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ABSTRACT

STOCHASTIC GEOMETRY-BASED PERFORMANCE ANALYSIS OF
IRS-AIDED MMWAVE NETWORKS

Abdullah Yasin Etcibaşı

Master of Science, Electrical and Electronics Engineering
Supervisor: Prof. Dr. Emre Aktaş

June 2022, 96 pages

Wireless communication society aims for higher frequency bands for the unused bandwidths.

However higher frequency comes with its drawbacks such as the high penetration loss.

The concept of intelligent reflecting surfaces (IRSs) has recently become a popular topic

for various use cases including coverage enhancement. Through reflecting signals in the

desired and programmed direction, coverage holes may be eliminated. In previous works,

coverage analysis of IRS-aided networks was done for several different channel and system

model assumptions. However, most of the works do not address the blockage effect, and

those that address use an unpractical path loss (PL) model for the indirect link which is

the sum-distance PL model. It is envisioned that the primary benefit of IRS would be

to aid mmWave communication in the presence of blockages. In this thesis, we consider

a stochastic geometry (SG)-based network to model the locations of two-dimensional

blockages (typically buildings), base stations (BSs), and IRSs. We also consider the the

product-distance PL model, which is a more suitable PL model for the far-field as opposed

to the commonly used sum-distance model. First, we propose a gamma approximation for

the nearest distance distributions and derive a closed-form expression for the distribution

of the product-distance of the indirect link. We investigate the coverage probability for the

line-of-sight (LoS) dependent network. In the numerical results, we compare our proposed

analytical approximations with simulations. We also investigate the coverage gains of
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IRS-aided systems. We observed that up to a 45% boost in the coverage probability can

be obtained with the use of the IRS.

Keywords: Millimeter-wave (mmWave), Intelligent Reflecting Surface (IRS),

signal-to-noise ratio (SNR), coverage, stochastic geometry (SG)
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ÖZET

IRS-DESTEKLİ MİLİMETRE DALGA AĞLARININ STOKASTİK
GEOMETRİ-TABANLI PERFORMANS ANALİZİ

Abdullah Yasin Etcibaşı

Yüksek Lisans, Elektrik-Elektronik Mühendisliği
Danışman: Prof. Dr. Emre Aktaş

Haziran 2022, 96 sayfa

Kablosuz iletişim topluluğu, kullanılmayan bant genişlikleri için daha yüksek frekans

bantları hedeflemektedir. Bununla birlikte, daha yüksek frekans, yüksek penetrasyon

kayıpları gibi dezavantajları beraberinde getirir. Akıllı yansıtıcı yüzeyler (IRS’ler) kavramı,

son zamanlarda kapsama alanı geliştirme dahil olmak üzere çeşitli kullanım durumları için

popüler bir konu haline gelmiştir. Sinyalleri istenilen ve programlanan yönde yansıtarak

kapsama alanı boşlukları ortadan kaldırılabilir. Literatürdeki önceki çalışmalarda farklı

sistem ve kanal modelleri için IRS destekli ağların kapsama analizi yapılmıştır. Ne var

ki, çalışmaların çoğu blokaj etkisine değinmemektedir ve değinenler de IRS’ler için pratik

olmayan bir yol kaybı (PL) modeli olan toplam mesafeli PL modelini kullanmışlardır.

IRS’nin birincil yararının, engellerin varlığında mmwave iletişimine yardımcı olacağı

öngörülmektedir. Bu tezde, iki boyutlu blokajların (tipik olarak binalar), baz istasyonlarının

(BS) ve IRS’lerin konumlarını modellemek için stokastik geometri (SG) tabanlı bir ağı ele

alıyoruz. Ayrıca uzak-alan durumları için daha uygun olan PL modelini (çarpım-mesafesi

PL modeli) ele alacağız. İlk olarak, en yakın mesafe dağılımları için bir gamma yaklaşımı

önereceğiz ve endirekt bağlantının çarpım mesafesi dağılımı için de bir kapalı-form ifade

türeteceğiz. LoS bağımlı ağ için kapsama alanı olasılığını inceleyeceğiz. Simülasyon

sonuçlarında ise, önerilen analitik yaklaşımlarımızı simülasyonlarla karşılaştırdık. Ayrıca
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IRS destekli sistemlerin kapsama kazanımlarını da araştırdık. Sonuç olarak ise IRS’nin

kullanılmasıyla birlikte kapsama alanı olasılığında %45’e varan bir artış elde edilebileceğini

gözlemledik.

Keywords: Milimetre-dalge (mmWave), Akıllı Yansıtıcı Yüzeyler (IRS), sinyal-gürültü

oranı (SNR), kapsama alanı, stokastik geometri (SG)
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June 2022, Ankara

v



CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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1. INTRODUCTION

The need for higher data rates and connectivity grows each year. Especially in the period

of the pandemic COVID-19, we want to be connected anywhere all the time. According to

Ericsson’s research, the mobile data traffic has increased 300 times in the last 11 years [17].

Smartphones contribute 97% of mobile data traffic in the world, and it is foreseen that the

monthly global average usage per smartphone will reach 41 GB by the end of 2027. To meet

this demand, we need more spectrum which is available at higher frequencies. In the SHF

and EHF bands (the 3-30 GHz and 30-300 GHz range, respectively), there are approximately

252 GHz suitable for mobile broadband [3]. For instance, the FCC, an American independent

agency that regulates the communication, already opened 21 GHz in the 95-300 GHz band

for the research purposes [18].

Although we can use a large amount of bandwidth in the high-frequency bands, there is a

price to pay, which is the high penetration loss. The building penetration loss can be as

high as 40 dB for buildings with infrared reflecting (IRR) glass [19]. In [19], the authors

mention that a person who blocks the LoS link can cause an attenuation of around 20 dB.

They also point out that the outage probability (OP) can be higher at mmWave frequencies

due to the various path loss exponents (PLEs) of different streets. In [3], the authors plot the

foliage penetration loss and the rain attenuation versus frequency. We can observe that the

losses become severe at higher frequencies due to the environmental effects. However, If the

antenna aperture is kept constant, the antenna gain will be higher at higher frequencies [3],

[19], [20]. Hence we can compensate for the high free-space PL by using a large number

of antenna elements. It has been suggested that atmospheric attenuation will not contribute

more than a few dB to the PL for the cell sizes around 200m [3], [19]. To test this statement,

some studies conducted field measurements that aim to measure the maximum distance of

LoS links at high frequency by using beamforming. In [21], the authors claim that they

achieved 2.148 Gbps of throughput at 1.8 km and at 39 GHz of operating frequency when

the user equipment (UE) is stationary. In [20], 1.7 km of a range is achieved at 39 GHz in the

LoS scenario. However, they point out that there are some coverage holes in non-line-of-sight

(NLoS) locations. Specifically, they say that a range of around 200 m is achieved in the NLoS

case. Combating this problem, the IRSs has emerged as a possible solution in the last 4 years.
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The programmable nature of IRSs allows us to create LoS links around the buildings, and

it brings a new concept to the wireless context called the smart radio environment [22].

Also, the low cost, low energy consumption, and programmable nature of IRSs make

them a candidate technology for enabling 6G [18], [23]. Researches foresee IRSs as a

possible solution to coverage problems at high frequencies [24]. There have been some

contributions to investigate the coverage probability for IRS-aided networks. However,

these works consider sum-distance PL and the line Boolean model which is not practical

as product-distance PL model and rectangular Boolean scheme.

1.1. Scope Of The Thesis

This thesis mainly focuses on the coverage probability analysis of an IRS-aided SG-based

mmWave network. We follow an stochastic geometry (SG) based approach where the

multiple BSs, blockages, IRSs, and UEs are distributed according to a homogeneous Poisson

point process (HPPP). We assume that coverage is line of sight (LoS) only, as in [15], where

fully LoS dependent coverage is considered.

1.2. Contributions

In this thesis, we analyze the coverage probability from a practical perspective. The main

contributions of this study can be summarized as follows:

• Since the pdf of the nearest LoS neighbor distance in an SG-based network is

cumbersome for analytical tractability, we purpose a gamma approximation to this

pdf, which is more suitable for theoretical analyses.

• Unlike most of the previous works, we consider a much more realistic scenario where

the PL model of the SNR expression of the indirect link is the product distance model.

In addition, the blockages are model with a rectangular Boolean scheme, as opposed

to previous works where line Boolean model were used.

• For the first time, we derive the pdf of the product of the distance between the typical

UE (TUE) and nearest IRS, and the distance between nearest IRS and the nearest BS
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relative to the IRS. We name this product as the product distance. Then we derive the

probability of feasible BSs, which are the BSs that can be reached through the nearest

IRS. Since, some of the BSs fall behind the buildings which are not reachable from the

IRS.

• The analytical derivations of coverage probability are validated by the simulation

results. The numerical results show that the coverage gains due to IRS depends on

parameters such as blockage and BS density, IRS deployment ratio. It is shown

that coverage probability gains of up to 45% are possible. There is an optimal IRS

deployment ratio that gives maximum coverage for each BS density, and the effect of

the IRS length into the network coverage is limited after 1.2m. Moreover, we show

that the line Boolean sum-distance PL model is too optimistic for coverage analysis.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions, and the scope of the thesis.

• Chapter 2 provides background information regarding the propagation characteristics

of mmWave channels, IRSs, and stochastic geometry (SG). For the mmWave channel

characteristics, we give some details about the penetration losses, path loss exponent,

and spatial consistency in the mmWave. For the IRSs, we discuss the main network

functions, building blocks, fundamental properties, and some implementations of

IRSs. Then we give some preliminaries about the SG-based networks.

• Chapter 3 mentions the work that our study builds upon, and the works related to our

system model.

• Chapter 4 introduces the method that we used to solve the SNR coverage probability

problem, which includes the gamma approximation of nearest neighbor distances, pdf

of the product distance, and the probability of feasible BSs.

• Chapter 5 demonstrates the numerical results of our solution and related Monte-Carlo

simulations (MCSs) including the coverage plots for various densities of blockages
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and BSs, the contribution of IRSs into the network coverage for different system

parameters, investigation of the optimal length of the IRS, and the comparison of our

model with the line Boolean sum-distance model.

• Chapter 6 states the summary of the thesis and possible future directions.

2. BACKGROUND

In this section, we will present the propagation characteristics of mmWave channels,

the general properties of IRSs, and provide some SG preliminaries. The propagation

characteristics of mmWave are examined in the sense that how the building materials affect

the propagation, what is the effect of the foliage and atmospheric conditions, and what is

the small scale model, angular spread, and correlation distance in mmWave channels. Then,

we will give some implementations regarding the mmWave systems. Secondly, we will

talk about the main functions of IRSs, use case scenarios, their working principle, and the

experimental models. Finally, we will touch upon the fundamental theorems and definitions

in SG based networks for our derivations given in Chapter 4.

2.1. Propagation in MmWave Systems

As we climb up in the frequency spectrum, we can find a vast amount of available bandwidth.

In order to effectively utilize these large large frequency bands, we need to first know about

the propagation characteristics in these frequencies. In order to investigate the theoretical

gains, we need mathematical models of these channels. In this section, we will discuss the

penetration losses of different materials, path loss exponent, spatial consistency, correlation

distance, foliage losses, angle of arrivals - angle of departures, and small-scale fading in

mmWave channels. Finally, we will give some experimental results of high-frequency

systems, and briefly touch upon their health aspects.

One of the main properties of the mmWave is its high dependence on blockage. There

is a sharp difference between LoS and NLoS scenarios. Especially in the NLoS case, the

attenuation is much more severe than conventional frequencies. In [25], the authors mention

that the building penetration loss can be as high as 40-80 dB so the outdoor-to-indoor
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coverage may not be possible. Even the human body itself has an average penetration loss

of 20 dB, especially in the direction of the head or torso [19], [25]. On the positive side,

this loss applies to the interfering signals so that the interference will be limited in mmWave

systems. The penetration loss of different building materials at 28 GHz can be seen in Table

2.1 [1]. It can be observed that the penetration losses of outdoor materials are markedly high

so that they may not allow the waves to penetrate inside. However, on the indoor materials

side, clear glass and drywall have acceptable penetration losses. Although the penetration

losses are higher in the mmWave range than in the microwave, the PLE of LoS channels is the

same. It is around 1.6 and 2.1 [19]. However, for the NLoS scenarios, the PLE is noticeably

dependent on the environment. It ranges from 2.5 to 5. In Fig. 2.1, it can be observed that the

LoS PLE fitted to the measurement points is approximately equal to two, and the variance

of NLoS measurement data (red crosses) is quite high [2]. This high blockage-dependent

nature of mmWave links makes the correlation distance low.

Environment Material Thickness (cm) Penetration Loss (dB)

Outdoor
Tinted Glass 3.8 40.1

Brick 185.4 28.3

Indoor

Clear Glass <1.3 3.9

Tinted Glass <1.3 24.5

Drywall 38.1 6.8

Table 2.1 Penetration losses for different building materials at 28 GHz [1]

In [26], authors investigated the spatial consistency at 140GHz. Spatial consistency is related

to the spatial correlation of the channel. If two channel gains corresponding to locations

separated by a distance d are highly correlated, then it is said that channel is spatial consistent

for distance d. They form a rectangular route in which they conducted measurements in the

intervals of 3 meters. The rectangular route they used and the receiver location indexes can

be seen in Fig. 2.2 (a). The PL values for these measurement locations are given in the 2.2

(b). It can be observed from this plot that if an object intersects with the LoS link, there is

a sharp increase in the PL value. Since the receiver locations RX6 and the RX22 are the

LoS-NLoS crossing positions, there is a 33 dB and 13 dB instant variations in the PL value

around RX6 and RX22. The major cause of these variations is the trees which can be seen
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Figure 2.1 UMi 142 GHz directional PL scatter plot and fitted PL models [2]. Red crosses and
the magenta circles represent the LoS and NLoS measurements, respectively. The blue
diamonds represent the maximum measured power for each location. The black dotted
lines are the free-space PL model for the given PLEs. The solid lines are the best-fit
outdoor directional CI PL models for both LoS and NLoS scenarios.

in Fig.2.2 (a). The authors also show that the correlation distance is around 3.8 m in this

experiment.

(a) (b)

Figure 2.2 (a) Spatial consistency measurement locations. (b) 142 GHz PL variations over 34 RX
locations.

Another loss that we should consider in mmWave networks is the foliage loss. Although the

attenuation increases with the foliage depth, it saturates for long distances [19]. The foliage

attenuation for four different foliage depths versus frequency can be seen in the Fig. 2.3 (a)

[3]. As we can observe, the attenuation increases by 10 dB, on average, as the depth increases

at 60 GHz, and the difference becomes greater in the higher frequency bands. Also the rain
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attenuation becomes severe in mmWave bands (Fig. 2.3 (b)). The reason for this increase in

attenuation is that the wavelength is much smaller than the raindrops in these bands. Hence

they scatter the radio signals [3]. If we back to the foliage loss, the PL of some streets can be

different for different seasons, especially if they have deciduous trees (these trees shed their

leaves every fall) [27]. The authors also mention that the leafy streets have an extra 23 dB of

attenuation for above 200 meters of Rx-Tx distance.

(a) (b)

Figure 2.3 (a) Foliage penetration loss vs. frequency. (b) Rain attenuation loss vs. frequency [3].

The mmWave bands are sparse in the angular domain, and the delay spread is much less

than the microwave frequencies [25]. In [28], the root-mean-square (RMS) delay spread

(DS) and angular spread (AS) are investigated for the frequencies of 28, 38, 73, and 142

GHz and they observed that the PLE is almost the same for all these frequencies but the DS

and AS decreases as the frequency increases. For instance, if a threshold is set to the 20

dB below relative to the peak multipath component (MPC), the number of angle-of-arrivals

(AoA) for the LoS case is 1.7 on average and it is 2.8 for the NLoS case at 142 GHz. As

for the DS, the mean value of LoS DS is 1-2 ns from 28 to 142 GHz. It means that for the

directional antennas pointing boresight direction, the only dominant path will be the LoS

MPC [28]. Hence, we assumed that the only link can be made through the LoS MPC in a

mmWave directional network as in our thesis because of the aforementioned reasons and the

high penetration losses.

For the small-scale fading, there is not much measurement campaign done in the literature.

In [29], authors use a linear track of 33λ length to get small-scale measurements with λ/2
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(0.5 cm) steps at 28 GHz. They found out that the measurement results fit well for the Rician

fading with 9 dB of K-factor.

Finally, we will discuss some prototypes and field measurements of mmWave systems. The

antenna radiation pattern and the health aspects of large-scale mmWave 5G cellular systems

are investigated in [4]. The system model of this study can be seen in Fig. 2.4 (a). The

mobile phone is 6 meters away from the BS, and the downlink (DL) signal of 528 Mb/s data

rate is sent at 28 GHz. The BS is equipped with 256 element antenna array with 24 dBi gain,

and the Rx has a 16x2 antenna array with 10 dBi gain. According to their anechoic chamber

measurements, the Rx has 12° of beamwidth and it has nearly a spherical coverage with two

antenna sets. The authors also investigated the specific absorption rates of this system. In the

mmWave bands, the electromagnetic (EM) absorption spreads to the entire human head but

in the mmWave frequencies absorption is confined in the epidermis, see Fig. 2.5.

(a) (b) (c)

Figure 2.4 (a) System model of 256x32 large scale antenna system. (b) Measurement configurations.
(c) The receiver model [4].

Figure 2.5 Specific absorption rates of 4G and 5G antenna systems [4].
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In the link budget perspective, there is a detailed analysis in [3]. This analysis is for the

carrier frequency of 28 and 72 GHz, distance of 1 and 0.5 km, and 1 GHz of bandwidth.

They state that communication with a 2.77 Gbps data rate at 28 GHz and 1 km distance is

possible. Authors in [20] design a 8x4 MIMO system at 28 GHz. The overall beamforming

gain they got is 18 dBi, and 1.7 km of a range is reached in the LoS link. However, in the

NLoS scenario, roughly 200 m of a range is measured and they point out that there are some

coverage holes. Hence, IRSs can be a possible solution for this coverage problem in the

mmWave networks.

2.2. Intelligent Reflecting Surfaces (IRSs)

IRSs are the surfaces that can manipulate the incoming wave for multiple use cases via

its nearly passive reflecting elements (REs, or meta-atoms). The programmable nature

of IRSs makes them an exciting concept in the wireless communication environment,

and it is a relatively new area. In the literature, there are different names for IRSs

including metasurfaces, metamaterials, large intelligent surfaces, and reflectarrays but the

most well-known are IRSs and reconfigurable intelligent surfaces (RISs). Throughout this

thesis, they will be named IRSs. The technology behind the IRS originated from the

radar context. In the 2000s the core of this technology was created as metamaterials.

These are called meta-materials because they are three-dimensional objects whose reflection

characteristics are designed and fabricated with specific use cases. In other words, they

were fixed (non-reconfigurable) and application-specific devices [30]. They were used

mainly to decrease the radar cross-section. The real value of this technology for wireless

communication networks was realized when they become electrically controllable. One of

the earliest implementations of IRSs can be found in [8]. ın [8] a large intelligent surface with

160x160 elements at 60 GHz was designed. Another early study investigated their theoretical

foundation in the reflection and refraction perspective in the well-known paper [31].

Wireless networks are evolving to a fully software-defined and agile to environmental

changes. However, the channel itself is one of the biggest bottlenecks and fully

uncontrollable and random phenomenon in wireless communication [30]. IRSs bring a

new concept into the wireless environment called smart radio environment [22] which
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can design the physical layer of the network in real-time. In the sequel, we will briefly

discuss the different use cases and EM functions of IRSs, their internal structure, and several

implementations.

The physical architecture of an IRS can be given as in Fig. 2.6 [5]. The internet-of-things

(IoT) gateway is the interface of the IRS with the network. It can be called the controller

in different works because it programs the reflection elements in real-time with the need of

the network. The control layer is the configurable part of the IRS. This reconfigurable nature

can be created with diodes, varactors, or embedded control agents called meta-atoms or REs.

The size of these elements is important to reflect the EM wave in the desired direction and

the desired way. Hence these elements generally have the size of λ/10 to λ/5 (we will

give further details about these elements in the following parts). The switch configuration

determines the EM function of IRS. Mathematically it is called the reflection coefficient

matrix (RCM), and it is an N-dimensional diagonal matrix. An efficient and fast way to

design this RCM is an open research problem, some studies can be found in [32], [33], [34],

and [35]. In the end, with all these layers we can create a specific EM function on the surface

of IRS.

Figure 2.6 Physical architecture of an IRS [5].
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Eight different EM functions can be created as shown in Fig. 2.7. The most common

functions are reflection, focusing, and splitting. The specular reflection can only be created

for the near-field scenarios because the IRS has a finite area. The splitting function can be

used for spatial multiplexing, and the spectral efficiency can be increased via this function.

The polarization control function can be used to adjust the phase of MPCs to increase the

received power or it can be used for orbital angular momentum (OAM) modulation. Very

high data rates and multiplexing gains can be obtained via OAM modulation (up to 2.5 Tb/s

rate with 95.7 bps/Hz spectral efficiency [23], [36]). However, this concept is in its early

phases and its communication range is quite limited. Analog processing can be used in

backscattering communication. In the backscattering communication, a feeder creates an

unmodulated signal and a backscatter device (in our case, it is the IRS) modulates the signal.

This method relaxes the front-end and it can be advantageous for small IoT devices. Finally,

the absorption function can be used for absorbing unwanted signals such as the one arriving

at a malicious user.

Figure 2.7 Electromagnetic functions of IRS [6].

IRSs can be used for various cases in the wireless networks. Some of the use cases can be

found in the Fig. 2.8 [7]. In our study, we investigated the function given in the top-left

corner of the figure which is creating an indirect path for users at the dead zone. The very

first idea for the use case of IRSs comes to mind is the coverage enhancement function. In

the literature, it is stated that the IRS increases the coverage but to the best of our knowledge,

there is not any practical study that analyzes the coverage probability in the presence of IRSs.

Studies about this problem consider unpractical assumptions such as sum distance PL or the

line Boolean models for blockages. IRSs can also be used for physical layer security by
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canceling the unwanted signal arriving at the eavesdropper, and massive device-to-device

communication via creating extra paths between devices as given in the Fig. 2.8. More

detailed information about IRS use scenarios can be found in [22].

Figure 2.8 Network functions of IRS [7].

There are many ways to design the meta-atoms of IRSs. The most common method is to use

pin diodes to control the different states of REs [8], [9]. In Fig. 2.9, meta-atom designs with

pin diodes and their equivalent circuits can be seen. The Fig. 2.9 (a) represents the design at

60 GHz and the (b) shows the design at 11 GHz. One of the most advantageous properties

of IRSs is that they can be manufactured by using simple electronic elements as shown in

Fig. 2.9. Another example of RE design given in the Fig. 2.10 [10], where the authors used

varactor diodes in their design at 5.8 GHz. Note that the operating frequency of each RE

determines its size, and the phase response is set according to the frequency.

An example of a phase response of one RE given in the Fig. 2.11 (b) [11]. Since the authors

aim for the 8.6 GHz of operating frequency, they designed a RE in a way that it gives 180°

of phase difference at 8.6 GHz (red curve in Fig. 2.11 (b)). Since the RE is designed with a

biased diode that has two states, the phase difference between the ON and OFF states have

to be 180°. Hence, we look for the phase difference of 180° in Fig. 2.11 (a). However, IRS
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(a) (b)

Figure 2.9 (a) RE design using PIN diode at 60 GHz [8]. (b) at 11 GHz [9].

(a) (b) (c)

Figure 2.10 RE design using varactor diodes at 5.8 GHz. (a) Perspective view. (b) Top view. (c) Side
view [10].

designs for large bandwidth applications is an open research problem, which is largely due

to the fact that the phase response of a typical RE varies over. In [11], it was shown that the

phase response can remain constant for only 0.6 GHz of bandwidth. a large bandwidth. It

can be considered as constant just for 0.6 GHz of bandwidth. Now, let us have a look at some

implementations and measurement results of IRSs.

In [8], the authors designed 160x160 IRS with 16 40x40 pieces. The total length of the IRS

is 57.5 cm. In this thesis, we use this design as a reference for our RE size in the analytical

calculations. The authors in [8] investigate the array gain and reflection pattern of IRS for 10

dBm peak power. The fabricated IRS and the system setup for measurement can be seen in

Fig. 2.12. As a result, the antenna gain of the IRS in the far-field is 42 dBi, and the reflected

beam has the 0.55° of beamwidth. In [11], authors claim that they represent the concept of

coding metamaterials for the first time. Authors design a fixed metasurface to analyze the
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(a) (b)

Figure 2.11 RE design using biased diode at 8.6 GHz. (a) Perspective view. (b) Phase response [11].

different RCM configurations of the IRS with one-bit REs. The main function of this fixed

IRS is to reduce the radar cross-section of an object by scattering the incoming wave equally.

Then a programmable 30x30 metasurface at 8.6 GHz is designed. They simulated the design

with four different RCM configurations which are beam splitting and beamforming.

Figure 2.12 Fabricated IRS at 60 GHz [8].

A multiple function IRS is designed in [9]. Each unit cell (RE) has one-bit control via

pin diodes and an FPGA is used for the controller. The authors proposed an RCM design

algorithm and it is implemented as shown in the Fig. 2.13. The low-cost nature and

scalability of IRSs can be observed from that figure. The authors bring 5 sub-surfaces to

create one large IRS. The measurement results of this experiment are given in the Fig. 2.14

for three different functions including broad beam and beam splitting.

Although there are not many outdoor trials in the IRS literature, a 1100-element IRS

operating at 5.8 GHz is given in [10]. The authors proposed an IRS configuration algorithm

and designed 20x55 IRS including REs of 1-bit phase-shifting capability. The total size of
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Figure 2.13 Fabricated IRS at 11 GHz. (a) Proposed IRS constructed by 5 identical sub-IRSs. (b)
FPGA control board and sub-IRSs. (c) Local zoom of front face of the sub-IRS. (d)
Back face of the IRS. (e),(f) Measurement setup [9].

Figure 2.14 Measurement results of beamforming performance of IRS at 11 GHz for the functions.
(a) Broad beam. (b) Cosecant shaped beam. (c) Triple-beam [9].

this design is 80x31 cm. They conducted both the indoor and outdoor measurements but we

will discuss the outdoor trial only. The IRS is configured in a way that it reflects the incoming
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signal to the 30° in azimuth direction. For the outdoor trial, they used to transmit power of

23 dBm to communicate for 500 meters, see Fig. 2.16. Compared to the case with a copper

plate in place of the IRS, the IRS provided a 14 dB of gain. The authors state that because

of the complexity of the channel (MPCs), IRS might become frequency-selective. If higher

frequency bands had been used, higher gains might have been obtained, since the MPCs are

much less in the higher frequency range.

Figure 2.15 Fabricated IRS at 5.8 GHz [10].

In order to analyze the coverage of an IRS aided system, we need to model the PL of

an IRS aided communication link. Authors in [37] investigated the PL model of IRSs

experimentally. They demonstrate the difference in PL laws of IRS in the near-field and

far-field scenarios. Specifically, while the sum-distance PL model is appropriate for the

near-field case, the product-distance model is more suitable for the far-field scenario. Wu

et al. also mention this point in their tutorial paper [38]. On the other hand, the N2 gain

in the link budget of the link through IRS is obtained in [39] experimentally. More detailed

information about the PL model of IRSs given in the Section 4.1.

2.3. Preliminaries On SG

As we mentioned in the Section 2.1. the mmWave networks are highly dependent on the

environment. Hence, we need the locations of Tx and Rx to fully evaluate the network

performance [13]. SG-based models are a close fit to the practical network architecture

and they can result in analytically tractable approaches. Throughout this study, we deal

with point processes (PP), specifically we adopt Poisson point processes (PPP), which is the

typical mathematical model considered in many SG based wireless network analyses.

Although the PPP does not match perfectly with the real-world scenarios, it is the most

suitable PP because of its analytical tractability [13]. An example of a random network model

16



Figure 2.16 Outdoor measurements for the IRS at 5.8 GHz [10].

with PPP distributed BSs and their related cell boundaries forming a Voronoi tessellation

can be seen in the Fig. 2.17 [12]. As we can observe from this figure, some of the BSs

are quite close to each other but their cell size is relatively large. On the other hand, an

example of a real 4G network BS deployment for in a 40x40 km2 area and their Voronoi

tessellations is given in the Fig. 2.18. As can be seen, cell boundaries are very similar for

the random network and the real network. However, as we pointed out, some of the BSs
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are somewhat close to each other. Hence, the PPP model creates a lower bound for network

analysis [12]. We can form more accurate networks and get more accurate results with the

other PP models but the analytical tractability undergoes a huge loss. In the sequel, we will

discuss some fundamental concepts of the PP theory that plays a crucial role in SG (more

detailed information can be found in [13]).

Figure 2.17 Random network model with PPP distributed BSs and their Voronoi tessellations [12].

Figure 2.18 Real BS deployment in a relatively flat area and their Voronoi tessellations [12].
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We can consider the spatial PPs as a cumulative counting process. Let’s consider a spatial PP

Ψ defined for a bounded set B ⊂ R2 as the number of points xi falling into B [13] is given

by

Ψ(B) =
∑

xi∈Ψ(B)

1B(xi) (1)

One of the most important metrics in PPs is the nearest neighbor distance and the contact

distribution. To understand the nearest neighbor distance distribution, we need to know

the null or the void probability. The probability that there will be exactly n number of

points inside B is defined as P(N(B) = n). Hence, the void probability is defined as

void(B) = P(N(B) = 0). If there is exactly one point inside a ball with center y and radius

r (the point y itself), it means that the distance between y and the closest point of Ψ is greater

than r. Therefore, we can find the nearest neighbor distance distribution Gy(.) using the

probability P(N(B) = 1) in the ball of radius r and centered at y (b(y, r)). Gy(.) defined

as the distribution of the distance between y and the nearest point of Ψ excluding y, Ψ\{y}

[13], and can be given by

Gy(r) = P
(
d(y,Ψ\{y}) ≤ r|y ∈ Ψ

)
= P

(
N
(
b(y, r)\{y}

)
> 0|y ∈ Ψ

)
= 1− P

(
N(b(y, r)) = 1|y ∈ Ψ

)
(2)

where d(y,Ψ\{y}) is the distance between the location y and the nearest point of Ψ except

y.

If the ball we surveyed contains no point (in other words the point y is not a member of Ψ),

then we can find the contact distribution Fy(.) that represents the smallest radius necessary

for the b(y, r) to contact a point in Ψ using the void probability as given below [13].
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Figure 2.19 Tendency toward regularity or clustering of PPs [13].

Fy(r) = P
(
d(y,Ψ) ≤ r

)
= 1− void(b(y, r))

= 1− P
(
N(b(y, r)) = 0

)
(3)

In other words, the nearest neighbor distance determines how close the points are to each

other, and it also shows the clustering. On the other hand, the conduct distance determines

how regularly distributed the points are on the map. In the totally random PPs, such as the

PPP, they are equal, F = G, while G > F for clustered PPs and G < F for regular PPs as

illustrated in Fig. 2.19 [13].

If we condition to a point in the space of PP, the distribution of the PP might change.

However, if we are dealing with the PPPs, conditioning does not change the distribution

of the PPP. This theorem is called Slivnyak-Mecke theorem and to understand this we need

to have a look at the reduced Palm probability. Let’s consider the point y from a stationary

PP Ψ and shift Ψ such that the y lies at the point o (origin). For a given set B = b(y, r),

reduced Palm probability is the ratio between the mean number of points in B except y (this

is called the reduced Campbell measure) and the mean number of points inside B (notice

that the point y shifted to the origin so the ball becomes b(0, r)) [13]. Formally,

P!
o(Ψ ∈ A) =

1

λ ν(B)
E

 ∑
y∈Ψ∩B

1A(Ψ−y\{y})

 (4)
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where in the P!
o, the index o and superscript ! represents the shifting Ψ towards the origin and

excluding y, respectively. The A is the event that the number of points inside the shifted ball

excluding y is not zero (N(b(y, r)\{y}) > 0, Ψ−y is the shifted PP, ν(B) is the Lebesgue

measure (area of B in two-dimensions), and λν(B) represents the average number of points

inside B.

Coming back to the Slivnyak-Mecke theorem again, for an HPPP with density λ, the number

of points falling in disjoint sets is independent. Therefore, the points in an HPPP are

independent, and conditioning to a point in the map does not affect the statistics of the PP.

This also means that the reduced Palm probability equals the original distribution counting y

for the Slivnyak-Mecke theorem.

P!
y(Ψ ∈ .) = P(Ψ ∈ .) (5)

As we recall the nearest neighbor distance and the conduct distance distributions, the only

difference is the inclusion of the point y or not. Hence, for an HPPP, the nearest neighbor

distance distribution and the conduct distance distribution will be equal to each other by the

Slivnyak-Mecke theorem.

To simulate the PPP with the density λ, we need to generate n number of points in the

given area |B| (λ|B|). Then, we randomly scatter the points on the map. If the density of

points depends on their locations, this PP is called inhomogeneous PPP (IPPP). On the other

hand, if we randomly and independently select points from the primary PPP Ψ according

to a probability p(x), we are left with the PP Ψp. This process preserves the Poisson law

and is called independent thinning of Ψ, in other words, Ψp is also a PPP but its intensity

will be equal to
∫
R2 p(x)Λ(dx) (it is an IPPP). However, if the probability p(x) is a constant

ratio (p(x) = p), then this type of thinning is called p-thinning and it also preserves the

homogeneity, e.g. if the primer PPP is an HPPP, then resulting PPP will also be an HPPP.
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3. RELATED WORKS

Coverage analysis of SG based networks examined for various system models in the

literature. However, there is a limited number of works that consider IRSs in their network

models.

In [40], authors investigated an SG-based IRS-assisted network for the ergodic capacity,

energy efficiency, and OP. However, the blockages are not considered. Instead, the fraction

of the BSs contributes to the direct and indirect communication modeled with a constant

value. In our work, we explicitly model the location of blockages and find the ratio of

indirect and direct links which gives the contribution of IRSs to network coverage.

Ghatak et al. use the Poisson line process to model the BSs and blockages in a typical

street in [41]. The authors assumed that two IRSs are deployed on either side of the BSs at

a constant distance and the TUE can only use LoS links for DL communications. With

these assumptions, the coverage probability is investigated. However, in this thesis, we

take a two-dimensional map rather than a street to measure the coverage probability and

we assumed that the IRSs are deployed into buildings independently with a constant ratio.

The very first study which considers the effect of the blockage for the coverage analysis in

an SG-based mmWave network is [14]. The authors assumed that the TUE at the origin

can communicate with a LoS or NLoS BS according to its PL value. The Nakagami-m

fading is used for each channel and the SNR expression is derived for both LoS and NLoS

paths. Furthermore, the LoS probability expression is approximated with a LoS ball model,

which assumes that the LoS probability is a step function whose value is zero after a certain

distance. However, IRSs are not considered in this work, since its a relatively new concept.

In the SG-based mmWave network context, studies which takes IRSs into consideration in

their network models for the coverage analysis can be listed as [15, 16, 42–44]. Authors in

[42] assume a DL communication between the TUE and BSs through the direct link or the

indirect link through an IRS. The coverage probability is derived with the SIR expression

which assumes the interference is created with just the direct BSs and the small scale fading

as an exponentially distributed random variable. The authors take the PL model of indirect

link as a product-distance model. However, the blockages does nor considered in [42].
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Lyu et al. considers both the IRS and SG-based network model to model the locations of BSs

and IRSs in their study [44]. First, the channel power distribution is derived then the signal

and interference power distributions are obtained to find the coverage probability. However,

the authors also do not consider the blockage effect in their network model.

In [43], the OP and ergodic rate of an IRS-aided SG based network is analyzed. However,

they assume that there is only one BS and one IRS in the system, and their locations are fixed.

Only the positions of UEs are randomly chosen according to the HPPP. The BS serves m UEs

through the IRS, and they assume that the direct links between BS and UEs are blocked, e.g.

NLoS. UEs can only communicate through IRS and these links are LoS. Furthermore, they

give an RCM and combiner design in their study.

Authors in both [15] and [16] insert a line Boolean model, which assumes that the buildings

have zero width, e.g. lines, of blockages whose centers are distributed with HPPP. They both

take the sum distance model for the PL expression of indirect link, which is not a practical

assumption for the far-field scenario. They both assume that the indirect link can only be

created with LoS link but authors in [43] assume either LoS or NLoS case for the direct

link. On the other hand, in [15], a fully LoS dependent network is considered. The TUE

is associated with a BS according to minimum PL criteria which compares the PL of direct

and indirect links and chooses the minimum for communication. Authors in [43] derive the

coverage probability with the SINR expression but in [15], they use blind-spot analysis.

4. COVERAGE ANALYSIS

In this section, we will discuss the SNR coverage probability of SG-based mmWave

networks. First, we give the system model that we used in our analysis including the UE

association, PL models of direct and indirect links, SG-based network parameters, received

signals, and the SNR expressions. Then we present our method to reach a closed-form

expression for the coverage probability. In this subsection, we will discuss about the various

cases for coverage, distance distributions given in the previous works, our approximation

for these distributions and validity of this approach, the closed-form expression for the
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distribution of the product distance, the ratio of feasible BSs, and finally the SNR coverage

probabilities.

4.1. System Model

We consider that the locations of base stations (BSs) form an HPPP ΦBS with density λBS

on the R2 plane, and all the BSs have the same transmit power Pt. Blockages, typically

buildings, form a Boolean scheme of rectangles [45] whose centers follow HPPP with density

λb. We assume that the blockage distribution is stationary and isotropic, which means that

the distribution is invariant to the motions of translation and rotation. We define a blockage

with three parameters which are its length, width, and orientation. The expected value of the

length and the width of blockages are defined as E[L] and E[W ], respectively. The orientation

of the buildings θb is uniformly distributed on [0, π].

IRSs are deployed optimally1 to just one of the four facades of a building with the ratio µ.

Hence, by the independent p-thinning of HPPP, the buildings containing an IRS follow an

HPPP ΦIRS with density λbµ. UEs are distributed as a stationary PP independent of the BSs

and the buildings on the plane, and the TUE is assumed to be located at the origin. Since the

UEs are distributed independently and follow a stationary PP, the DL SNR experienced by

the TUE has the same distribution as the aggregate ones [14].

We assume that the communication is done through LoS links, in other words, waves

cannot penetrate buildings and the LoS component is dominant in the channel. The LoS

probability in an SG based network is derived in [45], which is p(r) = exp(−βr) where

β = 2λb/π(E[L] + E[W ]) for the outdoor UEs.

The TUE can only be associated with one BS. This connection can be made through either

with a direct LoS-link or an indirect LoS-link. The direct LoS-link is the link between the

LoS BS and the TUE. The indirect LoS-link is created with two independent LoS links,

which are the link between the TUE and the LoS IRS, and the link between the IRS and

the LoS BS. These possible connections can be seen from Fig 4.1. We assumed that the

1We assume that the IRS is deployed on the facade of the buildings which can be reached from the TUE (it
applies to all buildings, e.g. it includes LoS buildings and also the NLoS buildings). Otherwise, if the IRSs are
deployed onto the buildings randomly, we just need to multiply the ratio of feasible BSs (given in the sequel)
with 1/4.
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TUE can be associated with either the nearest LoS BS, which constructs the direct LoS link,

or the nearest LoS IRS. Then, the IRS can be associated with the nearest LoS BS so that

this UE-IRS-BS link forms the indirect LoS link. Throughout the thesis, we will call the

link between TUE and the nearest LoS BS as UE-BS link, the link between the TUE and the

nearest LoS IRS as UE-IRS link, and the link between the IRS and nearest LoS BS as IRS-BS

link. For example, in Fig 4.1, the UE-BS link (direct link) is the link between BS4 and TUE

because the nearest LoS BS to the TUE is the BS4. On the other hand, the indirect LoS-link

is the link between UE-IRS2-BS2, since the nearest LoS IRS to the origin is IRS2 and the

nearest LoS BS to the IRS2 is the BS2. The TUE can only be associated with either BS4

or BS2, and this selection is made by comparing the PL of these two links. In other words,

if the TUE sees both the direct LoS BS and the indirect LoS BS, then it decides which one

to connect by comparing their PL values. However, if it sees only a direct LoS BS or an

indirect LoS BS, then it connects to this available BS without any further comparison. We

also assume that the indirect link can only be made through just one IRS, we do not consider

the links using multiple IRSs.

BS1 BS2

BS3

BS4

TYPICAL 

UE
IRS1

IRS2

IRS3

LoS Link

NLoS Link

Figure 4.1 UE Association.

In the literature, there are two different PL expressions for the indirect link, which are the

product-distance PL model and the sum-distance PL model [38]. The sum-distance PL
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considers the IRS as a perfect electric conductor (PEC) but it is not practical. In [37],

authors show experimentally that the product-distance PL is more suitable for far-field

applications, and the sum-distance is only applicable to near-field scenarios. In [46], the

authors derived the indirect link PL expression as given below, and we use this PL expression

in our derivations.

PLI(z, θi) =
(4π)2

GtGr

(
z

NaNb

)2(
Na

a

Nb

b

1

cos(θi)

)2

(a)
=

(
z

N

)2
1

C

(
2

λcosθi

)2

(6)

where z = dUIdIB, dUI and dIB are the distances of the links UE-IRS, and IRS-BS,

respectively. Gt and Gr are the transmit antenna gain, and receiver antenna gain, respectively.

θi ∈ [0, π/2] is the angle between the normal vector of IRS and the incident wave. Na ×Nb

is the number of elements in IRS, and we assume that all the IRSs have the same number of

elements. a
Na

× b
Nb

is the size of each element on IRS. Without loss of generality, we take

C = (λ
√
GtGr

4π
)2, Na = Nb, NaNb = N , a = b, a

Na
= b

Nb
= 0.7071 λ, 2 (λ is the wavelength)

in the step (a).

And the PL expression for the direct link is,

PLD(dUB) =
(4π)2

GtGrλ2
d2UB

=
d2UB

C
(7)

where the dUB represents the distance of UE-BS link.

Finally, the received signals for direct link and indirect link given by

yD =
1√

PLD(d)
hDx + n,

yI =
1√

PLI(z)

1

N
(h2

TΦh1)x + n

2With the inter-element spacing’s, the value of a/Na will be greater than λ/5. We take the paper [8] as a
reference for this value. They designed an IRS with the center to center distance of IRS elements being equal
to 3.5mm which approximately equals to 0.7071 λ at 60 GHz
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where x is the normalized transmitted signal, n represents the additive white Gaussian noise

with zero mean and variance σ2
n, Φ = diag{[ejϕ1 , ejϕ2 , · · · , ejϕN ]} denotes the reflection

coefficient matrix (RCM) where ϕi ∈ [0, 2π) is the phase shift of i-th element of the

IRS, hD denotes the UE-BS channel, h2 and h1 denote the UE-IRS and IRS-BS channels,

respectively, and the scaling parameter 1/N comes from the array response vectors. Since

we consider a LoS dependent network, all the channels are modeled by Rician fading, and

they all have the same shape (K) and scale (Ω) parameters. We assumed perfect channel state

information (CSI), optimal array response vectors, and optimal RCM design which has phase

shifts perfectly aligned with the phase of cascaded channel. Hence the SNR3 expression for

the direct link is given by,

SNRD =
|hD|2

PLD(d) σ2
n

(8)

and for the indirect link,

SNRI =

(
1
N

∑N
n=1 |h1,n| |h2,n|

)2
PLI(z, θi) σ2

n

(9)

where h1,n and h2,n denote the independent4 channels between UE and n-th element of LoS

IRS, and n-th element of IRS and LoS BS, respectively.

4.2. Method

The main purpose of this thesis is to give a closed-form expression for the following coverage

probability as

Pc(T ) = P(SNR > T ) (10)

where T denotes the SNR threshold.
3In this thesis, our main goal is to compare the IRS-aided network with the network without IRS, and analyze

the coverage enhancement. Also, since the IRS introduced a new concept called smart radio environment [47],
we leave the interference analysis to future works.

4In the literature most of the works regarding OP analysis in IRS-assisted networks consider independent
channels for different IRS elements ([48], [49], [50]). Hence, we leave the OP analysis of IRS-assisted MIMO
systems with Rician fading and correlated IRS elements’ channels to future works.
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Since there are four different cases for the TUE to connect to a BS, we examined the coverage

probability with four mutually exclusive events. First of all, the TUE can connect a direct

LoS BS or an indirect LoS BS. These events can be split into two events such that the TUE

cannot reach any direct LoS BS or indirect BS, and it connects to the direct LoS BS or

indirect LoS BS, respectively. The other scenario is that the TUE sees both a direct LoS BS

and an indirect LoS BS, in that case, it connects to a BS that has a lower PL value. Hence,

the coverage probability in (10) can be expressed as follows,

Pc(T ) =P(SNR > T )

=P(AD)Pc,D(T ) + P(AI)Pc,I(T )

=P(AD1)

∫ ∞

0

P(SNRD(x) > T |x)fD(x|AD1)dx+

P(AD2)

∫ ∞

0

P(SNRD(x) > T |x)fD(x|AD2)dx+

P(AI1)

∫ ∞

0

P(SNRI(z) > T |z)fI(z|AI1)dz+

P(AI2)

∫ ∞

0

P(SNRI(z) > T |z)fI(z|AI2)dz (11)

where

AD1 = {PLD < PLI} ∩ {There is at least one direct LoS-link} ∩

{There is at least one indirect LoS BS}, indicates the event that TUE has both direct

LoS-link and indirect LoS-link available, and it connects to the direct LoS BS, since the

PL of the direct link is less than the indirect link,

AD2 = {There is at least one direct LoS-link} ∩ {There are not any indirect LoS BS},

indicates the event that the TUE can only reach the direct LoS BS. Hence it connects to

the direct LoS BS,

AI1 = {PLI < PLD} ∩ {There is at least one direct LoS-link} ∩

{There is at least one indirect LoS-BS link}, indicates the event that the TUE has both direct

LoS-link and indirect LoS-link available, and it connects to the indirect LoS BS, since the

PL of indirect link is less than the direct link,
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AI2 = {There is at least one indirect LoS-link} ∩ {There are not any direct LoS BS},

indicates the event that the TUE can only reach the indirect LoS BS, and it connects to

the indirect LoS BS,

fD(x) is the pdf of the UE-BS link’s distance given that the TUE can communicate with at

least one direct LoS BS

fI(z), is the pdf of multiplication of the distances of the UE-IRS link, and the IRS-BS link

given that the TUE sees at least one LoS IRS and the IRS can reach at least one LoS BS.

4.2.1. Distributions of the Distances

In an SG-based network with PPP distributed nodes and rectangular Boolean scheme of

blockages, the distance between the nearest LoS node and the origin is dependent on the

intensity of nodes under examination [14]. For the direct LoS link, the intensity of LoS BSs

is λBS p(r) by independent thinning. Hence, the distribution of the nearest LoS BS’s distance

given that the UE sees at least one LoS BS is

fdUB
(x) =

1

BUB

2πλBSx exp(−βx− 2πλBS

β2
(1− (βx+ 1)e−βx)) (12)

where:

BUB =
∫∞
0

2πλBSx exp(−βx− 2πλBS

β2 (1− (βx+ 1)e−βx))dx

For the UE-IRS link, the intensity of LoS IRSs is λbµ p(r). Hence, the distribution of the

distance of UE-IRS link given that the TUE can reach at least one LoS IRS is given by,

fdUI
(x) =

1

BUI

2πλbµ x exp(−βx− 2πλbµ

β2
(1− (βx+ 1)e−βx)) (13)

where:

BUI =
∫∞
0

2πλbµ x exp(−βx− 2πλbµ
β2 (1− (βx+ 1)e−βx))dx
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The probability that a BS is feasible is ξ (more detailed information will be given in Section

4.2.3.). Hence, the intensity of feasible BSs will be ξ λBS p(r), and the pdf of the distance

of IRS-BS link given that the IRS sees at least one LoS BS is given by,

fdIB(x) =
1

BIB

2πξλBSx exp(−βx− 2πξλBS

β2
(1− (βx+ 1)e−βx)) (14)

where:

BIB =
∫∞
0

2πξλBSx exp(−βx− 2πξλBS

β2 (1− (βx+ 1)e−βx))dx

Let dUI = Y ∼ fdUI
(y) and dIB = X ∼ fdIB(x), where X, Y > 0 are independent5

random variables represent the length of UE-IRS link and IRS-BS link, respectively. Hence,

the distribution of the product-distance fI(z) can be found by the transformation of random

variables such that Z = XY as follows,

FI(z) = P(Z ≤ z) = P(XY ≤ z)

(a)
= P(Y ≤ Z

X
)

=

∫ ∞

0

fX(x)

∫ Z/X

0

fY (y)dydx

dFI(z)

dz
= fI(z)

(b)
=

∫ ∞

0

fX(x)fY (
z

x
)
1

x
dx (15)

where we used the fact that X > 0 in (a), and the Leibniz rule in (b). The expression in (15)

is called as ”multiplicative convolution”.

Lemma 0.1 (Multiplicative Convolution [51]). For the functions Z1 and Z2, the

multiplicative convolution is defined by

Z1 ∨ Z2 ≡
∫ ∞

0

Z1(ν
′) Z2(

ν

ν ′ )
dν ′

ν ′ (16)

5By the Slivnyak’s theorem, conditioning on a point does not change the distribution of the rest of the
process.
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If we substitute (14) and (13) into (15), we get

fI(z) =
1

BUIBIB

G1z

∫ ∞

0

e−β(x+ z
x
) exp(G2(xβ + 1)e−xβ +G3(

zβ

x
+ 1)e−zβ/x)

1

x
dx (17)

where:

G1 = G2G3β
4 exp(−G2 −G3), G2 = 2πξλBS/β

2, G3 = 2πλbµ/β
2

The above distributions (17) and (12) are too cumbersome for analytical calculations.

Therefore, we proposed to approximate the pdf’s of individual links [(12), (13), and (14)]

with gamma distribution.

4.2.2. Gamma Approximation of The Nearest-LoS Neighbor Distance Distributions

First of all, we will give the general result of the gamma approximation of the distribution

of the nearest LoS node with intensity G/(2π) p(r). Then, we will give the approximate

distribution of fdUB
(x), fdUI

(x), and fdIB(x). Consider the distribution given below,

fX(x) =
1

B
Gxexp(−βx−G

1

β2
(1− (βx+ 1)e−βx)) (18)

where:

B =
∫∞
0

Gx exp(−βx − G 1
β2 (1 − (βx + 1)e−βx))dx, and X denotes the distance to the

nearest LoS node to the origin with the nodes distributed as PPP with intensity G/(2π) p(r).

To approximate the distribution fX(x) with gamma pdf Γ(k, θ), we need to find the shape k

and scale parameters θ of gamma distribution. We use moment matching approach to find

these parameters. Let Y ∼ Γ(k, θ) and X ∼ fX(x),

E[X] = E[Y ] = kθ

var(X) = var(Y ) = E[Y 2]− E[Y ]2

= θ2
Γ(k + 2)

Γ(k)
− k2θ2

= k(k + 1)θ2 − k2θ2

k =
E[X]2

var(X)
(19)
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θ =
var(X)

E[X]
(20)

Hence, we need to find the mean value and the variance of X .

E[X] =

∫ ∞

0

x
1

B
Gx exp(−βx−G

1

β2
(1− (βx+ 1)e−βx)) dx

=
G

B

∫ ∞

0

x2 exp(−G

β2
) exp(−βx+

G

β2
(βx+ 1)e−βx) dx

=
G

B
exp(−G/β2)

∫ ∞

0

x2 exp(−βx+
G

β2
(βx+ 1)e−βx) dx

=
β2γe−γ

B

∫ ∞

0

x2 exp(−βx+ γ(βx+ 1)e−βx) dx

(a)
=

β2γe−γ

B

∫ 0

1

(ln(u))2

β2
exp(ln(u) + γ(− ln(u) + 1)u))

−1

βu
du

=
γe−γ

B

∫ 0

1

(ln(u))2 exp(−γu ln(u) + γu)
−1

βu
du

=
γe−γ

βB

∫ 1

0

(ln(u))2 exp(−γu ln(u) + γu) du (21)

where γ = G
β2 , and in step (a) we employed a change of variables u = e−βx

The integral in (21) cannot be reduced to closed form directly. Hence, we use Maclaurin

expansion of exp(−γu ln(u) + γu). Since the integral is defined between 0 and 1, this

approximation gives us a proper result. Comparison of this approximation with the original

function can be seen in Fig(4.2) (for G = 2πλBS , E[L] = 55, E[W ] = 52, λb = 9.3× 10−5,

λBS = 7.5× 10−6, and maximum value for k=100).

exp(−γx ln(x) + γx) ≈
∞∑
k=0

(−γx(ln(x)− 1))k

k!
(22)

Now substitute (22) to (21),

E[X] =
γe−γ

βB

∫ 1

0

(ln(x))2 exp(−γx ln(x) + γx) dx

≈ ζ

∫ 1

0

(ln(x))2
∞∑
k=0

(−1)k
γkxk(ln(x)− 1)k

k!
dx

= ζ
∞∑
k=0

γk (−1)k

k!

∫ 1

0

(ln(x))2xk(ln(x)− 1)k dx
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Figure 4.2 Maclaurin expansion, eqn.(22).

(a)
= ζ

∞∑
k=0

γk (−1)k

k!

∫ −1

−∞
(τ + 1)2(eτ+1)kτ keτ+1 dτ

= ζ
∞∑
k=0

γk (−1)k

k!

∫ −1

−∞
(τ + 1)2τ ke(τ+1)(k+1) τ

(b)
= ζ

∞∑
k=0

γk (−1)k

k!

∫ k+1

∞

(
−m

k + 1
+ 1

)2( −m

k + 1

)k

e−mek+1

(
−dm

k + 1

)
= ζ

∞∑
k=0

γk (−1)k+1

k!

∫ ∞

k+1

(
k + 1−m

k + 1

)2

(−1)k
mk

(k + 1)k
e−mek+1

(
−dm

k + 1

)

= ζ

∞∑
k=0

γk ������: 1

((−1)2k+2)

k!

1

(k + 1)k+3
ek+1

∫ ∞

k+1

(k + 1−m)2mke−m dm

= ζ

∞∑
k=0

γk

k!

ek+1

(k + 1)k+3

∫ ∞

k+1

(
(k + 1)2 − 2m(k + 1) +m2

)
mke−m dm

= ζ
∞∑
k=0

γk

k!

ek+1

(k + 1)k+3

(∫ ∞

k+1

(k + 1)2mke−m dm −

2(k + 1)

∫ ∞

k+1

mk+1e−m dm +

∫ ∞

k+1

mk+2e−m dm

)

= ζ
∞∑
k=0

γk

k!

ek+1

(k + 1)k+3

(
(k + 1)2 Γ(k + 1, k + 1) −

2(k + 1) Γ(k + 2, k + 1) + Γ(k + 3, k + 1)

)
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(c)
= ζ

∞∑
k=0

γk

k!

ek+1

(k + 1)k+3
(k + 1)e−(k+1)

(
ek+1 Γ(k + 1, k + 1) + (k + 1)k

)
= ζ

∞∑
k=0

γk

k!
(k + 1)−(k+2)

(
ek+1 Γ(k + 1, k + 1) + (k + 1)k

)
(23)

where ζ = γe−γ

βB
, and Γ(s, x) =

∫∞
x

ts−1e−t dt is the upper incomplete gamma function. In

the step (a) and (b) we employed a change of variables ln(x)− 1 = τ and −τ(k + 1) = m,

respectively. In the step (c), we used the fact that Γ(s+ 1, x) = s Γ(s, x) + xse−x.

To find var(X), we need to find E[X2], first.

E[X2] =
−γe−γ

β2B

∫ 1

0

(ln(u))3 exp(−uγ(ln(u)− 1)) du

≈ −ζ

β

∫ 1

0

(ln(x))3
∞∑
k=0

(−γ x(ln(x)− 1)k

k!
dx

=
−ζ

β

∞∑
k=0

(−1)k
γk

k!

∫ 1

0

(ln(x))3xk(ln(x)− 1)k dx

(a)
=

−ζ

β

∞∑
k=0

(−1)k
γk

k!

∫ −1

−∞
(τ + 1)3 ek(τ+1) τ keτ+1 dτ

=
−ζ

β

∞∑
k=0

(−1)k
γk

k!

∫ −1

−∞
(τ + 1)3 τ ke(τ+1)(k+1) dτ

(b)
=

−ζ

β

∞∑
k=0

(−1)k
γk

k!

∫ k+1

∞

(
1− m

k + 1

)3( −m

k + 1

)k

e−m+k+1 dm

−(k + 1)

=
−ζ

β

∞∑
k=0

(−1)k
γk

k!

∫ ∞

k+1

(−1)
(k + 1−m)3

(k + 1)3
(−1)k

mk

(k + 1)k
e−mek+1 (−1)

(k + 1)
dm

=
−ζ

β

∞∑
k=0

������:1
((−1)2k+2)

γk

k!

ek+1

(k + 1)k+4

∫ ∞

k+1

(k + 1−m)3mke−m dm

=
−ζ

β

∞∑
k=0

γk

k!

ek+1

(k + 1)k+4

∫ ∞

k+1

[
(k + 1)3 − 3(k + 1)2m+ 3(k + 1)m2 −m3

]
mke−m dm

=
−ζ

β

∞∑
k=0

γk

k!

ek+1

(k + 1)k+4

[ ∫ ∞

k+1

(k + 1)3mke−m dm − 3

∫ ∞

k+1

(k + 1)2mk+1e−m dm +

3

∫ ∞

k+1

(k + 1)m2+ke−m dm −
∫ ∞

k+1

m3+ke−m dm

]
=

−ζ

β

∞∑
k=0

γk

k!

ek+1

(k + 1)k+4

[
(k + 1)3

∫ ∞

k+1

mke−m dm − 3(k + 1)2
∫ ∞

k+1

mk+1e−m dm +

3(k + 1)

∫ ∞

k+1

m2+ke−m dm −
∫ ∞

k+1

m3+ke−m dm

]
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=
−ζ

β

∞∑
k=0

γk

k!

ek+1

(k + 1)k+4

[
(k + 1)3 Γ(k + 1, k + 1) − 3(k + 1)2 Γ(k + 2, k + 1) +

3(k + 1) Γ(k + 3, k + 1) − Γ(k + 4, k + 1)

]
(c)
=

−ζ

β

∞∑
k=0

γk

k!

ek+1

(k + 1)k+4
(−1) 2(k + 1)

(
Γ(k + 1, k + 1) + (k + 2) e−(k+1) (k + 1)k

)
=

2ζ

β

∞∑
k=0

γk

k!
(k + 1)−(k+3)

(
ek+1 Γ(k + 1, k + 1) + (k + 2) (k + 1)k

)

where Γ(s, x) =
∫∞
x

ts−1e−t dt is the upper incomplete gamma function. We employed

change of variables ln(x)− 1 = τ in (a), and −τ(k + 1) = m in (b), and in the step (c), we

used the fact that Γ(s+ 1, x) = s Γ(s, x) + xse−x.

Hence, the shape and scale parameters of the gamma approximation of fX(x), eqn.(18), are

as follows,

k =
E[X]2

var(X)
, θ =

var(X)

E[X]
,

where

var(X) = E[X2]− E[X]2

E[X] = ζ
∞∑
k=0

γk

k!
(k + 1)−(k+2)

(
ek+1 Γ(k + 1, k + 1) + (k + 1)k

)
,

E[X2] =
2ζ

β

∞∑
k=0

γk

k!
(k + 1)−(k+3)

(
ek+1 Γ(k + 1, k + 1) + (k + 2) (k + 1)k

)
,

ζ =
γ e−γ

βB
, and γ =

G

β2

(24)

If we apply this approximation to our nearest distance distributions, we have to replace just

the parameter G. For the distribution of the distance of UE-BS link (12), the parameter G

will be given below.

GUB = 2πλBS (25)
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For the gamma approximation of pdf of UE-IRS (13) and IRS-BS distances (14), the

parameter G in (24) will be as follows,

GUI = 2πλbµ (26)

GIB = 2πξλBS (27)

Hence, the approximate forms of all the distances are given by,

fdUB
≈ f̃dUB

∼ ΓX(x; kd, θd) =
xkd−1e−x/θd

θkdd Γ(kd)
(28)

fdUI
≈ f̃dUI

∼ ΓX(x; k1, θ1) =
xk1−1e−x/θ1

θk11 Γ(k1)
(29)

fdIB ≈ f̃dIB ∼ ΓX(x; k2, θ2) =
xk2−1e−x/θ2

θk22 Γ(k2)
(30)

In order to understand the accuracy of these approximations, we investigated the

Kullback–Leibler divergence of the distributions with respect to ρ6 and µ in Fig.(4.3), (4.4),

and (4.5). The sample functions for the values ρ and µ which result in the maximum

divergence can be seen in Fig.(4.6), (4.7), and (4.8).

6The value ρ indicates the ratio of area covered by buildings, ρ = λbE[L]E[W ]. For instance, ρ = 0.25
means that the buildings cover the quarter of the map area. More details can be found in the Section 5.
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Figure 4.3 Kullback–Leibler divergence of (12) and (18) with (25).

Figure 4.4 Kullback–Leibler divergence of (13) and (18) with (26).

37



Figure 4.5 Kullback–Leibler divergence of (14) and (18) with (27).

Figure 4.6 PDFs of (12) and (18) with (25) for ρ=1.
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Figure 4.7 PDFs of (13) and (18) with (26) for µ = 0.89 and ρ = 0.7.

Figure 4.8 PDFs of (14) and (18) with (27) for µ = 0.3 and ρ = 0.98.

In [14], the authors propose a LoS ball approximation to the nearest-LoS neighbor

distribution. They suggest that the LoS probability equals one for a specific distance RB,

then it is zero for all the values greater than RB. In other words, they assume that the LoS

probability is a step function whose value equals one for a distance RB. They found this
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Figure 4.9 Comparing the performance of the LoS ball approximation [14] with our model.

radius as RB = (2
∫∞
0

p(t)tdt)0.5. They call this circle with the center of (0,0) and radius

of RB as LoS ball. We illustrate the performance of this approximation and the comparison

with our method in Fig. 4.9. As can be observed, the nearest-LoS neighbor distance equals

zero for values greater than RB (in our case, it is around 200 m). Hence it considerably

deviates from the exact distribution for the values lower than 200 and it is not a good fit for

exact distribution. On the other hand, our approximation gives quite a close fit to the exact

one. Moreover, the figure also shows that the simulation result (MC) also fits both the exact

and approximate forms.

4.2.3. Feasible BSs

An indirect link can be created if and only if the TUE and the BS (both are LoS to the IRS)

see the same facade of the building in which the IRS is deployed. We call this link as a

feasible link, and the BSs satisfy this condition as feasible BSs (in other words, BSs cannot
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be located in the region that falls back of the nearest building). Now, we will propose a

method to derive the ratio of feasible BSs in a given area.

1
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Figure 4.10 Auxiliary figures for the analysis of feasible BSs: (a) The map, the circle which the
TUE is located, and 8 different regions which the TUE and BSs can be located. (b)
Angle of the regions and related arc lengths. (c) The angle φ1 for the region 1. (d) The
angle φ2 for the region 3.

Let’s consider a square region (in the simulations we take a square map) with its length equal

to Lm. We assume that the TUE is connected to the nearest IRS, and we take the center of

the building IRS deployed as a reference. In other words, we assume that the building is

fixed and TUE can be located anywhere around the circle with the radius r1 as illustrated

in Fig. 4.10 (a) 7. Since the rotation and placement of the buildings are totally random.

7This approximation is better for large values of map length.
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Let D : {feasible link} represents the event that a feasible link can be created properly,

Bk : {TUE is located on the arc in the kth region (kth arc)} is the event that the TUE lies on

the arc of the circle with radius r1 in the kth region. These arcs, their lengths and related

angles can be seen in the Fig. 4.10 (b), and C : {BSs are located in the kth region} is the

event that the BSs are located in the region k of the map, for instance the region-1 has the

dimensions of (2a) × (Lm − 2b)/2. For the dimensions of the building, we consider mean

values, e.g. a = E[W ]/2, and b = E[L]/2. The radius r1 is the length of the UE-IRS link.

Hence, it is distributed with fR1(r1) ∼ f̃dUI
(x). Now, let’s examine the probabilities of these

events.

Assume that the r1 is given. For the probability of the TUE is located on the 1st arc, we need

to find the length of this arc ℓ1, see the Fig. 4.10 (c). As we can observe,

cos(φ1) =
a

r1

φ1 = cos−1

(
a

r1

)
(31)

ℓ1 =
π − 2φ1

2π
2πr1

= (π − 2φ1)r1 (32)

With the same approach the, we can find the lengths ℓ2 (from the Fig. 4.10 (d)) and ℓ3 in the

Fig. 4.10 (b). The arc length ℓ3 is given by

φ2 = cos−1

(
b

r1

)
(33)

ℓ3 =
π − 2φ2

2π
2πr1

= (π − 2φ2)r1 (34)

and the ℓ2 can be found by using ℓ1 and ℓ2

ℓ2 =
2πr1
4

− ℓ1
2
− ℓ3

2

=
πr1
2

− 1

2
((π − 2φ2)r1 + (π − 2φ1)r1)

=
r1
2
(π − (π − 2φ2 + π − 2φ1))
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=
r1π

2
− r1(π − φ1 − φ2) (35)

Hence, the probability of the events Bk can be found by dividing (32), (35), and (34) by

2πr1. Since some of the arcs are equal to each other as shown in the Fig. 4.10 (b), we need

just three expression as the followings,

P(Bk|r1) =


1
2
− φ1

π
, k ∈ {1, 5}

1
4
− 1

2π
(π − φ1 − φ2) , k ∈ {2, 4, 6, 9}

1
2
− φ2

π
, k ∈ {3, 7}

(36)

where φ1 = cos−1(a/r1), and φ2 = cos−1(b/r1).

Now, let’s have a look at the probabilities that the BSs lie in the kth region given that the map

length Lm. Since the regions are well defined with a,b, and Lm, these probabilities can be

found by just using the areas of the rectangular regions. Formally,

P(Ck|Lm) =


a(Lm−2b)

L2
m

, k ∈ {1, 5}
(Lm−2b)

2
(Lm−2a)

2
1

L2
m

, k ∈ {2, 4, 6, 9}
b(Lm−2a)

L2
m

, k ∈ {3, 7}

(37)

where these events are mutually exclusive.

If the TUE is located on the 1st arc, the feasbile link can be created if and only if the BSs lie

in the regions 1,2, and 8. Hence the probability of a BS is a feasible BS given that the TUE

is in region 1 is given by,

P(D|B1, Lm) = P(C1|Lm) + P(C2|Lm) + P(C8|Lm)

= P(C1|Lm) + 2P(C2|Lm)
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If the TUE is located in the 2nd arc, BSs have to be in the regions 1,2,3,4, and 8. If it lies in

the 3rd arc, then BSs have to be in the regions 2,3, and 4. Hence the probability of feasible

BSs given the TUE lies in the kth arc can be stated as

P(D|Bk, Lm) =


P(C1|Lm) + 2P(C2|Lm) , k ∈ {1, 5}

P(C1|Lm) + 3P(C2|Lm) + P(C3|Lm) , k ∈ {2, 4, 6, 9}

2P(C2|Lm) + 2P(C3|Lm) , k ∈ {3, 7}

(38)

Hence the probability that a BS is a feasible BS given that the map length as follows,

P(D|Lm) =
8∑

k=1

P(D|Bk, Lm) P(Bk|Lm)

=
8∑

k=1

P(D|Bk, Lm)

∫ ∞

0

P(Bk|Lm, r1) fR1(r1) dr1

= 2P(D|B1, Lm)

∫ ∞

0

P(B1|Lm, r1) fR1(r1) dr1+

4P(D|B2, Lm)

∫ ∞

0

P(B2|Lm, r1) fR1(r1) dr1+

2P(D|B3, Lm)

∫ ∞

0

P(B3|Lm, r1) fR1(r1) dr1 (39)

= ξ

Since all components of (39) are given, it can be computed numerically and we call this

number as ξ.

4.2.4. Indirect LoS link’s Product-Distance Distribution

As we mentioned before, we can find the distribution of the product distance by multiplicative

convolution. However, the expression in 15 is too complicated to reduce to a closed-form. In

the Section 4.2.2., we derive the gamma approximation of pdfs of individual links’. Hence,

by using these approximate forms, we can get a closed-form expression for the product

44



distance distribution. To do that, we will use the multiplicative convolution property of

Mellin Transform (MT) as given below.

Theorem 0.2 ([51]). The Mellin Transform of the multiplicative convolution of functions Z1

and Z2 is equal to the product of their Mellin transforms (MTs):

M[Z1 ∨ Z2](s) = M[Z1](s)M[Z2](s) (40)

where M[f ](s) =
∫∞
0

xs−1f(x) dx, denotes the MT.

Now, let’s use the theorem 0.2 to derive fI(z).

fI(z) ≈ f̃I(z) =

∫ ∞

0

f̃dUI
(x)f̃dIB

(
1

x

)
1

x
dx

= f̃dUI
(x) ∨ f̃dIB(x)

M[f̃dUI
(x) ∨ f̃dIB(x)](s) = M[f̃dUI

(x)](s)M[f̃dIB(x)](s)

f̃I(z) = M−1[M[f̃I(z)]]

= M−1[M[f̃dUI
(x) ∨ f̃dIB(x)]]

= M−1[M[f̃dUI
(x)]M[f̃dIB(x)]]] (41)

where M−1 denotes inverse MT (IMT).

To derive the closed-form equation of (41), we need to find the the MT of UE-IRS and

IRS-BS links’ distributions, then the IMT of multiplication of these transforms gives us the

product distance distribution.

M[f̃dUI
(x)](w) =

∫ ∞

0

xw−1x
k1−1 e−x/θ1

θk−1
1 Γ(k1)

dx

=
1

θk11 Γ(k1)

∫ ∞

0

xw+k1−2 e−x/θ1 dx

(a)
=

1

θk11 Γ(k1)

∫ ∞

0

(θ1 u)
w+k1−2 e−u θ1 du

=
θw+k1−2
1 θ1

θk11 Γ(k1)

∫ ∞

0

uw+k1−2e−u du

=
θw−1
1

Γ(k1)
Γ(w + k1 − 1)
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=
θ−1
1

Γ(k1)
θw1 Γ(w + k1 − 1) (42)

where we employed change of variable x = u θ1 in (a). In the same manner,

M[f̃dIB(x)](w) =
θ−1
2

Γ(k2)
θw2 Γ(w + k2 − 1) (43)

If we substitute (42) and (43) into (41), we get,

f̃I(z) = M−1

[
(θ1 θ2)

−1

Γ(k1) Γ(k2)
(θ1 θ2)

w Γ(w + k2 − 1) Γ(w + k1 − 1)

]

=
(θ1 θ2)

−1

Γ(k1) Γ(k2)
M−1[(θ1 θ2)

w Γ(w + k2 − 1) Γ(w + k1 − 1)]

=
θ−1
m

Γ(k1) Γ(k2)
M−1[θwm Γ(w − α1) Γ(w − α2)]

where θm = θ1 θ2, α1 = 1− k1, and α2 = 1− k2.

Let Φ(w) = Γ(w − α1) Γ(w − α2), and Φ(z) = M−1[Φ(w)],

f̃I(z) =
θ−1
m

Γ(k1) Γ(k2)
M−1

[
(
1

θm
)−w Φ(w)

]
(a)
=

θ−1
m

Γ(k1) Γ(k2)
Φ

(
z

θm

)
(b)
=

θ−1
m

Γ(k1) Γ(k2)
2

(
z

θm

)− (α1+α2)
2

Kα2−α1

(
2

√
z

θm

)

=
2 θ−kt

m

Γ(k1) Γ(k2)
zkt−1 Kk1−k2

(
2

√
z

θm

)
(44)

where, kt = (k1 + k2)/2, and in step (a), we used the fact that M−1[a−wΦ(w)] = Φ(az)

([52], p.163), and in the step (b) M−1[Γ(α + w) Γ(β + w)] = 2z
(α+β)

2 Kα−β(2
√
z)([52],

p.196) as follows,

M−1

[
(
1

θm
)−w Φ(w)

]
= Φ

(
z

θm

)
Φ(z) = M−1[Γ(w − α1) Γ(w − α2)]
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= 2 z
1
2
(−α1−α2) K−α1+α2(2

√
z)

M−1

[
(
1

θm
)−w Φ(w)

]
= 2

(
z

θm

) 1
2
(−α1−α2)

K−α1+α2

(
2

√
z

θm

)

where K(z) = π
2
I−n(z)−In(z)

sin(nπ)
, is the modified Bessel function of second kind, and Iν(z) =

( z
2
)ν
∑∞

k=0
(z2/4)k

k! Γ(ν+k+1)
is the modified Bessel function of first kind. If we substitute the series

expansion of Bessel functions into the (44), we get,

f̃I(z) =
2θ−kt

m

Γ(k1) Γ(k2)
zkt−1 Kk1−k2

(
2

√
z

θm

)

=
2θktm

Γ(k1) Γ(k2)
zkt−1

[
π

2sin(nπ)

((
2

√
z

θm

1

2

)−n ∞∑
k=0

( 4z
4θm

)k

k! Γ(−n+ k + 1)
−(

2

√
z

θm

1

2

)n ∞∑
k=0

( 4z
4θm

)k

k! Γ(n+ k + 1)

)]

=
2θktm

Γ(k1) Γ(k2)
zkt−1 π

2sin(nπ)

[(
z

θm

)−n/2 ∞∑
k=0

(z/θm)
k

k! Γ(−n+ k + 1)
−

(
z

θm

)n/2 ∞∑
k=0

(z/θm)
k

k! Γ(n+ k + 1)

]

= Λ1 z
kt−1

( z

θm

)−n/2 ∞∑
k=0

(z/θm)
k

k! Γ(−n+ k + 1)
−
(

z

θm

)n/2 ∞∑
k=0

(z/θm)
k

k! Γ(n+ k + 1)


(45)

where Λ1 =
θ
−kt
m π

Γ(k1) Γ(k2) sin(πn)
, and n = k1 − k2.

Now, let’s investigate how the gamma approximation of fI(z) is close to the exact form

(eqn.(17) and (45)) in figure (4.11),

4.2.5. Conditional Distribution of Nearest Distances

In the beginning of the section, we mentioned that the coverage analysis is investigated with

four different events (11). In this section, we will give the conditional distribution of nearest

distances but first let’s examine the probability of these four events. Let,

P(AD,PL) = P{PLD ≤ PLI}, (46)
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Figure 4.11 Comparison of (17) and (45) for µ = 0.3 and ρ = 0.26.

P(AI,PL) = P{PLI < PLD}, (47)

P(A′

D) = P{TUE cannot reach any direct LoS BS},

(a)
= exp(−

∫ 2π

0

∫ ∞

0

λBS p(r)r dr dθ),

= exp(−2πλBS/β
2) (48)

P(A′

I) = P{TUE cannot reach any LoS IRS}
(b)
= exp(−2πλbµ/β

2), (49)

P(A′′

I ) = P{The IRS cannot reach any LoS BS}
(c)
= exp(−2πξλBS/β

2) (50)
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where we used the null (or void) probability of a PPP [15] in the steps (a), (b), and (c). Hence,

P(ÂI) = P{TUE cannot reach any indirect LoS BS}

= P(A′

I ∪ A
′′

I )

= P(A′

I) + P(A′′

I )− P(A′

I) · P(A
′′

I )

(51)

Note that the events A′
I and A

′′
I are not mutually exclusive. By using the definitions in (46) -

(50), and (51),

P(AD1) = P(AD,PL ∩ A
′
D ∩ ÂI)

= P(AD,PL) P(A
′
D) P(ÂI) (52)

P(AD2) = P(A′
D ∩ ÂI)

= P(A′
D) P(ÂI) (53)

P(AI1) = P(AI,PL ∩ A
′
D ∩ ÂI)

= P(AI,PL) P(A
′
D) P(ÂI) (54)

P(AI2) = P(A′

D ∩ ÂI)

= P(A′

D) P(ÂI) (55)

where (·), indicates the complement of an event(e.g. P(A) = 1− P(A)).

Now, we can derive the conditional distributions of nearest distances. For the events AD2 and

AI2 (only the direct link, and only the indirect link), conditional distributions fD(x|AD2) and

fI(z|AI2) will be equal to the unconditional ones. We can observe this from the Bayesian

expansion.

fD(x|AD2) =
P(AD2 |x) fdUB

(x)∫∞
0

P(AD2 |x) fdUB
(x) dx

(56)

=
P(A′

D |x) P(ÂI |x) fdUB
(x)∫∞

0
P(A′

D |x) P(ÂI |x) fdUB
(x) dx

=
P(A′

D) P(ÂI) fdUB
(x)

P(A′
D) P(ÂI)

∫∞
0

fdUB
(x) dx

= fdUB
(x)

≈ f̃dUB
(x) (57)
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The variable x in (56) represents the nearest LoS BS distance. Since the probability that the

UE sees just direct LoS BSs is independent of the nearest LoS BSs distance, fD(x|AD2) will

be equal to fdUB
(x). In the same way, fI(z|AI2) = fI(z) ≈ f̃I(z). For the rest of the two

conditional distributions for AD1 and AI1, we will use Bayes theorem.

fD(x|AD1) =
P(AD1 |x) fdUB

(x)∫∞
0

P(AD1 |x) fdUB
(x) dx

=
P(AD,PL |x) P(A′

D |x) P(ÂI |x) fdUB
(x)∫∞

0
P(AD,PL |x) P(A′

D |x) P(ÂI |x) fdUB
(x) dx

=
P(PLD(x) ≤ PLI |x) P(A

′
D) P(ÂI) fdUB

(x)

P(A′
D) P(ÂI)

∫∞
0

P(PLD(x) ≤ PLI |x) fdUB
(x) dx

=
P(PLD(x) ≤ PLI |x) fdUB

(x)∫∞
0

P(PLD(x) ≤ PLI |x) fdUB
(x) dx

≈ P(PLD(x) ≤ PLI |x) f̃dUB
(x)∫∞

0
P(PLD(x) ≤ PLI |x) f̃dUB

(x) dx
(58)

With the same approach,

fI(z|AI1) =
P(PLI(z) < PLD |z) fI(z)∫∞

0
P(PLI(z) < PLD |z) fI(z) dz

≈ P(PLI(z) < PLD |z) f̃I(z)∫∞
0

P(PLI(z) < PLD |z) f̃I(z) dz
(59)

Now, we need find the conditional probabilities in (58) and (59) but first, we need to find the

CDFs of nearest direct link distance and the product distance. Since we approximate the pdf

in (12) with a gamma pdf (28), the CDF of the nearest direct LoS BS distance will be,

F̃dUB
(x |kd, θD) =

1

Γ(kD)
γ(kD,

x

θD
) (60)

where γ(s, x) =
∫ x

0
ts−1 e−t, is the lower incomplete gamma function.

For the CDF of nearest indirect link distance, we use (45)

F̃I(z) =

∫ z

0

f̃I(τ) dτ

=

∫ z

0

Λ1 τ
kt−1

[(
τ

θm

)−n/2 ∞∑
k=0

(τ/θm)
k

k! Γ(−n+ k + 1)
−
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(
τ

θm

)n/2 ∞∑
k=0

(τ/θm)
k

k! Γ(n+ k + 1)

]
dτ

= Λ1

[
θn/2m

∞∑
k=0

θ−k
m

k! Γ(−n+ k + 1)

∫ z

0

τ k−n/2+kt−1 dτ −

θ−n/2
m

∞∑
k=0

θ−k
m

k! Γ(n+ k + 1)

∫ z

0

τ k+n/2+kt−1 dτ

]

= Λ1

[
θn/2m

∞∑
k=0

θ−k
m

k! Γ(−n+ k + 1)

zk+k2

(k + k2)
−

θ−n/2
m

∞∑
k=0

θ−k
m

k! Γ(n+ k + 1)

zk+k1

(k + k1)

]
(61)

where Λ1 =
θ
−kt
m π

Γ(k1) Γ(k2) sin(πn)
, and n = k1 − k2, kt = k1+k2

2
, and θm = θ1 θ2.

Hence, the conditional probabilities in (58) and (59) can be found by using the following

probabilities.

P(PLD(x) ≤ PLI |x) = P

(
x2

C
≤ 1

C

(
2Z

Nλ cos θi

)2 ∣∣∣∣x
)

= P(Z2 ≥ (x Nλ cos θi/2)
2 |x)

= P(Z2 ≥ Ψ2(x, θi) |x)

= P
(
|Z| ≥ |Ψ(x, θi)| |x

)
(a)
= P

(
Z ≥ Ψ(x, θi) |x

)
=

∫ π/2

0

P(Z ≥ Ψ(x, θi) |x, θi)
2

π
dθi

(b)
=

∫ π/2

0

(
1− F̃I(Ψ(x, θi))

) 2

π
dθi

= 1−
∫ π/2

0

F̃I(Ψ(x, θi))
2

π
dθi

= 1−
∫ π/2

0

Λ1

[
θn/2m

∞∑
k=0

θ−k
m

k! Γ(−n+ k + 1)

(
Ψ(x, θi)

)k+k2

k + k2
−

θ−n/2
m

∞∑
k=0

θ−k
m

k! Γ(n+ k + 1)

(
Ψ(x, θi)

)k+k1

k + k1

]
2

π
dθi

= 1− 2Λ1

π

[
θn/2m

∞∑
k=0

θ−k
m

k! Γ(−n+ k + 1) (k + k2)
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∫ π/2

0

(xNλ cos θi/2)
k+k2 dθi −

θ−n/2
m

∞∑
k=0

θ−k
m

k! Γ(n+ k + 1) (k + k1)∫ π/2

0

(xNλ cos θi/2)
k+k1 dθi

]

= 1− 2Λ1

π

[
θn/2m

∞∑
k=0

θ−k
m (xNλ /2)k+k2

k! Γ(−n+ k + 1) (k + k2)∫ π/2

0

cosk+k2(θi) dθi −

θ−n/2
m

∞∑
k=0

θ−k
m (xNλ /2)k+k1

k! Γ(n+ k + 1) (k + k1)∫ π/2

0

cosk+k1(θi) dθi

]
(c)
= 1 − 2Λ1

π

[
θn/2m

∞∑
k=0

θ−k
m (xNλ /2)k+k2

k! Γ(−n+ k + 1) (k + k2)

√
π

2

Γ
(

k+k2+1
2

)
Γ
(

k+k2
2

+ 1
) −

θ−n/2
m

∞∑
k=0

θ−k
m (xNλ /2)k+k1

k! Γ(n+ k + 1) (k + k1)

√
π

2

Γ
(

k+k1+1
2

)
)

Γ
(

k+k1
2

+ 1
)]

= 1− Λ1√
π

[
∞∑
k=0

θ
−k+n/2
m (xNλ /2)k+k2

k! Γ(−n+ k + 1) (k + k2)

Γ
(

k+k2+1
2

)
Γ
(

k+k2
2

+ 1
) −

∞∑
k=0

θ
−(k+n/2)
m (xNλ /2)k+k1

k! Γ(n+ k + 1) (k + k1)

Γ
(

k+k1+1
2

)
)

Γ
(

k+k1
2

+ 1
)]

= 1− Λ1√
π

∞∑
k=0

[
θ
−k+n/2
m (xNλ /2)k+k2

k! Γ(−n+ k + 1) (k + k2)

Γ
(

k+k2+1
2

)
Γ
(

k+k2
2

+ 1
) −

θ
−(k+n/2)
m (xNλ /2)k+k1

k! Γ(n+ k + 1) (k + k1)

Γ
(

k+k1+1
2

)
)

Γ
(

k+k1
2

+ 1
)] (62)

where Ψ(x, θi) = xN cos θi λ/2, in step (a), we used the fact that z,Ψ(x, θi) ≥ 0, ∀ z, x, θi,

step (b) follows from the fact that 1 − FI(z) = P(Z > z), and in the step (c) we used∫ π/2

0
cosz(x) dx =

√
π
2

Γ( z+1
2

)

Γ( z
2
+1)

, ∀ ℜ{z} > −1.

52



P(PLI(z) < PLD |z) = P

(
1

C

(
2z

Nλ cos θi

)2

<
D2

C

∣∣∣z)

= P

(
D2 >

(
2z

Nλ cos θi

)2 ∣∣∣z)
= P(|D| > |χ(z, θi)|

∣∣z)
(a)
= P(D > χ(z, θi)

∣∣z)
=

∫ π/2

0

P
(
D > χ(z, θi)

∣∣z, θi) 2

π
dθi

=

∫ π/2

0

(
1− F̃dUB

(
χ(z, θi)

)) 2

π
dθi

= 1−
∫ π/2

0

1

Γ(kD)
γ

(
kD,

χ(z, θi)

θD

)
2

π
dθi

(b)
= 1− 2

π Γ(kD)

∫ π/2

0

∞∑
k=0

(−1)k
(

χ(z,θi)
θD

)kD+k

k! (kD + k)
dθi

= 1− 2

π Γ(kD)

∞∑
k=0

(−1)k

k! (kD + k)

∫ π/2

0

(
2z

Nλ (cos θi)θD

)kD+k

dθi

= 1 −

2

π Γ(kD)

∞∑
k=0

(−1)k

k! (kD + k)

(
2z

Nλ θD

)kD+k ∫ π/2

0

(cos θi)
−(kD+k) dθi

= 1− 2

π Γ(kD)

∞∑
k=0

(−1)k

k! (kD + k)
ωkD+k zkD+k Υ(k, kD) (63)

where χ(z, θi) = 2z/(Nλ cos θi), ω = 2
Nλ θD

, Υ(k, kD) =
∫ π/2

0
(cos θi)

−(kD+k) dθi, the step

(a) follows from the fact that D ≥ 0, χ(z, θi) ≥ 0, and in the step (b) we used the series

expansion of lower incomplete gamma function given by ([52], 8.354),

γ(α, x) =
∞∑
n=0

(−1)n xα+n

n! (α + n)
(64)

Now, let’s find (46), and (47), using total probability theorem.

P(AD,PL) = P(PLD ≤ PLI)
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=

∫ ∞

0

P(PLD(x) ≤ PLI |x) f̃dUB
(x) dx

=

∫ ∞

0

(
1− Λ1√

π

∞∑
k=0

[
θ
−k+n/2
m

k!

(xNλ /2)k+k2

(k + k2) Γ(−n+ k + 1)

Γ(k+k2+1
2

)

Γ(k+k2
2

+ 1)
−

θ
−(k+n/2)
m

k!

(xNλ /2)k+k1

(k + k1) Γ(n+ k + 1)

Γ(k+k1+1
2

)

Γ(k+k1
2

+ 1)

])
xkD−1 e−x/θD

θkDD Γ(kD)
dx

=

∫ ∞

0

xkD−1 e−x/θD

θkDD Γ(kD)
dx −

Λ1/
√
π

θkDD Γ(kD)

∞∑
k=0

[
θ
−k+n/2
m

k!

(Nλ /2)k+k2

(k + k2) Γ(−n+ k + 1)

Γ(k+k2+1
2

)

Γ(k+k2
2

+ 1)∫ ∞

0

xk+k2 xkD−1 e−x/θD dx −

θ
−(k+n/2)
m

k!

(Nλ /2)k+k1

(k + k1) Γ(n+ k + 1)

Γ(k+k1+1
2

)

Γ(k+k1
2

+ 1)∫ ∞

0

xk+k1 xkD−1 e−x/θD dx

]
(a)
= 1− Λ1/

√
π

θkDD Γ(kD)

∞∑
k=0

[
θ
−k+n/2
m

k!

(Nλ /2)k+k2

(k + k2) Γ(−n+ k + 1)

Γ(k+k2+1
2

)

Γ(k+k2
2

+ 1)∫ ∞

0

(θDτ)
k+k2+kD−1 e−τ θD dτ −

θ
−(k+n/2)
m

k!

(Nλ /2)k+k1

(k + k1) Γ(n+ k + 1)

Γ(k+k1+1
2

)

Γ(k+k1
2

+ 1)∫ ∞

0

(θDτ)
k+k1+kD−1 e−τ θD dτ

]

= 1− Λ1/
√
π

θkDD Γ(kD)

∞∑
k=0

[
θ
−k+n/2
m

k!

(Nλ /2)k+k2

(k + k2) Γ(−n+ k + 1)

Γ(k+k2+1
2

)

Γ(k+k2
2

+ 1)
θk+k2+kD
D∫ ∞

0

τ (k+k2+kD)−1 e−τ dτ −

θ
−(k+n/2)
m

k!

(Nλ /2)k+k1

(k + k1) Γ(n+ k + 1)

Γ(k+k1+1
2

)

Γ(k+k1
2

+ 1)
θk+k1+kD
D∫ ∞

0

τ (k+k1+kD)−1 e−τ dτ

]

= 1− Λ1/
√
π

θkDD Γ(kD)

∞∑
k=0

[
θ
−k+n/2
m

k!

(Nλ /2)k+k2

(k + k2) Γ(−n+ k + 1)

Γ(k+k2+1
2

)

Γ(k+k2
2

+ 1)

θk+k2+kD
D Γ(k + k2 + kD) −
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θ
−(k+n/2)
m

k!

(Nλ /2)k+k1

(k + k1) Γ(n+ k + 1)

Γ(k+k1+1
2

)

Γ(k+k1
2

+ 1)
θk+k1+kD
D Γ(k + k1 + kD)

]
(65)

where in the step (a), we employed change of variable x/θD = τ and

P(AI,PL) = 1− P(AD,PL) (66)

Note that the expression in (65) gives a constant number.

4.2.6. Conditional SNR Coverage Probabilities

In this section we will investigate the SNR coverage probabilities in (11).

P(SNRD(x) > T |x) = P(
|hD|2

PLD(x) σ2
n

> T |x)

= P(|hD|2 > σ2
n PLD(x)T |x)

= P(|hD| >
√
σ2
n PLD(x)T |x)

= Q1

(
νk
σk

,
TD(T, x)

σk

)
(67)

where TD(T, x) =
√

σ2
n PLD(x)T , and Q1(a, b) is the Marcum Q-function with νk =√

KΩ
1+K

and σk =
√

Ω
2(1+K)

The SNR coverage probability for the indirect link can be derived as follows,

P(SNRI(z, θi) > T |z, θi) = P


(

1
N

∑N
n=1 |h1,n| |h2,n|

)2
PLI(z, θi) σ2

n

> T

∣∣∣∣∣z, θi


= P


 N∑

n=1

|h1,n| |h2,n|

 >
√
N2σ2

n TPLI(z, θi)

∣∣∣∣∣z, θi

(68)
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Let’s define u =
∑N

n=1 |h1,n| |h2,n|. To get the closed-form expression for (68), we need

to find the distribution of u. If the N is large enough, we can use the central limit theorem

(CLT). Hence, the random variable u can be modeled with the Gaussian distribution U ∼

N (mu, σ
2
u). Let,

|h1,n|, |h2,n| ∼ fH(x) =
2(K + 1) x

Ω
exp

(
−K − (K + 1) x2

Ω

)
I0

(
2x

√
K(K + 1)

Ω

)
and

Y = |h1,n||h2,n| ∼ fY (y) =

∫ ∞

0

1

x
fH(x) fH(y/x) dx

Hence,

fY (y) =

∫ ∞

0

1

x

2(K + 1) x

Ω
exp

(
−K − (K + 1) x2

Ω

)
I0

(
2x

√
K(K + 1)

Ω

)
2(K + 1) y/x

Ω
exp

(
−K − (K + 1) (y/x)2

Ω

)
I0

(
2(y/x)

√
K(K + 1)

Ω

)
dx

=
4(K + 1)2

Ω2
y

∫ ∞

0

1

x
exp

−2K − (K + 1)

Ω

(
x2 +

y2

x2

)
I0

(
2x

√
K(K + 1)

Ω

)
I0

(
2(y/x)

√
K(K + 1)

Ω

)
dx

= 4Λ2
2 exp(−2K) y

∫ ∞

0

1

x
exp

−Λ2

(
x2 +

y2

x2

)
I0

(
2x
√

KΛ2

)
I0

(
2(y/x)

√
KΛ2

)
dx

(a)
= 4Λ2

2 exp(−2K) y

∫ ∞

0

1

x
exp

−Λ2

(
x2 +

y2

x2

)
∞∑
k=0

(4x2KΛ2/4)
k

k! Γ(k + 1)

∞∑
m=0

(4y2KΛ2/(4x
2))m

m! Γ(m+ 1)
dx

= 4Λ2
2 exp(−2K) y

∞∑
k=0

∞∑
m=0

(KΛ2)
k+m

k!m! Γ(k + 1) Γ(m+ 1)
y2m

∫ ∞

0

x2k−2m−1 exp

−Λ2

(
x2 +

y2

x2

) dx

(b)
= 4Λ2

2 exp(−2K)
∞∑
k=0

∞∑
m=0

(
(KΛ2)

k+m

k! m! Γ(k + 1) Γ(m+ 1)
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y2m+1 (y2)
k−m

2 Kk−m(2
√

Λ2
2 y

2)

)
= 4Λ2

2 exp(−2K)
∞∑
k=0

∞∑
m=0

(KΛ2)
k+m

k! m! Γ(k + 1) Γ(m+ 1)
ym+k+1 Kk−m(2Λ2 y)

where Λ2 = K+1
Ω

, in the step (a) we used the series expansion of the 0th order modified

Bessel function of 1st kind given by,

I0(z) =
∞∑
k=0

(z2/4)k

k! Γ(k + 1)

and in the step (b) we used the fact that ([52], p.370),

∫ ∞

0

xν−1 exp(−βxp − γx−p) dx =
2

p

(
γ

β

) ν
2p

Kν/p(2
√
β γ), [ℜ{β} > 0,ℜ{γ} > 0]

Now, we can find the mean value and the variance of u using the above distribution.

mu = N E[Y ]

= N

∫ ∞

0

y 4Λ2
2 exp(−2K)

∞∑
k=0

∞∑
m=0

(
(KΛ2)

k+m

k! m! Γ(k + 1) Γ(m+ 1)

ym+k+1 Kk−m(2Λ2 y) dy

)

= N 4Λ2
2 exp(−2K)

∞∑
k=0

∞∑
m=0

(KΛ2)
k+m

k!m! Γ(k + 1) Γ(m+ 1)

∫ ∞

0

yk+m+2Kk−m(2y Λ2) dy

(a)
= N 4Λ2

2 exp(−2K)
∞∑
k=0

∞∑
m=0

(KΛ2)
k+m

k!m! Γ(k + 1) Γ(m+ 1)(
2k+m+1 (2Λ2)

−k−m−3 Γ

(
2k + 3

2

)
Γ

(
2m+ 3

2

))

= N Λ2
2 exp(−2K)

∞∑
k=0

∞∑
m=0

Kk+m Λ−3
2

k!m! Γ(k + 1) Γ(m+ 1)(
Γ

(
2k + 3

2

)
Γ

(
2m+ 3

2

))

= N Λ−1
2 exp(−2K)

∞∑
k=0

∞∑
m=0

Kk+m

k!m!

Γ(k + 3/2) Γ(m+ 3/2)

Γ(k + 1) Γ(m+ 1)
(69)
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where in the step (a) we used the solution of the integral given below ([52], p.676),

∫ ∞

0

xµ Kν(ax) dx = 2µ−1 a−µ−1 Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)
,

[ℜ{µ+ 1± ν} > 0, ℜ{a} > 0]

E[Y 2] =

∫ ∞

0

y2 4Λ2
2 exp(−2K) ∞∑

k=0

∞∑
m=0

(KΛ2)
k+m

k!m! Γ(k + 1) Γ(m+ 1)
ym+k+1 Kk−m(2Λ2 y) dy


= 4Λ2

2 exp(−2K)
∞∑
k=0

∞∑
m=0

(KΛ2)
k+m

k! m! Γ(k + 1) Γ(m+ 1)∫ ∞

0

yk+m+3Kk−m(2y Λ2) dy

= 4Λ2
2 exp(−2K)

∞∑
k=0

∞∑
m=0

(KΛ2)
k+m

k! m! Γ(k + 1) Γ(m+ 1)

(2k+m+2 (2Λ2)
−k−m−4 Γ(k + 2) Γ(m+ 2))

= Λ2
2 exp(−2K)

∞∑
k=0

∞∑
m=0

Kk+m Λ−4
2

k! m! Γ(k + 1) Γ(m+ 1)
(Γ(k + 2) Γ(m+ 2))

= Λ−2
2 exp(−2K)

∞∑
k=0

∞∑
m=0

Kk+m

k!m!

Γ(k + 2) Γ(m+ 2)

Γ(k + 1) Γ(m+ 1)

= Λ−2
2 exp(−2K)

∞∑
k=0

∞∑
m=0

Kk+m

k!m!
(k + 1) (m+ 1) (70)

Hence, we can find σ2
u by using (69) and (70),

σ2
y = E[Y 2]− (mu/N)2

σ2
u = N σ2

y (71)
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Since we have the distribution of u, we can find the closed-form solution of (68) with the

Gaussian CDF,

P(SNRI(z, θi) > T |z, θi) = P
(
U >

√
N2σ2

n TPLI(z, θi)
)

= Q

(
TI(T, z, θi)−mu

σu

)
(72)

where TI(T, z, θi) =
√

N2σ2
n TPLI(z, θi), and Q(x) = 1√

2π

∫∞
x

exp
(
−u2

2

)
du, is the

Q-function. Note that we need the SNR probability depends on just the variable z. Hence

we should apply the total probability theorem to (72) given by

P(SNRI(z) > T |z) =
∫ π/2

0

Q

(
TI(T, z, θi)−mu

σu

)
2

π
dθi (73)

To conclude, the SNR coverage probability can be obtained by substituting (28), (44),

(52)-(55), (58), (59), (67), and (73) into (11).

5. NUMERICAL RESULTS

In this section, we will provide some key simulation results to understand the impact of IRSs

on the mmWave networks from the coverage perspective. There are 4 main parameters in our

simulations, which are λBS , µ, ρ, and LI . The definitions of the first two parameters are given

in the Section 4.1. The parameter ρ determines what percentage of the map area is covered

by the buildings, e.g. ρ = λbE[L]E[W ], and LI is the length of the one side of the IRS in

meters, LI = 0.7071 λ
√
N . The values of the system parameters we used in our simulations

are given in Table 5.1. We take the value of ρ as 0.26 in some of our simulations because

it is the value surveyed in the paper [14]. They measure the area covered by buildings on a

region of the UT Austin campus and they found the value of 0.26. Moreover, we compare

our method with the case that the network lack of IRSs, we call this event as ’No IRS’, and

formally it can be given by,

PC(T |{No IRS}) = P(A′
D)

∫ ∞

0

P(SNRD(x) > T |x) f̃dUB
(x) dx (74)

59



Variable Description Value

Gt Transmit Antenna Gain 20 dBi

Gr Receiver Antenna Gain 10 dBi

σ2
n Noise Power -203 dB/Hz

BW Bandwidth 100 MHz

c The speed of light 3× 108

fc Operating frequency 60 GHz

E[W ] Expected width of buildings 52

E[L] Expected length of buildings 55

K Rician K-factor 1

E{|hD|} Mean value for small scale fading 1

Lm Map length 7 km

Table 5.1 Simulation parameters

According to Rényi’s Theorem, simple point processes are completely characterized by their

void probabilities. Simple PPs are the PPs have a finite intensity function for any Borel

set. Hence, we should investigate the null probabilities of the simulation and the proposed

model. In Fig. 5.1, we show the null probabilities of the UE-BS link, Indirect link, and

their joint probability for consecutive repetitions. For instance, the null probability of the

UE-BS link for repetition one shows the ratio that the TUE cannot reach any direct BS for

4000 iterations. To be specific, for the rate of around 0.32, TUE cannot see any direct BS

for the given system parameters in 5.1. On the other hand, for the indirect link (ÂI), TUE

cannot reach any indirect BS for the rate of around 0.5. Note that the simulations coincide

with the analytical expression given in the black line. However, for the joint probability (Fig

5.1 (c)), there is a small difference between them. No matter how small the difference is, it

indicates that there is a dependence between direct and indirect links. In our derivations, we

assume that these links are independent. Since the difference is quite small, the assumption

of independence does not result in a large gap between the simulation and analytical results.

In Fig.5.2, we show the performance of the Monte-Carlo simulation (MCS) and a sample of

the contribution of IRS to the network coverage. The difference in the MCS and the analytical

plot resulted from the aforementioned dependence but as we can observe, MCS follows the

general shape of our analytical result which is given with the solid plots. The upper blue

curve indicates the total coverage probability (CP), and the below green one and red one
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Figure 5.1 Null probabilities for (a) UE-BS link, (b) Indirect link, (c) Joint UE-BS and Indirect link.

show the CP of No IRS case and just direct links, respectively. Hence, the difference in the

blue and green curves demonstrates the advantage of using IRS in the mmWave networks.

The reason why the CP of just direct link is lower than the CP without IRS is that the 1x1m

IRS can compete with the direct link. In other words, in some situations, even if the TUE

sees a direct BS, it does not connect to direct BS because the PL value of the indirect link

will be smaller. The four different components of coverage mentioned in (11) is illustrated

in Fig. 5.3.
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Figure 5.2 Performance of the simulation with λBS = 7/km2, ρ = 0.26, µ = 0.2, and LI = 1m.
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Figure 5.3 All components of the coverage for λBS = 7/km2, ρ = 0.26 µ = 0.2, and LI = 1m.
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Figure 5.4 The difference between the values of coverage probabilities with and without IRS at
SNR = 0 dB for LI = 1m, varying ρ, µ, and (a) λBS = 3/km2, (b) λBS = 7/km2,
(c) λBS = 11/km2, (d) λBS = 15/km2.

As we can observe from Fig. 5.3, the maximum coverage is obtained with the case that the

TUE sees only a direct BS. If the TUE can reach both the direct BS and the indirect BS, it

chooses the direct BS with a rate around 0.2, and it chooses the indirect BS at 0.15 rates. The

latter value can also be seen in the difference between CPs of No IRS and just the direct link

(PC(T |{No IRS}), PC(T |AD)).

The impact of the IRS on network coverage varies with the BS density. To observe this, we

plot four different figures with four different BS densities in Fig. 5.4, λBS ∈ [3, 7, 11, 15]×

10−6, indicating the difference between the total CP and the CP without IRS at SNR = 0dB

for increasing IRS deployment ratio µ and various values of ρ. As can be seen, the value of
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the maximum difference is almost the same for all BS densities but the building ratio that

gives this maximum value increases with increasing BS density. On the other hand, the IRS

deployment ratio makes no difference in the CP for values greater than 0.3. This is because

the TUE can reach a limited number of LoS IRS, in other words, if we think that all the LoS

buildings lie inside a circle with radius r, no matter how we increase the IRS deployment

ratio the radius stays the same. Hence, there is an optimal value for the IRS deployment

ratio, which is around 0.3 in our case. For instance, for the BS density 11/km2, the maximum

boost is obtained for the building ratio of 0.35 and µ=0.3 for the IRS length of 1m, see Fig.

5.5. As we can observe, the only impact of IRSs on the network coverage is not limited to the

low-SNR regimes, it also shifts the coverage plot to the right because there is a quadratic gain

depending on the number of elements of IRS in the indirect link. Note that approximately

8 × 108 elements can be packed just to 1 × 1m IRS at 60 GHz. The effect of IRS length on

the coverage is illustrated in Fig. 5.6.
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Figure 5.5 The coverage probability for the parameters gives the maximum difference in Fig. 5.4 (c).
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Figure 5.6 Coverage probabilities for various IRS lengths, λBS = 7/km2, ρ = 0.35, and µ = 0.3.

We plot five different coverage plots for increasing IRS lengths LI starting from 25 cm to

2 meters in Fig. 5.6. We also illustrated the coverage without IRS for all the IRS lengths.

As can be predicted, CPs without IRS (given in dashed line) is the same for all IRS lengths

but the difference increases for increasing LI . In the low-SNR regime, the gain is almost the

same for all IRS lengths but the difference is obvious in the high-SNR regime. However, for

the values greater than 1.2m there is only a small gain in the very high-SNR regimes. Hence,

it can be stated that the optimal value for the IRS length is around 1.2 m at 60GHz.

How much gain can be obtained with IRS relative to the gain without IRS is given in Fig. 5.7.

As illustrated, the maximum ratio of the gain is higher than the maximum gain of difference

(Fig. 5.4), since the total probability of densely built regions is much lower than the sparse

ones. Nonetheless, the maximum ratio of coverage boost of IRSs varies between 45% and

40%. Additionally, the maximum values are obtained in densely built regions such as ρ=0.65.

Note that it is a very high value for the building ratio. This is just the opposite with the gain

of differences (Fig. 5.4). There, the highest values were obtained with lower blockage ratios.
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Figure 5.7 The ratio of the difference between coverage probabilities with and without IRS at
SNR = 0 dB to the coverage probability without IRS at SNR = 0 dB for LI = 1 m,
varying ρ, µ, and (a) λBS = 3/km2, (b) λBS = 7/km2, (c) λBS = 11/km2, (d) λBS =
15/km2.

Next, we will investigate the coverage performance of the network with the constant value

for θi (the angle between the normal of an IRS and the incident wave). We take this value

as uniformly distributed between 0 and π/2 in our derivations. In Fig. 5.8, we illustrated

the CPs for different constant values of θi, and the one we use in our system model. As

can be observed, as we get closer to π/2, the plot deviates markedly from our model, and

for θi = 0.499π it is almost equal to the case without IRS. Since the θi = 0.499π means

that the incident wave makes a 90° with the IRS normal vector. We can also observe that

the optimal value is around 0.35π. Now, let’s have a look at the coverage plots with θi ∈

[0, 0.15, 0.25, 0.35, 0.499] for various system parameters in Fig. 5.9. As can be seen, the

CPs for θi = 0.35π is approximately the same as the one that has uniformly distributed θi.
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Therefore, in the further studies regarding SNR analysis of IRS-aided networks, the value of

the θi can be taken as 0.35π for the ease of derivations.
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Figure 5.8 Coverage probabilities for various constant θi values, λBS = 7/km2, ρ = 0.26, µ = 0.2,
and LI = 1m

We mentioned that in the literature, there are some works regarding the coverage analysis

of IRS-aided SG-based networks in the Section 3. However, they consider the line Boolean

model for buildings (takes buildings as lines) and the sum-distance PL model for the PL

expression of the indirect link. Now, let’s compare this method with our system model. First,

we need to understand the parameter λb (blockage density) used in the Fig. 5.10. Since

the line Boolean model considers buildings as lines, we cannot determine the parameter

λb with the building ratio ρ. The blockage density would have to be so large to be equal

to the ratio of the area of blockages. Hence, we take the value of λb with E[W ] = 52

(λb = ρ/(55 · 52) = 9.09× 10−5 for ρ = 0.26) for the analysis of the line Boolean model.

After deciding on the blockage density, we plot the line Boolean model for E[W ] = 1,

random deployment of IRSs, and PLI ∼ (dUI + dIB) via our simulation, see Fig. 5.10.

As can be observed, IRSs cannot contribute to the CP for the low-SNR regimes because the
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Figure 5.9 Sample coverage probabilities for different constant θi values showing the performance
of coverage probabilities with fixed θi, best fit can be obtained with θi = 0.35π.

buildings do not interfere very much with the direct links. In other words, the LoS range for

the direct link of the line Boolean model is already too high. On the other hand, due to the

sum-distance PL model, the PL of the indirect link becomes so small that the SNR values are

much higher than expected in the high-SNR regime.

Finally, we illustrated the coverage performance of the proposed model with the random

deployment of IRSs. To be more specific, if we place the IRSs randomly onto the buildings

rather than placing them optimally, the variable ξ (the ratio of feasible BSs) is multiplied by

1/4. Hence, as can be expected, the contribution of the IRS to the network coverage would

be smaller. In the Fig. 5.11 and 5.12, we illustrated the difference gain and the ratio gain of

IRSs (the same approach used in the Fig. 5.4 and 5.7). In this case, the maximum difference
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Figure 5.10 Comparing the model proposed in [15] and [16] (line Boolean scheme with
sum-distance PL model for the indirect link) with the model proposed in this study
(rectangular Boolean scheme with product-distance PL model).

that can be obtained with IRSs is about 0.05 which is quite low. However, the ratio is a bit

higher which is around 10%.
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Figure 5.11 Performance analysis of the proposed model with the random deployment of IRSs into
the one facade of buildings (difference between the total probability and the probability
of No IRS case at SNR = 0 dB).
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Figure 5.12 Performance analysis of the proposed model with the random deployment of IRSs into
the one facade of buildings (ratio of the difference between the total probability and the
probability of No IRS case to the CP without IRS at SNR = 0 dB).

6. CONCLUSION

In this thesis, we propose a method to derive a closed-form expression for the coverage

probability of IRS-aided SG-based networks with buildings that have a rectangular Boolean

model and product-distance PL model for the indirect link. Since the distribution of the

nearest-LoS neighbor distance is quite cumbersome for analytical tractability, we propose

a gamma approximation for this distribution. Then we examine the coverage of IRS-aided

networks for various aspects including varying IRS lengths, blockage and BS densities, and

IRS deployment ratios. Then we compare our model with the one in the literature which is
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the line Boolean sum-distance model. We show that our model is much more practical for

the coverage analysis of IRS-aided networks.

In the literature, there is not much work done about the MIMO IRS-aided channels. As

a future research direction, the MIMO channel model of IRS-aided indirect links can be

examined. We assume a two-hop communication between the indirect BS and the TUE

(means that a TUE can communicate through just one IRS), the optimal number of IRSs can

be used in the indirect link communication can be investigated and the coverage probability

for this multi-hop IRS-aided networks can be analyzed in the future works. We also assume

the optimal IRS deployment in our derivations. In future works, the optimal placement of

IRSs into to the facades of the buildings can also be investigated.
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