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Action quality assessment using computerized methods is considered to be a promising 

direction in objective evaluation of actions in several domains including health, sport and 

education. In a typical architecture for quality assessment, a classification or regression 

system is asked to assign a query action to a predefined category or a continuous label 

that determines its quality level. Such systems are still trained manually, and they may 

have inconsistent annotations. Hence, an attempt to categorize or quantify the quality 

level can be biased due to potentially scarce or skewed training data.  

 

In this thesis, we approach the quality assessment problem as a pairwise ranking task 

where we relatively assess two input actions to identify better performance instead of 

assessing their absolute levels. To this end, we propose a novel computational model that 

takes two action data in the form of multi-variate time-series acquired from motion 
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sensors and reports the probability of a query sample having a better quality than a 

reference one. The ranking model is built upon an attention-enhanced Siamese Long 

Short-Term Memory (LSTM) Network fed by piecewise aggregate approximation of 

time-series data. A probabilistic ranking layer is proposed to make the final relative 

assessment. The pairwise model is further extended to create an empirical feature 

representation in a regression setup. 

 

The model is adopted in three different applications, namely, gait assessment in 

Parkinson’s Disease (PD) patients using foot sensors, surgery skill assessment using 

kinematics sensors and diving quality assessment using estimated pose from video 

recordings.  According to experimental results, the proposed model achieves higher 

assessment accuracy than the existing models for pairwise ranking in all common 

datasets. The new regression model with new ranking-based empirical feature 

representation also outperforms the existing models when applied in their experimental 

setup. The proposed model is further shown to be accurate in individual progress 

monitoring.  

 

The model that is developed in this thesis can be considered as a generic model for several 

pairwise ranking tasks provided that the inputs are in the form of multi-variate time-series 

signals. While LSTM layer makes the model applicable for all sequential signals, 

attention enhancement extends its ability to adopt novel signals obtained from different 

measurement modalities. Proposed rank layer with probabilistic loss function allows the 

Siamese model to handle relative comparison of inputs instead of their direct evaluation 

for similarity. This relative assessment approach may overcome the limitations of having 

consistent annotations to define quality levels and provide a more interpretable means for 

objective skill assessment. Moreover, the model allows monitoring the skill development 

of individuals by comparing two activities at different time points. We expect that this 

model will find a wide range of applications in several domains, but more particularly in 

sports and healthcare. 
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Eylem kalite değerlendirmesinde bilgisayarlı yöntemlerin kullanılması, sağlık, spor ve 

eğitim gibi çeşitli alanlardaki eylemlerin objektif olarak değerlendirilmesinde umut verici 

bir yön olarak kabul edilmektedir. Tipik bir eylem kalite değerlendirme mimarisinde 

amaç, herhangi bir eylemin önceden tanımlanmış bir kategoriye veya o eylemin kalite 

seviyesini belirleyen sürekli bir etikete atanması amacıyla bir sınıflandırma veya 

regresyon sistemi geliştirmektir. Bu tür sistemler manuel olarak, üstelik işaretleme yapan 

kişinin olası tutarsız etiketlemeleri ile eğitildiğinden, kalite düzeyini kategorize etme veya 

eylemin kalite başarı seviyesini tam olarak tahmin etme girişimi, potansiyel olarak az 

sayıda ve dengesiz eğitim verileriyle hatalı sonuçlara sebebiyet verebilir. 

 

Bu tezde, eylem kalitesi değerlendirme problemini, eylemlerin mutlak seviyelerini 

doğrudan değerlendirmek ve tahmin etmek yerine, daha iyi performansı belirlemek için 
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iki girdi eylemini göreceli olarak değerlendirdiğimiz ikili bir sıralama görevi olarak ele 

alıyoruz. Bu amaçla, hareket sensörlerinden elde edilen çok değişkenli zaman serisi 

türünde iki eylem verisini girdi olarak alan ve bir sorgu örneğinin referans olandan daha 

iyi kalitede olma olasılığını rapor eden yeni bir model öneriyoruz. Bu ikili sıralama 

modeli, zaman serisi verilerinin parçalı toplam yaklaşımıyla (piecewise aggregate 

approximation) eğitilen bir dikkat mekanizması (attention-enhanced) tabanlı Siyam 

Uzun Kısa-Süreli Bellek (Siamese Long Short-Term Memory) Ağı üzerine kurulmuştur. 

Mimarinin final katmanında, nihai göreceli değerlendirmeyi yapmak için de yenilikçi bir 

olasılıksal sıralama katmanı önerilmiştir. Ayrıca geliştirilen bu ikili model, eylem kalite 

değerlendirmesi problemini bir regresyon modeli olarak ele almak istediğimizde, o 

modelin eğitimindeki öznitelik kümesini oluşturmak için daha da genişletilmiştir. 

 

Model sırasıyla, Parkinson hastalarında ayak sensörleri kullanılarak hastaların 

yürüyüşlerinin değerlendirmesi, kinematik sensörler kullanılarak cerrahi beceri 

değerlendirmesi ve video kayıtlarından elde edilmiş pozlar kullanılarak olimpik dalış 

kalitesi değerlendirmesi olmak üzere üç farklı uygulamada test edilmiştir. Deneysel 

sonuçlara göre, önerilen modelin, bu veri setlerini kullanan mevcut modellerden daha 

yüksek doğruluk sonuçlarına eriştiği görülmüştür. Ayrıca geliştirdiğimiz sıralama tabanlı 

deneysel öznitelik temsiline sahip yeni regresyon modelinin, aynı deneysel düzenekte 

uygulandığında mevcut modellerden daha iyi performans değerlerine ulaştığı da 

gösterilmiştir. Modelin ayrıca bireysel gelişim takibinde de anlamlı sonuçlar verdiği 

izlenmiştir. 

 

Model, girdilerin çok değişkenli zaman serisi sinyalleri biçiminde olması sebebiyle, ikili 

sıralama görevi için genel bir model olarak düşünülebilir. Uzun Kısa-Süreli Bellek 

katmanı, modeli tüm sıralı sinyaller için uygulanabilir hale getirirken, dikkat 

mekanizması, farklı ölçüm türlerinden elde edilen yeni sinyalleri benimseme yeteneğini 

genişletir. Olasılıksal kayıp fonksiyonuna sahip önerilen sıra katmanı, Siyam modelinin, 

girdi eylemlerin benzerliklerini hesaplamak için doğrudan değerlendirmeleri yerine, bu 

eylemlerin birbirlerine göre göreceli olarak karşılaştırılmasına imkân sağlar. Bu göreceli 

değerlendirme yaklaşımı, kalite seviyelerini tanımlamak için yeterli etiketlemeye sahip 

olamamanın dezavantajlarının üstesinden gelebilir ve nesnel beceri değerlendirmesi için 
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daha yorumlanabilir bir araç sağlayabilir. Ayrıca model, farklı zaman noktalarında iki 

aktiviteyi karşılaştırarak bireylerin beceri gelişiminin izlenmesine olanak tanır. Bu 

modelin çeşitli alanlarda, ancak özellikle spor ve sağlıkta geniş bir uygulama yelpazesi 

bulmasını bekliyoruz. 

 

Anahtar Kelimeler: İkili sıralama; göreceli değerlendirme, çok değişkenli zaman serisi 

analizi; yürüyüş değerlendirmesi, cerrahi beceri değerlendirmesi, spor beceri 

değerlendirmesi.  
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1. INTRODUCTION 

 

1.1 Motivation 

Ranking two or more entities, which can be either a person, an object, or an event, based 

on any criteria is a common practice in our daily or business life. When we are in the 

position of selecting something, we usually compare available options and decide after a 

rank-based evaluation. For example, the winner of a championship is determined by the 

rank of participants, but not based on their individual performance. Final grades of 

students in a class are often assigned using a so-called “grading by curve” system, where 

all students are sorted by their individual scores first and then letter grades are given in 

their categorical order. A recruitment process usually involves a step of ranking existing 

candidates in a certain stage. A collaborative recommendation system shows potential 

entries to a user based on their rank of likes by other similar users. All these ranking 

assessment results are usually inferred from pairwise ranking of given entities. 

 

Although it is very common in daily practices, ‘pairwise ranking’ has not received as 

much attention as classification, clustering, and regression tasks in computer science, or 

particularly machine learning community. In general, pairwise models have been studied 

extensively in computer science literature [1-4]. Some of these studies can be grouped 

into multi-stream learning models, such as Siamese or triplet networks, for ‘classification’ 

of objects [1]. These models attempt to learn a number of parameters to keep the pairs in 

the same class together and the pairs in the opposite classes further. The final model can 

assign the query sample into a class based on the pairwise scores with training samples.  

 

Another group of studies, which is called ‘learning to rank’, deals with ‘retrieval’ of 

similar objects from a repository [2]. The objective is to provide users most relevant 

entities in terms of their similarity to given query. Here again, a pairwise model aims to 

learn how similar two inputs are based on a training set of similarity scores, but not to 

rank them. In this context, ranking refers to relevance-based sorting of retrieved objects. 
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In ‘pairwise ranking’, particularly, the aim is to predict if the first sample is greater than 

the second sample in terms of an independent continuous label, which measures any 

quantity of the input signal. This problem has been tackled very recently for pairwise 

‘ranking’ of image data in terms of their quality [3]. We have also recently seen some 

applications of pairwise ranking in video data for action quality assessment in sport 

activities as well [4].  

 

In this thesis, we address the problem of ranking two human actions, where the activity 

information is acquired from multiple sensors over a time period. To this end, we offer a 

two-stream machine learning model that takes two input signals to be compared and 

returns the probability of first input ranked higher than second input without any prior 

information about the criteria of ranking but with the availability of previous human-

annotated samples of ranked pairs. The model is an adoption of Siamese recurrent neural 

network [5] for the task of pairwise ranking instead of pairwise similarity inference. This 

requires redefinition of the decision layer with a modified loss function. We offer a 

probabilistic loss layer for this purpose. The recurrent layer is implemented as a Long 

Short-Term Memory (LSTM) enhanced by an attention mechanism to capture remote 

dependencies in input signals relevant to gait skills. To cope with the sparsity of observed 

data, a pre-processing step based on piecewise aggregate approximation is adopted to the 

model. For convenience, the model will be referred to as Ranking by Siamese Recurrent 

Network with Attention (RSRNA) in the rest of the thesis. 

 

The model encourages the use of a relative evaluation approach instead of an absolute 

scoring in action quality assessment. However, the model proposed can also be extended 

to enable an absolute assessment without any further feature extraction from raw data. To 

this end, we offer an empirical feature representation scheme to feed a regression 

framework built upon any mathematical model. In this scheme, each feature represents 

the pairwise rank between query sample and any other sample in the training set.  
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Although the models are applicable to any types of multi-variate time-series data, we 

adopt them in the scope of action quality assessment and demonstrate their ability in three 

different real-world scenarios: (1) Gait quality assessment for Parkinson’s Disease (PD) 

patients using foot-worn sensors, (2) Surgical quality assessment using kinematic sensors 

of surgery robots, and (3) Sport action quality assessment by estimated pose information 

from activity videos. The literature review and motivation for pairwise ranking for each 

of these tasks are elaborated in relevant chapters.  

 

1.2 Contribution 

The contribution of the thesis is as follows: 

 

(1) To the best of our knowledge, present study is the first attempt for pairwise 

ranking of multi-variate time-series signals. Because of their non-spatial temporal 

characteristics, the existing models used in image data cannot be directly inherited 

for time-series signals. Here, we address this challenge using a novel pairwise 

deep learning model tailored for multi-variate time-series. 

(2) The thesis introduces a novel empirical feature representation scheme for time-

series signals based on pairwise rank of query signal against each of the signals 

present in the training set. The results show that this representation can achieve a 

higher accuracy in some cases when tested in a regression setup. Moreover, the 

representation scheme enables users to create feature vectors without any prior 

knowledge about the application domain or the problem in question. 

(3) This is the first study which considers gait analysis problem as a pairwise ranking 

task. This approach allows neurologists to compare two different patients or to 

monitor the same patient in different stages of treatment. The proposed solution 

is not directly comparable existing methods, which attempt to classify a patient 

into known clinical categories. However, the new solution is benchmarked against 

available methods by re-implementing them in pairwise ranking setup. The results 

have shown that proposed method can achieve the highest accuracy these 

experiments. 
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(4) Similarly, this study is the first in which surgical skill analysis problem is 

considered as a relative assessment task instead of absolute scoring of skills. This 

approach enables users both to assess the skill development of new surgeons and 

to assign correct surgeon for specific operations. The experiments with this 

problem also shown that proposed method can achieve the highest accuracy in 

pairwise ranking when they were run in the same experimental setup. 

 

1.3 Organization 

The remaining part of the thesis is organized as follows: 

 

Chapter 2 gives a formal definition of the problem and the details of computational 

solution offered in this thesis. The method is built upon the introduction of general 

architecture first, and the description of each sub models in the given architecture. 

 

Chapter 3 introduces the new model for regression based on pairwise ranking results, 

including the description of the general framework for regression and the vectorization 

with pairwise ranks. 

 

Chapter 4, 5 and 6 present the details of three different applications of the model, i.e. (1) 

gait skill assessment, (2) surgical skill assessment, and (3) sport skill assessment. Each 

chapter starts with relevant literature for given task, follows with experimental design and 

implementation details and concludes with experimental results. For each task, the 

methods are evaluated to discern the ability of sub models in the proposed architecture as 

well as benchmarking results with the existing approaches. 

 

Chapter 7 concludes the thesis with a general overview of the results, evaluation of model 

components, particular discussions with each application scenario and potential future 

directions due to the current limitations of the proposed approaches. 
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2. PAIRWISE RANKING  

2.1. Problem Definition 

Given a human action represented by a multivariate time-series sensory signal with a 

length of K, denoted by x = x1x2…xK,  where xi refers to a set of sensory measurements at 

time i, and an output variable q(x) denoting the quality of this action, general action 

quality assessment problem is defined as predicting q(x) from a model learned from 

number of annotated samples.  

 

In this study, we propose a relative (rank-based) action quality assessment, which can be 

defined as determining which action is performed with better skill. Therefore, we consider 

the problem as a pairwise ranking task. In this case, given two actions, say m and n, with 

length of K and L, are denoted by xm = 𝑥1
𝑚𝑥2

𝑚 … 𝑥𝐾
𝑚 and xn=𝑥1

𝑛𝑥2
𝑛 … 𝑥𝐿

𝑛  respectively, 

where 𝑥𝑖
𝑚  and 𝑥𝑖

𝑛 refers to a set of sensory measurements at time i for m and n 

respectively, and two output variables q(xm) and q(xn) denoting the quality of referred 

actions, pairwise ranking of m and n is defined as identifying whether q(xm) is higher than 

q(xn). 

 

For the sake of generalizability, the output of the model is referred by pmn, which is 

interpreted as the probability of the query action (m) being performed better than the 

reference action (n);  

 

𝑝𝑚𝑛 = {

1          𝑚 performs better than 𝑛                
0.5       𝑚 and 𝑛 show equal performance
0           𝑛 performs better than 𝑚               

            

 

2.2 A Siamese Model for Ranking 

The goal is to train a model that minimizes the probabilistic loss in a set of samples 

annotated by experts. The model assumes that the annotations of the exact skill levels are 

not provided but all pairs are labelled by their pairwise rank for their skills by experts. 
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The general framework that we introduce is based on a Siamese network of attention-

enhanced LSTM integrated with a probabilistic ranking layer (Figure 1). Siamese neural 

network is one of the artificial neural network architectures which contains two or more 

identical sub-networks [5]. Identical means these networks share the same weights as 

shown in Figure 1 and the setup is used to find similarities between inputs by comparing 

its feature vectors. The model is a novel adoption of Siamese Recurrent Neural Networks 

[5] for the task of pairwise ranking instead of pairwise similarity inference.  

 

 

Figure 1. General framework for pairwise ranking of actions. 

 

The framework involves an essential pre-processing step for input based on Piecewise 

Aggregate Approximation (PAA) to reduce the problem of sparsity in observed 

sequences. Variable-length time-series nature of the input signals is addressed by the 

LSTM sub-model. The balance of the contribution of relevant and irrelevant observations 

in the sequence is handled by an attention mechanism attached to LSTM. A dense layer 

transforms the multi-variate output of the LSTM into a single comparable value. The 

latent variables obtained from dense layer output are used to feed a loss layer based on 

pairwise rank. The overall model reports pmn for actions m and n.  
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2.3 Piecewise Aggregation of Data 

The action model based on attention-enhanced LSTM has an excessive number of 

parameters to be optimized in training phase (See 2.4). On the other hand, the kinematic 

data in our problem has a high dimensionality as opposed to the small number of samples 

in available datasets. This leads to a slow and insufficient learning of the model 

parameters in the proposed framework. To overcome this issue, we offer a pre-processing 

step based on Piecewise Aggregate Approximation (PAA) to reduce the dimensionality 

of the input signal while preserving the content that is representative for the skill level. 

PAA approximates a one-dimensional time-series signal x of length p into 𝑎 of arbitrary 

length q<p, where each ai is calculated by; 

𝒂𝒊 =
𝒒

𝒑
∑ 𝒙𝑗

(
𝒑
𝒒

)𝒊

𝒋=
𝒑
𝒒

(𝒊−𝟏)+𝟏
 

This approximation results with the reduction of the dimensionality of the signal by 

splitting it into equal-sized segments which are calculated by taking the average values 

in each segment. The equation above provides the mean of the elements in the equi-sized 

frame which makes up the vector of the reduced dimensional series. The most interesting 

aspect of the algorithm is how it creates these equi-sized frames. It is important to note 

here that before the actual mean approximates of the windows are computed, the input 

vector is Z-normed. Z-normalization is the process of normalizing the data to zero mean 

and zero unit of energy which is to say that the mean is 0 and the standard deviation is 

approximately 1. Once that is performed, the piecewise approximates can be computed. 

In Figure 2, a PAA transformation for different discretization levels is shown. Figure 2a 

is the raw values of the time series while 2b shows the PAA transformation for level 7 

and 2c is for level 9. 
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(a) 

 

(b) 
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(c) 

Figure 2. An example PAA transformation for different discretization levels: (a) raw 

time-series, (b) PAA transformation for level 7, (c) PAA transformation for level 9. 

 

We apply PAA for each motion variable independently to get a smoother multi-variate 

signal at the input of the Siamese network. 

 

2.4 Modeling Action: Attention-Enhanced LSTM 

Both query and reference actions are pre-processed using PAA and given into different 

inputs of Siamese network. The pre-processed data, given in the form of multi-variate 

time-series, is used to feed an LSTM network at each stream: 

 

ℎ𝑡 = 𝐿𝑆𝑇𝑀 (ℎ𝑡 − 1, 𝑥𝑡) 

 

where at and ht are the input vectors at time t, where the superscript defining the stream 

is ignored. The LSTM model is parameterized by output, input and forget gates, 

controlling the information flow within the recursive operation. The following equations 

formally describe the LSTM function: 
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𝑖𝑡 =  𝜎(𝑊𝑖 𝑥𝑡 +  𝑈𝑖 ℎ𝑡−1 +  𝑏𝑖 ) 

 

 𝑓𝑡 =  𝜎(𝑊𝑓 𝑥𝑡 +  𝑈𝑓 ℎ𝑡−1 + 𝑏𝑓 ) 

 

𝑜𝑡 =  𝜎(𝑊𝑜 𝑥𝑡 +  𝑈𝑜 ℎ𝑡−1 +  𝑏𝑜 ) 

 

𝑐̃𝑡 =  tanh(𝑊𝑐 𝑥𝑡 +  𝑈𝑐 ℎ𝑡−1 +  𝑏𝑐 ) 

 

      𝑐𝑡 =   𝜎 (𝑖𝑡 ° 𝑐̃𝑡 +  𝑓𝑡 ° 𝑐𝑡−1 ) 

 

ℎ𝑡 = 𝑜𝑡 ° tanh(𝐶𝑡) 

 

At every time step t, LSTM outputs a hidden vector ht that reflects the skill representation 

of the kinematic motion at time point t. In our application, we used a bidirectional version 

of LSTM [6] to allow the modelling of two-way temporal dependencies in actions. 

 

The LSTM layer is enhanced by an attention mechanism, which helps maximizing the 

contribution of the relevant encoding context vectors and minimize those of irrelevant 

vectors while building the decoding context [7]. The attention layer that we implement 

uses an attention function to assign weight to each hidden state produced by the LSTM 

layer. The weighted distribution of hidden states is used as a new representation of input 

signals. We calculate an attention function for each hidden state ht, t=1,…,T, as follows; 

 

𝑢𝑡 = tanh (𝑊𝑠ℎ𝑖 + 𝑏) 

 

where Ws is an attention hidden weight matrix and b is a bias parameter. From this 

function, softmax weights are calculated by; 

 

𝛼𝑡 =
exp(𝑢𝑡)

∑ exp (𝑢𝑡′)
𝑇
𝑡′=1
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These are used to produce a context vector c, which will be forwarded to the next layer: 

 

𝑐 = ∑ ℎ𝑡𝛼𝑡

𝑇

𝑡=1
 

 

The attention-enhanced LSTM layer is followed by a fully-connected layer fed by the 

vector of skill representation, cm for any of the input m. This layer transforms skill 

representations of query and reference actions into scalars, sm and sn, to make them 

explicitly comparable. 

 

2.5 Ranking Loss 

We adapt a probabilistic loss function for model learning, which was originally 

introduced to learn how to rank text objects using a gradient descent approach [8]. A 

probabilistic rank layer is built such that quality equivalence is taken into account. The 

pairwise rank between two inputs is desired to be represented by pmn, which is 

interpreted as the probability of m having better quality than n.  We denote the 

posterior probability distribution Pij=P(i›j), where › refers to the skill superiority of i to j 

and let 𝑃̅𝑖𝑗 be the desired target values for those posteriors, such that  𝑃̅𝑖𝑗  ∊ {1,0.5,0}. The 

goal is then to minimize the distance between these two entities. We use a cross entropy 

cost function, Cij to measure the closeness between two probability distributions, given 

by; 

)1log()1(log)( ijijijijijij PPPPoCC   

Letting omn is the difference between rank orders of m and n, the probabilities are 

modelled by;  

𝑃𝑖𝑗 ≡
𝑒𝑜𝑖𝑗

1 + 𝑒𝑜𝑖𝑗
 

Then, the final cost function becomes; 

𝐶𝑖𝑗  =  − 𝑃̅𝑖𝑗 𝑜𝑖𝑗 +  log(1 + 𝑒𝑜𝑖𝑗)  
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where oij=(si – sj), i.e. is the difference between rank orders of i and j,  

 

The model parameters, including Siamese network, LSTM, attention functions and fully-

connected layer weights, are then inferred by minimizing this loss for all (i, j) trial pairs 

in the training data. 
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3. RANKING-BASED REGRESSION 

3.1. Regression Framework  

Regression is an obvious way to model the original action quality assessment task. 

Although we propose to use a relative approach for quality assessment, here we want to 

show that the pairwise ranking model introduced in this thesis can also be useful for 

regression analysis to predict the exact value of action quality as well. To this end, we 

introduce a novel feature representation scheme to feed a conventional regression model.  

 

If we refer back to the formal definition of the problem, we want to predict an output 

variable q(x) indicating the quality of an action denoted by x = x1x2…xK, where xi refers 

to a set of sensory measurements at time i. Regression is then defined as: 

 

q(x)=f(w,s) 

 

where s is a vector representing the signal s. In its simplest case, where all samples have 

the same length of K, s can be same as x and w refers to set of weight in a linear function: 

q(x)=w1x1+ w2x2+…+ wKxK. 

 

In more generalized formulation, w will refer to a set of parameters for the model f(.) and 

s will be a fixed number of features to be extracted from x.  

 

Figure 3 gives an overview of conventional regression setup for any regression solution 

with time-series input. While enormous attempts have been found in the literature, there 

is no feature set that fit all problem [9]. Since many of the proposed features are “black-

box”, it is not usually possible to select among possible features manually. Although an 

experimental grid search can make it possible to select a subset of available features, this 

is often time-consuming and requiring a huge amount of training and validation data.  
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Figure 3. Generalized regression framework for absolute action quality assessment. 

 

3.2. Using Pairwise Ranks as Features 

An alternative way to conventional feature extraction approach is to use the training 

samples themselves as a part of features. One common approach that is used in several 

classification problems is to use the pairwise similarity/distance between query sample 

and each of the training sample as a single feature in the input vector [10] [11]. This 

empirical enables users to focus directly on own data regardless of the domain or problem 

being considered.  

 

Since we try to model the superiority of an action to the others in regression setup, direct 

use of pairwise similarity/distance scores do not be convenient to feed the regression 

model. Instead, we propose a novel empirical feature representation scheme based on 

pairwise ranks in replace of pairwise similarities. Informally, we have used ranking values 

as features for regression as shown in Figure 4.  
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Figure 4. Using pairwise ranks as features for regression 

 

More formally, we need a mapping ∂(xm)  fm, to transform a signal x for action m to a 

feature vector. Here, we define a n dimensional feature vector, where n is the number of 

samples in the training set and define fi as 𝑝(sm, si) , which is the probability of the action 

m having better quality than the ith action in the training set. Then fm becomes; 

 

fm=[ 𝑝(xm, x1) 𝑝(xm, x2) … 𝑝(xm, xn)] 

 

For the ease of implementation and to eliminate any bias from self-similarity 𝑝(xm, xm)is 

set to 0. 
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4. RANKING PD GAIT SKILLS 

 

4.1. Background 

Parkinson's disease (PD) is a neurodegenerative disorder of aging that affects dopamine-

producing neurons in the substantia nigra area of the brain [12]. Although there is 

currently no known cure for the disease, patients are treated with medications to relieve 

symptoms such as tremor, bradykinesia, dyskinesia, and walking disorders to maintain 

and/or improve their quality of life [13] [14] [15] [16]. To monitor PD patients, it is 

necessary to rate the degree of the severity of the disease. These measurements are based 

on the evaluation of motor manifestations, assessment of the difficulties experienced in 

daily living, and symptomatic response to medication [17]. Based on interviews by an 

examiner or a patient’s self-assessment, scales such as the Unified Parkinson Disease 

Rating Scale (UPDRS) [18] provide estimations of the symptoms. UPDRS consists of 

four subscales each of which covers measurements related to “Mentation, Behavior, and 

Mood”, “Activities of Daily Living”, “Motor Examination,” and “Complications of 

Therapy”. However, the ratings in both the UPDRS and its subscales are not interval 

scales; that is, there are no quantitative distances between score values.  

 

As an alternative to subjective assessments, measurements that are based on a set of 

sensors capturing the physical characteristics of human motion and/or physiological 

signals are also used to infer the state of the patient in terms of predefined criteria [8]. A 

common method for sensor-based evaluation is to automatically classify patients into one 

of the categories using conventional machine learning algorithms fed by a set of extracted 

features from sensory signals [19]. Lee et al. [20] used gait characteristics to classify 

samples as PD or not. Wavelet features extracted using gait signals were then used to feed 

a neural network with weighted fuzzy membership functions so that they could 

distinguish PD patients from healthy control subjects. [21] used support vector machines 

(SVM) applied to ground reaction force (GRF) signal features extracted by short-time 

Fourier transform (STFT) and reported 91.2% precision. Jane et al. [22] who used the 

Hoehn and Yahr (H&Y) scale to model a Q-backpropagated time-delay neural network 
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for the data collected by GRF sensors achieved slightly better than the results obtained 

by [21]. [23] proposed a novel one-dimensional local binary pattern (LBP) approach, 

called shifted 1DLBP, to extract statistical features from histograms of gait signals. Joshi 

et al. [24] extracted wavelet-based features to be used in SVM-based classification. This 

hybrid method which combines the wavelet transform and SVM achieves similar 

accuracy results with [21] and [22]. [25] used a random forest (RF) algorithm for PD 

classification tasks based on the extracted set of features in the time and frequency 

domains. The RF algorithm resulted in 98.04% classification accuracy. [16] proposed 

estimating PD symptom severity with accelerometers. The authors classified the severity 

of different symptoms with an SVM using data gathered from an accelerometer. Their 

study presents promising results for the severity classification of symptoms such as 

tremor, bradykinesia, or dyskinesia. Although, this approach provides a categorical 

prediction, it is not sufficient for a quantitative assessment of PD symptoms. In recent 

studies [24] [25], several researchers applied deep learning techniques, such as 

convolutional neural networks (CNN) and recurrent neural network (RNN), instead of 

using hand-crafted features. [26] used a two-channel model that combines long short-

term memory (LSTM) and CNN to learn the spatio-temporal information behind the data. 

[27] proposed a dual-modal attention enhanced deep learning model for quantification of 

Parkinson’s disease features by modeling a CNN separately on the right and left gait, 

followed by an LSTM layer. 

 

Classification-based evaluations provide limited understanding of the progress of the 

patient, since the categories are often binary, that is, in the form of presence/absence of 

defined symptoms [28]. A potential increase or decrease in the severity of symptoms 

cannot be inferred. One solution to this is to employ similar machine learning algorithms 

in a regression setup to directly quantify the severity, which serves as an absolution 

assessment of the symptoms [29] [19] [24]. [28] adapted their random forest model in a 

regression setup, instead of classification in [25], to predict the exact value of the severity 

of PD symptoms from gait signals. Although this can provide a more precise evaluation 

of the current state of the patient, the generalization ability of such methods is limited due 

to the unavailability of a sufficient number of training samples with respect to the high 

granularity of grading scales used [30]. In fact, continuous labels that represent the 

severity is sparse to predict the model parameters accurately. Another limitation of the 
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studies that use UPDRS values in a regression setup is that UPDRS and its subscales are 

not interval scales [17]. Since the distances between scores are not quantitative, 

regression-based approaches are not descriptive enough. Furthermore, severity 

assessment is usually considered to be subjective since they are not directly associated 

with a clinical test but the result of an expert evaluations. Therefore, predicted value of 

the severity is not found to be clinically reliable [17]. 

 

To overcome these limitations, we propose a novel model for the relative assessment of 

PD patients using gait signals acquired by foot-worn GRF sensors. We opt to use the 

scores of PD patients to be a ranking measure rather than a precise range change. This 

assessment is considered less prone to changes in different expert evaluations as [17] 

suggested. Pairwise ranking labels were obtained by comparing the overall severity of PD 

symptoms in term of UPDRS. Given two patients’ data as input, the model is asked to 

predict whether the first patient has more severe symptoms than the second.  

 

The thesis contributes the studies on remote PD monitoring in two ways: From an 

application perspective, the present study introduces the idea of relative assessment of PD 

patients by analyzing motion signals. This approach promotes two applications: (1) 

prognosis by monitoring the progress of the same patient during applied treatments, (2) 

personalized medicine by referring to the success/failure stories of other relevant patients. 

The second contribution of the study is that we propose a novel pairwise ranking model, 

called RSRNA, for multi-variate time-series signals and evaluate it using a real-world PD 

gait dataset. The experimental results show that, compared to existing methods, the 

proposed RSRNA model provides better results for PD patient monitoring in terms of 

pairwise ranking accuracy. 

 

4.2. Materials and Methods 

4.2.1 Model Adoption 

We adopt RSRNA model for PD monitoring as follows. Given two PD patients, m and n, 

with their gait data of xm and xn, which are in the form of multi-variate time-series GRF 
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signals, the task is to determine which patient has more severe PD symptoms in terms of 

UPDRS scale. We denote this output by pmn where;  

 

𝑝𝑚𝑛 = {

1          𝑚 has more severe symptoms than 𝑛                
0.5       𝑚 and 𝑛 have same level of severity                  
0          𝑚 has less severe symptoms than 𝑛                  

        (1) 

 

We interpret this as the probability of first patient having more severe symptoms than the 

second. Our goal is then to learn a model that minimizes the probabilistic loss in human-

annotated samples for PD severity. To this end, we apply RSNA model which can take 

the case of the equivalence of severity into consideration (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Adoption of RSRNA model for pairwise ranking of PD patients from gait 

signals. 

4.2.2. Data 

A public PhysioNet dataset [31] was used in this study. The dataset contains the 

measurements of the gait signals of 93 PD patients and 73 healthy controls. Both groups 

have an average age of 66.3 years. Subjects wore eight sensors in each of their feet that 

Second patient (n) 

 

First patient (m) 

 

LSTM Layer 

Attention Layer 

Dense Layer 

LSTM Layer 

Attention Layer 

Dense Layer 

Rank Layer 

xm 

hm 

cm 

sm sn 

cn 

hn 

xn 

pmn 



 20 

measure force while performing their usual walking for approximately 2 minutes on level 

ground. The position of the sensors was as follows: assuming a person stands up with two 

legs parallel to each other, the point of origin is exactly in the middle of the legs and the 

person faces toward the positive side of the Y axis. X and Y coordinates of each sensor 

are displayed in Table 1. The sensors measured the force on the feet in Newtons as a 

function of time. The sampling rate was 100 Hz. In our study, we use the digitized outputs 

of these 16 sensors to analyze the dynamics and characteristics of these multivariate time 

series.  

 

Table 1. Placement of individual GRF sensors in X and Y coordinates under the feet 

Sensor X Y Sensor X Y 

Left 1 -500 -800 Right 1 500 -800 

Left 2 -700 -400 Right 2 700 -400 

Left 3 -300 -400 Right 3 300 -400 

Left 4 -700 0 Right 4 700 0 

Left 5 -300 0 Right 5 300 0 

Left 6 -700 400 Right 6 700 400 

Left 7 -300 400 Right 7 300 400 

Left 8 -500 -800 Right 8 500 800 

 

The dataset also includes demographics information, measures of disease severity in 

terms of different metrics such as UPDRS and other related measures. As [21] stated, 

since the reaction force on the feet varies in time throughout a walking activity based on 

personal gait patterns, it could be leveraged as a convenient resource for individual gait 

analysis. 

4.2.3. Experimental Setup 

The original dataset was reorganized to create new samples according to our relative 

assessment strategy. Each sample in the new dataset was composed of a pair of patients 
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with their raw gait signals and a pairwise ranking label between them, which can be 1, 

0.5 or 0. These ranking labels were obtained by comparing the overall severity of PD 

symptoms in term of UPDRS. The samples without UPDRS annotations were removed 

from the dataset. We assessed the accuracy of predictions using a ten-fold cross-

validation setup. In this setup, the pairs between 1/10 of the patients were used for testing, 

and the remaining pairs were used for training. It should be noted that test samples 

included both pairs in which neither sample has been used in a pair for training and the 

pairs in which the other sample was used for training in a different pairing. To evaluate 

the performance, the following metrics were used. 

 

Pairwise ranking accuracy (Acc): This is the percentage of correctly ordered pairs 

generated by each testing fold. Depending on whether the rank layer models the 

equivalence of PD severities of two patients, two different accuracy results may be 

reported. When the equivalence is considered, the accuracy gives the evaluation of ternary 

ranking performance. Otherwise, it evaluates binary ranking. Table 2 lists the conditions 

for the correct ordering of a pair (m, n) in binary and ternary cases. We used Ԑ = 0.01 in 

our evaluations. 

 

Table 2. Evaluations of correct predictions and associated ground truth for different 

pairwise ranking schemes 

Ranking scheme pmn Ground truth 

Ternary 

≥ 0.5+ Ԑ m›n 

≥ 0.5- Ԑ and < 0.5+ Ԑ m≡n 

< 0.5- Ԑ m‹n 

Binary 

≥ 0.5 m›n 

< 0.5 m‹n 

 

Area under receiver operating characteristic (ROC) curve (AUC): An ROC curve plots 

true positive (TP) rate versus false positive (FP) rate at different classification thresholds. 

In our binary ranking case, a positive sample is a pair for which first patient have more 
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severe symptoms than the second patient. This sample is referred as TP if it is correctly 

predicted, and as FP otherwise. AUC measures the entire two-dimensional area 

underneath the entire ROC curve from (0,0) to (1,1). For perfect classification 

performance, the ROC curve is expected to be a full rectangle, and the AUC is expected 

to be 1. AUC is usually considered as an objective evaluation criterion for imbalanced 

datasets since it provides an aggregate measure of performance across all possible 

classification thresholds. Since the threshold change in classification phase may affect the 

performance of the model, we additionally use ROC curves to assess the robustness of 

our final model with some intermediate models using different sub-modules and model 

parameters. This enables us to choose the best model before comparing against other 

algorithms. 

 

Boxplots: A boxplot is a graph that provides an indication of how the values in the data 

are spread out. It displays the distribution of data on a vertical bar with indicators for 

minimum, first quartile, median, third quartile and maximum. We used the boxplot to 

display the spread of predicted probabilities for higher severity of the first patient in 

different ranking labels. We expected that the probabilities would approach 1 when the 

first sample in the pair had a higher severity, and they would approach 0 when the first 

sample had lower severity. When equivalence is considered, the probabilities should 

accumulate around 0.5 for the pair samples with same severity. For each case, we 

expected small fluctuations around expected probabilities 

 

4.2.4 Implementation  

We used an LSTM network to capture temporal representations in PD symptoms. For the 

attention layer, we followed the previous implementation by [32] with the suggested 

parameter set. A sigmoid activation layer was used to model the probabilistic rank layer, 

which is followed by a binary cross-entropy loss function in the training model. We used 

the following hyper-parameters for learning by a stochastic gradient descent algorithm: a 

learning rate of 0.001, a unit size of 64 with a single hidden layer, and a batch size of 2. 

The framework was implemented in Keras using TensorFlow backend.  
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4.3. Results 

In ten-fold cross-validation experiments, the RSRNA model achieved a binary pairwise 

ranking accuracy of 81% with an AUC of 0.878 and a ternary pairwise ranking accuracy 

of 78% with an average AUC of 0.862. Figure 6 shows the ROC curve for the proposed 

model when applied to binary pairwise ranking. Note that the ROC curve is not directly 

applicable for the ternary ranking scheme, but an AUC can be reported from the average 

of individual curves for all class labels. The boxplots of the predicted probabilities against 

pairwise ranking labels are shown in Figure 7.  

 

In Figure 6, the performance of the model is also discerned when the attention layer was 

removed. The figure shows that attention enhancement has a significant contribution in 

the prediction performance. Reported ranking accuracy and AUC decreased to 74% and 

0.817 when the attention mechanism was eliminated. 

 

Figure 6. ROC curves for binary pairwise ranking by RSRNA model using alternative 

sub-models; (1) with attention, (2) without attention and (3) using RNN instead of 

LSTM.  
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The boxplots shown in Figure 7 justify the argument that the attention mechanism is 

useful in detecting similarities between gait signals. As shown, using attention lowered 

fluctuations in the predictions in both binary (Figure 7.a-b) and ternary (Figure 7.c-d) 

ranking schemes. 

 

  

(a) (b) 

  

(c) (d) 

Figure 7. Boxplots of predicted probabilities against pairwise ranking labels for (a) 

binary ranking without attention, (b) binary ranking with attention, (c) ternary ranking 

without attention, and (4) ternary ranking with attention. 

 



 25 

Selection of LSTM was evaluated by replacing the sub-model in this layer with a simpler 

RNN and evaluating the performance of the overall model in the same experimental setup. 

RNN was compiled with the following hyperparameters: hyperbolic tangent for 

activation, "orthogonal" initializer for recurrent initialization, "glorot_uniform" initializer 

for kernel initialization, and a unit size of 64. The model with RNN achieved a ranking 

accuracy of 63% with an AUC of 70.6 in the ternary scheme and a ranking accuracy of 

% with an AUC of 66 in binary scheme. In either of the cases, the performance of the 

model with RNN was lower than those with LSTM. This result justifies the fact that 

LSTM is a better choice in modeling temporal behavior of gait signals. The results with 

different configurations are summarized in Table 3. 

 

Table 3. Justification of the proposed model by comparison of relative assessment 

(pairwise ranking) performances of different architectures with alternative sub-models. 

Method 

Binary ranking Ternary ranking 

Acc AUC Acc AUC (avg) 

RSRNA 81% 0.878 78% 0.862 

RSRNA – without attention  74% 0.817 71% 0.796 

RSRNA – with RNN instead of LSTM 66% 0.722 63% 0.706 

     

 

Since relative (pairwise) assessment of PD patients is proposed for the first time in this 

study, there is no existing work with which we can perform a direct comparison. 

However, we can refer to previous studies to create a number of baselines to benchmark 

our method. 

 

Previous Method 1: Daliri [21] classified patients as PD or not using an SVM with 

frequency domain features. Similarly, we reconfigured Daliri’s [21] model such that an 
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SVM was fed by the fusion of frequency-domain features of two patients to be ranked. 

These features were extracted using fast Fourier transforms of gait signals. 

Previous Method 2: Asuroglu et al. [28] attempted to quantify the exact value of 

symptoms in UPDRS scale. We reconfigured the model represented in this study so that 

it can report the pairwise rank when a pair of patients’ data is presented in the input. To 

do this, we concatenated individual time-domain feature sets extracted from each patient 

sample to construct a new sample and feed a random forest model in the classification 

setup.  

 

Previous Method 3: Xia et al. [27] used a model that combines a CNN followed by an 

LSTM layer. In this baseline, we used only the CNN section of the study to model the 

spatial features of the data. To adopt the spatial section of this model to our problem, we 

concatenated two input signals vertically and fed a CNN architecture, which included two 

convolutional layers, two max pooling layers, and a fully connected layer to classify if 

the first sample has a higher severity than the second. The convolution kernel in the two 

convolutional layers were both 3 × 3 and outputs 32 feature maps.  

 

Previous Method 4: Using the same study as the third baseline, we modeled both spatial 

and temporal features of the dataset. We used the concatenation of two input signals to 

feed a CNN that had two convolution layers with the same parameters as Baseline 3, 

followed by an LSTM that had a length of 256 for hidden state vector to classify which 

of the two signals had a higher severity than the other. 

 

The evaluation results of ten-fold cross-validation experiments with different baseline 

models are applied for the binary ranking prediction at the UPDRS scale are displayed in 

Table 4. As shown in Table 4., RSNA outperforms all benchmarked methods in both 

ranking schemes. 
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Table 4. Comparison of the proposed model with previous studies in terms of their 

relative assessment (pairwise ranking) performances.  

Method 

Binary ranking Ternary ranking 

Acc AUC Acc AUC (avg) 

RSRNA (proposed model) 81% 0.878 78% 0.862 

Previous Method 1* [21] 64% 0.623 58% 0.617 

Previous Method 2* [28] 63% 0.744 59% 0.737 

Previous Method 3* [27] 64% 0.698 61% 0.685 

Previous Method 4* [27] 57% 0.579 55% 0.567 

*These methods was reconfigured for pairwise ranking and re-implemented by the authors. 

 

Table 4 also shows the results when the ternary ranking was applied. RSRNA model still 

outperformed benchmarked studies in terms of Acc and AUC when the case of severity 

equivalence was considered.  

 

Figure 8 shows the superiority of the current pairwise ranking over other methods. Bars 

on the left-hand side were generated through the current method, RSRNA, while the bars 

on the right show the outputs of the best baseline in terms of AUC (Previous Method 2 

[28]) provided in Table 4. The dark lower parts of the bars represent the number of 

correctly classified pairs. This result indicates that even if the absolute differences 

between pairs are as low as below 5, RSRNA is quite successful in modeling the 

differences.  

https://tureng.com/en/turkish-english/superiority
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Figure 8. Bars of correctly classified pairs versus incorrectly classified ones based on 

patients’ UPDRS scores. The left and right bars show the results of the present method 

and the best baseline, respectively. 
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5. RANKING SURGERY SKILLS 

5.1. Background 

Assessment of surgical skills may have three main objectives: (1) choosing appropriate 

surgeons for a specific operation, (2) examining current performance of candidate 

surgeons before credentialing, and (3) monitoring the progress of surgeon’s skills during 

training activities. These assessment activities are usually performed manually in an 

operation room under supervision and feedback of expert surgeons. Manual assessment 

of surgical skills by individuals may lead to misinterpretations of the skill performance 

and hence lead to suboptimal training and organization of the surgical activities. Some 

structured methods such as Objective Structured Assessment of Technical Skills (OSATS 

[33]) have been employed to minimize the effect of the subjective nature of expert 

intervention. However, the process needs improvements to increase its efficiency since 

the application of these techniques still require significant effort of multiple experts over 

a long time period [34]. Considering the fact that evaluation of the candidates by senior 

surgeons has certain cost, there is an increasing need for alternative or complementary 

computerized assessment systems. 

 

We have recently witnessed a significant attempt to computerize surgery skill assessment 

using machine learning algorithms [35]. Robot-assisted surgery helps this effort by 

providing data in different forms, such as kinematic sensor measurements derived from 

robot arms and video recording of a surgical action performed by an operator. An 

overview of recent methods for computerized skill assessment using machine learning is 

given in Table 5. 

 

In one of the earliest studies, kinematic data collected during robot-assisted surgery were 

used to predict the expertise level of the surgeon [36]. A set of hand-crafted features were 

extracted from surgery action and fed into three different supervised classifiers (k-Nearest 

Neighbour, Support Vector Machine (SVM) and Linear Regression) for classification of 

surgeons into either “expert”, “intermediate” or “novice” levels. The authors employed 

several kinematic features including task completion time, path length, depth perception, 
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speed, motion smoothness, curvature, turning angle and tortuosity to build the model. In 

a similar work [37], the authors used different time and frequency domain features of 

kinematic data, which were obtained through sequential motion texture, discrete Fourier 

transform, discrete cosine transform and approximate entropy analysis to train a linear 

SVM model. In addition to classification, i.e. assigning objects into predefined skill 

labels, they also considered to predict the level of skills by running the SVM in a 

regression setup.  [38] proposed a deep learning architecture based on Convolutional 

Neural Networks (CNN) that can automatically extract relevant features and classify the 

expertise level using a fully-connected layer at the end. Similar architectures were used 

by [39] and [40] with slight modifications in layer organizations. [41] used video 

recordings of surgery actions instead of motion kinematics to feed a 3D CNN with the 

same objective (ternary classification). CNN was combined with Long Short-Term 

Memory (LSTM) model to analyze kinetic data for classification [42]. These studies 

reported very high classification accuracy, up to 100% for some surgery actions, in a 

public benchmark dataset for human gesture and skill assessment from surgical activity, 

called JIGSAWS [43]. The performance of conventional machine learning methods with 

hand-crafted features was recently re-evaluated in a larger in-house dataset [44], where 

they determined that an average accuracy of 91.5% can be achieved in binary 

classification of skill. The LSTM model was shown to be accurate in binary skill 

classification (“expert” or “novice”) from kinematic signals in a private dataset [45]. The 

ability of CNN applied on video recordings was further assessed in another study with an 

in-house dataset [46]. However, they reported that the accuracy diminished from 86% to 

70% when they increased the number of skill categories from two to five.  

 

Table 5. Methods for computerized assessment of surgery skills 

Reference Data Type Task Dataset 

Fard et al. 2018 [36] Kinematic Classification JIGSAWS 

Fawas et al., 2018 [39] Kinematic Classification JIGSAWS 

Wang and Fey, 2018 [38] Kinematic Classification JIGSAWS 

Zia and Essa, 2018 [47] Kinematic Regression JIGSAWS 
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Dougthy et al., 2018 [48] Video Ranking JIGSAWS 

Fawas et al., 2019 [39] Kinematic Regression JIGSAWS 

Funke et al., 2019 [41] Video Classification JIGSAWS 

Nguyen et al., 2019 [42] Kinematic Classification JIGSAWS 

Li et al., 2019 [49] Video Ranking JIGSAWS 

Ogul et al., 2019 [50] Kinematic Ranking JIGSAWS 

Zhang et al., 2020 [40] Kinematic Classification JIGSAWS 

Kelly et al., 2020 [45] Kinematic Classification In-house 

Lavanchy et al., 2021 [46] Video Classification In-house 

Perez-Escamirosa et al., 2021 [44] Video Classification In-house 

This study Kinematic Ranking 

Regression 

Monitoring 

JIGSAWS, 

ROSMA 

 

The major problem with these performance assessment systems is their limited ability to 

predict a fixed number of predefined, possibly inconsistent, categories for skill levels. As 

reported by [46], they are unable to model skill levels between these pre-defined 

categories. Recalling the three main objectives for surgical skill assessment, discussed at 

the beginning of the text, i.e. (1) choosing appropriate surgeon, (2) examining current 

performance of surgeons, and (3) monitoring the progress of a surgeon, the classification 

approach may support partially the second objective. However, it fails to provide an 

accurate solution for first and third tasks since the number of categories representing skill 

levels is not sufficient to model precise comparison of actions. Regression can be 

considered as a possible solution in general. However, in small dataset scenarios, where 

continuous labels representing skill levels are too sparse, it is not easy to provide 

generalizable models for exact value predictions. Two previous approaches for this [47] 

[39] indeed reported very low correlations between predicted and actual skill levels.  

 

The skill assessment problem was recently considered as a task of learning to rank video 

recordings [48] [49] instead of assigning them into predefined labels. These studies aimed 
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to build generic models with wide applicability of skill determination in any domain, but 

algorithms were also tested for surgical skill assessment with the JIGSAW dataset. First, 

the study introduced a two-stream Temporal Segment Network to capture both the type 

and quality of actions [48]. Second, the study integrated an attention pooling and temporal 

aggregation mechanism to a two-stream CNN model [49]. Skill assessments through 

video recordings have two main limitations. First, video data processing is time and 

resource inefficient, which makes it difficult to run the algorithms in conventional 

personal computers. Second, video can record the actions in two dimensions, if only one 

camera is used. This is unfortunate since tracking of trajectories and velocities can only 

be measured in two dimensions and important information of surgery skills is lost, if the 

third dimension is lacking.  

 

Here, the surgical skill assessment problem is considered as a pairwise comparison task. 

The RSRNA model proposed in this thesis is adopted for the problem. The model was 

first tested on the JIGSAWS dataset to compare it with previous methods. According to 

the results, our model can significantly improve the state-of-the-art in both ranking and 

regression tasks for computerized surgical skill assessments. Further, the model was 

evaluated for monitoring tasks in a larger and more recent dataset, called ROSMA [51]. 

The results show that our model can achieve reasonably good accuracy. 

 

5.2. Materials and Methods 

5.2.1. Model Adoption 

We adopt RSRNA model for the surgical skill assessment problem as follows. We 

compare a query surgical action (m) with a reference action (n) in order to infer if the 

query is performed better than the reference. Semantically, the reference may refer to a 

previous action of the same surgeon to monitor the skill improvement, or to an action 

performed by another surgeon to make a skill comparison for better assignment to a 

surgery. While the model is formally the same, it can be used in any semantic model 

based on how the model parameters are trained from available data.  
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The kinematic data of two actions with length K and L are denoted by xm = 

𝑥1
𝑚𝑥2

𝑚 … 𝑥𝐾
𝑚 and xn= 𝑥1

𝑛𝑥2
𝑛 … 𝑥𝐿

𝑛  respectively, 𝑥𝑖
𝑚 refers to a set of kinematics 

measurements at time i. A kinematic measurement can be position, angular velocity, 

gripper angle or any other motion-specific identifier of a particular hand at a given time 

point.  

 

The model is similarly enhanced by adapting an attention mechanism to the LSTM; and 

a processing step, which calculates the Piecewise Aggregate Approximation (PAA) of 

input kinematic data to ease parameter optimization of the whole Siamese network. We 

show that these enhancements significantly improve the prediction accuracy. Then, we 

apply our new regression approach that uses pairwise ranks of a query action against a 

set of reference actions as features to train a regression model. This allows the pairwise 

ranking model to be turned into an exact skill prediction model when needed. Finally, we 

demonstrate that our model can serve as solution for the third objective of skill 

assessment, i.e. monitoring of surgeon’s own progress. To the best of our knowledge, this 

is the first study that reports an empirical result in that respect. 

 

5.2.1. Data 

The performance of the entire model was evaluated in two different publicly available 

surgery data sets obtained from the da Vinci robot systems. They can provide both three-

dimensional kinematic data and stereo video of surgery tasks. The kinematic data contain 

variables of both master and slave's left and right manipulators. The kinematic data for 

each sample is considered as a multi-variate time series, in which each variable 

corresponds to a different motion-specific parameter. 

 

JIGSAW [43], is a common benchmark dataset in the field. It has surgical data collected 

from eight subjects with different skill levels performing three different surgical tasks. 

Self-defined skill levels were based on participant self-classifications based on hours of 

experience as novice (< 10 h), intermediate (10–100 h) or expert (> 100 h) operators.  The 

tasks are ‘throw suturing’, ‘needle passing’, and ‘knot tying’ performed on benchtop 

training phantoms. The data consist of 76 motion variables collected at 30 Hz, including 
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tooltip positions and orientation, linear and rotational velocities, and gripper angle. A trial 

is a part of the data set that corresponds to one subject performing one instance of a 

specific task. Each subject is categorized by a fixed expertise level, but each trial may 

have a different skill score. This score is annotated using OSATS as a grading system. 

 

JIGSAWS dataset consists of three different surgical tasks which have been performed 

by study subjects (surgeons) on bench-top models. All these three exercises (suturing, 

knot-tying and needle passing) are typically part of surgical skills training curricula. 

Kinematic data were collected directly from the da Vinci API. The details about these 

exercises are given below: 

 

Suturing (SU): The surgeon picks up needle, proceeds to the incision (designated as a 

vertical line on the bench-top model), and passes the needle through the “tissue”, entering 

at the dot marked on one side of the incision and exiting at the corresponding dot marked 

on the other side of the incision. The surgeon extracts the needle out of the tissue after the 

first needle pass. Then s/he passes it to the right hand and repeats this process three more 

times. 

 

Knot-Tying (KT): The surgeon picks up one end of a suture tied to a flexible tube 

attached at its ends to the surface of the bench-top model and ties a single loop knot. 

 

Needle-Passing (NP): The surgeon picks up the needle (in some cases not captured in 

the video) and passes it through four small metal hoops from right to left. The hoops are 

connected to the bench-top type at a small height above the surface. It was forbidden for 

the surgeons to move the camera. Moreover, they were not allowed to apply the clutch 

while performing the surgical operations. Figure 9 shows snapshots of the three surgical 

tasks 
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Figure 9. Snapshots of three different surgical exercises in JISGAWS dataset (from left 

to right): Suturing, knot-tying, and needle-passing 

 

The dataset includes i) kinematic data, ii) video data, and iii) manual annotations. The 

kinematic dataset is collected from the da Vinci robot systems using its API at 30 Hz. The 

left and right MTMs, and the first and second PSMs (PSM1 and PSM2, also referred as 

the right and left PSMs in this dataset), are included in the dataset. The motion of each 

manipulator was described by a local frame attached at the far end of the manipulator 

using 19 kinematic variables, which brings us a 76-dimensional data in order to describe 

the kinematics information for all manipulators listed below. The 19 kinematic variables 

foreach manipulator include Cartesian positions, a rotation matrix, linear velocities, 

angular velocities, and a gripper angle. Cartesian positions are denoted by x, y, z 

variables, the rotation matrix is defined by 9 variables, denoted by R, linear velocities are 

denoted by x′, y′, z′, angular velocities are denoted by α′, β′, γ′, where α, β, γ are Euler 

angles. Finally, a gripper angle is denoted by θ. A common coordinate system is used to 

represent the kinematic variables. The details of the variables in the kinematic dataset are 

given in the Table 6. The sampling rates were the same which have been used to 

synchronize the kinematic data for the MTMs, PSMs, and the video data. 
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Table 6. Variables in kinematic data 

 

 

ROSMA [51] was recently released to facilitate the research in the field. It contains more 

samples and longer actions compared with JIGSAWS. Twelve subjects operated the da 

Vinci Research Kit to perform three different surgery tasks: post and sleeve, pea on a peg 

and wire chaser (Figure 10). 

 

 

Figure 10.  Snapshot of the three tasks in the ROSMA dataset at the starting position: 

(from left to right) post and sleeve, pea on a peg and wire chaser. 

 

The twelve subjects (X01-X12) attempted each of the surgical task 4-6 different times to 

a total of 207 trials (Table 7). The obtained dataset includes all the kinematic and dynamic 

information provided by the da Vinci robot (both master and slave side). A board of 

human experts defined an objective performance scale by introducing penalty points for 

each surgery task. Then, each trial (subject + task) was given a score based on penalty 

points and completion time in seconds. 
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Table 7.  Number of trials of each subject and exercise in the ROSMA dataset 

 

 

Using JIGSAW and ROSMA data, we performed experiments in three different 

evaluation setups for (1) pairwise ranking of different surgeons, (2) regression to predict 

the exact skill level, and (3) monitoring of individual skill. 

 

5.2.2. Experimental Setup 

5.2.2.1 Ranking 

We aim first to evaluate our framework in a common setup to justify our own model 

parameters and to benchmark against current state-of-the-art for pairwise ranking. To this 

end, we built an experimental setup that performed a four-fold cross validation to evaluate 

the prediction performance. In this setup, the pairs between ¾ of the surgery actions were 

used for training and the remaining pairs were used for testing. The fold were organized 

such, that the test samples included both the pairs where neither video has been used in a 

pair for training and the pairs where the other video was used for training in a different 

pairing.  The model performance is discerned using pairwise ranking accuracy, which is 

the percentage of correctly ordered pairs, produced by each testing fold. This scheme 

reports two different accuracy results for the cases where the skill equivalence is 

considered and where it is not. When skill equivalence is considered, the accuracy gives 

the evaluation of ternary ranking performance. Otherwise, it evaluates the binary ranking. 

Table 8 lists the conditions of correct ordering of a pair (m,n) in binary and ternary cases. 

We used Ԑ=0.01 in our evaluations. 
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Table 8. Conditions for correct predictions of pairwise ranking 

Ranking type pmn Ground truth 

Ternary 

≥ 0.5+ Ԑ m›n 

≥ 0.5- Ԑ and < 0.5+ Ԑ m≡n 

< 0.5- Ԑ m‹n 

Binary 

≥ 0.5 m›n 

< 0.5 m‹n 

 

We applied our model for each surgery task separately to rank surgery actions by their 

skills.  

 

5.2.2.1 Regression 

We argue that the results of pairwise rankings can be used for prediction of the exact 

score of surgery skill. To do this, we offer a method which could translate a list of pairwise 

ranks into an exact score of skill level. The conventional way of regression involves 

extracting a number of features from input signals to represent the sample in a machine 

learning model. Instead, we use an empirical representation where each feature refers to 

the pairwise rank between the query sample and another sample from a reference list. A 

pairwise rank here refers to the probability of the query action being performed better 

than the corresponding sample in a reference list. 

 

In the regression setup, the performance of predictions was evaluated using Spearman’s 

Correlation Coefficient (SCC) between actual and predicted values of skill levels, as 

suggested by [47] [39], two previous studies that adopted the idea of using regression for 

surgery skill assessment. We followed the same procedure to benchmark our method 

against these methods in the same dataset. SCC is a nonparametric metric that evaluates 
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how well the relationship between two distributions can be described by a monotonic 

function. Ten-fold cross-validation was performed to measure the performance. 

 

5.2.2.1 Monitoring 

Our last objective is to demonstrate that the pairwise ranking model can be used for 

measuring the progress of a candidate surgeon during training activities. This 

demonstration is done using the ROSMA dataset, in which different trials are available 

from the same surgeon on the same surgery task. Instead of a typical k-fold cross-

validation, we performed a leave-user-out (LUO) procedure for testing. In this procedure, 

the trials of one user (surgeon) are left out for prediction, while all other pairs of the 

remaining trials on the same surgery task are used for training. This was repeated 12 times 

for each surgeon independently. Final, accuracy was determined by averaging the 

pairwise ranking accuracy of these folds.  

 

5.2.3 Implementation   

PAA is implanted for the attention layer, we followed the previous implementation by 

Yang et al. (30) with the suggested parameter set. A sigmoid activation layer was used to 

model the probabilistic rank layer, which is followed by a binary cross-entropy loss 

function in the training model. We used the following hyper-parameters for learning by a 

stochastic gradient descent algorithm: a learning rate of 0.001, a unit size of 64 with a 

single hidden layer, and a batch size of 2. The framework was implemented in Keras 

using TensorFlow backend. 

 

5.3. Results 

5.3.1 Ranking 

Table 9 discerns the accuracy for each task for ternary and binary ranking. 
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Table 9. Results of pairwise ranking with the present framework. 

Surgery type 
Ternary ranking  

(Including skill equivalence) 

Binary ranking  

(Excluding skill equivalence) 

 Acc Acc 

Knot tying 79.2 83.65 

Needle passing 78.87 82.48 

Suturing 69.29 72.89 

AVG 75.8 79.67 

 

Figure 10 shows Receiver Operating Characteristic (ROC) curve for the proposed model 

when applied for binary pairwise ranking. The ROC curve depicts the performance of the 

model is also discerned when the attention layer is removed. The figure shows that the 

attention enhancement has a significant contribution for the prediction performance. 

Reported ranking accuracy decreased to 74.64% when attention mechanism is eliminated. 

The contribution PAA step is also shown in the figure. The PAA can boost the prediction 

accuracy around 74%. 

 

a. 
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b.  

 

 c. 

 

Figure 11. ROC curves for binary ranking for surgery skill assessment for  

(a) knot tying,  

(b) needle passing,  

(c) suturing. 
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Although kinematic data is a multivariate signal with so many sensory measurements, it 

involves two main characteristic channels. One represents the changes in the position of 

the arms and the other refers to varying velocity over time. To understand the contribution 

of these two characteristics, we run binary ranking experiments with positional features 

and velocity features separately. The experiments revealed that the binary ranking 

accuracies with positional characteristics are 77.33%, 74.99% and 67.83% for knot tying, 

needle passing and suturing respectively. With velocity characteristics only, the model 

can achieve the accuracies of 71.95%, 67.88% and 71.1% for the same tasks. According 

to the results, positional features contribute more on ranking performance, however, the 

integration of velocity features improves the final accuracy.  

 

The present model was compared with three most relevant studies in the literature. Two 

of them used video data for skill ranking and tested their methods in the same dataset. 

The third study is our own preliminary model on kinematic data presented in [50]. Video-

based methods work for only binary ranking cases since their loss function didn’t support 

the evaluation of equivalence in skills. They did not give accuracies separately for each 

task, but rather reported overall performance in surgery dataset. To make a comparison 

with these methods we ran our model with a subset of the original data in which the 

equally-rated pairs were removed. We calculated the average of accuracies achieved with 

three surgery types.  

 

The results are shown in Table 10. Our model can significantly outperform both video-

based methods and the kinematic-based method in terms of pairwise ranking accuracy. 

Moreover, the present model built upon kinematic data reduces the computational 

resource requirements compared to approaches which use video recordings. [48] reported 

that average running time to train a single fold is 18 hours with NVIDIA TITANX GPU, 

whereas learning a fold in our model is conducted in less than an hour with a conventional 

CPU.  
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Table 10. Results of pairwise ranking excluding skill equivalence 

Method Action data Surgery type Accuracy (%) 

Doughty et al. 2018 [48] Video 
- 74.4 

Li et al. 2019 [49] Video 
- 73.1 

Ogul et al. 2019 [50] Kinematic 

Knot tying 79.6 

Needle passing 77.5 

Suturing 63.5 

Average 73.5 

Present study  Kinematic 

Knot tying 83.7 

Needle passing 82.5 

Suturing 72.9 

Average 79.7 

 

Table 11 shows the results of the same architecture on ROSMA dataset. This performance 

is also consistent with the results of pairwise rankings that we obtained in first dataset, 

which therefore constitutes a validation of our model in an independent dataset. 

 

Table 11. Results of pairwise ranking with present framework on ROSMA. 

Action Acc 

Wire chaser 75.6 

Post and sleeve 75.1 

Pee on a peg 74.9 

AVG 75.2 
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Figure 12 shows the results of exact value predictions as the comparison of predicted 

scores against actual scores for each task.  

 

 

    (a)                                                                                                            (b) 

 

(c) 

 

Figure 12. Scatter plots for predicted skill scores vs actual scores for the tasks of (a) 

knot tying, (b) needle passing, and (c) suturing 

 



 45 

5.3.2 Regression 

The results are given in Table 12. This experiment validates that the pairwise ranking 

model could be turned into a regression model with increased performance. 

 

Table 12. Comparison of regression models for surgery skill assessment. 

Method 

SCC 

Knot tying Needle passing Suturing 

Zia and Essa, 2018 0.66 0.45 0.59 

Fawas et al., 2019 0.65 0.57 0.60 

Present method  

(with actual ranks) 
0.99 0.99 0.99 

Present method  

(with predicted ranks) 
0.71 0.65 0.59 

 

5.3.3 Monitoring 

According to Table 13, our model achieved 70% pairwise ranking accuracy. 

 

Table 13. Performance of our method in individual progress monitoring. 

Action 

Ranking accuracy (%) 

Present method 

Wire chaser 73.9 

Post and sleeve 66.7 

Pee on a peg 69.4 

Average 70.0 



 46 

6. RANKING DIVING SKILLS 

6.1. Background 

Modelling and analyzing human motion have been subject to extensive research in 

computer vision [52], in terms of feature extraction [53], action representation [54] [55], 

action recognition [56] [57], and abnormality detection [58]. These efforts mostly address 

the challenging tasks of motion and action detection and recognition for many 

applications in various domains like sports and healthcare [55]. 

 

Sports analysis is a useful application of technology, providing value to athletes, coaches, 

and sports fans by producing quantitative evaluations of performance [59]. During recent 

years, the focus on vision-based analysis of sports has increased significantly in both 

research and commercial systems [60]. According to the survey by [61], some of the best-

known current application areas are in sports analysis for broadcast, for example showing 

the position of players [62] or the ball as 3D models to allow the locations or trajectories 

to be explored in detail by a TV presenter. The ability to track a ball [63] [64] [65] [66] 

in low-latency real-time is important for both analysis in broadcast TV and helping the 

referee or umpire. Similarly, once players have been located and player modeling has 

been done, analyzing the motion of players [67] [68] at key moments in sport can give 

useful insights for both trainers and broadcasters. Although today’s commercial systems 

apply many fundamental techniques such as tracking players and ball and analyzing the 

motion of both individual players and teams, to fully automate the video analysis of sports 

events many issues are still open for research [61]. For sport as a human centered activity, 

the initial step in many of the automatic analysis tools or software is to extract the athlete. 

This is done by locating and segmenting each person of interest in the video. Moreover, 

in some cases it becomes essential to follow the athlete through the entire video. However, 

there are several challenges that effects these tasks. The first aspect is the body posture 

of an athlete. It can vary greatly during sports exercises, decreasing the performance of 

any standard human/pedestrian detector. Occlusion is another significant challenge. 

Athletes can be partly or fully occluded by, e.g., other athletes, people, equipment, or 

obstacles. In any contact sport or team sport occlusion between people is a frequent 

problem and includes cases of collisions and interactions between several players 

simultaneously. 
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As mentioned above, human-centered video analysis has witnessed a significant increase 

of research activities during the last years [69]. Among various analysis techniques, two 

main questions arise: “What action” (recognition problem, without any localization) [70]  

[71] [72] [73] and “Where in the video?” (localization problem) [74] [75] [76] [77] [78]. 

Among these considerable amounts of work that study the recognition of human actions 

in video, the problem of “How Well?” people perform actions is a relatively new area 

that needs the attention of researchers in this field.  The term “action quality assessment” 

refers to how well a person performed an action [79]. However, the problem of action 

quality assessment is directly addressed by only a handful of works. [80] and [81] use 

human pose features to assess action quality of Olympic sporting events. In the first study, 

a pose estimator is run on every frame. The results are concatenated in order to form a 

large action descriptor. This approach learns a regression model from spatio-temporal 

features. The authors use two types of features. The first set of features are low-level 

features which capture gradients and velocities directly from pixels. The second type are 

high-level features which are related with the trajectory of human pose. The descriptor is 

post-processed (DCT, DFT) into features which are used for estimating the parameters of 

a support vector regression (SVR) model to predict the event scores (quality). [81], uses 

approximate entropy-based feature representation to model the dynamics in human 

movement to achieve temporal segmentation in untrimmed motion capture data and fine-

grained quality assessment of diving actions in videos. Different from traditional 

dynamical modeling approaches [82] which do not use any information about the 

interdependencies between joints, [81] develops a dynamical model by extending 

conventional ideas to quantify the interdependencies between body joints. Using the 

estimated pose for each frame, they propose a new approach – approximate entropy-based 

feature representation to model the dynamics in human movement by quantifying 

dynamical regularity. All of the APEN features are concatenated to get a high-

dimensional feature vector. The dynamical information in these videos is better encoded 

by their feature vector than by DCT. They indicate that their superior performance is 

because APEN feature encodes the dynamical information in the time series of poses 

while DCT does not. Additionally, the proposed framework incorporates the 

interdependency between the joints, while traditional approaches consider each joint 

independently. One of the disadvantages of employing human poses as a feature is that 

incorrectly estimated poses have a negative impact on the final output. Due to atypical 

body positions, pose estimation has been demonstrated to be difficult on diving and figure 
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skating datasets [80]. Pose only descriptors neglect important cues used in sport 

“execution” scoring such as splash size in diving. In addition, relative pose does not 

reflect absolute positional information, which could be crucial for scoring (e.g., entry 

position of a dive).  Therefore, visual features such as 3D convolutional neural networks 

(C3D) are expected to perform better. Three different frameworks are proposed by [79] 

to evaluate Olympic sports which utilize spatiotemporal features learned using C3D. 

Score regression is performed with: SVR, LSTM, and LSTM followed by SVR. Rather 

than extracting human pose explicitly, the authors proposed a system which leverages 

visual activity information to assess quality of actions. The first step of their sports 

assessment system is extracting spatiotemporal features from video. To do that, they use 

C3D network which has been shown to be effective at preserving temporal information 

in video and outperform 2D ConvNets [83]. The proposed system, which is implemented 

using Caffe [84], shows significant improvement over existing quality assessment 

approaches on the task of predicting scores of Olympic events. They found that C3D-

SVR gave best results. In this work, they also introduce new datasets for sports score 

assessment: The existing MIT diving dataset is doubled from 159 samples to 370 

examples. Also, they have introduced a new gymnastic vault dataset which contains 176 

samples.  

 

Learning a measure of similarity between pairs of objects is an important generic problem 

in computer vision. Rather than using popular machine learning techniques to learn a 

pairwise similarity function [85], many deep learning models have also been used in 

learning to rank [86] [87]. Deriving from the idea of exploring relative relationship 

through ranking in previous works, [87] uses a pairwise deep ranking model to learn the 

spatial and temporal DCNN architectures for performing highlight detection in egocentric 

videos by using pairs of highlight and non-highlight segments. Using this pairwise 

ranking idea, Doughty et al. (2017) is the first paper which determines skills from 4 

different datasets by the pairwise deep ranking model. The authors use Temporal Segment 

Networks (TSN) architecture [88], which achieves state of the art performances for action 

recognition on UCF101 [89] and HMDB51 [90], to model long range temporal structure. 

They build a Siamese version of the two-stream TSN composed of a spatial and temporal 

stream. [48] is an extension of the previous study. Here, the authors test their same method 

on both stationary and egocentric recordings. They conclude that in Dough-Rolling, the 
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kitchen-based CMU-MMAC dataset [91] and Chopstick-Using datasets, the egocentric 

allows for better performance, due to the camera position’s closeness to the action as well 

as information in the head motion. Similar to [48], [92] aims to evaluate skill in a more 

general sense for a variety of tasks. In this work, the authors propose a novel deep network 

for evaluating user’s video compared with the instructional video in terms of semantic 

similarity. Action units were encoded from dense trajectories and FV aggregation with 

LSTM network. The variable-length action unit features were then evaluated by the 

Siamese LSTM network on breakfast dataset [93]. 

 

In sport healthcare systems, the correct execution of well-defined movements also plays 

a crucial role in physical rehabilitation [94]. Human proprioception may not be sufficient 

to spot movement mistakes. Thus, expert trainers observing the movement can give the 

trainee proficient feedback for timely improving the quality of the performance and 

avoiding persistent inaccuracies. However, it is not the case that a personal trainer is 

always available to assess the quality of movements during their execution. Therefore, 

there is a strong motivation to develop automatic systems able to detect mistakes during 

the performance of well-defined routines for providing feedback in real time. [94] 

presented a learning-based method that provides visual assistance to the person 

performing an exercise by displaying real-time feedback, thus enabling the user to correct 

inaccurate body motion. They use a novel recursive neural network, the MGWR, that uses 

growing self-organization for the efficient learning of input sequences and evaluate their 

approach with a data set containing 3 powerlifting exercises performed by 17 athletes. 

With respect to their previous model [95], the current approach accounts also for learning 

motion intensity to better predict and assess the dynamics of actions. [79], cast the quality 

assessment in physical therapy as a classification problem. In this work, 3D pose 

information from a Kinect is used to determine if an exercise repetition was “good” or 

“bad” using popular ML techniques for classification. Among support vector machines 

(SVM), single and double layered neural networks (NN), boosted decision trees, and 

dynamic time warping (DTW) features, the study shows AdaBoosted tree performed best. 

The authors also introduce the pilot LAM (large amplitude movement) Exercise Quality 

Dataset which is designed to treat CP (cerebral palsy) in an automated fashion. HTKS 

[96] is a game-like cognitive assessment method, designed for children between four and 

eight years of age. [97] have introduced the CogniLearn system, which is used for 
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automated video capture and performance assessment during the HTKS assessment. For 

this, they first perform human body pose estimation using the pose estimator called 

DeeperCut [98], then using the body pose estimates from DeeperCut, they act a 

classification module that determines whether the subject touched his or her head, 

shoulders, knees, or toes. The CogniLearn system compares the part that was touched 

with the part that should have been touched based on the rules of the game and assesses 

the overall accuracy score of the person playing the game. Different from these physical 

exercises in healthcare, [69] proposes a framework that assesses how well people practice 

Sun Salutation, which is a simple, and effective series of Yoga Postures that invigorates 

the whole body, using Hidden Markov models with STIP features. The performers who 

either perform an action too fast (small time interval) or are not consistent across multiple 

cycles or take unequal rests after attaining a key pose while performing slow-paced Sun 

Salutation is detected as bad performers by the proposed system. 

 

Third application of the RSRNA model introduced here is the relative assessment of 

diving skills of athletes in Olympic championships. In this application, the motion signals 

are extracted from video sequences of diving sessions using pose estimation techniques. 

When the body positions from several locations are obtained over time, this sequence is 

fed into RNSA model in the same way as the other two applications. Here, it is important 

to notice that pose estimation may not work in %100 accuracy, therefore, an information 

is loss is expected in the input layer, which will affect the final accuracy of ranking. The 

adopted model is tested in a public video dataset and benchmarked against conventional 

machine learning models based of absolute assessment of skills. Again, the existing 

methods were run in the same experimental setup with ours to discern their abilities in 

pairwise ranking. 

 

6.2. Materials and Methods 

 

6.2.1. Model Adoption 

The RSRNA model is designed to work for comparing two multi-variate time-series 

motion signals in terms of one of their attributes which represents the quality of the action. 
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Main problem in the adoption of diving skill comparison in Olympic events is the fact 

that the athletes are not allowed to wear any kind of sensors, but their motions can be 

captured by video recordings. Since the video recording contains many other components 

such the environment of the action, changing background and potentially other people 

around, a preprocessing method is needed at the input layer of the RSRNA model. For 

this, we used a pose estimation approach where video recording can be transformed into 

a signal of multi-position coordinates of the body on temporal dimensions (See Figure 13 

for an example human pose estimation). The next steps are followed in the same way as 

how PD monitoring is implemented. 

 

Figure 13. An example of how a video recording shot can be transformed into a pose 

signal. 

In a video, our main assumption was we know the pose information of the athlete in each 

frame which is gathered from either through ground truth or automatic pose estimation. 

Let’s say q(j)(t) be the x component of the jth joint in the tth frame of the video. All the 

joint positions that are relative to the head position are normalized because we want our 

position features to be translation-invariant using this formula: f(j)(t) = q(j)(t) − q(0)(t) 

where q(0)(t) refers to the head of the performer based on our assumptions.  
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To extract the position of the body joints of an athlete from the entire video q(j)(t), we 

run a pose estimation algorithm for every frame. We considered several pose estimation 

methods in this stage. The first one, alpha pose, [99] is a top-down approach which first 

detects individual people and then estimate each person’s pose. This kind of approaches 

interpret the process of detecting key points as a two-stage pipeline, that is, firstly locate 

and crop all persons from image, and then solve the single person pose estimation problem 

in the cropped person patches. The second method we considered is a bottom-up approach 

[100]. The bottom-up approaches first detect body parts and then group these parts to 

human instances. [100] formulate the problem of multi-person pose estimation as part 

grouping and labeling via a Linear Program. 

 

The results of these methods on diving dataset are shown in Figure 14 and 15.  Although 

Alpha Pose is able to capture the poses which cannot be estimated by 2nd method, it cannot 

be considered as successful. There are many frames (Figure 14) where the athlete pose 

cannot be found. Such cases force us to do missing data imputation to feed the pairwise 

rank model. Consequently, we choose to use sensory data as inputs to our deep learning 

framework for quality assessment. 
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Figure 14. Alpha Pose Results on diving dataset (Top row: Successful results. Bottom 

row: Unsuccessful results) 
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Figure 15. Pose Tensorflow results on diving dataset.  

(Top row: Successful results. Bottom row: Unsuccessful results) 

 

Finally, we considered the model suggested by [80] for action quality assessment. They 

used this pose estimations to extract features based on Discrete Cosine Transform (DCT) 

before feeding an SVM regression model. We extract the pose information using Flexible 

Parts Model [101] for each frame independently, as done by [80]. Yang and Ramanan 

[101] used dynamic programming in order to find the best pose in a single frame. Since 

our aim is to find the best pose through the entire video, we extract the N-best pose from 

each frame using [102]. Then, using a dynamic programming method, we correlate the 

poses to discover the best track in the entire video. The association looks for the single 

best smooth track covering the whole temporal span of the video. 

 

6.2.2. Data 

In [80] an Olympics video dataset is introduced for the action quality assessment problem. 

Sports footage has the advantage that it can be obtained freely, and the expert judge’s 

scores are frequently released publicly. The dataset consists of YouTube videos from 
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recent Olympics and other worldwide championships for two categories of sports: diving, 

and figure skating. The videos are long with several instances of multiple people 

performing different Olympic actions. Annotation is done with the start and end frame 

for each Olympic video. The dataset is publicly available. 

(http://people.csail.mit.edu/hpirsiav/quality.html). 

 

There are 159 videos in the diving dataset. Because the videos are slow-motion broadcasts 

from television channels, the effective frame rate is 60 frames per second. Each video is 

approximately 150 frames, and there are 25,000 frames in the entire dataset. The ground 

truth judge scores vary between 20 and 100 where 20 is the worst performance. In the 

paper, authors use 100 instances for training. The remaining instances are used for testing 

procedures. Each experiment was repeated 200 times with different random splits, and 

the authors find the average of the results. The study does not only calculate the score of 

the event but also gives the feedback to the athlete so that s/he can improve his/her dive. 

Some examples diving actions in the dataset are shown in Figure 16. 

 

http://people.csail.mit.edu/hpirsiav/quality.html
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Figure 16. Example diving video shots from Olympics video dataset for action quality 

assessment. 

6.2.3. Experimental Setup 

We assessed the accuracy of predictions using a ten-fold cross-validation setup. In this 

setup, the pairs between 1/10 of the patients were used for testing, and the remaining pairs 

were used for training. It should be noted that test samples included both pairs in which 

neither video has been used in a pair for training and the pairs in which the other video 

was used for training in a different pairing. To evaluate the performance, pairwise ranking 

accuracy (Acc) is used. This is the percentage of correctly ordered pairs generated by 

each testing fold. Depending on whether the rank layer models the equivalence of diving 

skills of two athletes, two different accuracy results may be reported. When the 

equivalence is considered, the accuracy gives the evaluation of ternary ranking 

performance. Otherwise, it evaluates binary ranking. 

 

6.2.4 Implementation   

For pose estimations, we used a Matlab implementation of the human pose estimation 

algorithm described in [101] [103]. It includes pre-trained full-body and upper-body 

models. Much of the detection code is built on top of deformable part-based model 

implementation [104]. The training code implements a quadratic program (QP) solver 

described in [105]. The code is trained and tested using positive images from the PARSE 

dataset [106] the BUFFY dataset [107] and negative images from the INRIA Person 

Background dataset [108]. 

 

The other components of RSRNA model are implemented in the same way as done for 

PD monitoring application (See 4.2.4). A sigmoid activation layer was used to model the 

probabilistic rank layer, which is followed by a binary cross-entropy loss function in the 

training model. We used the following hyper-parameters for learning by a stochastic 

gradient descent algorithm: a learning rate of 0.001, a unit size of 64 with a single hidden 

layer, and a batch size of 2. The framework was implemented in Keras using TensorFlow 

backend. 
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6.3. Results 

We have used pose information of the athletes to rank their performances. Table 14 shows 

the pairwise ranking accuracies for binary and ternary cases with different configurations 

of the RSRNA model 

 

Table 14. Results of pairwise ranking on Diving Dataset using body joints 

Method Binary ranking Ternary ranking 

Siamese bi-LSTM 
70.02 68.68 

Siamese bi-LSTM w/ PAA 
70.16 69.09 

Siamese bi-LSTM w/ attention 
73.18 72.07 
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7. DISCUSSION AND CONCLUSION 

Although pairwise ranking of entities is an old task in computing, relative assessment of 

actions from motion signals has not been studied well in the literature. We have seen 

some examples of pairwise ranking for image and video data with different applications. 

This thesis however addresses a new problem; relative assessment of actions based on 

their quality using a pairwise ranking model of sensory motion signals in the form of a 

multi-variate time-series. To this end, the study proposes a deep learning model built upon 

a two-stream Siamese architecture, called RSRNA. Each stream of the framework 

represents the other motion where the output of the model refers to the probability of first 

action having a better quality than the second one. To the best of author’s knowledge, 

pairwise ranking of time-series has been studied for the first time in this thesis. 

 

The framework is adopted for three real-time applications in different domains, namely, 

remote healthcare, surgery training and sports in Olympic events. The first application 

aims to monitor PD patients through gait analysis using a relative assessment scheme for 

gait skills. The second application is the assessment of surgery skills via kinematic signals 

obtained via a surgery robot used by surgeons during training. The objective of the last 

application is to rank the diving athletes during Olympic events based on their 

performance quality. 

 

The RSRNA framework adapts an effective pre-processing step for smoothing the motion 

signal to overcome the problem of sparsity in observed position information over the 

action. A piecewise aggregate approximation scheme, which attempts to provide a 

balanced probabilistic distribution over the vertical dimension of the signal, enable the 

model to run in reduced space and converge faster in parameter learning. The experiments 

showed that this scheme provides better accuracy in surgical skill and diving quality 

assessments while it makes no difference in the PD monitoring application. This can be 

contributed to the fact that the motions in first two applications span in a larger scale with 

a smaller number of training samples compared with PD gait dataset. On the other hand, 

PD gait signals acquired from foot motions fluctuates less in all dimensions and attains a 

lower sparsity in general with the addition of more training samples. 
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The framework models temporal information using an LSTM at each stream of the 

framework. Although all RNNs have feedback loops in the recurrent layer which let them 

maintain information in memory over time it can be difficult to train standard RNNs to 

solve problems that require learning long-term temporal dependencies. This is because 

the gradient of the loss function decays exponentially with time, which is called as 

vanishing gradient problem. LSTM uses special units in addition to standard units which 

include a 'memory cell' that can maintain information in memory for long periods of time. 

A set of gates is used to control when information enters the memory, when it's output, 

and when it's forgotten. This architecture lets them learn longer-term dependencies. Our 

experimental results in all three applications justify that LSTM performs better than 

standard RNNs for skill assessment. This is probably due to the fact that the quality of an 

action usually dependent on several temporal movements over time but not only the 

nearest changes. On the other hand, this dependency may not be structured enough to be 

modeled by special gates of LSTM. That’s why an attention enhancement is integrated in 

the proposed framework. Again, the results have justified the use of attention mechanism 

for pairwise ranking of skills in all experimental setups.  

 

As with most AI applications, the main limitation of current model is small data. 

Especially in the medical field, there is considerably less data than in video and text-based 

systems, which brings us unreliable results while training regression or classification 

models. More specifically, in our applications, we have had 275 subjects in gait and 159 

athletes in diving datasets. For this reason, building a regression or a classification model 

on these small data may overfit or may not represent the data well. However, using a 

pairwise approach, we have addressed the small data problem indirectly. Since we study 

on all the pairs and compare the performances of each pair, we have more than 35000 

data in gait dataset, 12000 data in diving dataset.  

 

The thesis brings a new modality for computational quality/performance/skill assessment. 

We have considered the skill assessment problem as a relative assessment task. Relative 

assessment approach provides a more interpretable and reliable view of the progress while 

it overcomes the limitations caused by inconsistencies in subjective grading scales. 
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Moreover, we have showed that the model is not data type dependent. The same model is 

useful on different data type: Sensory, Kinect and Video (Body Joints). 

 

We have also showed that we can consider pairwise rankings as an intermediate step for 

a regression task. Using pairwise scores as features, we can train a regression-based 

models which brings us a succeeding correlation result. This approach has an additional 

advantage that the empirical representation scheme is independent from the problem 

under consideration but can adapt to the case directly based on the pairwise rank of 

training samples. 

 

Each application of RSRNA model comes together with particular arguments in 

additional to general conclusion inferred from the proposed model and its applicability in 

several domains. We first introduce a novel approach for the relative assessment of the 

severity level of PD patients using gait sensors. To the best of our knowledge, this is the 

first attempt in the literature to assess PD patients by a pairwise comparison of gait signals 

via GRF sensors worn under foot. According to the experimental results, the predictions 

were correlated with the clinical annotations. The accuracy of pairwise ranking 

predictions reached up to 81% with an AUC of 0.878 in ten-fold cross validation. The 

model outperformed the previous methods for PD monitoring when run in the same 

experimental setup. The relative assessment approach provides a more interpretable and 

reliable view of disease progress while overcoming the limitations caused by 

inconsistencies in subjective grading scales. This approach will promote two applications. 

First, monitoring the progress of patients during applied treatments may support their 

prognosis and guide the organization of both preventive medicine and ongoing care 

practices [31]. As the present model allows comparison of patients' current data with their 

previous recordings, it can serve as a complementary model to new computer-aided 

prognosis tools. Second, this may support the personalized medicine effort by referring 

to the success/failure stories of the treatments of other relevant patients which can be 

obtained by retrieving similar cases using our RSRNA model. As the model is applicable 

to many other biomedical time-series signals, it may find applications in other health 

domains such as prognosing cardiovascular diseases using electrocardiograms [109] or 

monitoring patients in intensive care units via physiological vital signs [110]. Since PD 
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patients usually suffer from the loss of basic motor abilities, remote monitoring is a recent 

challenge to provide satisfactory home care and clinical support. Our experiments showed 

that present model enables the relative assessment of current patient against others using 

wearable sensors, which can be easily used in home settings. Lack of multiple samples 

from individual patients prevented us to measure the performance of the system for 

assessing the progress of same person over time. This can be considered as a future 

clinical study. Providing multi-sensory data or video recordings used in remote 

monitoring of patients as inputs to the system may be another future aspect of the current 

study. Combining different modalities can be considered for developing an enhanced 

quality assessment system for PD patients. 

 

A novel framework for objective skill assessment for robot-assisted surgery using 

kinematic data is also introduced, that shall be used for choosing, credentialing and 

monitoring of surgeons. The model provides a more interpretable and reliable view of 

skill assessment for surgical operations. The experimental results justify that this model 

can achieve better accuracy than the state-of-the-art methods in both ranking and 

regression setups for surgery skill assessment. This model may help to overcome the 

limitations caused by inconsistencies in subjective skill grading scales, that are used to 

train such systems. Compared to video-based solutions, the use of kinematic data reduces 

the demands on computational power and is therefore a more applicable alternative for 

the practical implementation in a hospital setting.  

 

To our knowledge, this is the first study that has considered and experimented the task of 

individual progress monitoring for surgery skills from a computational perspective. We 

describe how our model can be used in this context and validate it empirically in a recent 

dataset. The empirical results are promising; these results will serve as a strong baseline 

for future studies in monitoring task. 

 

One of the limitations of the current study is the fact that reported pairwise rankings may 

violate triangular consistency, which will result in an unidentifiable full ranking of all 

actions. Although this information is not always requested in real-life surgeon trainings, 

considering the consistency in full ranking in the loss function may improve the 
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prediction accuracy of the model. This is left for future work. The need for further 

validation of the ROSMA dataset with deeper statistical analysis challenges another 

future study. Another limitation is related to the kinematic data. Although kinematic data 

has an advantage over video data in capturing three-dimensional motion information, 

kinematic data does not contain contextual and semantic information such as the 

smoothness and strength of the movement, and the interaction between tools and tissue. 

Therefore, it may be a future direction to integrate video and kinematic data for more 

accurate ranking predictions with the expense of increasing computational costs. As a 

result, the assessment of surgical skill needs further investigation to perform in an 

objective way. Current progress in kinematic sensor data analysis is considered as a 

powerful complementary tool to manual assessment. It is reasonable to suggest that 

assessing surgical skill requires multiple simultaneous assessments, including machine-

learning-based decision support systems as offered in the present study. 

 

Computerized skill assessment of athletes in Olympic event has physical limitations due 

to unacceptability of wearable sensors during the activity. Therefore, video-based 

solutions have received more attention recently by computer vision researchers. The 

greater ability of deep learning systems supported by transfer learning in image and video 

data has pushed more the research in this direction. Still, we have applied RSRNA model 

for this problem assuming that human pose information is available as a multi-variate 

time-series to represent the action of the athletes. However, since we have to estimate the 

pose information from video stream, the input is prone to information loss due to false 

predictions in this stage. Although this approach is to competitive with more resource-

demanding three dimensional convolutional deep learning models, we have shown that 

our approach can perform better that other conventional methods based on hand-crafted 

features.   

 

In general, the proposed RSRNA method can be considered as a generic model for several 

pairwise ranking tasks, as the inputs are multivariate time-series signals. While LSTM 

layer makes the model applicable for all sequential signals, attention enhancement 

extends its ability to adopt novel signals obtained from different measurement modalities. 

Proposed rank layer with probabilistic loss function allows the Siamese model to handle 
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relative comparison of inputs instead of their direct evaluation for similarity. We expect 

that this model will find wide range of applications in several domains, but more 

particularly in the health domain, to compare patients based on their physiological 

recordings or motion signals. 
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