170, 2022.

[34] Xin-She Yang and Luniver Press. Nature-inspired metaheuristic algorithms

second edition, 2010.

[35] Selim Yılmaz. Electric fish optimization: A new heuristic algorithm based on

electrolocation. 2020.

[36] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A

fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on

evolutionary computation, 6(2):182–197, 2002.

[37] Girish Sharma, Jyoti Grover, and Abhishek Verma. Performance evaluation

of mobile rpl-based iot networks under version number attack. Computer

Communications, 2022.

[38] Cooja simulator. https://www:https://anrg.usc.edu/contiki/

index.php/Cooja_Simulator. Accessed: 2022-12-9.

[39] Anhtuan Le, Jonathan Loo, Aboubaker Lasebae, Alexey Vinel, Yue Chen, and

Michael Chai. The impact of rank attack on network topology of routing protocol

for low-power and lossy networks. IEEE Sensors Journal, 13(10):3685–3692,

2013.

[40] Anhtuan Le, Jonathan Loo, Yuan Luo, and Aboubaker Lasebae. The impacts

of internal threats towards routing protocol for low power and lossy network

performance. In 2013 IEEE symposium on computers and communications

(ISCC), pages 000789–000794. IEEE, 2013.

75

https://www:https://anrg.usc.edu/contiki/index.php/Cooja_Simulator.
https://www:https://anrg.usc.edu/contiki/index.php/Cooja_Simulator.

[41] Shahid Raza, Linus Wallgren, and Thiemo Voigt. Svelte: Real-time intrusion

detection in the internet of things. Ad hoc networks, 11(8):2661–2674, 2013.

[42] Deepali Bankatsingh Gothawal and SV Nagaraj. Anomaly-based intrusion

detection system in rpl by applying stochastic and evolutionary game models over

iot environment. Wireless Personal Communications, 110(3):1323–1344, 2020.

[43] Emre Aydogan, Selim Yilmaz, Sevil Sen, Ismail Butun, Stefan Forsström, and

Mikael Gidlund. A central intrusion detection system for rpl-based industrial

internet of things. In 2019 15th IEEE International Workshop on Factory

Communication Systems (WFCS), pages 1–5. IEEE, 2019.

[44] F Zahra, NZ Jhanjhi, Sarfraz Nawaz Brohi, Navid Ali Khan, Mehedi Masud, and

Mohammed A AlZain. Rank and wormhole attack detection model for rpl-based

internet of things using machine learning. Sensors, 22(18):6765, 2022.

[45] Wireshark. https://sys.cs.uos.de/bonnmotion/doc/README.

pdf. Accessed: 2022-12-12.

[46] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting

decision tree. Advances in neural information processing systems, 30, 2017.

[47] Nicolas M Müller, Pascal Debus, Daniel Kowatsch, and Konstantin Böttinger.

Distributed anomaly detection of single mote attacks in rpl networks. In ICETE

(2), pages 378–385. 2019.

[48] Anthéa Mayzaud, Rémi Badonnel, and Isabelle Chrisment. A distributed

monitoring strategy for detecting version number attacks in rpl-based networks.

IEEE transactions on network and service management, 14(2):472–486, 2017.

[49] Anthéa Mayzaud, Anuj Sehgal, Rémi Badonnel, Isabelle Chrisment, and Jürgen

Schönwälder. Using the rpl protocol for supporting passive monitoring in the

internet of things. In NOMS 2016-2016 IEEE/IFIP Network Operations and

Management Symposium, pages 366–374. IEEE, 2016.

76

https://sys.cs.uos.de/bonnmotion/doc/README.pdf.
https://sys.cs.uos.de/bonnmotion/doc/README.pdf.

[50] Syeda Mariam Muzammal, Raja Kumar Murugesan, Noor Zaman Jhanjhi, and

Low Tang Jung. Smtrust: proposing trust-based secure routing protocol for rpl

attacks for iot applications. In 2020 International Conference on Computational

Intelligence (ICCI), pages 305–310. IEEE, 2020.

[51] David Airehrour, Jairo A Gutierrez, and Sayan Kumar Ray. Sectrust-rpl: A

secure trust-aware rpl routing protocol for internet of things. Future Generation

Computer Systems, 93:860–876, 2019.

[52] Nabil Djedjig, Djamel Tandjaoui, Faiza Medjek, and Imed Romdhani.

Trust-aware and cooperative routing protocol for iot security. Journal of

Information Security and Applications, 52:102467, 2020.

[53] Abhishek Verma and Virender Ranga. Elnids: Ensemble learning based network

intrusion detection system for rpl based internet of things. In 2019 4th

International conference on Internet of Things: Smart innovation and usages

(IoT-SIU), pages 1–6. IEEE, 2019.

[54] John T Hancock and Taghi M Khoshgoftaar. Survey on categorical data for neural

networks. Journal of Big Data, 7(1):1–41, 2020.

[55] Furkan Yusuf Yavuz, ÜNAL Devrim, and GÜL Ensar. Deep learning for

detection of routing attacks in the internet of things. International Journal of

Computational Intelligence Systems, 12(1):39, 2018.

[56] Semih Cakir, Sinan Toklu, and Nesibe Yalcin. Rpl attack detection and prevention

in the internet of things networks using a gru based deep learning. IEEE Access,

8:183678–183689, 2020.

[57] Fangyu Li, Aditya Shinde, Yang Shi, Jin Ye, Xiang-Yang Li, and Wenzhan Song.

System statistics learning-based iot security: Feasibility and suitability. IEEE

Internet of Things Journal, 6(4):6396–6403, 2019.

77

[58] Danish Attique, Wang Hao, and Wang Ping. Fog-assisted

deep-learning-empowered intrusion detection system for rpl-based

resource-constrained smart industries. Sensors, 22(23):9416, 2022.

[59] Huixin Zhang and Yiding Zhao. Vehicle load monitoring method based on nbiot.

In 2022 5th International Symposium on Autonomous Systems (ISAS), pages 1–5.

IEEE, 2022.

[60] Balachandra Muniyal and Manjula C Belavagi. Intrusion detection using rule

based approach in rpl networks. 2022.

[61] A Parmisano, Sebastian Garcia, and MJ Erquiaga. Stratosphere laboratory. a

labeled dataset with malicious and benign iot network traffic, 2019.

[62] Iman Almomani, Bassam Al-Kasasbeh, and Mousa Al-Akhras. Wsn-ds: A

dataset for intrusion detection systems in wireless sensor networks. Journal of

Sensors, 2016, 2016.

[63] Ly Vu, Quang Uy Nguyen, Diep N Nguyen, Dinh Thai Hoang, and Eryk

Dutkiewicz. Deep transfer learning for iot attack detection. IEEE Access,

8:107335–107344, 2020.

[64] Sean Luke. The ecj owner’s manual. San Francisco, California, A user manual

for the ECJ Evolutionary Computation Library, pages 1–206, 2010.

[65] Genetic algorithm. https://https://en.wikipedia.org/wiki/

Genetic_algorithm. Accessed: 2022-12-12.

[66] Andrew L Nelson, Gregory J Barlow, and Lefteris Doitsidis. Fitness functions in

evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems,

57(4):345–370, 2009.

[67] Contiki-Ng. contiki-ng/contiki-ng. https://github.com/contiki-ng/

contiki-ng/wiki, 2004. Accessed 13-July-2021.

78

https://https://en.wikipedia.org/wiki/Genetic_algorithm
https://https://en.wikipedia.org/wiki/Genetic_algorithm
https://github.com/contiki-ng/contiki-ng/wiki
https://github.com/contiki-ng/contiki-ng/wiki

[68] Contiki. contiki-os/contiki. https://github.com/contiki-os/

contiki. Accessed: 2022-12-12.

[69] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a lightweight and

flexible operating system for tiny networked sensors. In 29th annual IEEE

international conference on local computer networks, pages 455–462. IEEE,

2004.

[70] Mainpage:contiki - zolertia. https://zolertia.sourceforge.net/

wiki/index.php/Mainpage:Contiki. Accessed: 2022-12-9.

[71] How to implement sky motes in coap on cooja simulation? https://

slogix.in/source-code/contiki-cooja-samples-for-IoT/

how-to-implement-sky-motes-in-coap-on-cooja-simulation/

. Accessed: 2022-12-9.

[72] Avr motes in cooja. https://github.com/contiki-os/contiki/

wiki/AVR-Motes-in-Cooja. Accessed: 2022-12-9.

[73] Dhondta and Bahmadh. Rpl-attacks: Rpl attacks framework. [Online] Avaliable

: https://doi.org/10.5281/zenodo.55352, accessed:2022-08-19, 2016.

[74] Mobility of nodes in cooja. https://anrg.usc.edu/contiki/index.

php/Mobility_of_Nodes_in_Cooja. Accessed: 2022-12-11.

[75] Contiki projects community code. https://sourceforge.net/p/

contikiprojects/code/HEAD/tree/sics.se/mobility/.

Accessed: 2022-12-11.

[76] A mobility scenario generation and analysis tool documentation, version:

February 18, 2016 . https://sys.cs.uos.de/bonnmotion/doc/

README.pdf. Accessed: 2022-12-12.

[77] Accuracy vs auc in machine learning . https://https://www.

baeldung.com/cs/ml-accuracy-vs-auc. Accessed: 2022-12-12.

79

https://github.com/contiki-os/contiki
https://github.com/contiki-os/contiki
https://zolertia.sourceforge.net/wiki/index.php/Mainpage:Contiki.
https://zolertia.sourceforge.net/wiki/index.php/Mainpage:Contiki.
https://slogix.in/source-code/contiki-cooja-samples-for-IoT/how-to-implement-sky-motes-in-coap-on-cooja-simulation/.
https://slogix.in/source-code/contiki-cooja-samples-for-IoT/how-to-implement-sky-motes-in-coap-on-cooja-simulation/.
https://slogix.in/source-code/contiki-cooja-samples-for-IoT/how-to-implement-sky-motes-in-coap-on-cooja-simulation/.
https://slogix.in/source-code/contiki-cooja-samples-for-IoT/how-to-implement-sky-motes-in-coap-on-cooja-simulation/.
https://github.com/contiki-os/contiki/wiki/AVR-Motes-in-Cooja.
https://github.com/contiki-os/contiki/wiki/AVR-Motes-in-Cooja.
https://anrg.usc.edu/contiki/index.php/Mobility_of_Nodes_in_Cooja.
https://anrg.usc.edu/contiki/index.php/Mobility_of_Nodes_in_Cooja.
https://sourceforge.net/p/contikiprojects/code/HEAD/tree/sics.se/mobility/.
https://sourceforge.net/p/contikiprojects/code/HEAD/tree/sics.se/mobility/.
https://sys.cs.uos.de/bonnmotion/doc/README.pdf.
https://sys.cs.uos.de/bonnmotion/doc/README.pdf.
https://https://www.baeldung.com/cs/ml-accuracy-vs-auc
https://https://www.baeldung.com/cs/ml-accuracy-vs-auc

[78] Weka 3: Machine learning software in java. https://www.cs.waikato.

ac.nz/ml/weka/. Accessed: 2022-12-12.

80

https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLES
	FIGURES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Scope Of The Thesis
	1.2. Contributions
	1.3. Organization

	2. BACKGROUND OVERVIEW
	2.1. RPL
	2.1.1. RPL Repair Mechanisms
	2.1.2. Routing Attacks against RPL

	2.2. Intrusion Detection Systems (IDSs)
	2.2.1. Intrusion Detection Placement
	2.2.2. Intrusion Detection Techniques
	2.2.3. Intrusion Detection Architectures

	2.3. Optimization
	2.3.1. Multi-objective Optimization
	2.3.2. Genetic Programming (GP)
	2.3.3. Non-Dominated Sorting Genetic Algorithm-II (NSGA-II)

	3. RELATED WORK
	3.1. Attack Analysis for RPL-based IoT Networks
	3.2. Intrusion Detection for RPL-based IoT Networks

	4. MULTI OBJECTIVE-BASED INTRUSION DETECTION SYSTEM
	4.1. RPL-specific attacks
	4.1.1. Decreased Rank Attack (DR)
	4.1.2. Increased Version Attack (IV)
	4.1.3. Hello Flood Attack (HF)
	4.1.4. Worst Parent Attack (WP)

	4.2. Intrusion Detection Architecture
	4.3. Evolving Intrusion Detection Algorithms
	4.3.1. The Features
	4.3.2. The Representation
	4.3.3. Fitness Function
	4.3.3.1. Detection Accuracy
	4.3.3.2. Communication Cost

	5. EVALUATION OF THE PROPOSED APPROACH
	5.1. Settings for Experiments
	5.1.1. Simulation Environment
	5.1.2. Simulation Environment with Mobile Attackers
	5.1.3. Performance Metrics

	5.2. Experimental Results
	5.2.1. The Performance of IDS on Detecting Worst Parent Attack
	5.2.2. The Performance of IDS on Detecting Hello Flood Attack
	5.2.3. The Performance of IDS on Detecting Increased Version Attack
	5.2.4. The Performance of IDS on Detecting Decreased Rank Attack
	5.2.5. The Performance of IDS on Detecting Worst Parent Attack with Mobile Attackers
	5.2.6. The Performance of IDS on Detecting Hello Flood Attack with Mobile Attackers
	5.2.7. The Performance of IDS on Detecting Increased Version Attack with Mobile Attackers
	5.2.8. The Performance of IDS on Detecting Decreased Rank Attack with Mobile Attackers

	5.3. General Discussions

	6. CONCLUSION

