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ABSTRACT

MIWGAN-GP: MISSING DATA IMPUTATION USING WASSERSTEIN
GENERATIVE ADVERSARIAL NETS WITH GRADIENT PENALTY

Ebru UÇGUN ERGÜN

Master of Science, Computer Engineering
Supervisor: Prof. Dr. Suat ÖZDEMİR

June 2022, 68 pages

The success and dependability of IoT applications are heavily dependent on data quality.

Due to hardware problems, synchronization challenges, inconsistent network connectivity,

and manual system shutdown, produced data might be missing, erroneous, and noisy. These

missing or erroneous values can also occur on health, military and surveillance data and result

in errors can also cause important errors in mission systems. If the mission critical system is

used in medical domain such missing data problems may affect human life. Hence, Missing

values should be imputed appropriately to avoid erroneous judgments in IoT healthcare

systems and other critical systems.

In addition, Naive Bayes, K-Nearest Neighbors, Decision Tree and XGboost algorithms are

applied in the IoT health sector in this study to show in detail the effect of missing data on

the outputs of machine learning algorithms. Following that, we compare different strategies

for imputing missing data. The classification methods used were compared both for each

defect percentage and with different imputation methods.

In this thesis, a new GAN-based approach is proposed to complete the missing data. The

success of the proposed method is compared with classical imputation methods. Error
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measurements are realized with four different error metrics. In addition, the success of the

proposed GAN-based model is demonstrated by applying different classification methods on

the data set filled with this method.

Keywords: Missing Data, Missing Data Imputation, Internet of Things, Deep Learning,

Machine learning, Generative Adversarial Networks, GAN, Wasserstein GAN
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ÖZET

MIWGAN-GP: EKSİK VERİLERİN GRADYAN CEZALANDIRMALI
WASSERSTEIN ÇEKIŞMELİ SİNİR AĞLARI İLE TAMAMLANMASI

Ebru UÇGUN ERGÜN

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Suat ÖZDEMİR

Mayıs 2022, 68 sayfa

IoT uygulamalarının başarısı ve güvenilirliği büyük ölçüde veri kalitesine bağlıdır. Donanım

sorunları, senkronizasyon zorlukları, tutarsız ağ bağlantısı ve manuel sistem kapatma

nedeniyle üretilen veriler eksik, hatalı ve gürültülü olabilir. Bu eksik veya hatalı değerler

sağlık, askeri ve gözetleme verisetlerinde de oluşabilmekte ve bu verilerin kullanıldığı görev

sistemlerinde de önemli hatalara neden olabilmektedir. Kritik görev sistemi; tıbbi alanda

kullanılıyorsa, bu tür eksik veri sorunları insan hayatını etkileyebilir. Bu nedenle, IoT sağlık

sistemlerinde ve diğer kritik sistemlerde hatalı yargılardan kaçınmak için Eksik veriler uygun

şekilde doldurulmalıdır.

Bu çalışmada verilerin eksik olmasının makine öğrenmesi algoritmaları üzerindeki etkilerini

göstermek için IoT sağlık verileri üzerinde Naive Bayes, K-Nearest Neighbors, Decision

Tree ve XGboost algoritmaları uygulanmıştır. Bunu takiben, eksik verileri doldurmak için

farklı stratejiler uygulanmıştır. Kullanılan sınıflandırma yöntemleri hem farklı eksiklik

yüzdeleri hem de farklı atama yöntemleri ile karşılaştırılmıştır.

Bu tezde, eksik verileri tamamlamak için GAN tabanlı yeni bir yaklaşım önerilmiştir.

Önerilen yöntemin başarısı klasik atama yöntemleri ile karşılaştırılmıştır. Hata değerleri
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dört farklı hata metriği ile ölçülmüştür. Ayrıca önerilen GAN tabanlı modelin başarısı,

bu yöntemle doldurulan veri seti üzerinde farklı sınıflandırma yöntemleri uygulanarak

gösterilmektedir.

Anahtar Kelimeler: Eksik Veri, Eksik Veri Tamamlama, Nesnelerin İnterneti, Derin

Öğrenme, Makine Öğrenmesi, Üretken Modeller, GAN, Wasserstein GAN
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1. INTRODUCTION

The Internet of Things (IoT) is a worldwide network of physical objects equipped with

sensors, applications, as well as other technologies that connect and exchange information

between devices and systems over the Internet. IoT allows for the smooth connection of

sensors, actuators, and communications equipment, paving the way for new application

development in a variety of fields including health, industrial, automotive, transportation, and

the environment. The quantity of gadgets linked to the Internet grows progressively as the

number of created apps grows rapidly. IoT provides for the seamless integration of sensors,

controllers, and communications equipment in real-time applications. Smart technologies

based on the IoT are starting to be used in autos, homes, and other infrastructure systems.

All connected devices generate massive amounts of data from their connected sensors. The

generated data must be gathered, evaluated, interpreted, and supplied to the end-user rapidly

in order for the applications to perform effectively and efficiently in accordance with their

development aims [1]. In data analysis operations, the quantity and quality of the obtained

data is critical [2]. This is especially important in applications that involve people’s lives,

require quick responses, and demand great service quality. Due to the nature of IoT, gathered

data may be incorrect, missing, or noisy for a variety of causes, including collision, unreliable

network connectivity, malfunctioning devices, and manual system closure [3].

IoT devices are used quite often in examining people’s activities and health status. From

the health data collected with the assistance of IoT devices, the critical conditions and

treatments of people can be monitored. But It is not always possible to get a significant

number of datasets that are free of missing data in the health monitoring field. Signals

received from sensors are disrupted by hardware or software defects, resulting in failures.

Simultaneously, algorithms that rely on motion tracking data often rely on full and labeled

datasets, emphasizing the need for label and dataset integrity. In health monitoring, on the

other hand, it is seen to be advantageous to limit the number of sensors that gather mobility

data information.
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Missing data imputation challenges have been solved in a variety of ways. One of them is

the classic imputation methods. It can be used to effectively fill in the gaps in the dataset.

Another filling method is the use of machine learning-based algorithms. In this thesis,

missing data are filled with a Generative Adversarial (GAN) based imputation method. It

is shown through many different error metrics that this method is more successful than

the classical methods. In addition, Naive Bayes, K-Nearest Neighbors, Decision Tree and

XGboost classification methods are applied to show how effective the proposed method is

to fill in missing data in the data processing step. Compared to other classical imputation

methods, the proposed methods showed superior success in imputing in missing data. In

addition, the overall success of the model has been demonstrated because it was studied on

two different data sets.
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1.1. Scope Of The Thesis

This thesis mainly focuses on missing data problem in IoT data. To solve this problem, a

new GAN based model is proposed in this thesis scope.

1.2. Contributions

In this research, we explain that missing data in datasets collected from IoT devices is an

significant problem that needs to be addressed in the preprocessing step, and we propose a

new GAN-based model, which is more successful than classical imputation methods in the

manner of filling missing parts. The main contributions of this paper can be summarized as

follows:

• We explain the implication of dataset deficiencies in data processing and the

significance of filling in these absence during the preprocessing stage.

• We explain and provide examples of how missing data in datasets can be resolved

using traditional methods.

• We develop and present a method that fills in the missing data created based on the

GAN method.

• We compared the success of our method with the classical imputation methods using

four different error metrics.

• In addition, classification successes were compared using classical imputation methods

and six different classification algorithms on the data set imputed with our method

which we call MiWGAN-GP.

1.3. Organization

The organization of the thesis is as follows:

3



• Chapter 1 explains our motivation, purpose, contributions and the scope of the thesis.

• Chapter 2 briefly summarizes the basic concepts associated with the scope of thesis.

• Chapter 3 documents the literature review.

• Chapter 4 explains the details of the developed method and gives formulations of the

proposed MIWGAN-GP method.

• Chapter 5 presents the results of 2 different datasets implemented with the proposed

method and analyzes these results.

• Chapter 6 summarizes the thesis and provides research directions.
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2. BACKGROUND OVERVIEW

2.1. Internet of Things (IoT)

Kevin Ashton of Procter & Gamble [4] used the phrase ”Internet of Things” for the first time

in 1999. IoT is a network of items embedded with sensors, software, and other associated

technologies that are primarily used to connect, exchange, and transfer data with other

devices and systems through the internet. Simple domestic things to complicated corporate

and industrial equipment and technology are all possible [5].

Hundreds of billions of devices, items, and devices are now connected to the web due to the

IoT. Data collection and sharing, as well as information exchange. According to Gubbi, et

al. [6], the IoT is ”an connectivity of sensing and actuation devices, allowing their potential

to communicate data between systems through a uniform framework and establishing a

common operational picture for enabling creative applications.”

The IoT ambition is to change the Internet by building networks of billions of wirelessly

recognized things devices that can interact with everything and everyone, not just each other,

at any time and from anywhere. Increased RFID processing capability, more wireless sensor

networks (WSNs), and storage space at reduced prices are one way to do this, resulting in the

establishment of a highly fragmented public resource pool connected by a complex model of

networks [7].

In fact, IoT communications may occur among people and their surroundings as well as

between equipment. People, automobiles, computers, books, Televisions, cell phones,

clothes, food, medication, passports, baggage, and other ordinary goods all need a unique

identification to connect with one another in IoT networks [8].

Citizens, corporations, and government will all benefit greatly from the IoT. From assisting

governments in lowering healthcare costs and increasing living quality while lowering CO2

emissions, increasing access to training in distant underdeveloped regions, and improving

transportation projects are range widely.
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2.2. Missing Data

Missing data concerns were divided into three types by Rubin [9]. Every data point,

according to his idea, has a chance of being absent. The missing data mechanism, also

known as the response mechanism, determines these probabilities. The process model is

known as the missing data model or response model.

2.2.1. Missing Completely at Random Data (MCAR)

Researchers refer to MCAR process as entirely haphazard missingness. According to the

official definition of MCAR, the likelihood of missing data on a variable Y is independent

to all other variables measured and unrelated to the variable y directly. MCAR is a more

stringent condition than MAR since it considers that missingness is completely unrelated to

the data. [10].

2.2.2. Missing at Random Data (MAR)

The probability of missing data is the same only among groups identified by the observational

data, the data is missing at random (MAR). MAR is a substantially larger classification than

MCAR. A weighing scale, for example, may produce more missing values when placed on

a soft surface than when placed on a hard surface. As a result, such data is not MCAR. If

we know the type of surface and can assume MCAR within that type of surface, however,

the data is MAR. Another use of MAR is when we take a sample from a population and

the chance of being included is based on a known attribute. MAR is a more generic and

practical alternative to MCAR. The MAR assumption is often used in modern missing data

approaches [11].
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2.2.3. Missing Not at Random Data (MNAR)

The acronym MNAR (not missing at random) is also used in the literature to describe the

same notion. MNAR denotes that the likelihood of going missing changes for causes we

don’t know about. The weighing scale mechanism, for example, may wear down with time,

resulting in more missing data as time passes, although we may be unaware of this.If the

heavier items are measured later in time, we will get a skewed distribution of readings.

MNAR considers the potential that the scale produces more missing values for larger items,

a scenario that can be difficult to spot and manage. When those with weaker opinions react

less often in public opinion polls, this is an example of MNAR. The most challenging case is

MNAR. Finding more information about the reasons of missing data or performing what-if

analysis to evaluate how sensitive the results are under other circumstances are two strategies

for dealing with MNAR.

Figure 2.1 MCAR-MAR-MNAR

2.3. Traditional Imputation Methods

Imputation is appealing since it produces a full data collection. As a result, the ease of any

single imputation approach is a big benefit. At first look, imputation appears to be favorable

since it makes use of data that would otherwise be discarded by deletion methods. Despite

their apparent benefits, single imputation approaches may have major disadvantages. Even

in the ideal circumstance where the data is MCAR, the majority of techniques give biased
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parameter estimations. The single exception is stochastic regression imputation, which is the

only method that yields unbiased parameter estimates using MAR data. Furthermore, single

imputation methods reduce standard errors. Missing values, on the surface, should raise

standard errors since they introduce another layer of noise into parameter estimations. When

examining a single imputed data set, however, the filled-in values are essentially treated as

genuine data, so even the finest single imputation approach will underestimate sampling error

[10].

2.3.1. Arithmetic Mean Imputation

Arithmetic mean imputation (also known as mean substitution and unconditional mean

imputation) is a method for filling in missing data using the arithmetic mean of the available

examples. The notion of using the mean to replace missing numbers is an ancient one

that methodologists commonly credit to Wilks. Mean imputation, like other imputation

approaches, is useful since it generates a full data set. However, even when the data is

MCAR, convenience is not a convincing benefit because this strategy drastically affects the

resultant parameter estimations.

2.3.2. Mod Imputation

Mode imputation is used by researchers to impute the variable’s most common value. This

type of imputation may properly forecast missing data, however it would alter the data set’s

features and create biased estimates. In any single imputation technique, error terms are

undervalued, error bars are too narrow, and p-values are also too small, reflecting higher

precision and proof than can be determined from the actual data. [12].

2.3.3. Hot Deck Imputation

Mode imputation is similar to Hot Deck imputation in that it employs an observed response

from a comparable unit instead of the mode of a specific variable. Hot Deck imputation,
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in other words, entails replacing missing data with seen values from a respondent who

is comparable to the nonrespondent in terms of the attributes observed in both situations.

Despite the fact that Hot Deck imputation imputes accurate values and is widely utilized

in practice, it has flaws. It necessitates very excellent respondent matches that represent

available covariate information, which can never be guaranteed, and the approach struggles

to identify matches when the number of variables is huge [13].

2.3.4. Maximum Likelihood

Because of advances in processing capacity, more complex imputation approaches for

handling missing data have been created, which, luckily, produce substantially better

outcomes. In the methodological literature, the imputation techniques Maximum Likelihood

and Multiple imputation, for example, are generally suggested. Since they yield unbiased

estimates, these methods are seen to be preferable than the aforementioned missing data

methods.

2.4. Machine Learning

Machine learning is the process of converting data into knowledge. A spam email, for

example, cannot be recognized by looking at the presence of a single word; rather, looking at

particular terms occurring in combination, the length of the email, and other similar criteria

might assist you in recognizing it. Machine learning employs statistics as well, and it may

be used to any issue that requires the interpretation and action of data, with the facts learnt

subsequently being applied to a new batch of data [14].

Static programs are typically employed to tackle deterministic issues with certain solutions,

but for situations that are not deterministic and lack sufficient data, we apply machine

learning. Because there were insufficient datasets to train the algorithms, it was difficult

to make realistic choices using machine learning in the beginning. However, with the rise of

sensors and their ability to connect to the Internet, the true issue now is sorting through the

avalanche of free data and using it to train machine learning algorithms [15].
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The increased use of smartphones, which have numerous sensors such as accelerometers,

GPS, and temperature sensors, has fueled the growth in data collecting. The present mobile

computing and Internet of Things growth trends will result in the creation of increasingly

relevant data in the future [16].

2.4.1. Supervised Learning

Supervised learning is when a model learns given input data (also known as training data)

with given goal responses or labeling which might be a numeric value or a word.

A model is generated throughout the training or learning process that predicts the right

behavior to a new example. Classification and regression are two forms of supervised

techniques.

In classification, the algorithm guesses which class the test data belong to, while

regression predicts a numerical value for a specific variable. Consider investing as a

classification or regression problem, with the objective of teaching the computer how to

make wealth-maximizing investment decisions [17].

2.4.2. Unsupervised Learning

When a model learns from data input without labeling and without a defined output, it is said

to be unsupervised learning. To extract general principles from the input data, a model is

built by learning the characteristics contained in the data. To remove duplication or arrange

data by similarity, it is done by a mathematical technique.

Clustering, in which we group like things together, and density estimation, in which we

identify statistical values that represent the date, are the two most common applications of

unsupervised learning. Customer-targeted web adverts, for example, are built on this learning

model, which makes recommendations based on your previous purchases.
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The suggestions are based on determining which customer group you most closely match

and then implying your anticipated preferences from that group [17].

2.5. Deep Learning

The terms ”artificial intelligence,” ”machine learning,” ”artificial neural networks,” and

”deep learning” are frequently interchanged in software development to denote the same or

extremely comparable concepts and ideas. So it’s no surprise that, while being from separate

eras and development periods, these concepts have something in common: a computer

is given instructions to learn and discover the optimal solution to a problem, rather than

instructions to solve a problem. This is in compared to conventional programming, which

divides a larger problem into smaller jobs and instructions [18].

Deep learning is a sort of machine learning allows computers to learn from their errors

and make sense of the world as a hierarchy of concepts. Because the computer learns via

experience, no need for a human computer programmer to specifically specify all of the data

that the computer wants. A network of these hierarchy would have numerous levels, enabling

the computer to comprehend complex concepts by building them from smaller ones [19].

Since the 1990s, deep learning has been effectively used in commercial applications, but it

was formerly seen as an art than a science, and only an expert could use it. True, some

knowledge is required to get good outcomes from the a deep learning system. Fortunately,

the level of knowledge required lowers as the quantity of training data accumulates. The

algorithms that today attain human performance on difficult tasks are remarkably similar to

those that struggled to solve toy problems in the 1980s, with the exception that the models

that these methods train have been modified to make learning of very deep structures simpler

[20].
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2.6. Hyper-parameter Optimization

Hyper-parameter tuning is a critical activity that affects machine learning systems’ ultimate

performance. The difficulty of picking a set of acceptable hyper-parameters for a machine

learning system is known as hyper-parameter optimization or tuning. A hyper-parameter is

a learning process control parameter. On the other hand, some parameters, such as cluster

weights, must be learnt [21].

The same machine learning model might demand specific restrictions, weight, or training

rates to generalization various data patterns. These hyper-parameters must be fine-tuned

so the model can tackle the machine learning task to its full potential. Hyper-parameter

optimization determines a collection of hyper-parameters which leads to an ideal model that

reduces a predetermined loss function on objective data. The cost linked with such a pair of

hyper-parameters is returned by the objective function [21].

We used grid search to assign the most appropriate values to our hyper parameters. In the

implemented WGAN-GP method, how many epochs the model will be trained for each data

set, the optimal value of the batch size, and the appropriate constant values for the Gradient

penalty were determined using the grid search technique.

2.6.1. Grid Search

The hyper-parameter is a property of a model whose value cannot be estimated from data and

is independent of the model. Prior to starting the learning process, the quantity of the hyper

- parameter should be determined. For example, how many layers will be used in the neural

network or what the k number will be in the Knn algorithm are hyper-parameters. [22].

Grid search is a strategy for determining the best hyperparameters for a model. Finding

hyperparameters in training data, unlike parameters, is impossible. As a result,

we develop a model for each combination of hyperparameters in order to determine

the best hyperparameters. Because we are essentially ”brute-forcing” all conceivable
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combinations, grid search is considered a fairly classic hyperparameter optimization strategy.

Cross-validation is then used to assess the models. Naturally, the model with the highest

accuracy is regarded as the best.

2.7. Generative Adversarial Networks (GAN)

In the field of deep learning, Generative Adversarial Networks is a game-changing generative

approach. Goodfellow, Pouget-Abadie, Mirza, et al. [23] announced GANs in 2014, and they

consist of two competing neural networks.

Figure 2.2 GAN Diagram

In Figure 2.2, the noise vector z is sent into the generator, which maps it to G(z). The

discriminator then gets either x (actual data) or G(z) as input (generated data). If the supplied

data is either false (0) or real (1), the discriminator generates a prediction. The network is

trained using these outputs.

Two multilayer perceptrons, a discriminator D, and a generator G make up the model. The

generator’s goal is to learn a data distribution across the data that it generates from noise.

The synthesized data is supplied to the discriminator to offer feedback on how effectively

the generator worked. The discriminator calculates the likelihood that the data supplied was

created by the generator. The discriminator is given data from both the distribution and the

data, and its aim is to maximize the estimated probability. The generator’s purpose is to

deceive the discriminator into believing that the synthesized data is real. In each training
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iteration, the discriminator and generator networks are trained and compete with one another

to reduce and maximize the objective in equation 1.

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (1)

2.8. Wasserstein GAN

In their 2017 book Wasserstein GAN, [24] presented the Wasserstein GAN, or WGAN for

short. It’s a GAN extension that seeks for a new way to train the generator model so that it

can better imitate the data distribution found in a given training dataset.

Rather than using a discriminator to categorize or forecast the chance of produced pictures

being genuine or false, the WGAN replaces it with a critic who reviews the realness or

fakeness of a particular picture.

The theoretical logic for this update is that the gap between the distribution of data seen in the

training dataset and the distribution observed in created instances should be reduced when

training the generator. The WGAN has the benefit of being more stable during training and

less subject to architectures and hyperparameter configurations. Most importantly, the loss

of the discriminator seems to be tied to the visual quality of the generator.

WGAN architecture is shown in the Figure 2.3. G represents Generator and C represents

Critic

To overcome the sensitive and unstable difficulties of GANs, Martin Arjovsky et al. [24]

created the Wasserstein GAN. They focus on the various methods for determining how close

the produced distribution and the true distribution are. The Earth-Mover (EM) distance,

which is a measure of the distance between two probability distributions over an area , is a

novel technique to estimate the distance between two distributions.

Many concerns, such as generator instability and gradient disappearance in GAN training,

can be avoided to some extent by using the new distance measurement. However, severe
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Figure 2.3 Wasserstein GAN Architecture

constraints on the network during the calculation of the EM distance may result in capacity

underuse as well as an exploding and disappearing gradient. Ishaan Gulrajani et al. [25]

present a novel clipping weight approach based on penalizing the gradient’s norm to the

important section concerning its input .

2.9. Monitoring of the Heart Rate

Heart rate monitoring may be done in a variety of ways. Electrocardiography and

photoplethysmography are two essential approaches for this inquiry. Electrocardiography

(ECG) is the practice of employing electrodes implanted on the skin to keep track the

heart’s electrical activity [24]. The minute electrical changes on the skin caused by the

heart muscle’s electrophysiologic pattern of depolarization during each heartbeat are detected

by these electrodes. This approach is used in medical settings, such as hospitals, with ten

electrodes implanted on the patient’s limbs and chest surface. A combo of photo diodes and

LEDs is used in photoplethysmography, commonly known as optical heart rate detection to

measure heart-rate. Blood absorbs green light, which is why it turns red. When a portion

of the body is put on top of a light source, the light is partially absorbed and partially

reflected by the blood. A photo diode collects the reflected light. Although PPG is a low-cost

approach for measuring heart rate, it has certain drawbacks. During workouts and free living

situations, motion artifacts have been demonstrated to be a correct limiting factor outcomes.
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Measurement errors can also be caused by individual differences. For example, varying

blood perfusion causes varied light absorption, which might lead to discrepancies in readings.
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3. RELATED WORK

The Internet of Things is a worldwide network of physical objects embedded with sensors,

software, and other technologies to connect and exchange data with other devices and

systems through the Internet [26]. IoT provides seamless integration of sensors, actuators

and communication devices, paving the way for new application development in many areas

such as health, industry, automotive, transportation, and environment [6]. The rapid increase

in the amount of developed applications causes an exponential increase in the number of

devices connected to the Internet [27].

On the other hand, all connected devices generate huge amounts of data from connected

sensors. In order for the applications to be run effectively and efficiently in accordance

with their development purposes, generated data must be collected, analyzed, interpreted and

delivered to the end user quickly [1]. At this point, the quantity and quality of the collected

data is important in data analysis processes [2]. This becomes critical in applications that

affect human life, require fast response and demand high service quality. However, due to

the nature of IoT, the collected data may be inaccurate, missing and noisy due to various

reasons, such as collision, unstable network communication, malfunctioning devices, and

manual system closure [3]. It is hard to avoid the missing data problem, and dealing with it

is extremely tough. Therefore, in order to conduct an effective and meaningful data analysis,

missing data needs to be handled appropriately [28]. The simplest way to deal with missing

data is to eliminate missing records. However, this elimination process causes serious

information loss in areas where small and limited amount of data can be collected [29].

Moreover, the data integrity, accuracy, and on-time delivery requirements of IoT healthcare

applications are stricter than other applications [30]. Particularly, current trends in healthcare

domain, are shifting from treatment-oriented health to prevention-oriented health services.

Also, health trends are shifting towards approaches that focus on personalized treatments

rather than general treatment approaches [31]. At this point, in order to provide optimal

and patient-centered health services, a small amount of data that can be collected should be

analyzed without deleting it.
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For real-time applications, the Internet of Things (IoT) allows for the seamless integration of

sensors, actuators, and communication devices. IoT based smart systems, that are established

on the basis of such devices are beginning to be employed in automobiles, houses and other

infrastructure systems [32].

With the rise of big data in the biomedical and healthcare communities, precise medical

data analysis helps early illness diagnosis, patient treatment, and community services. When

the quality of medical data is poor, the analytical accuracy suffers [33]. Therefore, missing

data problem is a very hot topic in health domain. In the literature, there are many studies

based on statistical methods, fuzzy logic and machine learning to solve the missing data

problem. However, due to the page limitation, we summarize the most appropriate ones for

our research problem in this subsection.

Jerez and colleagues[34], compared machine learning methods in a large breast cancer

dataset, such as multi-layer perceptron (MLP), self organizing maps (SOM), and k-nearest

neighbor (KNN) to traditional statistical imputation methods and found that machine

learning imputation methods performed better.

Turabieh et al. [35] proposed a dynamic layered recurrent neural network (D-LRNN) for

IoMT applications to impute missing data. The authors solved two medical instances that

simulated real IoT applications, and after recovering the missing data, the performance of

the IoMT program increased.

In the study [33], in order to complete the missing data, belong to health data they build

on an autoencoder to create a deep learning architecture capable of learning the hidden

representations of data even when the data is skewed by missing values. The results of

the study were compared with well-known methods like KNN.

In another study [36], the advantages of using the random forest method in completing

missing data were mentioned and missing data predictions were made with random forest

methods.

In [37], Liu et al. employed decision trees, Naive Bayesian classifiers, and feature selection
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approaches to a geriatric hospital dataset in order to predict inpatient duration of stay,

particularly for extended stay patients.

Enders et al. [38] presented an overview of two contemporary analytic alternatives,

direct maximum likelihood (DML) estimate and multiple imputations, and outline recent

methodological developments linked to missing data (MI). They provided a brief overview

of classic missing data strategies, as well as DML and MI. They provided a brief overview

of classic missing data strategies, as well as DML and MI. Then, the authors presented an

exemplary analysis based on the collection of life quality data.

Beaulieu et al. [39] evaluated the performance of common multiple assignment

methodologies with a highly trained autoencoder (PRO-ACT) on the Pooled Resource

Open-Access ALS Clinical Trials Database. The authors evaluated the performance of the

methods used by looking at their estimation accuracy on values that is either completely

missing or not missing at all. They also investigated how different imputation methods

predicted ALS disease progression. In the study, Autoencoders were found to have the best

performance in terms of disease progression prediction accuracy. Unintentional bias can

occur due to a variety of reasons for missing data in EHR data.Using the Pooled Resource

Open-Access ALS Clinical Trials Database, Beaulieu et al. [39] evaluate the performance of

common multiple imputation methodologies with a highly trained autoencoder (PRO-ACT).

To assess performance, they looked at imputation accuracy for known values that were either

fully missing at random or missing not at all. They also investigated how different imputation

methods predicted ALS disease progression. Autoencoders performed well in terms of

imputation accuracy; and they helped to create the best disease progression prediction.

Finally, they showed that, despite clinical variability, ALS disease progression appears to

be homogeneous, with the most relevant predictor being time from onset.

Norris et al. [40] examined several ad hoc approaches to handling missing data using a

clinical database of 6,065 cardiac patients. Instead of deleting the missing values, the authors

used it as if it indicates the deficiency of a risk factor, enriching it with an administrative

database. They looked at utilizing full cases alone (rather than deleting partial instances),
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considering missing values as though they indicated the lack of a risk factor, and enhancing

data by combining clinical data with an administrative database.

Nazabal et al. [41] present a broad framework for designing VAEs that are suited for fitting

incomplete heterogeneous data in this research. The proposed HI-VAE comprises likelihood

models for real-valued, positive real-valued, interval, categorical, ordinal, and count data, as

well as correct missing data estimate (and maybe imputation). Furthermore, in supervised

tasks, HI-VAE outperforms supervised models when trained on partial data, outperforming

supervised models.

Hegde et al. [42] evaluated 116 dental variables with incomplete values produced at random

to compare Probabilistic Principal Component Analysis (PPCA) with Multiple Imputation

using Chained Equations (MICE). To produce a smaller dimensional space for the dataset,

PCA was employed for dimensionality reduction. The missing values were retrieved from the

compressed information distribution calculated by the PCA approach, therefore this attribute

was used to impute the incomplete values. The EM technique was then used to iteratively

estimate the MLE of an incomplete dataset. Instead, MICE used regression models to

impute the missing data numerous times, taking into account the statistical uncertainty in

the imputations.

Duan et al. [43] presented a DL model called stacked denoising autoencoders (SDAE) for

traffic data imputation. The proposed model is built by taking into account both spatial

and temporal aspects. The experimental findings suggest that the DL model is effective at

imputation of traffic data and has potential in smart transportation.

Missing data exist in nearly every research, even in well-designed and controlled studies.

Missing data can decrease a study’s statistical power and create skewed estimates, resulting

in incorrect findings [44].

Matte et al. [45] presented MIWAE, a technique based on the importance-weighted

autoencoder (IWAE) that maximizes a potentially tight lower bound on the observed data’s

log-likelihood. Due to the missing data, their technique has no additional computational cost
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when compared to the original IWAE. They also use a DLVM trained on an incomplete data

set to build Monte Carlo algorithms for single and multiple imputation. They demonstrate

their method by using imperfect static binarisations of MNIST to train a convolutional

DLVM. Furthermore, they show that MIWAE produces extraordinarily accurate single

imputations and is highly competitive with state-of-the-art approaches on a variety of

continuous data sets.

Luo et al. [46] present a method for data imputation using generative adversarial networks.

A modified GRU cell (dubbed GRUI) is presented for processing incomplete time series

in order to learn the unfixed time delays between two observed values. The ”noise” input

vector of the generator is learned and generates suitable values for imputation once the

GAN model with GRUI cell has been trained. The adversarial architecture may learn

the dataset’s temporal correlations, inner-class similarities, and distribution in this way.

Experiments demonstrate that their technique outperforms the baselines in terms of missing

value imputation accuracy, and that it has applications downstream.

Li et al. [47] provide a GAN-based framework for learning from high-dimensional, partial

data in this study. The proposed system simulates the missing data distribution by learning a

complete data generator as well as a mask generator. They also show how to impute missing

data by using an adversarially trained imputer in our architecture. They test the suggested

framework in a series of experiments with various sorts of missing data procedures under the

premise that data is missing totally at random.

Yoon et al. [48] present Generative Adversarial Imputation Nets (GAIN), this imputation

approach that generalizes the well-known GAN and may operate well even when complete

data is missing. The discriminator’s purpose in GAIN is to discriminate between observed

and imputed components, whereas the generator’s goal is to properly impute missing

data. The generator is trained to maximize the discriminator’s misclassification rate

while the discriminator is taught to minimize classification loss when distinguishing which

components were seen and which were imputed. As a result, an adversarial approach is used

to train these two networks. GAIN builds on and extends the conventional GAN architecture
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to achieve this purpose. The GAIN architecture offers the discriminator with additional

information in the form of ”hints” to guarantee that the outcome of this adversarial process

is the intended aim. This hints that the generator should create samples based on the genuine

underlying data distribution.
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4. THE PROPOSED METHOD

In this study, unlike conventional methods, leverage the power of GAN models is proposed

in order to impute missing data. To properly clarify this suggested method, it is necessary

to first explain the fundamentals of these generative models. Vanilla GAN, the first example

of Generative Adversarial Network models, should be considered as a system wherein two

distinct networks compete in a zero-sum min-max game. While these two networks compete

against one another, they also train each other though. The first of these networks is known

as a generator, and the second is named a discriminator. The generator strives to produce data

that is similar to the original data, starting with a random set of values as its name suggets.

The Discriminator, which is trained with both the original data and the fake data produced

by the generator attempts to determine whether the provided data is real data or not. With

the feedback it provides, the Discriminator drives the Generator to create data that has closer

to the distribution of the real dataset.As a generator that can produce better data is obtained,

the discriminator also begins to have difficulty distinguishing between real and fake data

and is compelled to improve. Thus, the result of the network system reaching equilibrium

has a generator that strives to produce data as close as possible to the real data, and a

discriminator that specializes in distinguishing between real data and fake data. Equation

2 shows Min-Max Game Objective of Vanilla GAN.

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (2)

There are studies in the literature where Vanilla GAN, which was originally designed

to work on 2D images, is utilized for a variety of purposes and applications.There are

many studies that use only Generator, only Discriminator or a combination of both in this

network architecture that promises strong results. By modifying the overall structure of these

networks and/or their inputs-outputs, some researchers have constructed new GAN variants

that can suit a variety of applications. Some of these models extends Discriminator with

classification ability, while others supply specific condition inputs to the generator in order
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to create data under certain situations. These are only a few instances of this structure, which

has a very broad range of applications. Regardless of the objectives, this network structure

is relatively harder to train compared to other neural network models. There are various

alternative GAN models that are recommended for more stable training. One of the most

well-known and powerful among these is the Wasserstein Generative Adversarial Network

(WGAN). The proposed WGAN differs from the vanilla GAN in terms of both structure and

training procedure. The Discriminator is renamed as Critic, and this structure now creates

the realness/fakeness score rather than stating whether the data is real or fake. For a more

stable training process, this method suggests training the critic more than the generator.

Furthermore, it aims to eliminate the problems in education by weight clipping. Weight

clipping , on the other hand, is not always the best option. If the clipping window is not

appropriately selected, it might result in slow or even unstable training or encountering with

vanishing gradient problems. Thus, the researchers proposed WGAN with Gradient Penalty

by replacing the proposed WGAN’s weight clipping technique with a gradient penalty term

and promised to define a more stable training process. Loss functions for the generator

and critic are defined by Equation 3, respectively. Equation 4 denotes the WGAN model’s

objective, where f is stated as a 1-Lipschitz function.

LossG = ∇θg

1

m

m∑
i=1

[logD(x(i)) + log (D(G(z(i))]

LossC = ∇θg

1

m

m∑
i=1

log (D(G(z(i))

(3)

min
G

max
||f ||L≤1

E[f(x)]− E[f(x̂)] (4)
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The original WGAN-GP loss function, which is obtained by modifying the WGAN loss

function by adding the Gradient penalty term, is given in Equation 5. Where Px represents

the distribution of real samples, Px̂ is distribution of generated samples which are generated

by generator. The coefficient λ is used to weight the penalty term in the loss.

L = E
x̂∼Pg

[f(x̂)]− E
x∼Pr

[f(x)]︸ ︷︷ ︸
critic loss

+λ E
x̂∼Px̂

[(||∇x̂f(x̂)||2 − 1)2]︸ ︷︷ ︸
gradient penalty

(5)

In this study, WGAN-GP was chosen as the base GAN model since it promises more

stable training. Layers of the generator and the critic networks have been reconfigured,

input/outputs have been updated in accordance with the defined problem, and losses have

been reconsidered. At the end of the training, it is aimed to complete the missing data with

the generator in the model. In this context, the input of the generator has been transformed

from a latent vector to data with missing parts and auxiliary data that will express which

areas are absent in the data. The generator combines these two inputs and generates a new

data with the leveraging of convolutional layers and fills the missing parts in the given data.

As a result, it varies from the original GAN models in that the data is used as input to the

generator. The Critic network, like the original WGAN-GP, calculates the realness/fakeness

score for both real and fake samples it receives. Figure 4.1 shows an overview of the proposed

MIWGAN-GP model. While the data containing the missing data is given to the model as

a 4x4 matrix, the mask matrix that marks the regions with missing data is also given to the

model in the same dimensions. The value mij of mask matrix is defined at space N , where

xij is the cell in given data matrix which addressed with ith row and jth column,

mij =

 1 if xij — exists

0 if xij — absent

Unlike the original GAN studies, we have revised the loss functions for both the generator

and the critic to fit the nature of the problem defined and we have also modified the objective
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function with gradient penalty computation respect to original WGAN-GP study. Equation

6 defines critic loss for proposed model,

LossC = LossRF + λ× LossGP

LossRF = C(X)− C(G(X))
(6)

where

x = Data matrix

M = Mask matrix

X = Combined input from given[x,M ]

G(X) = Generated samples from givenX

C(X) = Realness/fakeness score for givenX

The loss function of the generator is defined as specified in Equation 7. Here, LossGfull
is

derived by averaging the positive distance from the original data set of the data generated

by the generator over the full parts in the data set. Whereas, LossGmiss
, on the other hand,

takes into account the average of the positive distance calculated over the missing parts for

the given samples. As a result, the generator imputation loss LossGimp
is evaluated with

the weighted sum of those two components where coefficients are indicated with α for full

part and β for missing part, respectively. Finally, the generator loss LossG is weighted

combination of imputation loss of generator LossGimp
and critic loss LossC .

LossGfull
= mean(|−(M · xorg) + (M · xgen)|)

LossGmiss
= mean(|−((1−M) · xorg) + ((1−M) · xgen)|)

LossGimp
=

α× LossGfull
+ β × LossGmiss

α + β

LossG = −
ρ× LossC + θ × LossGimp

ρ+ θ

(7)
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Figure 4.1 Proposed MIWGAN Architecture

Figure 4.2 shows the inner architecture of generator model. Instead of getting latter vector

as an input to network, the generator gets the data that will be imputed into neural network

layers with the mask matrix. In the input stage of the network, these two inputs concatenate

in the manner of overlay in order to build multiple channel input matrix. As a result, the

input for the first trainable Convolutional 2D layer is in size nxnx2 where n is defined as
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Figure 4.2 Generator Layers Architecture

value 2 in the figure. After each convulutional layer, except the last layer, the LeakyReLU

activation function is preferred. The output layer is reshape layer that follows Sigmoid

activation function which is responsible from squeeze the output data to interval [0, 1]. In

the end of layers, the output of the network is a imputed data which in the same size with

the data matrix nxn. We also want to emphasize that the data to be imputed is normalized

between 0 and 1 before being fed to the network. The method we propose can be reshaped

and scaled to a given input size n.

Similar to the generator model, the critic model also accepts the mask matrix as an input

in addition to the data matrix. In the neural network, which is requested to produce the

realness/fakeness score, the Convolutional 2D layers are advanced and the LeakyReLU

activation function is employed until the last layer. In the last layer, it is desired to obtain a

value that can express the data at hand by using global max pooling 2D and the network is

finished with a dense layer and a realness/fakeness score is produced.
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Figure 4.3 Critic Layers Architecture
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5. EXPERIMENTAL RESULTS

In this section, the data sets used in this thesis, experiments, evolution metrics and evaluation

results are presented.

5.1. Dataset

Within the scope of this thesis, two different datasets, human activity and fitbit, were used.

These 2 data sets are explained under this title.

5.1.1. Human Activity Dataset

The study of human movement and activities has spawned a slew of previous studies, the

majority of which involved the placement of sensors on the subject’s body. Smart devices

have been increasingly popular in recent years since they are already ubiquitous and contain

precise miniature sensors. Each device, whether it’s a smartphone, a smartwatch, or a pair of

smart glasses, can be used to describe additional data such as emotions, specific movements,

or environmental conditions.

In July 2017, a data set[49] has been gathered. The smartphone was kept in the pocket for

a significant amount of time during the data collection. Every day, the smart glasses were

worn for a few hours. SWIPE is a platform that uses smartwatches and cellphones to sense,

record, and interpret human dynamics.

Watch
Metric Source Recording Rate Description

Heart rate Optical heart rate sensor Event-based
The optical heart rate sensor provides the heart rate in
beats per minute. Each number has an accuracy value
that represents the monitor’s status during the reading.

Step Detector Accelerometer Event-based Whether or whether the user is taking a step is indicated.

Step Counter Accelerometer Event-based
The number of steps taken by the user, as measured by the
accelerometer, as identified by the Android system.

Battery Android 5,000ms Battery level

Table 5.1 Human Activity Dataset Descriptions
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count mean std min 25% 50% 75% max

Heart Rate 91250 68.98 11.99 0.00 61.00 67.00 74.00 167.00

Pressure 14900 982.53 7.15 962.31 979.45 984.36 987.91 1005.81

Table 5.2 Human Activity Dataset Summary

Table 5.2 shows summarize of Human Activity dataset.

Before using the Human activity dataset, it was preprocessed. In the data set, the values 2

before and 2 after each instance’s own location were placed side by side and used as features.

By selecting heart rate and pressure values from this dataset, missing data was estimated for

these values. Neighboring values from before 2 and after 2 were used for each instance.In

addition, the inputs were given to network as 4 each. Thus, if we compare the data type that

is the input to the network to a picture, it looks like a 4*4 picture is given as an input.

5.1.2. Fitbit Dataset

Between 03.12.2016 and 05.12.2016, responders to an Amazon Mechanical Turk distributed

survey created these datasets [50]. Thirty Fitbit members who completed the requirements

consented to have their personal tracking data, which includes minute-level output for

physical exercise, heart rate, and sleep monitoring, submitted. The export session ID or

timestamp can be used to parse individual reports. The variation in output indicates the

usage of various Fitbit trackers as well as individual tracking practices and preferences.
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count mean std min 25% 50% 75% max

Step Total 22099 320.16 690.38 0 0 40 357 10554

Calories 22099 97.38 60.70 42 63 83 108 948

Total Intensity 22099 12.03 21.13 0 0 3 16 180

Average Intensity 22099 0.20 0.35 0 0 0.05 0.26 3

Table 5.3 Fitbit Dataset Summary

Table 5.3 shows summarize of FitBit dataset.

5.2. Evaluation Metrics

5.2.1. Mean Squared Error (MSE)

The mean error is the average error between the predicted values predicted by a machine

learning model and the actual values. Error in this context is the uncertainty in a

measurement, or the difference between the estimated value and the true value.

MSE =
n∑

i=1

(di − fi)
2 (8)

5.2.2. Root Mean Squared Error (RMSE)

It’s a quadratic metric that calculates the size of a machine learning model’s mistake and is

frequently used to calculate the distance between the predictor’s predicted and true values.

The standard deviation of the estimating errors is the RMSE. The RMSE is a measure of

how prevalent these residues are; residuals are a measure of how distant the regression line

is from the data points. To put it another way, it shows how dense the data is in the vicinity

of the best-fitting line. The RMSE value might be anything from 0 to 1. Scores that are

negatively orientated, or have lower values, perform better. A RMSE of 0 indicates that the
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model made no mistakes. Because RMSE penalizes big errors more severely, it may be better

suited to specific scenarios. In many mathematical calculations, RMSE precludes the use of

undesirable absolute values.

RMSE =

√√√√ 1

n

n∑
i=1

(di − fi)2 (9)

5.2.3. Mean Absolute Error (MAE)

The difference between two continuous variables is measured by the mean absolute error.

The average vertical distance between each true value and the best-fitting line is known as

MAE. The average horizontal distance between each data point and the best-fit line is also

known as MAE. The MAE value is commonly utilized in regression and time series issues

because it is simple to comprehend. The MAE is a linear score that weighs all individual

mistakes equally on the mean and assesses the mean magnitude of errors in a series of

predictions without considering their direction. The MAE value might be anywhere between

zero and infinity. Scores that are negatively orientated, or have lower values, perform better.

MAE =
1

n

n∑
i=1

|di − fi| (10)

5.2.4. Mean Absolute Percentage Error (MAPE)

The accuracy of a company’s forecasting process is measured by the mean absolute

percentage error (MAPE). It shows, on average, how accurate the anticipated quantities were

in relation to the actual amounts by averaging the absolute percentage errors of each entry in

a dataset. MAPE is useful for studying huge datasets, however it is impossible to compute

the MAPE of datasets with zero values. This is due to the fact that the computation would

need zero division, which is impossible.
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MAPE =
1

n

n∑
i=1

|di − fi|
di

(11)

In Equations 8, 9, 10 and 11 di is the generated data and fi is the original data.

5.3. Experiments

The proposed approach was tested on the three data sets indicated above, and performance

measures were collected. The results of the described metrics were compared to the results of

the traditional imputation techniques such as mean, median, and mode. In addition, graphs of

loss and metric measures of the trained model are provided in this section. These experiments

were carried out by separating each data set into train and test datasets using k-fold split

where k was chosen as 5 for this study. In addition, 10%, 20%, 25%, 40% and 50% of the

total number of instances were randomly deleted from each complete original train and test

datasets in order to obtain missing datasets. Unless otherwise stated, the presented figures

and the given results were created by carrying out the experiments on datasets whose 20% of

the samples are missing. All experiments were conducted with Python using Tensorflow

and Keras v2.5 libraries on Nvidia GeForce GTX 860M graphics card and took from 2

hours up to 20 hours depending on the chosen epoch number and batch size. The numeric

results, figures and tables of all these experiments are also given in following subsections

in details. In the proposed model, grid-search is used for hyperparameter optimization in

order to improve network performance. In order to measure imputation success, the dataset

obtained by completing the missing data with the proposed method was classified using

various classification methods such as Naive Bayes, KNN, Decision Tree, Random Forest

and gboost, and the results were compared with mean, median and mode imputed versions

of the same dataset.
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Figure 5.1 Human Activity - Heart Rate Critic and Generator Loss Graphs

5.3.1. Human Activity Dataset-Heart Rate Results

Figure 5.1 shows the critic and generator loss during the training process of the proposed

method on Human Activity Heart Rate dataset. In this training, where the generator was

stabilized after 150 epochs, loss graphs similar to the original GAN study were obtained.

Furthermore, the loss graphics prove that healthy training process has taken place.

Figure 5.2 indicates the evaluated metrics during training process over test dataset. MSE,

RMSE, MAE and MAPE metrics reveal that the training of the proposed model has reached

a stable state and the generator and critic models have hit the equilibrium level, in line with

the loss charts given in Figure 5.1. Table 5.4 demonstrates the comparison of imputation

results between our proposed method and classical imputation methods such as mean,
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Figure 5.2 Human Activity - Heart Rate Critic and Generator Results Metrics

median and mode on evaluation metrics.

Imputation Methods MSE RMSE MAE MAPE

MIWGAN-GP (ours) 0.001055 0.032490 0.021552 5.0798000

Mean 0.005411 0.073565 0.052109 12.340543

Median 0.005543 0.074456 0.050823 11.667576

Mode 0.005717 0.075614 0.050924 11.518874

KNN 0.004878 0.064987 0.045690 9.963214

Table 5.4 Human Activity-Heart Rate Dataset Imputations Results for Metrics
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Figure 5.3 Human Activity - Pressure Critic and Generator Loss Graphs

5.3.2. Human Activity Dataset-Pressure Results

Figure 5.3 shows the critic and generator loss during the training process of proposed method

on Human Activity Pressure dataset. In this training, where the generator was stabilized after

125 epochs, loss graphs similar to the original GAN study were obtained. Furthermore, the

loss graphics prove that healthy training process has taken place.

Figure 5.6 indicates the evaluated metrics during training process over test dataset. MSE,

RMSE, MAE and MAPE metrics reveal that the training of the proposed model has reached a

stable state and the generator and critic models have hit the equilibrium level, in line with the

loss charts given in Figure 5.3. Table 5.5 demonstrates the comparison of imputation results

between our proposed method and classical imputation methods such as mean, median and

mode on evaluation metrics.
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Figure 5.4 Human Activity - Pressure Data Set Results Metrics Graphs

Imputation Methods MSE RMSE MAE MAPE
MIWGAN-GP (ours) 0.013746 0.117243 0.090462 35.201672
Mean 0.045652 0.213665 0.172999 65.371374
Median 0.048155 0.219444 0.167971 70.200228
Mode 0.050985 0.225799 0.169271 72.934199
KNN 0.035894 0.198576 0.159873 55.957420

Table 5.5 Human Activity-Pressure Dataset Imputations Results for Metrics

5.3.3. FitBit - Hourly Activity Dataset Results

Figure 5.5 shows the critic and generator loss during the training process of proposed method

on Hourly Activity dataset. In this training, where the generator was stabilized after 1500

epochs, loss graphs similar to the original GAN study were obtained. Furthermore, the loss

graphics prove that healthy training process has taken place.

38



Figure 5.5 Hourly Activity Critic and Generator Loss Graphs

Imputation Methods MSE RMSE MAE MAPE
MIWGAN-GP (ours) 0.004234 0.065070 0.043052 116.308198
Mean 0.005047 0.071043 0.054218 169.648734
Median 0.004557 0.067508 0.036078 160.311322
Mode 0.005933 0.077031 0.040015 158.570859
KNN 0.005014 0.070649 0.045893 147.327898

Table 5.6 Hourly Activity Dataset Imputations Results for Metrics

5.3.4. Classification Results After Data Imputation Process

This section presents the results of the classification of the dataset with missing data after

it has been imputed. The classification accuracy results of the data set imputed with the

proposed MIWGAN-GP model were compared with the classification results of the same

data set filled with the traditional imputation methods mean, median and mode with using

the same classifiers. All these experiments were carried out by producing datasets with
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Figure 5.6 Hourly Activity Data Set Results Metrics Graphs

10%, 20%, 25%, 40% and 50% deficiencies from the selected data set independently. The

classifiers were chosen as KNN, NaiveBayes, Decision Tree, Random Forest and xgboost,

which are well known and frequently used in the literature, and the results for each are

given in the following tables. While examining the results, we would like to draw attention

to the fact that each classifier should be analyzed independently and the focus should be

on the imputation methods compared, not on the classifiers chosen. Thus, we want to

emphasize the imputation strength of the proposed method in various classifiers rather

than the independent success of the classifiers. Furthermore, as expected, classification

accuracy drops as the missing rate in the data set increases. It can be observed that a similar

circumstance arises in the proposed method and shows parallelism with traditional methods.

MIWGAN-GP’s outperformed results demonstrate the usability of imputation of missing

data with our suggested method as a preprocessing step for classification tasks. When all
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Figure 5.7 Human Activity - Heart Rate Dataset Method Comparison over Metrics

of these classification results are evaluated collectively, it is undeniable that our proposed

method contributes to obtaining better results compared to traditional imputation methods,

even for classifiers that can achieve average performance.

Missing
Rates (%)

Zero
Imp.

Mod
Imp.

Average
Imp.

Median
Imp.

KNN
Imp.

MIWGAN-GP
Imp.

Different
Value

10 56.194 60.964 58.926 58.924 62.752 63.389 0.637
20 56.190 60.614 57.896 57.880 60.598 61.167 0.553
25 56.534 60.272 56.872 56.872 59.127 60.986 0.714
40 56.138 58.761 56.872 56.872 57.560 59.237 0.476
50 56.528 56.524 55.500 55.500 56.854 57.681 0.827

Table 5.7 Naive Bayes Classification Accuracy on Fitbit Dataset

Table 5.7 shows the result for Naive Bayes classifier which has been carried out on the

dataset. When the last column containing the classification accuracy results of the proposed
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Figure 5.8 Human Activity - Pressure Dataset Method Comparison over Metrics

MIWGAN-GP method is examined, it is shown that it outperforms other imputation methods

for each missing rate.

Missing
Rates (%)

Zero
Imp.

Mod
Imp.

Average
Imp.

Median
Imp.

KNN
Imp.

MIWGAN-GP
Imp.

Different
Value

10 51.730 53.098 54.120 53.436 56.183 57.496 1.313
20 50.564 49.668 48.966 48.970 51.422 52.731 1.309
25 46.012 50.706 49.672 48.990 50.527 51.159 0.453
40 44.726 44.766 45.828 47.756 49.257 50.678 1.421
50 43.146 40.426 43.494 43.150 43.985 45.916 1.931

Table 5.8 KNN Classification Accuracy on Fitbit Dataset

Similar to the Naive Bayes classifier scores, KNN classification results demonstrate that

better classification accuracy is acquired when compared to other conventional imputation

techniques. The KNN classification accuracy is given in Table 5.8.
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The Decision Tree classification results, which show significantly better results than previous

classification types in terms of overall classification accuracy, are given in Table 5.9. The

employment of the approach we offer in this study helps to the improvement in accuracy for

Decision Tree classification method, which may reach %70 accuracy on average, as we have

seen in previous classification results.

Table 5.10 presents the results of the Random Forest classifier, which has the highest

classification accuracy for this data set among the other classifiers examined. In addition,

our proposed method improved classification accuracy for this test set and surpassed the

traditional imputation methods in all missing ratios. Our method, which managed to

increase the classification success by approximately %5 on average even in the data set

with %50 missing data, has proven itself as an imputation method that can be utilized in

the preprocessing stage of classifiers.

The results of the XGBoost classifier, which produces results remarkably similar to the

Random Forest classifier type, are given in Table 5.11. The results of the tests in this test

set and classification combination are quite encouraging, as we are able to raise the average

classification accuracy at the highest rate than conventional imputation approaches.

To summarize all of these results, the same data sets which have been created by reducing

the same data set at the specified missing rates have been imputed with traditional imputation

methods as well as the method we recommend in the preprocessing step of six different

classification methods, and classification accuracy values are presented in tables. As can be

clearly seen from the results in the tables, the MIWGAN-GP method that we propose may

Missing
Rates (%)

Zero
Imp.

Mod
Imp.

Average
Imp.

Median
Imp.

KNN
Imp.

MIWGAN-GP
Imputation

Different
Value

10 68.072 69.464 72.906 70.154 73.655 74.257 0.602
20 68.428 66.734 70.998 65.366 70.120 71.757 0.759
25 65.230 63.210 68.870 68.790 68.650 69.752 0.882
40 63.753 62.984 66.752 65.459 66.798 67.476 0.678
50 62.958 62.976 62.624 64.344 66.027 66.744 0.717

Table 5.9 Decision Tree Classification Accuracy on Fitbit Dataset
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Missing
Rates (%)

Zero
Imp.

Mod
Imp.

Average
Imp.

Median
Imp.

KNN
Imp.

MIWGAN-GP
Imp.

Different
Value

10 76.676 77.696 78.042 76.334 77.548 78.682 0.640
20 74.292 73.262 75.316 74.646 75.857 76.244 0.387
25 75.318 74.970 73.262 73.250 75.190 75.981 0.663
40 75.318 74.970 73.262 73.250 74.851 75.198 0.228
50 69.826 69.488 70.526 69.484 72.573 72.953 0.380

Table 5.10 Random Forest Classification Accuracy on Fitbit Dataset

Missing
Rates (%)

Zero
Imp.

Mod
Imp.

Average
Imp.

Median
Imp.

KNN
Imp.

MIWGAN-GP
Imp.

Different
Value

10 72.898 73.942 75.634 75.634 77.691 78.230 0.539
20 70.496 72.226 70.868 69.850 74.797 75.774 0.977
25 69.304 71.618 69.286 69.286 74.124 74.913 0.789
40 68.874 70.122 68.913 68.755 71.549 72.105 0.0559
50 67.438 68.824 68.128 68.134 70.272 71.231 0.959

Table 5.11 XGBoost Classification Results on Fitbit Dataset

be described as a powerful imputation method that can be applied in the preprocessing step

regardless of the classifier employed and can be placed ahead of the traditional methods.
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6. CONCLUSION

In this thesis, another GAN based missing data imputation method is proposed with

leveraging the generative models. In order to serve this purpose, a variant of the Wasserstein

GAN with Gradient Penalty has been developed in line with the nature of the topic.

Wasserstein GAN with GP has been described in the literature and has proven itself in many

fields and various applications. Although the model we present is based on Wasserstein

GAN, it varies from the original work in terms of generator structure and utilization. The

generator uses two matrices as input in this study, where the trained model promises to

impute the missing parts in the provided sample relying on the distribution of the data seen

during the training process. In addition to the data matrix containing the missing parts, the

network input is built with the auxiliary mask matrix to express which parts are missing.

In order to follow the similar approach to 2D images, in which color information has been

provided as an input to the network as a channel, in this problem, the mask matrix is utilized

as an additional channel in the input matrix. Furthermore, in order to take into account the

information in neighboring cells, convolutional layers is used in the model structure, again

similar to the original work. As an output, imputed version of the given sample is generated.

Generator and critic loss functions have been reconsidered in order to adapt to the imputation

challenge and to make the imputed data as similar to the original data as possible. In order

to determine the success of this proposed method, experiments were carried out on three

distinct data sets. In order to measure success, four different metrics that are well-known and

widely preferred in this field were utilized to assess effectiveness of study. In addition, five

different classification methods have been performed on the imputed data to demonstrate

the efficacy of the proposed method and its applicability in classification tasks. During

these classification experiments, comparisons with traditional imputation approaches are

also included. To mimic data loss at varied densities, all these classification processes were

repeated with 5 different loss rates. These experiments performed on data produced by IoT

devices show that the solution we propose can be a solution to the problem of completing

missing data in IoT devices due to essential benefits of method such as tolerance to data loss,
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performance, and lightweight structure of network. With the modification of the Gradient

Penalty version of Wasserstein GAN, it is aimed to prevent problems such as vanishing

gradients and mode collapse, which are among the most known drawbacks of the GAN

models.

As future work, it will be beneficial to expand the study by evaluating the model we propose

on data sets produced in other domains, other than IoT devices. It might also be worthwhile

to work on including approaches like auto encoder in the proposed model or applying other

unsupervised learning methods on data imputation may be interesting.
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