
A Q-LEARNING BASED LOAD BALANCED AND
QOS-AWARE SDN APPROACH: A CASE STUDY IN

DEFENCE INDUSTRY

Q-ÖĞRENME TABANLI YÜK DENGELEME VE SERVİS
KALİTESİ FARKINDA BİR YTA YAKLAŞIMI: SAVUNMA

SANAYİİ ENDÜSTRİSİNDE BİR VAKA ÇALIŞMASI

TEVFİK AKTAY

ASSOC. PROF. DR. CEREN TUNCER ŞAKAR

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Industrial Engineering

May 2022

ABSTRACT

A Q-LEARNING BASED LOAD BALANCED AND QOS-AWARE SDN
APPROACH: A CASE STUDY IN DEFENCE INDUSTRY

Tevfik Aktay

Master of Science , Industrial Engineering
Supervisor: Assoc. Prof. Dr. Ceren TUNCER ŞAKAR

May 2022, 108 pages

Traditional network routing methods are insufficient in the face of exponentially increasing

data, device diversity and service demands’ variety, making the necessity of more

manageable routing methods felt at both the Internet and Local Area Networks (LAN). It

is predicted that the Software Defined Networks (SDN) are going to be able to manage the

data traffic of the digital world in a more democratic way with smart algorithms, due to their

programmable and centralized management structure. In this study, the network environment

of a defense industry company that has a LAN infrastructure on a large campus was selected

as a case study. This internal network serves a a wide variety of devices with dozens of

switches. A part of its topology and its traffic that currently routed with Spanning Tree

Protocol (STP) has been simulated with widely used methods. In this network environment;

various test scenarios have been studied with STP, a rule-based SDN, and our Q-learning

based SDN approach. Our proposal, which performs the load balancing of the system while

providing the requested QoS to the clients, has achieved effective results under various

QoS performance metrics and load balancing indicators. Keywords: software defined

networking, load balancing, quality of service, reinforcement learning, machine learning,

Internet of Things

i

ÖZET

Q-ÖĞRENME TABANLI YÜK DENGELEME VE SERVİS KALİTESİ
FARKINDA BİR YTA YAKLAŞIMI: SAVUNMA SANAYİİ

ENDÜSTRİSİNDE BİR VAKA ÇALIŞMASI

Tevfik Aktay

Yüksek Lisans, Endüstri Mühendisliği
Danışman: Doç. Dr. Ceren TUNCER ŞAKAR

Mayıs 2022, 108 sayfa

Geleneksel ağ rotalama yöntemleri üstel artan veri, cihaz çeşitliliği ve değişken hizmet

talepleri karşısında yetersiz kalmakta ve daha yönetilebilir rotalama yöntemlerinin

gerekliliğini hem Internet hem de LAN (İng. Local Area Networks) seviyesinde

hissettirmektedir. SDN (İng. Software Defined Networks) yaklaşımının programlanabilir

ve merkezi yönetim yapısı sayesinde dijital dünyanın veri trafiğinin akıllı algoritmalar ile

daha demokratik şekilde yönetebileceği öngörülmektedir. Bu çalışmada, LAN altyapısına

bir savunma sanayi şirketinin ağ ortamı vaka çalışması olarak belirlenmiştir. Bu iç ağ,

onlarca anahtarlayıcı ile çok çeşitli istemcilere hizmet vermektedir. Mevcutta STP (İng.

Spanning Tree Protocol) ile yönlendirme yapan tesisin ağ topolojisinin bir bölümü ve trafiği

kabul gören yöntemler ile simule edilmiştir. Bu ağ ortamında; STP, kural tabanlı bir SDN

yaklaşımı ve Q-öğrenme tabanlı SDN yaklaşımımız ile çeşitli test senaryoları çalışılmıştır.

İstemcilere talep ettiği QoS (İng. Quality of Service) sağlarken sistemin yük dengelemesi

de gerçekleştiren önerimiz çeşitli QoS performans metrikleri ve yük dengeleme göstergeleri

altında etkin sonuçlar elde etmiştir. Anahtar Kelimeler: Yazılım Tanımlı Ağlar, Servis

Kalitesi, Yük Dengeleme, Q-Öğrenme, Makine Öğrenmesi, Nesnelerin Interneti

ii

ACKNOWLEDGEMENTS

I would like to present my greatest appreciation to Assoc. Prof. Dr. Oumout Chouseinoglou

for his support that gave me confidence in the selection of this thesis topic and its

continuation. Since my undergraduate years at Hacettepe University, he gave valuable

advices to me when I needed it. His influence is important in my development in computer

science, which I am deeply interested in. I would also like to thank Dr. Cüneyt Sevgi for

encouraging me in determining the subject of this thesis. They gave me challenging topics

to work on and their questions provide me the opportunity to think about many different

angles in this thesis. Additionally, I would like to express my gratitude to my supervisor

Assoc. Prof. Ceren Tuncer Şakar. I hope that I learned a lot from her in terms of timing and

coordination.

I also would like to express my gratitude to the valuable members of the jury, Prof. Dr.

Mehmet Önder Efe, Prof. Dr. Özlem Müge Testik, Assoc. Prof. Barbaros Yet and Asst. Prof.

Erdi Daşdemir, who took part in the examination of my thesis and give helpful feedbacks.

I would like to thank my friends Mehmet Emin Gülşen, Ahmet Serdar Karadeniz and

Mehmet Fatih Karadeniz, Mustafa Çağrı Güven who have been with me since the beginning

of my thesis journey. We have done good works in a start-up and will continue to do so. I

would also like to thank my friend Oğul Can Eryüksel, who has always inspired me with his

approach to technical issues.

I would like to express my biggest thanks to my family. They have always supported me

unconditionally and I have always felt that. Special thanks to my dear mother, her support

was priceless and I dedicate this work to her.

As a final word, I would like to thank my institution, Turkish Aerospace, which supports my

work and provides the technical infrastructure I used in this study.

iii

CONTENTS

Page

ABSTRACT . i

ÖZET . ii

ACKNOWLEDGEMENTS . iii

CONTENTS . iv

TABLES . vii

FIGURES . viii

ABBREVIATIONS. x

1. INTRODUCTION . 1

1.1. Scope of the Thesis . 4

1.2. Contributions . 5

1.3. Methodology of the Thesis . 6

1.4. Organization . 7

2. BACKGROUND OVERVIEW .. 8

2.1. Q-Learning . 8

2.2. Traditional TCP/IP Networks . 9

2.3. Spanning Tree Protocol . 11

2.4. OpenFlow . 11

2.5. Software Defined Networking . 13

2.5.1. Components of SDN . 16

2.5.1.1. Data Layer . 17

2.5.1.2. Control Layer . 17

2.5.1.3. Application Layer . 18

2.6. Quality of Services . 18

2.7. Mininet . 19

2.8. Ryu Controller . 20

3. RELATED WORK . 22

3.1. Single-factor centered QoS approaches . 24

iv

3.2. Multi-factor centered QoS approaches . 25

4. PROPOSED METHOD. 28

4.1. Network Traffic and Route Awareness Module . 29

4.1.1. Route Discoverer . 29

4.1.2. Network Statistics Tracker. 30

4.2. QoS and Load Awareness Module . 31

4.2.1. Available Bandwidth Tracker. 32

4.2.2. Delay Time Tracker . 33

4.2.3. Route Hop Tracker . 36

4.2.4. Switch Load Tracker . 39

4.3. Route Selector Module . 39

4.3.1. Equally QoS-aware Route Selector . 42

4.3.2. Q-learning based Adaptive QoS and Load-aware Route Selector 43

4.3.2.1. Overview . 43

4.3.2.2. Environment . 44

4.3.2.3. State . 44

4.3.2.4. Action . 46

4.3.2.5. Reward . 47

4.3.2.6. The Optimal Policy . 48

4.3.2.7. Exploration and Exploitation Technique . 50

4.3.2.8. Training the Q-learning model . 50

4.4. Flow Starter Module . 52

5. EXPERIMENTS AND RESULTS . 53

5.1. Test Environment . 53

5.2. Flow Generation . 54

5.3. Test Scenarios. 55

5.4. Performance Criteria . 56

5.5. Tuning the proposed RL-based Approach . 57

5.6. Results and Analysis . 59

5.6.1. Bandwidth provisioning capacity . 60

v

5.6.2. Average delay time . 61

5.6.3. Average jitter time . 62

5.6.4. Total packet loss. 62

5.6.5. Average received packet per second. 63

5.6.6. Flow duration. 64

5.6.7. System load balance . 67

6. CONCLUSION . 71

Appendix 87

vi

TABLES

Page

Table 3.1 QoS factor optimization centered researches with details 23

Table 4.1 Data types that collected periodically from each port on switches 31

Table 4.2 Equal predefined QoS factor weight values . 43

Table 4.3 Conversion table of continuous load percentage to the discrete

position for switches . 45

Table 4.4 Action numbers and their weight equivalents in discrete range 47

Table 5.1 Predefined flow size and rate sets for mice and elephant flows 55

Table 5.2 Suggested traffic scenarios for tests . 56

Table 5.3 Statistical evaluation of loads on the time intervals for each routing

methods . 69

vii

FIGURES

Page

Figure 1.1 Global device and connection growth [1] . 1

Figure 2.1 Typical framing of the RL scenario [2] . 8

Figure 2.2 System architecture of OpenFlow protocol which is adopted from

official document [3] . 13

Figure 2.3 An overview of the 3-layered SDN architecture which is adopted

from [4] . 15

Figure 2.4 Overview of the SDN architecture with Ryu Controller [5] 21

Figure 4.1 Flow diagram of periodical bandwidth tracking process 33

Figure 4.2 Flow diagram of available bandwidth determination process of a route 34

Figure 4.3 Flow diagram of periodical delay time tracking process 35

Figure 4.4 An illustration of the delay measurement procedure in a mini topology 36

Figure 4.5 Flow diagram of total delay time determination process of a route. 37

Figure 4.6 Flow diagram of total hop count determination process of a route 38

Figure 4.7 Comparative overview of the proposed RL-based controller (Design

A) and rule-based controller (Design B) frameworks 42

Figure 4.8 Proposed Q-learning based routing approach on computer networks

domain (adopted from [2], and modified in networking domain). 44

Figure 4.9 An illustration of mesh-hierarchical topology definition as Data

Layer with OpenFlow messages (taken from [6]) . 45

Figure 4.10 Q-table visualization that shows Q-values by index of actions and states 49

Figure 5.1 An illustration of the hierarchical and mesh topology design for the

simulations . 53

Figure 5.2 EMA of R for different lr, γ = 0.1 . 59

Figure 5.3 EMA of R for different lr, γ = 0.3 . 59

Figure 5.4 EMA of R for different lr, γ = 0.6 . 59

Figure 5.5 EMA of R for different lr, γ = 0.9 . 59

viii

Figure 5.6 Bandwidth provisioning capacities of the routing approaches 60

Figure 5.7 Average delay time results of routing algorithms according to scenarios 61

Figure 5.8 Average jitter time results of routing algorithms according to scenarios 62

Figure 5.9 Total packet loss results of routing algorithms according to scenarios . 63

Figure 5.10 Average received packet per second results of routing algorithms

according to scenarios . 64

Figure 5.11 Flow duration analysis for Scenario 1 . 65

Figure 5.12 Flow duration analysis for Scenario 2 . 66

Figure 5.13 Flow duration analysis for Scenario 3 . 66

Figure 5.14 Cumulative received data amount on core and distribution switches

for our proposed routing method . 67

Figure 5.15 Cumulative received data amount on core and distribution switches

for equally weighted QoS routing method . 68

Figure 5.16 Cumulative received data amount on core and distribution switches

for STP routing method . 69

Figure 6.1 Topology initialization process using Mininet . 87

Figure 6.2 Scenario initializations. Predefined flow settings and traffic details is

shown . 88

Figure 6.3 Flow initialization command on receiver host using iperf tool 89

Figure 6.4 Flow initialization command on sender host using iperf tool 90

Figure 6.5 Periodic data transfer report that is written in receiver host using

iperf tool . 91

Figure 6.6 CMA of R for different lr, γ = 0.1 . 92

Figure 6.7 CMA of R for different lr, γ = 0.3 . 92

Figure 6.8 CMA of R for different lr, γ = 0.6 . 92

Figure 6.9 CMA of R for different lr, γ = 0.9 . 92

ix

ABBREVIATIONS

API : Application-Programming-Interface

ATM : Asynchronous-Transfer-Mode

BFS : Breadth-First-Search

CAN : Campus Area Networks

DFS : Depth-First-Search

IoT : Internet-of-Things

IP : Internet Protocol

LAN : Local Area Network

LLDP : Link Layer Discovery Protocol

ML : Machine Learning

ONF : Open Networking Foundation

QoE : Quality-of-Experience

QoS : Quality-of-Service

OSPF : Open-Shortest-Path-First

RIP : Routing Information Protocol

RL : Reinforcement Learning

SDN : Software Defined Networking

STP : Spanning Tree Protocol

SVM : Support Vector Machines

TCP : Transmission Control Protocol

UDP : User Datagram Protocol

WAN : Wide Area Networks

x

1. INTRODUCTION

Routing of the messages and data between any internet users or devices from source to

destination is the most crucial role of the computer networks. In addition to the continuity

and security of this task, Quality of Service-aware (QoS) message transfer is necessary for

the appropriate service experience. For a long time, Open Shortest Path Protocol (OSPF) and

Routing Information Protocol (RIP) have been preferred on Internet scale and also Spanning

Tree Protocol-like (STP) protocols are used on local scale networking to realize best-effort

based routing solutions. However, the number of connected device to the networking

infrastructure globally is increasing day by day due to the cheaper chip technology and

digitization trends. Cloud-based services and Internet of Things (IoT) products with the

power of 5G connection technology accelerates this technology transition. According to the

recent annual report [1], There will be 3.6 network-connected devices per capita by 2023.

Additionally, there will be 29.3 billion networked devices by 2023, up from 18.4 billion in

2018. Machine-To-Machine (M2M) connections will be half of the global connected devices

and connections by 2023. The share of M2M connections will grow from 33 percent in 2018

to 50 percent by 2023. Therefore, it poses a serious challenge to overcome the large number

of connections created by a large number of M2M devices. Best effort procedural routing

methods have fundamental limitations that can cause undue congestion and chaos.

Figure 1.1 Global device and connection growth [1]

As shown in Figure 1.1, many network-connected device types as PCs, smartphones and

IoT-based M2M devices increases year by year. Additionally, by 2025, the estimated data

1

amount is 463 exabytes for each day globally [7]. The increasing speed on number of

connected devices and their data amount is higher than the improvement works in networking

infrastructure. Also, QoS requirements (delay, jitter, loss and throughput rate, bandwidth)

of the flow requests are vary according to the application type. For instance, jitter and

latency may be very crucial for users during a video conference, data loss rate may be

very important for an application that run on a server which control hardware health of

an reactor by performing time series analysis. For this reason, best effort-based routing

protocols fails day by day due to increase of new traffic patterns and flow requirements. At

this point, the communication capability to the switches via OpenFlow [8] protocol and the

programmability to the edge network devices with Software Defined Networks (SDN) [3] are

revolutionary in computer networking. Taking the routing decision from the edge network

devices and leaving only the forwarding task makes it possible to configure the network

with cheaper and simpler devices, and also allows network administrators to manage the

entire system from a central point. In this way, sustainable management of the system is

easier under the increased demand for the networking requests from users, applications or

any network-connected devices. Due to these possibilities, the SDN approach is included in

various studies of companies such as Google [9].

There are many studies which are trying to enhance the required QoS and quality of

experience (QoE) factors for the end user or applications in years. These works begin in

conventional Internet era [10] and continue with the OpenFlow and SDN paradigms [11]. On

the other hand, various load balancing approaches for optimal management of the network

systems are exist while meeting the demands of the flows that constitute the traffic [12]. Some

of these approaches are proposed as deterministic and rule-based frameworks as well as also

machine learning-based (ML) stochastic approaches are preferred to learn the unstable and

dynamic network traffic environment. In this context, our research questions are listed below:

• RQ-1: Can QoS and load balancing subjects which are often handled separately, be

addressed simultaneously?

2

• RQ-2: Is it possible to utilize the capacity of the network in a balanced way and to

meet the QoS demand of the flows equally and democratically?

The only enhancement effort for the optimizing and balancing system resources may cause

in QoS problems for flows. In another way, only flow-oriented QoS efforts can result

unbalanced system usage. Our research is centered to solve this problem.

Today, Campus Area Networks (CAN) which are a preferred network type for reasons such

as security and privacy. Especially, manufacturing facilities and research centers prefer them

due to the necessary regulations. Defence companies which are one of the stakeholder

for CAN systems, utilizes on premise networking architecture to connect their shop floor

machines and personal work stations. They connect manufacturing devices, workstations,

mobile robots, IoT sensors, and personal devices to interior networks and that enables

end-to-end monitoring and management of the production. Also, solutions are developed

over the networks for planning, maintenance, breakdown and bottleneck situations. These

networks can be configured with conventional networking paradigms like the ones used for

Internet, as well as SDN-like new generation networking paradigms can be preferred.

Thanks to the disruptive effect of Industry 4.0, IoT and artificial intelligence, it is foreseen a

transition from traditional networking to SDN on defence company campuses. The networks

which is deployed on these manufacturing areas requires a comprehensive QoS management

and supply strategy for network clients. Many applications and services uses a common

infrastructure with limited resources. While the sensor data obtained from the manufacturing

robots have to send it to the data center with the least loss rates, it is critical to transmit the

test data obtained from the end products to the servers with the minimum delay and jitter. In

addition, the fact that many devices transfer data with each other without a certain rule can

cause congestion, data loss and delays that are difficult to predict by network administrators.

Such unstable situations can lead to disruptions in critical processes. Therefore, an approach

that both monitors and balances the overall state of the networks and provides the best QoS

regardless of flow type is essential for the sustainability of the production facility.

3

In this thesis, we simulated a part of interior networks which is configured as conventional

networking on Turkish Aerospace (TA). The constraints and difficulties around QoS and

load balancing in the existing IP network in TA campus are revealed. In order to eliminate

these disadvantages, using the SDN approach in an area on the defence industry campus

is recommended as a case study. In various traffic scenarios, we propose an adaptive and

intelligent SDN-based approach to solve problems that are arising under the traditional

networking.

1.1. Scope of the Thesis

This thesis mainly focuses on providing a load-balancing and QoS aware routing framework

with SDN for CAN. The proposed method is partially local but has generalizable flexibility,

thus it can be applied to more expanded networks systematically. In networking research,

QoS is a significant context that consist of latency, jitter, packet loss rate and throughput rate

which are crucial for a healthy networking experience for end users or host applications. Our

focused network environment in this research has a harmonic traffic which requests from

ordinary end user devices as on Internet, and also IoT-based flows from sensors. Therefore,

best effort routing for various applications is insufficient for QoS optimization and a balanced

network utilization. For this purpose, the proposed method in this study is based on the

SDN approach in terms of instant monitoring and programmability. In this way, the routing

capability separated from the edge networking devices, and central controller structure is

established.

The density of the traffic varies and is unstable in networking. Additionally, flow variability

and their service requirements makes it difficult to design deterministic system design with

SDN. As proposed in previous works [13–15], classifying flows as mice and elephant

and routing with protocols causes some neglections and insufficient QoS allocation for

unvalued flows. On the other hand, routing according to the least congested path or flow

aggregation techniques [16, 17] while performing load balancing of the system may result in

inefficient use of the system resources. For this reason, effective management of the network

4

environment is a stochastic problem, and it is appropriate to manage it by considering both

the QoS for flows and the system side for network resources. In this context, we proposed

a reinforcement learning (RL) based approach that cares for load balancing of the system

resources when meets optimal QoS needs for each flow regardless of it classes. Firstly in

training phase, our method learns the traffic patterns and system overview (that is called

environment). In running phase, when a new flow request comes in to the controller, it

analyses the performance metrics that are generated by traffic (this is called the state, and

in this study, it is the available bandwidth, delay time and total number of hops of the

appropriate routes that links source and destination nodes). Then, controller select the

most scored route according to the actual system load state (this is action, the RL agent

recommends the most ideal weights for performance metrics according to the current traffic

of the system, and the route with the highest QoS score is selected). Next, the network

environment feedbacks the controller as reward or penalty for the new traffic status after the

last routing decision (the reward function is designed specific to the problem in each system.

In this study, the more evenly the load distribution on the data layer switches is distributed

as a reward, and if it is unbalanced distributed, it is reflected back as a penalty). In this way,

while routing each flow request, it is provided with a QoS optimized for delay, hop count

and bandwidth as well as load balancing is performed on the switches to prevent unbalanced

congestion and data loss. At the end, the proposed adaptive routing method has been tested

with an SDN approach that equally weighted QoS factors and STP, a traditional routing

method. With this intention, it is aimed to emphasize the importance of intelligent routing

methods in stochastic network environments.

1.2. Contributions

In this thesis, we cover the aforementioned deficiencies by proposing a novel, simple and

efficient approach. The main contributions can be summarized as follows:

• We propose a customizable routing framework that is designed as a prototype for CAN

type networks. The framework is scalable for various size of networks. On a different

5

topology and QoS requirements, network administrators or researchers can define their

constraints and objective functions. After that, retraining the new setup is needed to

perform customized controller.

• Unlike most of the previous works, the proposed routing method makes the

democratization of the load passing through the switches on the network, and has a

QoS supply strategy that takes into account the optimal number of hops, delay time

and bandwidth requirements for each flow are provided.

• With the proposed approach, the power of the best-effort routing method is added to

our adaptive routing method by including the number of hops in the routing decision.

• As an intelligent algorithm choice that does not require much resources, Q-learning

and a reward function design that can be customized by system administrators

according to the environment in which it is applied are presented.

• Our simulation test results show that our method is relatively more efficient both in

terms of load distribution on the switches and meeting the QoS requirements than an

equally weighted rule-based SDN approach and the traditional STP routing approach.

1.3. Methodology of the Thesis

While preparing this thesis, basically the following method was followed. In the first stage,

a literature review was studied on SDN for problem identification. After finding the problem

and determining the our research questions, the company topology for the network topology

to be taken as a basis for this study and transferred to the simulation environment. STP, which

is the routing protocol of the existing network, has been designed appropriately. Additionally,

one rule-based SDN and the other is Q-learning based SDN routing approaches have been

proposed as routing methods. Each routing method was run on three different traffic with

different characteristics and their logs were recorded. In order to test the performance of

routing approaches within the scope of QoS and load balancing, seven different test methods

were created and the test results were evaluated.

6

1.4. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions and the scope of the thesis.

• Chapter 2 provides brief explanations on the topics and technologies covered in the

thesis.

• Chapter 3 gives previous related studies to the field of the proposed study. It is aimed

to give detailed information in terms of both the problems and solution methods. In

addition, the difference of the proposed method in this research from the existing

studies is expressed.

• Chapter 4 introduces the whole details of the proposed routing method.

• Chapter 5 demonstrates the experimental design and test scenarios. In addition, the

results of these experiments are evaluated.

• Chapter 6 states the summary of the thesis. Also, we provide a critics for proposed

method and previous studies. Lastly, possible future directions for our work are

presented.

7

2. BACKGROUND OVERVIEW

In this section, we provide descriptive information about the concepts we discussed in the

Introduction section and technologies which are used in this study.

2.1. Q-Learning

RL is one of the three fundamental ML paradigms, the others are supervised learning and

unsupervised learning. This approach deals with how intelligent agents should act in an

environment in order to maximize the cumulative amount of reward [2].

Figure 2.1 represents the RL approach in which the RL agent observes the environment

through the state space, while the reward value acts as a feedback mechanism for the agent.

The agent transitions from state to state by taking actions. Next, the agent receives a reward

for the action taken in a given state. The main goal of the agent is to maximize its reward.

The potential reward is the weighted sum of the expected returns of future rewards from the

current state.

Environment

Agent

Action atReward rtState st

rt+1

st+1

Figure 2.1 Typical framing of the RL scenario [2]

Q-learning is a model-free RL algorithm approach that learns the optimal policy or the

quality of actions from a state over time [18]. It is a finite Markov Decision Process and

the its iterative approach tries to maximize the expected Q-value of the total reward for the

all the states, starting from the current state. At the beginning, states and actions have to be

defined explicitly. Also, values in Q-table are initialized with zeros and number of states and

actions are preferred to define number of rows and columns respectively. After a time step,

8

the agent chooses an action. Then, it causes a new state and gets a reward. After that, agent

updates the Q-table according the the Q-function. Through the trials, the agent learns to

choose the best action for the current state and stores Q-values on the Q-table as state-action

pairs.

2.2. Traditional TCP/IP Networks

In one of the conventional computer networks, TCP/IP, a five-layer Internet protocol stack

design is defined. Each layer communicates with its neighbors and has its own tasks to

sustain networking operations [19]. On the top, the application layer is placed and its

elements are end-user applications such as a web browser, online video game or and e-mail

client. Application layer packs the messages to send to the other host or hosts. In the fourth

layer, the transport layer takes the messages. As the main task, the transport layer controls

the order of the packets which are transferred to the other side. At this point, Transmission

Control Protocol (TCP) and User Datagram Protocol (UDP) define the rule of thumb of the

transmission according to the requirements. The third layer is the network layer and routers

work in this layer to manage the two critical tasks in networking operation, routing and

forwarding. This layer uses Internet Protocol (IP) and the datagram packets are forwarded

according to their unique numbers. In the next layer, the data link layer connects to the nodes

in the same medium. The last layer is the physical layer which is commissioned to transfer

the packets between nodes in medium.

In traditional networking, each layer communicates only with its peers in the network.

Also, each layer takes service from lower layers and gives service to upper layers. This

situation requires an encapsulated messaging approach which consists of data and transferred

packet to transfer appropriately. Transferred packet includes all required information for

the destination host. Since this information packet is processed and turned into the routing

actions separately on each router in the current network approach. In this situation, the

management of the network is distributed over each device and is far from a central control.

The distributed management and operational interdependency make it difficult to respond to

9

the problems that may occur in the network environment. Actual TCP/IP paradigm even

provides a little mechanism to automatically respond for the issues. Network providers

on large scale or network administrators at the local level need some management tools

to navigate and manipulate network operations to respond to maintenance or fault fix tasks.

Below, the most known problems and constraints encountered in traditional networks are

mentioned:

• Hardware dependencies and constraints: To implement a high-level rule to the

network, some prior low level configurations are implemented to all data layer devices.

This is very likely to cause errors and complications, because each device and software

can be used according to its own commercial infrastructure. Also, the network service

providers desire to manage and maintain the whole topology for a long-term. However,

due to commercial benefits, various financial obligations for the maintenance and

updates of the devices cannot be avoided.

• Lack of programmability: Because of the distributed structure of the management

in traditional networks, traffic engineers and network administrators have difficulties

with programming like rule-based routing, traffic prioritization and load balancing for

network elements.

• Non-separation of operational roles: The integrated structure for routing and

forwarding on the same layer blocks the modularity. This makes difficult to route

any flow request from the desired path.

• Dependency on too many task-device peers: There are additional network assets

in the structure which are firewalls, repeaters, bridges. Adding a new device for each

new mission adds another level of complexity over the existing build. According to the

research, the number of devices on the internet is equal to the number of these indirect

devices [20].

Due to the limitations and permanent problems which are mentioned above for conventional

networks, it has prompted network researchers and engineers to work on new structures

10

to make them more manageable. A complete architectural change seems impossible.

Additionally, replacing all network devices or integrating new devices immediately will incur

additional costs to network owners. In this context, the SDN paradigm seems to be one the

of options for such a transition.

2.3. Spanning Tree Protocol

STP which was invented by Radia Perlman, tries to prevent getting stuck in an infinite loop

in the network [21]. The protocol is a Layer 2 network protocol used to prevent problems

that arise when computers compete to use shared network paths on a local area networks

(LAN). When too many computers try to send data at the same time, it affects overall network

performance. Delay, jitter, congestion problems arise and these bring all traffic to a near

halt. STP prevents the condition known as bridge looping. Bridge looping is when there

are multiple links between two hosts, and messages are sent out of every point continually

flooding the network. To reduce the likelihood of looping, STP divides a LAN into two or

more network segments with a device called a bridge connecting any two segments. Each

message goes through the bridge before being sent to the target node. The bridge determines

whether the message is for a destination within the same segment. Network segmentation

reduces competition for network path used by half and significantly reduces the chances of

a network coming to a halt. STP is easy to use, proven to be effective, offers wide support

for bridges and switches, provides link redundancy and prevents looping, and offers various

backups in case the main connection falters. But with the increasing usage of virtualization

technology in data centers, STP can not be able to handle increased input/output demands.

And full network capacity is not realized when using STP because it restricts traffic.

2.4. OpenFlow

OpenFlow is a communication protocol that allows a server or a controller to tell network

switches where to send packets. Its development began at Stanford University in 2008 and by

11

December 2009 Version 1.0 of the OpenFlow key specification was released [8]. OpenFlow

is currently managed by the Open Networking Foundation (ONF) [22].

In a traditional network approach, each switch has its own software. Routing decision

and packet forwarding happen on the same network device. With OpenFlow, packet

transport decisions are centralized thus the network can be programmed independently of

individual switches. An OpenFlow switch separates the routing and forwarding decisions.

The forwarding part is located in the data layer and separated controller makes high-level

routing decisions. Switches and controller communicate via the OpenFlow protocol. The

combination of the OpenFlow and SDN paradigms allow for more efficient use of network

resources than is possible with traditional networks. Using this interface, SDN controller

alters the switch/router flow tables for routing decisions and also data layer devices push up

current traffic metrics to controller for to the data-oriented routing actions. With OpenFlow,

many features are quickly available for network administrators:

• fast deployment of network applications

• possibility to implement a regional network policy

• performance tracking and central optimization

• Instant metric tracking of data layer elements

OpenFlow connects properly with OpenFlow-enabled switches which maintain their flow

tables according to the set of rules that are defined by the controller. Figure 2.2 demonstrates

communication types between controller and data layer using OpenFlow.

If any incoming packet’s destination is not matched on flow tables in the switch, packet is

forwarded to the controller via OpenFlow. The controller specifies the high-level actions for

the flow and sends the answer via OpenFlow protocol. On another side, data layer devices

send current port and flow statistics to the controller.

12

Figure 2.2 System architecture of OpenFlow protocol which is adopted from official document [3]

2.5. Software Defined Networking

The efforts to make computer networks more flexible and programmable date back to

the 1990s. Programmable Asynchronous Transfer Mode (ATM) Networks [23], Active

Networks [24] and Routing Control Platform [25] can be considered as examples for

programming the network components. In the following years, network virtualization

methods were developed [26]. The ability to create more than one virtual network on a

physical device contributed to resource sharing. Then, the most important achievement

in this period is revealing to OpenFlow [22]. The origins of OpenFlow is found in

Stanford University [8]. At the beginning, this protocol was designed for researchers

to test experimental protocols in the networks. Then, Open Network Foundation took

control of the project and has released new features and versions since that time. Since

OpenFlow makes it possible to communicate network with low level devices in a standard

procedure, the development of network operating systems are affected positively. Examples

13

of effectively developed and used supervisory mechanisms are NOX, POX, Floodlight, Ryu,

OpenDayLight and ONOS [27].

The fundamental idea of the SDN concept is to centralize the distributed control structure of

conventional networks [4]. SDN decouples the processes of gathering data and controlling

traffic tasks to the two different layers to make the network more modular and manageable. In

this way, the distributed and self-rolled management paradigm is abandoned and the control

is assigned to a new responsible layer. Network devices leave the control and routing tasks

to the control layer and are turned into the simple devices that only redirect flows according

to the received commands via controller. In control layer, there are two main responsibilities

which are assigned to the controller unit. One is to receive data from network devices and

response them what action to take, and the other is to collect information about network

devices and links and present network applications with an up-to-date network picture. At

this point, the 3-layered SDN structure is defined; data layer, control layer and application

layer. In the application layer, which works on the top the layered structure that takes

defined metrics and information from the control layer and provides business applications

and solutions to control traffic and other services. Similarly, the control layer, which acts

as the brain of the network can consist of more than one controller unit for more efficient

and task-based services. The control layer works as the operating system between the layers

at both ends. With this virtualization, the application layer working with a simple network

image can present the programs for the required actions. The control layer transfers and

executes predefined/automated rules to all network components, namely the data layer. In

Figure 2.3, the structure of the layers and the connection types between them are shown. In

addition, modularly positioned networking elements, tasks and applications in each layer are

exemplified.

The 3-layered SDN approach links layers with two gates which are southbound and

northbound interfaces. The control layer and data layer communicate with each other

using a southbound interface which is used to transfer network status changes and packet

forwarding messages that are obtained from data layer elements via OpenFlow-enabled

switches. Additionally, the routing and various action messages which are determined

14

Figure 2.3 An overview of the 3-layered SDN architecture which is adopted from [4]

according to the network requirements are also transmitted to the data layer via this interface.

The most preferred protocol in this interface is OpenFlow. On the other side, communication

with the applications that are responsible for the dynamic management of the network is

provided through southbound interface. High-level messages from the control layer and

directives from applications use this gate which is not under the control of a single protocol.

In traditional networking, each routing device is responsible for forwarding datagram packets

using a target-based forwarding approach. However, in SDN paradigm is not required the

complicated switches that forward the packets according to the IP forwarding rules. In SDN,

forwarding rules and procedures are defined around the flow-based approach. A flow consists

of a series of IP packets going from the source device to the target device. There are various

variables in the flow, such as IP address, VLAN tag, MAC address, that are used to implement

this approach. Briefly, the routing and controlling approach made according to the data layer

flow tables created by the controller with the dynamic decisions directed from the application

15

layer gives the network flexibility. In this way, flow-based routing is implemented instead of

target-based routing.

The essence of the SDN is separated from the traditional networking by four fundamental

features. These are separation of planes, flow-based routing instead of target-based

addressing, separating the control into an external layer and redesigning the network to make

it more programmable. These innovations bring effective benefits in terms of operational,

financial and service quality:

• Network business process cycle improvement: Programmability and network

automation features of SDN approach enable the agile improvement and proof of

concepts for network engineers and administrators. The return rate of the investments

are faster.

• Open the way for innovation: Modular structure makes it possible to try new

methods, techniques, protocols and research for innovation enablers.

• Fast response for customer requests: SDN’s modularity is capable of distributing

network resources according to the users’ demands. The dynamic allocation of the

QoS needs on the SDN makes it possible to address customer requirements on the

time.

• Resource allocation and efficiency: SDN infrastructure allows to determine

intelligent or rule-based switching, routing, traffic engineering, network security

solutions thus making it possible to use resources efficiently. These applications can

be served as distributed and controlled via application programming interface (API).

2.5.1. Components of SDN

The OpenFlow and simplified layer based structure of the SDN make easy to manage and

program whole networks in a centered way. The OpenFlow protocol is used to transfer some

kind of information to control the network assets and status. When there is a link or a port

16

change is executed in data layer assets, the responsible or affected device sends the status

message to the controller. Additionally, when a packet is received to the forwarding device

in the data layer, it first looks for it in the flow table. and packet’s routing information is

searched through the flow tables. If no matching entries are found in the flow tables, the

action can be defined as querying the controller for routing action, dropping the packet or

no action. In the case a match is found for the received packet, the action is executed as a

forwarding process. Simultaneously, the control layer transmits a snapshot of the network

to the application layer. Business applications which are running in the application layer

determine the operation structure of the system according to the network requirements. All

these options depend on the directives of high-level programming. Following subsections,

the roles and functionalities of the layers are explained in detail.

2.5.1.1. Data Layer SDN decouples getting data and routing packet processes. This

phenomenon simplifies the responsibilities of the edge network devices such as routers and

switches. Thus, data layer components that are converted to the more basic devices reduce

costs. After the simplification, the controller communicates with each forwarding device on

a standard protocol and assigns routing rules more homogeneously if it is required.

2.5.1.2. Control Layer The controller creates rules to be applied to the forwarding

devices and provides the management of the network with the help of the OpenFlow protocol.

In computer networking, each generated packet has some information in its header which

are destination-source IP, port and MAC addresses, VLAN ID and priority, protocol and

timestamp. The controller decides what to do with the flow when the datapath action type

is requested by the data layer. Action rules are recorded to the flow tables in the network

devices in order to make the routing operations faster and reduce the workload of the control

layer. Thus, some flows can be directed or dropped by the network device without asking the

controller. The controller has the authority to edit these flow tables according to the changing

tasks over time and network requirements. On the other hand, centralizing management with

17

general network status information simplifies the development of more complex network

functions, services and applications.

2.5.1.3. Application Layer SDN provides a centralized management which is assisted by

the application layer. By sending the rules that are created in the applications to the network

devices with the help of the SDN controller, the data layer devices constantly update their

flow tables. High-level applications which implement control logic forward rules to control

layer where instructions are converted into forwarding rules and installed on the underlying

low-level hardware infrastructure. Using these layer possibilities, network administrators

and traffic engineers have developed applications that serve many purposes.

2.6. Quality of Services

QoS approach aims to serve allocation of resources according to the network demands for

each flow and user demand. Today’s various network applications require distinguished QoS

needs. Thus, the required service metrics are defined around 4 fundamental networking

parameters which are bandwidth, jitter, delay and loss rate. With these measurement

definitions, the QoS response the networking needs more elastically and dynamically. For

example, a video conference call requires instant data transmission is more important with

minimum latency. On the other hand, the delay factor can not be as important for data

transfer, where data integrity is more important such as time series telemetry data. A well

defined QoS allocation mechanism in networking can provide a sufficient service for both

situations at the same time but the difficulties of the problem pulls the researchers to improve

methods day to day [11].

In traditional networks, various QoS providing approaches have been developed to provide

QoS requirements to the network users. With the over-provisioning method, the network

infrastructure is created with high-capacity hardware and links. This has an impact on

providing sufficient bandwidth and lower latency, but increases the setup and maintenance

costs. On the other hand, routing elements are determined to provide different QoS

18

requirements in the differentiated service approach. However, the diversification of network

devices complicate the system management.

The decoupled routing and forwarding approach in networking via SDN and OpenFlow has

revealed various programmable structures for QoS. Queuing and bandwidth management

are effective tools for the QoS allocations. With the help of SDN, flows can be

queued according to their importance and rule-based bandwidth allocation can be made.

Similarly, with resource allocation methods, packets can be classified in a central way

and forwarded to fixed network resources. The allocation of the bandwidth resources

are applied via predefined mathematical approaches as rule-based or learning based

structure. Bandwidth management includes traffic manipulation, time-based prioritization

and bandwidth restriction or relaxation techniques to optimize network flow traffic. One

another method is priority queuing that sorts and processes the previously classified packets

under a special policy. In this way, the packets that are prioritized with the definition of the

need are served according to the routing and forwarding processes. Prioritization criteria can

be defined around application, user and packet origin. Afterwards, it is tried to ensure that

applications work as desired with bandwidth management techniques.

It is obvious the importance of OoS in the networking to manage and sustain a dynamic

network environment. Decoupling data and control roles and easy programmability makes

the SDN paradigm more advantageous than traditional networking. Scalability, separation

of roles and flow-based routing provides elastic and dynamic allocation of the network

resources for QoS which is defined on a SDN-based network. There are various studies

in the literature to provide QoS on SDN [11, 28].

2.7. Mininet

Mininet is one of the networking emulator that works on Linux operating systems [29]. It

provides a test bed that enables adding hundreds of networking nodes to virtualize a topology

which includes virtual hosts, switches, controllers, and links on a single computer or a server.

The virtualized network topology can be used to simulate both conventional and SDN-based

19

networking approaches to rapid prototyping.

As a networking emulator Mininet executes the networking emulation in real time. The

networking emulators use real packets between network nodes to simulate actual traffic

scenarios. This is the difference point between the networking simulators and emulators.

Thus, while an networking emulator is running a test, the gathered status data is suitable for

real-life analysis.

Mininet is a topology-aware emulator which can interact it with command line interface

for running network-wide tests. While using Mininet, a controller can be implement from

scratch or using an open source controller which have to be run with the Python API.

2.8. Ryu Controller

Ryu Controller is an open source SDN controller designed to increase network agility by

facilitating control and management of network traffic [5]. As seen in Figure 2.4, The SDN

Controller is the brain of the SDN environment, transmitting information with southbound

APIs to switches and routers and communicates with applications and business logic via

northbound APIs. Ryu Controller is supported by Japan Nippon Telegraph and Telephone

and OpenStack which is a widely deployed open source cloud software. Ryu community

maintains its source code on GitHub and is licensed under Apache 2.0. Thus, Ryu, written

entirely in Python, is open to any organization and individual to use and supports OpenFlow,

one of the most common SDN communication standards.

Ryu Controller provides software components with well-defined API that make it easy for

network developers to create network management and control applications. Distributed

component paradigm helps organizations customize deployments to meet their needs.

Network administrators can quickly and easily replace existing components or implement

their own components to ensure that the underlying network can meet the changing demands

of their applications.

Network administrators can develop network and business applications that communicate

with the Ryu controller on how to manage the switches and router to manipulate routing

20

Figure 2.4 Overview of the SDN architecture with Ryu Controller [5]

and forwarding decisions in intelligent way. The Ryu controller can use OpenFlow or other

protocols to interact with the data plane (switches and routers) to change how the network

handles traffic flows. The Ryu controller has been tested and proven to work with a range of

OpenFlow switches, including HP, IBM, and NEC products.

21

3. RELATED WORK

OpenFlow and SDN have significant accelerator effects on QoS and QoE requirements to

design efficient routing decisions in networking. Decoupling the management of data and

control processes, and programmable architecture at a single or distributed controllers are

core factors for this paradigm [30]. The main QoS requirements can be vary by applications

or services, but delay, throughput rate, jitter and bandwidth availability are most known

and desired consistent service factors for end to end service experience. In research,

the optimization of these service factors according to the application needs and network

capabilities maintains its importance for many years [31]. These researches range from wide

area networks (WAN) such as Internet level [32] to next generation technologies such as IoT

networks, Cloud and 5G. [33–35]. In other side, the researches spread on the objective side

and its methodological approaches. Some researches are focused to present a better solution

for one QoS factor such as minimizing delay [36] or maximization of throughput [37–39],

allocating available bandwidth [40]. On the other hand, some researches aim to improve on

multiple factors of QoS such as renting service costs and balancing latency [41], minimizing

delay and maximizing throughput [14, 42], delay-bandwidth constraint [43]. Additionally,

researchers are able to follow deterministic, stochastic or hybrid methods according to the

complexity of the problem [44–46]. In all these respects, we have grouped our literature

section according to the number of QoS metrics targeted by the studies. In this way, preferred

network environments and methods are given in details.

Later in this section, firstly Table 3.1 is given to summarize the some important points of

reviewed works and then the details of them follow. At the end of this section, the critique

of the recent literature and different points of this work are explained.

22

Ref. No Year Description Objective Technical Approach

[36] 2016 the brute force approach algorithm find paths and pairs with calculated end o end
delays and then forwards lowest delayed path

minimizing delay a brute-force search

[37] 2016 the algorithm considers a cost model by studying the admissions of unicast and
multicast requests

maximizing throughput approximation alg. for
directed Steiner problem

[38] 2017 forecasts future link consumption using the ML model and generates forwarding
rules

maximizing throughput long short-term memory,
recurrent neural network

[39] 2017 the algorithm searches paths and a randomized rounding mechanism to solve the
multi-commodity h-splittable flow routing problem

maximizing throughput depth first search

[40] 2018 ML model classifies traffic then the application class is used as inputs to the routing
policy generator module to determine the distribution of traffic flow

bandwidth allocation Nearest Centroid, Naı̈ve
Bayes, SVM

[41] 2018 the algorithm optimizes unstable network changes and minimize the latency use of
dedicated short range communication

minimizing service costs
and latency

improved genetic algorithm

[14] 2015 the approach classifies flows and forwards them according to the predefined QoS
needs

minimizing delay and
maximizing throughput

application classification
and multipath routing

[42] 2018 proposed model distributes traffic via scheduling algorithm using network status minimizing delay and
maximizing throughput

a scheduler, probabilistic
matching approach

[43] 2016 the algorithm makes dynamic routing to utilize network resources bandwidth allocation,
minimizing delay

custom flow-migration
algorithm, Yen’s algorithm

[47] 2018 the algorithm uses delay factor to create flow rules from gathered statistics minimizing delay shortest path algorithm

[48] 2018 the algorithm calculates delay statistics using proposed approach and forwards the
related flow to the lowest delayed path

minimizing delay Timestamp Recording
method, Dijkstra

[17] 2017 proposed approach makes aggregate operation to reduce total flow size and then
control switches congestion problems

minimizing delay flow aggregation and
heuristic algorithm

[15] 2019 the algorithm first distinguishes flows as mice and elephant. Then the seperated
flows are forwarded as predefined paths or routing rules

bandwidth allocation, load
balancing

flow classifier approach

[16] 2018 the approach finds available paths from source to destination and forwards flows
using proposed method

bandwidth allocation,
minimizing delay

Dijkstra, rule-based flow
forwarder

[13] 2012 the framework categorize incoming flows multimedia and others then forwards
them based on their QoS constraints

minimizing delay packet
loss, bandwidth allocation

Lagrangian Relaxation
Based Aggregated Cost

[44] 2017 the framework adaptively adjusts weights of QoS metrics in a cost function to find
the best fit path according to QoS requirements

optimizing delay, loss rate
and bandwidth

simulated annealing

[49] 2020 the approach utilizes ML algorithms to to select the least congested path from a list
of possible paths

bandwidth allocation K-means clustering, cosine
similarity

[50] 2016 proposed algorithm forwards flows according the reward function maximization to
meet QoS requirements

minimizing latency,
bandwidth allocation

Q-reinforcement learning

[51] 2016 a multi-layer hierarchical SDN control framework, their method calculates routing
paths that maximize the network QoS performance for a given traffic type

optimizing delay, loss rate
and throughput

Q-reinforcement learning

[52] 2017 the approach defines the route using RL according to the best criteria in terms of
weights periodically rewarded by each node on the current path

optimizing delay, loss rate
and bandwidth

Q-reinforcement learning

[53] 2017 the algorithms attempt to minimize end to end delay on its route decisions that
achieved by using current traffic conditions on RL agent

minimizing delay deep reinforcement
learning

[54] 2016 the proposed algorithm finds the optimal integral routing solution for overlay
network of data centers

minimizing delay random neural nets with
reinforcement learning

[55] 2021 the framework utilizes RL to select optimal for all flows with the QoS metrics optimizing delay, loss rate
and throughput

Q-reinforcement learning

[56] 2021 the approach selects best pre-build forwarding protocol to route flows according to
the QoS needs

optimizing throughput, loss
and rejection rate

Q-reinforcement learning

[57] 2020 the proposed method analysis time series network data with heuristic algorithm and
find ideal routes

load balancing linear integer
programming, fuzzy
logic

[58] 2019 the proposed method get information from past traffic demands and optimize the
routing policy to meet QoS needs

minimizing delay,
improving net security

deep reinforcement
learning

Table 3.1 QoS factor optimization centered researches with details

23

3.1. Single-factor centered QoS approaches

A rule-based implementation of routing decision is proposed in [47] which uses delay factor

to create flow rules on the controller. Their approach collects link statistics periodically from

data layer elements to the controller and a delay weighted Dijkstra algorithm searches the

least delay occurred path. Proposed framework is compared with unweighted Dijkstra and L2

Switching. Another early effort for delay-optimized work in an IoT is proposed in [36]. The

method aims to find the route which has minimum delay. The algorithm first finds suitable

paths and assigns nearly up-to-date link delays via OpenFlow and selects with the minimum

path delay. Chin et al. compared 3 different delay measurement approaches to make efficient

traffic engineering while they were forwarding flows to minimum delay paths [48]. Making a

routing decision based on only one QoS factor can prevent you from seeing the big picture of

the network. [42] offer a dynamic traffic engine to schedule delay sensitive optimized flows.

Their algorithm uses an auxiliary graph that is fed information retrieved from data plane

to create multi-path flows. One of the most complex method is demonstrated in [17] that

tries to handle the problem of flow table overflow in switches. To the that, a flow aggregation

technique is provided to minimize number of flows on the network when satisfying end to end

latency. Flow aggregation is not in conflict with flow splitting, but sending aggregated flows

together can issue for objectives such as load balancing. At this point, Shi et al. proposed an

load balance-aware controller to manage network traffic with an efficient bandwidth usage.

Their method offers for different forwarding rules for mice and elephant flow requests [15].

However, the proposed fixed route forwarding policy for elephant flows can cause some local

congestion because of the stochasticity of the traffic. Additionally, proposed rule-based load

balancing strategy for switches can suffer on a series of elephant flow requests. One of

the most preferred approaches in effective traffic management with SDN is based on load

balancing control [59]. Nkosi et al. offer load balancing approach for data plane to optimize

link utilization according to the link loads [16]. Basically, the framework finds paths with

Dijkstra algorithm and forwards flow to the lowest loaded one and shared fairly among the

alternative routes.

24

3.2. Multi-factor centered QoS approaches

Egilmez et al. [13] proposed a highly potent framework, named as OpenQoS which

handles traffic as multimedia and data flows. Multimedia flows are forwarded by QoS

guaranteed routing algorithm and data flows follow the conventional shortest path algorithm.

Split-centered protocols can be inadequate to provide required QoS factors to the left

behind flow classes. Another same flow classification approach is proposed in [14] as

normal data flow and multimedia flow for the incoming flow request to the controller.

HiQoS has designed in two components, differentiated and multipath routing. Differentiated

component dissociates incoming flow requests according to their service types and provide

predefined bandwidth guarantees to them. Then, multipath component calculates optimal

multiple paths for each flow that meets the QoS constraints of the service types. Their

approach reduces delay and increase throughput in the simulations. However, a bias flow

distinguish procedure can miss mice and important flows’ QoS requests. In [44], authors

offer a simulated annealing based method to find best path according to the three QoS

factors, delay, bandwidth and loss rate. Their approach defines a cost function with these

factors with weights. The weight of each factors are adjusted by simulated annealing

method which tries to meet the QoS requirements for each flow request. One of the main

advantage of the simulated annealing is to beating the local minima traps but in a large scale

network topologies, the high computation time is required to guarantee to achieve a qualified

outcomes. An SDN and ML based attempt explores to route flows via congestion and traffic

pattern history of the network [49]. They proposed two methods, k-means and Vector Space

model. In framework, the training unit learns updated network-link bandwidth patterns from

network statistics simultaneously. The given algorithms put paths to existing clusters, or

the clusters are rearranged to form a new set of clusters and the best paths for each states

are defined by the network admins during the training. In deployment unit, when a flow

request arrives to the controller, the network’s bandwidth states are collected and provided

as input to the ML model. The best path is selected from the cluster which is suited for the

input. Their approaches surpass Dijkstra but one point is that clustering algorithms such as

k-means are not suitable for large datasets, in this case large-scale nets. [50] tries adaptive

25

routing with Q-learning algorithm. They offer a reward function that is a weighted sum

of bandwidth availability, number of flows in the next hop and latency rate. Rewards are

used as signals to adjust referral link priorities to increase or decrease the probability that

a particular next hop will be selected for traffic. An agent learns to adjust path selection

policies based on experience and rewards and tries to maximize some cumulative returns

through continuous modification of action selection policies. Using the routing connection

probabilistically based on the Q values in each switch to choose the most appropriate

end-to-end route in network traffic for each available path can bring computational cost in

long path determinations. Lin et al. [51] offer an QoS-aware adaptive routing (QAR) in a

multi-layer hierarchical SDN control plane. Their SARSA-based RL approach manages the

weights of the QoS factors such as loss, throughput and delay in the reward function. In

this study, they recommend that the controller need to iterate the SARSA algorithm. This

causes delayed flow initiation and its suitability for real-time traffic is questionable. Sandra

et al. [52] propose an RL-based controller that simultaneously considers delay, bandwidth,

and loss to optimize QoS. When a flow is requested from network, the trained model offers

weights for each QoS factors on every possible links and then lowest cost path is selected.

Then, network feedbacks the controller based on the current path as a reward or penalty.

Such a link based approach is likely to cause local forwarding biases in networks that have

unequal bandwidth distributions. One another study targets the minimizing only delay metric

in flow forwarding when offer a Deep RL approach [53]. In [54], Random Neural Networks

and RL methods are used to build a SDN-based cognitive routing algorithm. Their approach

aims to reduce delay factor and efficient routing management for cloud data centers. A

complex deep reinforcement learning based approach offers predicted next hops when tries

to guarantee QoS needs. Another recent work in [55] designed a RL-based routing algorithm.

Their approach uses RL to find best route for all flows with bandwidth, loss, and delay. Then,

to define best path, it searches most-rewarding path for every pair of nodes in the topology.

One of the latest cognitive SDN controller attempt offers to route flow requests according

to the selected routing protocol from protocol pool based on the instant reward of the their

Q-learning method [56]. Their reinforcement learning framework try to select best route for

each flow according to the throughput, delay and rejection rate. In [57], authors propose a

26

load balancing approach to meet multiple QoS requirements in IoT servers. They offer an

integer linear programming and tries to solve the problem with fuzzy logic approach. An

intelligent and secure routing protocol is proposed in [58] as a deep RL based for IoT-SDN

infrastructure. The algorithm extracts knowledge from traffic history using the trained model

and interacting with the underlying network environment, then optimize routing policies

according to the QoS requirements.

When we analyse the previous works, we see that many different optimization approaches to

meet QoS needs have been proposed. These approaches are shaped around deterministic and

stochastic solutions. The network traffic environment is very variable. Thus, it is not possible

to provide an effective QoS in all situations with rule based approaches. In this context, ML

techniques can make effective routing results in non-linear network traffic conditions. For

this reason, reinforcement learning method was preferred in our study. Another situation

seen in the literature is that when the QoS needs of the flows are taken into account, the

effective use of network resources is left in the background. However, routing each flow

around the network capacity according to the load conditions of the switches can be a more

democratized solution. Therefore, in our study, we aim to optimize the QoS requirements

for each flow with a reward approach aiming to keep the network load balance optimal base

with the q-reinforcement learning proposal that needs low computational power. To the best

of our knowledge, no previous study has been carried out in this context.

27

4. PROPOSED METHOD

This section describes the proposed techniques to design a routing method in the study. In

order to meet the QoS requirements for flows and also to perform load balancing on the

switches, periodical monitoring of the amount of data passing through the ports between the

switches is required. Unlike the traditional networking approach, the route searching task is

transferred to the control layer in the SDN. SDN allows to develop tools that can manage all

data layer elements. Thus, data layer networking devices do not determine the routing for

a flow request to be established for the first time. In this study, a route discover module is

developed in the control layer. This module finds all routes between two hosts via a searching

algorithm. Searching for available routes to meet the flow requests and tracking the traffic

statistics of the data layer elements are detailed in Section 4.1.

In this work, three different network metrics are measured in order to provide the most

optimal QoS to any flow requests. These factors are determined as the available bandwidth of

the route, the delay time of the route and the total number of hops of the route for the selected

routes. For each flow request which has not been routed before, route discoverer module

finds predefined number of suitable routes between source and destination. Subsequently,

the above-mentioned route state metrics are calculated for each route. These instant QoS

metric tracking mechanism is discussed in Section 4.2.

Section 4.3. which is the core part of the study, decides which route to use for any

flow request. We prefer to propose two different methods in order to make performance

comparisons. The first is the equally weighted QoS approach and the other one is the

RL based weight determination QoS method. Firstly, the total number of hops, available

bandwidth and total delay time for each candidate route is normalized between 0 and 1 in

order to prevent any dominance of metrics’ values. In the equally weighted QoS factor

approach, which is the first of the approaches, each performance metric is multiplied by a

weight of 0.33 to contribute equally to the QoS score. In the other approach, QoS factor

weights are defined by taking into account the load balancing with the Q-learning algorithm.

28

Prior to this approach, the system is trained with RL approach with an extended network

traffic scenario and a Q-table is created. Then, the QoS score is calculated by obtaining the

appropriate weight values from the pre-trained Q-table for the route that is most likely to

balance the system according to the loading status of the switches. In both approaches, after

the calculations, a QoS score is obtained for all suitable routes and the route is selected as

the routing path that has the maximum QoS score. A detailed description of the proposed

approaches is discussed in Section 4.3.

After determining the appropriate route, the flow starter module performs the placing of

the selected route in the switches’ flow tables. It issues the flow rules as messages via the

OpenFlow protocol from the control layer so that route details can be recorded to the flow

table of each switches on the selected route path. The method created for the routing module

is discussed in Section 4.4.

4.1. Network Traffic and Route Awareness Module

In order to design a traceable and manageable network system, the data layer elements on

the topology have to be discovered in the first place. With the awareness of each network

element, packets can be transmitted via an intelligent routing techniques on determined

routes. In addition, traffic engineering applications can be developed by monitoring the

current load intensities of network elements and their links. In this section, the methods

presented to realize explained features.

4.1.1. Route Discoverer

Graph theory is widely researched in computer science and applied mathematics. A data

structure consisting of vertices and links connecting them (optionally directed/weighted)

can effectively represent many problem areas [60]. The topological structure of computer

networks coincides with graph theory. The problem of routing the flow requests, which is

also a problem of the Internet, is solved by search algorithms at various levels. Two of

29

the most well-known search algorithms which qualify as unweighted Dijkstra to find the

available paths are Depth First Search (DFS) and Breath First Search (BFS) [61]. The BFS

algorithm is preferred for the shortest path first return guarantee. Another side, DFS has a

first depth strategy that searches for possible vertices on each branch before tracing back.

The pseudo-code of the defined searching algorithm is given Algorithm 1.

Algorithm 1 BFS Algorithm (taken from [61])

Require: G is whole topology
Require: s is source vertex
Require: t is destination vertex
Ensure: stack = (s, (s)) ▷ Let S be a stack. Insert s in stack

while stack is not empty do
v = stack.top() ▷ pop a vertex from stack to visit next
s.pop()
for all neighbour w of v in Graph G do ▷ push all the neighbors of v in stack that are

not visited
if w is not equal t then

yield s.insert(w) ▷ insert w to the s
else

s.insert(w, (s), w) ▷ store all routes in s

When a flow request message from any data layer element reaches to this module, optimal

routes between the source and destination switches are found and listed using BFS. Then,

the routes are forwarded to further modules that are defined in Section 4.2.

4.1.2. Network Statistics Tracker

The controller basically monitors and manages the network. Problems such as latency

and data loss are often associated with congested connections and busy switches. For

a sustainable and stable network management, a control unit design is required that

continuously measures the system elements and plans the network actions according to the

status of these elements. The provided sub-module collects metadata (almost real time) about

packets passing through each switch’s ports within a specific period of the time in order to

measure the load status of data layer elements. With this information, the total load graph of

30

the switches and the amount of instantaneous data passing through the links are measured.

Therefore, applications such as available bandwidth and load balancing of interconnects with

known capacities can be developed. As shown in Table 4.1, the details of the information

obtained through each port of each switch on the network are given.

Table 4.1 Data types that collected periodically from each port on switches

Abbreviation Description

switch-id Switch Unique Number

port-id Port Number

rx-pkts Received Packet Count

rx-bytes Received Bytes Count

rx-error Received Error Count

tx-pkts Transmitted Packet Count

tx-bytes Transmitted Bytes Count

tx-error Transmitted Error Count

The instantaneous packet and data statistics obtained through this module are used as input

from the next modules to determine the appropriate bandwidth on the links between switches

and to determine the total load on the switches.

4.2. QoS and Load Awareness Module

There are several network performance factors that can be used for traffic engineering with

QoS aware on a network. The priorities of traffic requests created by users and hosts on the

network are usually centered around QoS criteria such as latency and bandwidth. Therefore,

available bandwidth tracker and latency time tracker modules have been developed for a

QoS-aware routing. In addition, we offer as a new QoS factor, the number of hops, which is

the basis of the best effort approach, which is also included in the QoS metrics. Additionally,

in our RL-based routing approach determines routing decision based on load status of

switches to provide robust network management while meeting QoS needs of flow request.

31

For that reason, a switch load tracker module is given under this section in order to make a

load balance-aware routing according to the network load status using proposed RL-based

approach.

4.2.1. Available Bandwidth Tracker

Detecting the availability and congestion of the links in the network allows for more effective

system monitoring and traffic engineering. Balancing the data load from higher to the lower

side on network elements is a routing strategy for load balancing [16]. With the help of

the network statistics collection module, the load status on the switches and the appropriate

bandwidth of links can be measured.

The appropriate bandwidth monitoring module basically consists of two parts. The first part

periodically measures the available bandwidth of all connections on the network. Each link

between switches has symmetrical bandwidth capacity. The amount of data passing through

all ports are obtained from the network statistics module. The amount of bandwidth available

for the link is found by subtracting the amount used at time t from the default bandwidth

capacity of the link. This process is repeated for all links periodically and the available

bandwidth of the entire network is mapped which is used to feed the RL approach for the

environment status as load status of the switches. The design of the available bandwidth

tracker is presented in Figure 4.1.

The second part is responsible for calculating the available bandwidth for each of the routes

transferred from the route discovery module. Each transferred route information to this part

includes switches and its port-link details. With this information, the available bandwidth

of the links is measured using bandwidth tracking module. Since the smallest available

bandwidth of all links of the route causes a bottleneck for the route traffic, it is determined as

the available bandwidth of the route. Then, this process calculates the available bandwidth

for all incoming routes’. The working design of this part is given in the Figure 4.2.

32

Figure 4.1 Flow diagram of periodical bandwidth tracking process

4.2.2. Delay Time Tracker

Periodically obtaining the delay time of the switches and links on the network is important

for a stable and manageable QoS aware application design. It is critical for the delay-care

applications where instant communication is important (teleconferencing, online gaming,

fintech applications, IoT etc.). Therefore, a transparent latency measurement of the network

environment is required for better routing decisions can be made and to meet the QoS and

QoE demands. The delay time tracker module basically consists of two sub-parts. One of

them is periodically measures delay time of the links. It runs as a background endless job

and records the propagation delay time on the links between two switches and additionally

the transmission and processing delays of these switches. The second part of this module

performs the task of calculating the current total delay time for the routes which transferred

from the route discovery module. The proposed method for calculating the packet delay time

33

Figure 4.2 Flow diagram of available bandwidth determination process of a route

of each links with a certain time period on the network elements is shown in Figure 4.3. In

this way, the delay time between each switch-link-switch tuples on the network is kept up to

34

date.

Figure 4.3 Flow diagram of periodical delay time tracking process

In Figure 4.4, it is demonstrated how the total delay time is calculated periodically in a

topology that contains 3 switches. The method follows the procedure suggested in [62] and

is implemented via OpenFlow with Link Layer Discovery Protocol (LLDP) packets issued

by the controller [63].

35

Figure 4.4 An illustration of the delay measurement procedure in a mini topology

According to Figure 4.4, the controller c0 constructs an LLDP message with current time

and sends it to the switch that is named swB in this case. It sends this packet all ports except

from received port. swB broadcasts the packet to its neighbour switches which are named

swA and swC . They forward the received message immediately to c0 via controller-assigned

port. c0 calculates actual timestamps for each returned messages from swA as DlldpswBA
and

swC as DlldpswBC
. The time taken to go c0 to swB is accepted as half of the OpenFlow echo

request as Dechoc0B . Similarly, this procedure is estimated for taken time when the message

is forwarded from swA to the c0 as DechoswA0
. To be more descriptive, instantaneous link

delay time between swB and swA is calculated as DswBA
≃DlldpswBA

- Dechoc0B - DechoswA0
.

The second part of this module is responsible for calculating the total delay time for each

received routes from the route discoverer module. Each received route has the path and link

information between the switches. This part obtains delay times from previous part of the

module for each link on the route. This process calculates total delay time for the route an

the algorithmic flow is given in Figure 4.5.

4.2.3. Route Hop Tracker

RIP is one of the oldest distance vector routing protocols that uses hops as a routing decision

[64]. The protocol prevents routing loops by imposing a limit on the number of hops allowed

in a path from source to destination. At the Internet and local network levels, the hop

number is used in traffic engineering studies and routing is performed with the least effort.

Forwarding a flow request from the route that has the least number of switches has both

36

Figure 4.5 Flow diagram of total delay time determination process of a route

advantages and disadvantages. In normal conditions, a flow request that passes over fewer

switches is exposed to less delays during switch transitions and is likely to be transmitted

faster and with less packet loss. However, the reality may be negative for a situation where

traffic has heavy density within the same network area. Since the protocol will transmit the

new request on the shortest route regardless of the network load density, the congestion on

the switches or links cause packet losses and delays. The decision of routing according to

37

the number of hops at the center of best effort routing has advantages and disadvantages.

The hop number on the route is proposed as an QoS metric in our study to take advantage

of the power of best effort paradigm. For this reason, a route hop count tracker module has

been developed. This module calculates the total number of switches in each of the routes

which are issued by the route discoverer module. The flow diagram of the module is shown

in Figure 4.6.

Figure 4.6 Flow diagram of total hop count determination process of a route

38

4.2.4. Switch Load Tracker

Considering only the QoS demand of the flow while taking the routing decision may

cause uncontrolled load imbalances in the data layer elements, and it results in congestion

problems. Therefore, delay and data loss problems are seen in the transferred data. A switch

load tracker has been developed to establish a routing mechanism with the help of the overall

load image of the network. It obtains periodically port I/O values from network statistics

tracker and calculates data density percentages of the determined switches in the network,

then this information will be provided as an input to the RL agent as the environment state

in the next section. The load percentage of each of the switches is calculated as shown in

equation 1.

Lsw =

∑n
i=1(prx−bytes(i)))∑n
i=1(plink−cap(i)))

(1)

Lsw represents the load percentage of a switch at time t. The amount of data passing from

each port prx−bytes to the switch at time t is summed. The sum of the default data capacity

of link in bytes that are connected to the each port plink−cap is obtained. The summations are

continued around number of n ports for each switch. Then, the fraction of them gives load

percentage of the switch.

4.3. Route Selector Module

The variety of applications that generate traffic on the network requires customized routing

due to the QoS needs of the applications. In previous studies, it is seen that a routing

decision is made according to the protocol of the application or the type of request (mice

or elephant flow) [15, 52]. Prioritized applications or flow requests cause a large percentage

of usage, while less prioritized flow requests stay in the background, causing various user

dissatisfaction and QoE issues. Due to these shortcomings, a weighted QoS scoring has been

proposed. A more load-balanced and democratized network management approach is offered

with a routing approach based on the QoS score of the routes.

39

In the QoS and load awareness module, the available bandwidth, total delay time and total

hop count metrics are calculated for each candidate route with the statistics obtained from the

data layer and the route information obtained with the route discoverer modules. Using these

metrics’ weighted average sum, a QoS score is calculated to choose the most appropriate

route. Subsequently, the route with the highest score is selected for forwarding decision. In

the literature, [14, 55, 57] has similar weighted QoS approach with various methods. The

same QoS scoring method is used in the 2 routing approaches under this module.

The number of hops, available bandwidth and delay time which have different scales and

units contribute parametrically to the routing decision score. When a new flow is requested

to the controller by data layer, route discoverer module finds available bunch of routes

and forwards to the each QoS awareness modules. Each of these modules calculate their

respective values and then transfers to the QoS score calculator module. In order to evaluate

these variables in the same range and calculate a score, these are normalized according to

their own spaces with a value in between 0 and 1 using the Min-Max technique as described

in [65]. In this context, the normalized ratios of total delay time droute, available bandwidth

bwroute and hop count hroute are defined as d̂route, b̂wroute and ĥroute respectively.

d̂route =
droute −min(droute)

max(droute)−min(droute)
(2)

b̂wroute =
bwroute −min(bwroute)

max(bwroute)−min(bwroute)
(3)

ĥroute =
hroute −min(hroute)

max(hroute)−min(hroute)
(4)

QoS Score equation (5) is created as maximization formula with weighted summation of the

normalized QoS factors. Equations (2), (3) and (4) are represented by an objective function

that seeks for the maximum QoS score. Therefore, the best case for each variable occurs

when it is close to 1.

40

QoSScore = Wd × (1− d̂route) +Wh × (1− ĥroute) +Wbw × b̂wroute (5)

(2) performs its lowest ratio when there is least delay in the selected route. Therefore, it

is represented as subtracting it from 1 to reflect this in (5). Conversely, if the delay time

of the route is large, the number converges to 1. In this case, its effect on the (5) is less.

Similarly, the ideal scenario for (4) is when the number of hops are measured on the route is

the least. Since it will converge to 0 in case of at least 1 switch, it has been subtracted from 1

to make a greater effect. In (3), the ratio gets closer to 1 as the available bandwidth expandes.

Therefore, it is directly represented in (5). In the opposite case, the ratio converges to 0 that

results a lower contribution to the OoS score. Score calculation with weighted multipliers

is common in the recent literature [55–57] as we defined in our QoS Score equation in (5).

Similarly, they use weighted sum or difference method in the objective functions of their

SDN-based approaches.

As shown in (5), each QoS factor ratio is also multiplied by a weight value. The value

determination of the Wd, Wbw and Wh weights constitutes the main difference of the 2 routing

approaches proposed in this study. While the Equally QoS-aware Route Selector determines

the QoS factor weights as equally, Q-learning based Adaptive QoS and Load-aware Route

Selector, that also offers a load-aware system by assigning specific weight values via Q-table.

In Figure 4.7, an overview is given for two routing approaches. The layer-based structure is

preferred as known in SDN paradigm [4]. On the left side of the figure, equally-weighted

QoS-aware approach is shown. We offer this approach to compare our main method with

another SDN-based routing methods. The proposed Q-learning based approach is on the

right side tries to predict adaptive weights to meet QoS needs and optimal switch load

distributions. Details of these approaches are given in the following sections.

41

Figure 4.7 Comparative overview of the proposed RL-based controller (Design A) and rule-based
controller (Design B) frameworks

4.3.1. Equally QoS-aware Route Selector

In this approach, it is designed to calculate the effect of each QoS factor in the objective

function as equal. The purpose of this approach is based on the thesis that a reliable

and robust network management can be created by representing the total latency, available

bandwidth and total hop number factors with an equally weighting manner. The importance

of each factor is considered equal in each flow request, then the highest QoS scored route is

assigned as the appropriate route to the forwarding module. The predefined weight values

are shown in Table 4.2.

After each new flow request is issued to the controller, the QoS factor ratios for the

appropriate routes between the source and the destination are determined with the help of

the QoS and Load Awareness Module. Then, in this section, QoS scores are calculated with

QoS ratios and the assigned weight values for each route using eq. (5). At the end, the route

that has the highest QoS Score is selected for forwarding the flow.

42

Table 4.2 Equal predefined QoS factor weight values

QoS Factor Weight Assigned Weight Value

Wh 0.33

Wbw 0.33

Wd 0.33

4.3.2. Q-learning based Adaptive QoS and Load-aware Route Selector

Flow requests on the network have different QoS demands for their services, consequently

it requires a customized QoS. On the other hand, a QoS prioritization without considering

the load status of the switches on the route can cause congestion, delay and data loss. The

main objective of our approach is to provide the most ideal QoS for each flow, while making

an intelligent routing by considering the load balance of the forwarding devices at the same

time.

4.3.2.1. Overview In order to establish an adaptive routing mechanism with Q-learning

according to the load status of the system and the QoS needs of the flows, the framework have

to be defined in the context of computer networks. In the Q-learning approach, the current

status of the network is observed by the agent. According to the observed network load

situation, the agent tries to choose the optimal action corresponding to the current situation

from a random action or Q-table and applies it to the environment. In this context, the action

is to determine the weights for the QoS factors. Then, system calculates the QoS scores for

the appropriate routes with the provided weights obtained from the action. The route with

the highest QoS score is found and the related route is established in the data layer switches’

flow tables. This action starts the demanded flow on the data layer and the load status of

the data layer elements is changed. For the new state, the environment gives to the agent a

reward or a penalty score. This feedback updates the Q-table with the Q-function to account

for future rewards. This cycle continues by feeding itself within the system. In Figure 4.8,

our proposed routing approach is roughly illustrated in RL cycle.

43

Figure 4.8 Proposed Q-learning based routing approach on computer networks domain (adopted
from [2], and modified in networking domain)

4.3.2.2. Environment Hybrid network topologies, which are commonly used

hierarchical and mesh, have access switches and middle and core layer switches in

layers, respectively. As shown in Figure 4.9, hosts are connected to the network with access

switches and forwarding is provided by middle and core layer switches mainly to which

access switches are connected.

Middle and core layer switches undertake the main forwarding task and data load of the

network. In RL context, data layer elements are defined as the environment in order to

create a network management that pay attention to the load balance by obtaining the load

status on the switches. The network topology communicates with the system bidirectionally

and provides this communication with OpenFlow. This protocol makes possible to achieve

instantaneous status of the network elements to the control layer, while issuing new flow

actions from control layer.

4.3.2.3. State Q-learning is the algorithm that tries to apply the most ideal action

according to the state of the environment. Network Statistic Tracker obtains periodic

information from the network environment, and the Switch Load Tracker determines the

percent load of the switches Lsw using (1). In order to narrow the load status space of the

switches in the network environment, the load percentages between 0 and 100 are defined in

44

Figure 4.9 An illustration of mesh-hierarchical topology definition as Data Layer with OpenFlow
messages (taken from [6])

4 quarters. Switches whose load percentage is calculated are assigned to one of four different

positions as LPsw with the help of Table 4.3.

Table 4.3 Conversion table of continuous load percentage to the discrete position for switches

Discrete Switch Load Positions LPsw Actual Lsw Ranges

0 0% - 25%

1 25% - 50%

2 50% - 75%

3 75% - 100%

Using the Table 4.3, switches whose load state is measured in continuous range are

represented discretely. In this way, the Q-learning search space is narrowed. Each switch

can be in one of four different load state at any given time. For a simplified Q-learning

45

implementation, it is necessary to determine the total number of discrete states in which the

network environment can expose. Thus, the network state at any moment can be represented

by si. In order to achieve this, the exponential product of total number of selected switches

M with the total number of positions p gives the total number of discrete states as S of the

system. Additionally, the S value is used to define Q-table for representing the each unique

system state.

S = pM (6)

Eq. (6) gives the total number of discrete load states of the network environment. All the

load combinations the system can fall within this amount of variation, and the system is in a

state in this range at any given time.

st =
M∑
j=1

LPswj
× p(M−j) (7)

To find actual state st of the network environment at time t, eq. (7) is used. The load status

tracked switches are located in a position between 0 and 3. Then eq. (7) is used to express all

positions of the network environment with a single state number st. This formula is used both

to determine the action at production phase or to update the Q-table when training phase.

4.3.2.4. Action Q-learning selects the most appropriate action from an action set A to

balance the system against actual load status of switches . The predicted action a consists

of Wh, Wbw and Wd. Since the eq. (5) is a weighted sum of QoS ratios, the summation of

the action weights have to be 1. Additionally, the continuous search space of weight values

is narrowed by defining these on a discrete range. For this purpose, Table 4.4 is defined to

make action selection. Each ai is a triple combination of the weights of the QoS factors. We

created 21 different actions by representing the coefficients that can take values between 0

and 1 in multiples of 0.2.

46

Table 4.4 Action numbers and their weight equivalents in discrete range

Action Numbers (Wh, Wbw, Wd)

0 (0.0, 0.0, 1.0)

1 (0.0, 0.2, 0.8)

2 (0.0, 0.4, 0.6)

3 (0.0, 0.6, 0.4)

4 (0.0, 0.8, 0.2)

5 (0.0 1.0, 0.0)

6 (0.2, 0.0, 0.8)

7 (0.2, 0.2, 0.6)

8 (0.2, 0.4, 0.4)

9 (0.2, 0.6, 0.2)

10 (0.2, 0.8, 0.0)

11 (0.4, 0.0, 0.6)

12 (0.4, 0.2, 0.4)

13 (0.4, 0.4, 0.2)

14 (0.4, 0.6, 0.0)

15 (0.6, 0.0, 0.4)

16 (0.6, 0.2, 0.2)

17 (0.6, 0.4, 0.0)

18 (0.8, 0.0, 0.2)

19 (0.8, 0.2, 0.0)

20 (1.0, 0.0, 0.0)

RL agent chooses an action either randomly or using Q-table which consist all states of the

system and their Q-values for any action in training phase. When the agent chooses an action

from Q-table, it selects the highest Q-value for the network state to pass appropriate action

to the system.

4.3.2.5. Reward The controller makes changes on the load positions of the switches after

flow routing. An unbalanced increase of load positions on switches can result in congestion,

packet delay, and packet loss. For this reason, a mechanism that rewards the approach that

equally distributes the load passing over the switches at any given moment is ideal. The

reward function we propose provides a reward that is inversely proportional to the size of

the load situation. This encourages the lower load positions for each switch and imposes a

penalty in the case of a higher load. On the other hand, situations may occur where more

than half of the switches exceed a certain load density level when exposed to heavy traffic

47

in network elements. In such peak times, a decreased penalty system has been designed to

provide stability . The proposed reward algorithm is shown in Algorithm 2.

Algorithm 2 Reward Algorithm

Require: P is a HashMap that contain switch-load position pairs as (swi, pi)
Require: M is the total number of selected switches

ZeroPosSwCount← Counter(pi = 0 ∈ P). ▷ Counter counts the HashMap values
OnePosSwCount← Counter(pi = 1 ∈ P)
TwoPosSwCount← Counter(pi = 2 ∈ P)
ThreePosSwCount← Counter(pi = 3 ∈ P)
if TwoPosSwCount + ThreePosSwCount = 0 then

R← 2.5× ZeroPosSwCount+ 1.5×OnePosSwCount
else

if (TwoPosSwCount+ ThreePosSwCount) ≥M/2 then
R← −(2.5× ZeroPosSwCount+ 1.5×OnePosSwCount)

else
R← −(2.5× ThreePosSwCount+ 1.5× TwoPosSwCount)

The reward algorithm has a mechanism that decreases the penalty as the load rate of the

switches increase, in cases where more than half of the switches in the network environment

are at 2 and 3 load positions. In the other case, it has a motivation that rewards the RL agent

more for the less load status. This approach encourages the RL agent to form a network

environment that is in a load balanced status in any time.

4.3.2.6. The Optimal Policy Our proposed policy is designed to maximize the reward in

the Q-learning routing process. In this way, while choosing the action a, RL agent learns

the routing with a high QoS score (lower hop count, higher bandwidth, and lower delay) for

flow requests and to balance the system. In the training phase episodes RL agent converges

to the optimal Q-function by trying all action-state pairs in (8). Episode refers to the flow in

networking domain. In training phase, many flows are generated in a traffic scenario, and

pushed to the algorithm to obtain a well-trained Q-table at the end of the training. It updates

the Q-values in the Q-table. It determines the action that balances the load distribution of

the system and provides the highest QoS for the flow requests. The Q-value in the Q-table is

48

used to find the best action. The Q-value is a measure of the overall expected reward when

the RL agent is in the st and performs the at at time t.

Q-table is a matrix within the scope of the RL approach which contains Q-values for all

action-state pairs for the environment. In a well-trained Q-table, the a with the greatest

Q-value for each s represents the best a that can be taken in that system s.

Figure 4.10 Q-table visualization that shows Q-values by index of actions and states

The illustration of the Q-table is shown in below Figure 6.2. Each row represents a network

state s, and on the other hand, each column represents an action a ∈ A. Since the number of

all load states of the system is S, it is equal to the total number of rows. The total number of

columns is equals to 21 which is the number of combinations of weight factors A as shown

in Table 4.4.

Qt+1(st, at) = (1− lr)×Qt(st, at) + lr × [Rt + γ ×maxa(Qt(st+1, a))−Qt(st, at)] (8)

The RL agent updates the Q-values in the Q-table with eq. (8) in order to obtain the most

optimal Q-table during the training phase. In the equation, lr is the learning rate that the

algorithm have to make in each iteration and have to be in the [0,1] and it determines the

49

weight of newly acquired knowledge compared to the previous one. γ is the discount factor

used to balance the immediate and future rewards. Rt is the reward that acquired for the at

at time t. These hyperparameters are used to tune the converging speed of the algorithm.

The terms between square brackets show the updated value that is the difference between the

current estimate of the optimal Q-function Qt(st, at) and new discounted estimate. The new

Qt+1(st, at) depends on the Qt(st, at), st, at, Rt, st+1.

4.3.2.7. Exploration and Exploitation Technique In the training phase, Q-learning

offers two ways to determine the best action for the acquired system state. There is a balance

between choosing the optimal expected action (exploitation) and choosing a random action

(exploration) in the hope that it can bring a greater reward in the future. At this point, an

ϵ-greedy method with linear decay value ld for exploration and exploitation is defined as in

eq. (9) The logic of ld is defined in Alg. 3. In each episode on training, the agent explores

if the random value is greater then ϵ else exploits. ld is defined to make the algorithm more

exploit-oriented after each episodes. The ld is calculated as difference of the highest and

lowest epsilon values is divided by the total number of episodes. Then each episode, it is

subtracted from the ϵ as shown in below.

at =

maxa(Qt(st+1, a)) if x < ϵ− ld

random(A) otherwise

(9)

4.3.2.8. Training the Q-learning model This section discusses the training procedure of

RL for obtaining the Q-table to be used in the routing process. Before the tests we run in

this thesis, it was aimed to develop a model that balances the load of the network elements

and provide optimal QoS for each flow by training the proposed model for various network

scenarios.

The routing algorithm in Alg. 3 implements the learning process for our RL-based approach

to achieve a well-trained Q-table. In recent work [55], a similar Q-learning training procedure

50

Algorithm 3 Q-learning Training Algorithm

Require: lr is learning rate
Require: γ is discount factor
Require: EpisodeCount is the total number of flows
Require: ϵ is the exploration and exploitation parameter
Require: ϵmin is the lowest value of the ϵ
Require: F is an array that contains as f (src-ip, dst-ip) pair of flow requests
Ensure: lenght(F) = EpisodeCount

ld← (ϵ− ϵmin)/EpisodeCount ▷ ld is the linear decay value
Initialize Q-table as 0-matrix with shape of (S,A),∀s ∈ S,∀a ∈ A
while F ̸= ∅ do

f ← F.top() ▷ f is the first (src-ip, dst-ip) pair of the F and it is popped
acquire st using Eq. 7
ϵ← ϵ− ld. ▷ linear decay is implemented
select at for st with policy derived using Eq. 9
get available routes on the f using the Sec. 4.1.
get QoS metrics (ĥroute, d̂route, b̂wroute) using the Sec. 4.2.
while routes ̸= ∅ do

QoSScore← with QoS metrics and at as (Wh, Wd, Wbw) using Eq. 5
QoSScores.append(QoSScore)
routes.pop(0)

select route that has maximum the QoSScore
update the flow tables of related switches for the route using Sec. 4.4.
acquire st+1 using Eq. 7
get Rt+1 for st+1 using Alg. 2
update Q-table for Qt+1(st, at) value using Eq. 8

store the trained Q-table to use in test scenarios

is used. Their routing algorithm implements the learning process used to find the best paths

for all the pairs of nodes on the data plane. But our design in our Alg. 3, we store Q-values in

the Q-table which are determined by the according to the network load status. When we go

back to the algorithm, in learning process, the algorithm receives lr, γ, ϵ parameters to utilize

in Q-function. Also, ϵmin is provided to calculate ld values for decaying ϵ in each iteration.

In training phase, we provide some large scale traffic scenarios to enable a comprehensive

learning for traffic patterns with array of flows as F .

The objective of the learning process is the gathering best Q-table to make it possible QoS

and load-aware routing in production. At the beginning a Q-table is initialized with the

shape as (S,A). When each flow is requested in a loop, RL-agent acquires the actual st of

51

the environment using eq. (7). To define an action, algorithm generates a random number

between [0,1] and selects an at according to the exploration and exploitation policy in eq.

(9). Further, available routes are found using the Sec. 4.1. modules, and then QoSScore

is calculated for each route with eq. (7) to identify most ideal route. Later on, controller

initializes the route on the flow tables of the switches and acquires st+1 to obtain new load

status of the network environment. At this point, the reward or penalty is obtained for the

new state from the reward algorithm in eq. 2. Subsequently, the Q-table is updated with eq.

(8), which takes into account the new state of the system and the discounted maximum value

for the future state. In this way, the Q-table is updated with each new flow request and the

action set that performs the load balancing for the overall environment.

After all, RL-agent completes the training procedure and achieves the updated Q-table. The

resulting Q-table has the ideal state-action pairs to provides best QoS weights that makes the

system more load-balanced and QoS-assigned for each flow requests.

4.4. Flow Starter Module

After selecting the best route using one of the Section 4.3. routing methods, this module

updates the data layer elements. It makes this by updating the network switch’s flow tables

which exists in the route path. The flow tables are updated on the flow tables of the

switches with the OpenFlow messages that contain the forwarding information according

to the selected route. In this way, the controller completes the flow initialization process for

a flow request.

52

5. EXPERIMENTS AND RESULTS

In this section, we discussed the preparation processes of our experiments and then we

analysed the obtained test results. Firstly, the simulation environment is described for the

networking tests in Section 5.1. Flow generation in the network environment and the traffic

scenarios for the tests are detailed in Section 5.2. and 5.3. respectively. Before starting

the tests, performance metrics are introduced in Section 5.4. Subsequently, the tuning

methodology for the selection of learning parameters of proposed RL-based approach is

examined in Section 5.5. Finally, the results and analyses we have obtained from our tests

are discussed in Section 5.6.

5.1. Test Environment

The network topology preference of this study is similar to the well-used CAN topology that

belongs to a defense industry company that is located in a large area campus. Because of the

modular structure and easy expandability, hierarchical and meshed hybrid network topology

is frequently preferred in CAN design [6].

Figure 5.1 An illustration of the hierarchical and mesh topology design for the simulations

53

As seen in Figure 5.1, the core switch at the center of the topology, the distribution switches

are at the middle level, and the access switches are located in the bottom level as an

hierarchical approach. Also, the distribution and core levels are structured as mesh-like.

Access switches are linked to any hosts which can be either client or server or both. The

actual routing process of data traffic takes place at the distribution and core layers (see Figure

4.9).

The topology which is designed in the Mininet [66] environment consists of a total of 52

hosts and 21 switches. In addition, there are a total of 24 links between the switches. To more

effectively test the capabilities of the routing approaches according to meet load balancing

and QoS requirements throughout the tests, the bandwidth capacity of all links is defined as

20 Mbps and the link transmission delay is 1ms as default. Next, real-world IoT devices,

manufacturing devices and user devices are simulated by connecting 3 or 4 clients to each

switch. (See Appendix A)

In the tests we used traditional STP approach, the controller only collects data from the

data layer via OpenFlow for analysis and switches perform routing and forwarding tasks

themselves in accordance with TCP/IP. The switches are defined as OpenvSwitch and can

operate as a traditional L3 switches in the STP approach. On the other hand, proposed

SDN-based approaches perform routing task only on the controller.

5.2. Flow Generation

The network packet generator tool iperf3 [67] is used to generate network traffic between

pair of nodes for our Mininet-based network topology. iperf3 allows to create UDP and

TCP flows between client and server via simple scripts. It also make possible to tune of

various flow parameters such as number of bytes or packets to transmit, time length of test,

UDP bandwidth in seconds. Also, iperf3 creates a report file for each flow generation and

updates it for transmitted throughput, bandwidth rate, loss rate, delay and jitter in defined

time interval as real time. We use these logs in the 4.1.2. to track network statistics and

generate test results (See Appendix B).

54

5.3. Test Scenarios

In order to perform tests as close to reality as possible, we offer three different traffic

scenarios consisting of elephant and mouse flows. When real internet traffic is observed, the

minimum 60-80 percent of the traffic density consists of elephant flows. There are various

definitions that commonly categorize flows as elephant and mice [68, 69]. In this study, flows

which have greater than a certain size are defined as elephant, as stated in [70]. Remainders

which are smaller than a certain size are defined as mice. Also, [70, 71] observed a high

correlation between flow size and flow. For these reasons, in our study, in order to define a

traffic consisting of elephant and mice flows, these are defined according to the flow rate and

flow size pair. The flow rate and flow size selection sets are illustrated in Table 5.1

Table 5.1 Predefined flow size and rate sets for mice and elephant flows

Parameters Settings

Flow sizes for elephant flows (in MB) from 20 to 90, increasing by 5

Flow rates for elephant flows (in Kbps) from 4096 to 14336, increasing by 2048

Flow sizes for mice flows (in MB) from 1 to 10, increasing by 1

Flow rates for mice flows (in Kbps) from 1280 to 3072, increasing by 256

In scenario installation, the flow queue for mouse and elephant flows is created by random

sorting. After that, flow arriving times are generated with the help of Poisson distribution.

Then, when the time arrives for any flow, two hosts are randomly selected from the

network environment and a (flowSize, flowRate) pair is selected according to the flow

type using Table 5.1. Subsequently, the flow is initialized via iperf3 using information

(SrcIP,DstIP, SrcPort,DstPort, f lowSize, flowRate). In order to test each method

used in the tests with the same scenario setup, each scenario is fixed with the seed factor (See

Appendix A).

Three different scenarios have been defined to be tested within a certain period of time and

same topology as detailed in 5.1. The percentage of flow types are diversified to change

55

network intensity. Since the starting time of the flows is independent of each other, the

Poisson distribution is preferred [15]. Details of the test scenarios are given in Figure 5.2.

Table 5.2 Suggested traffic scenarios for tests

Characteristics Scenario 1 Scenario 2 Scenario 3

Number of flows 100 200 300

Number of mice flows 30 70 105

Number of elephant flows 70 130 195

Elephant flow ratio %30 %35 %35

Flow arriving time range with Poisson dist. (λ) sec. 8 6 4

We have developed and run all test in Ubuntu 20.04 (64-bit) Virtual Machine. The device

configuration is 16GB RAM and 4 cores that are powered by Intel i5-10gen. Python version

3 and its libraries are preferred for development. Ryu controller with OpenFlow protocol is

used to design the control layer and implement all APIs between data and application layer.

5.4. Performance Criteria

In the previous researches that we analysed and are given in Table 3.1, flow delay time,

packet loss, jitter, throughput rate are used to measure the provided QoS performance for the

flows. To provide same evaluation ground, we measure them in our tests. In addition to these

QoS performance metrics, we compared the flow completion times for each approach. This

gives an idea of the appropriate bandwidth choices of the routing methods. Additionally, we

compared the total loads passing through the switches with cumulative intervals to measure

the effects of the methods on the system load balance. Also, mean received packet per second

is calculated for each approach.

To measure the delay, loss, jitter, bandwidth and packet per second of each flow, we use

iperf3 flow reports. When a flow initialized as determined in 5.3., iperf3 creates a log file

and updates it in given time of interval. To measure more precise performance results of

each method, we prefer 1-second update period for any flow. The log document is prepared

56

as a listener on the destination host that namely server side. In each second, the amount

of transferred data to the host, throughput rate, jitter, number of packets and losses, latency

time are recorded. After the each test is done, the data in these reports are collected within

themselves and the result graphs are obtained (See Appendix B).

Additionally, we measure the flow duration times to compare routing performance of tested

methods. Because, route selections with higher available bandwidth are expected to complete

the flow in less time. It is calculated using the flow log reports. Lastly, we propose a

load balance comparison schema while providing time-based switch load monitor. With

OpenFlow, we monitor the total amount of load passing over the switches at certain intervals

of the test and in the end of the test.

5.5. Tuning the proposed RL-based Approach

ML algorithms require a training phase to achieve the desired level of optimized model based

on data. The training data that is used in training phase can be either static or dynamic style

which is streamed via simulators. The aim of training phase is to obtain the best model that

solves the studied problem. In order to achieve this, various hyperparameters are used within

the scope of the mathematics of the ML algorithm that is used. These hyperparameters are

tuned on a performance criterion and time axis within the specified value range. The tuning

procedure can be based on a searching randomly or in an algorithmic way [72]. In any case,

the aim is to find the best values of the tested hyperparameters that converge fast and provides

the highest performance. Within the scope of this study, lr and γ are the most effective

hyperparameters on performance of the Q-learning algorithm are tuned and examined under

different values to achieve the optimal model. Each tuning test is executed up to 5000 flows

under same traffic settings. The ϵ value is decreased in between 0.75 and 0.1 range for each

trial with a linear decay rate ld according to the total number of episodes to reflect the impact

of exploration and exploitation. Therefore, the epsilon value is reduced by 0.00013 in each

episode. The flows are ordered in a queue as randomly and flows are initialized in an arrival

time row with Poisson distribution. The properties in the Table 5.1 are used to initialize

57

each flows and the traffic is created The proportion of flow types are defined 1000 and 4000

for elephant and mice flows respectively. After the whole training and tuning procedure,

obtained Q-table is integrated to the test phase to use in the test scenarios and analysis (see

the Algorithm 3).

Reward-oriented RL model optimization in networking concepts is preferred previous works

[56, 58] in this context. To examine converging performances of each trial, we compare

the models according to the exponential moving average (EMA) of the rewards. Unlike the

simple moving average or using only the reward value, EMA considers defined previous

range of rewards of the episodes and gives more weighting or importance to recent observed

data. Thus, while making more timely analysis, short-term fluctuations are reduced and the

hyperparameters selection process is made with a weighted long-term trend analysis.

As seen in Figure 5.2, 5.3, 5.4 and 5.5, we construct a grid search in between γ and

lr parameters. In total, 16 tuning tests are executed and each test simulation is run

approximately 9 hours. In order to obtain best converged RL model, 4 different γ and lr

values for each of them are tested. The tests are analysed as above by keeping the γ value

constant and comparing it with a range of lr choices.

When we examine all figures, it is seen that when the γ decreases from 0.9 to 0.1, the

amount of exponential rewards obtained by the tests in general increases. In figures 6.7

and 6.9, the γ choices of 0.3 and 0.9 and different lr selections did not cause much change

on the tests which seem to follow similar patterns. In Figure 6.8, the lowest lr is very

ineffective, on the other hand, other selections performing similarly. In Figure 6.6, it

is observed that the test with the smallest selections in both parameters exhibits the best

performance. Choosing the low valued γ and lr is interpreted as keeping the current status

dominant and reducing the impact of future rewards while updating the Q-table (See the

eq. 8). Considering the traffic on the network, short-term but effective action choices are

made by RL agent to reduce the impact of instantaneous big changes (such as elephant flows

with high bandwidth requirements) in order to keep the system in balance. According to the

results, best parameters for RL model are 0.1 and 0.1 for γ and lr. With this selection, EMA

58

Figure 5.2 EMA of R for different lr, γ = 0.1 Figure 5.3 EMA of R for different lr, γ = 0.3

Figure 5.4 EMA of R for different lr, γ = 0.6 Figure 5.5 EMA of R for different lr, γ = 0.9

of reward is performed over any other test in the long run and we have saved its Q-table to

use in the scenario tests as our proposed RL approach.

In order to evaluate the accuracy of the selected model as a result of fine tuning, additional

analyses are made with the sliding window method using the cumulative moving average

(CMA) of the reward (See Appendix C).

5.6. Results and Analysis

In this part, QoS and load balance performance tests are simulated under three network

traffic scenarios for three different routing approaches. Traditional STP, Equally QoS-aware

59

Route Selector and Q-learning based Adaptive QoS and Load-aware Route Selector methods

are determined as routing methods. Each routing method is simulated separately under

3 different traffic intensity described in 5.3. At the end of each scenario simulation, the

methods are analysed for 7 different performance criteria which are detailed in 5.4. These

performance criteria are analysed for QoS requirements of mean latency, total packet loss,

mean jitter, mean bandwidth usage and mean number of packets per second analysis.

Additionally, randomly selected flows are compared for each method according to their total

duration times. At the end, the load distribution on the switches has been analysed in order to

examine the network load allocation in the predefined network environment detailed in 5.1.

5.6.1. Bandwidth provisioning capacity

In bandwidth test, we have used iperf3 flow reports to obtain mean received number of bits

per second for each flow. Later on, the average bandwidth values of each flow which run

under each scenario are summed and divided by the total number of flows that belong to the

scenario. In this way, the capacity of routing methods to provide average bandwidth per flow

is found for each scenario.

Figure 5.6 Bandwidth provisioning capacities of the routing approaches

60

In Figure 5.6, the average bandwidth provisioning capacities of the routing algorithms for

each scenario are evaluated. In all tests, all methods transmitted over 4 Mbps of data to the

target devices. The proposed RL-based routing approach provided approximately 4.5 Mbps

of bandwidth in Scenario 1 and Scenario 3 and used system resources more efficiently than

other methods. In Scenario 2, our method has almost equal service providing result with the

equally weighted QoS routing approach.

5.6.2. Average delay time

In this test, the average delay time in milliseconds per flow of each scenario is analysed.

iperf3 flow report provides average delay time for each flow at the end of the each flow. To

obtain an average delay time for all the tests which are run around each scenario, we summed

up the all average delay times and divided to the total number of flows.

Figure 5.7 Average delay time results of routing algorithms according to scenarios

The programmability effect of the SDN-based approaches in latency management is directly

seen in Figure 5.7. The routing choices of STP from fixed routes by blocking some switches

while routing caused high delays. Our proposed routing approach performed effectively in

Scenario 1 and Scenario 3, but remained around 30 ms in Scenario 2.

61

5.6.3. Average jitter time

This test handle the average jitter time for flows for each scenarios. The iperf3 tool reports

the occurred jitter in a second period for each flow. We found the total jitter time for each

flow and divided by the duration of it to find and average jitter time per flow. Afterwards,

this process is averaged for all flows within the scope of the scenario.

Figure 5.8 Average jitter time results of routing algorithms according to scenarios

It is an important point that the jitter performance of smart routing methods is better than

traditional methods. Because, while writing to the switches’ tables by control unit in SDN,

network state information is transmitted to the control layer simultaneously. In the situation,

a poorly designed algorithmic approach can bring additional delay and standard deviation of

the delay. However, the proposed RL-based routing approach performed jitter below 0.6 ms

on average in all tests, while it is slightly behind the other method only in Scenario 3.

5.6.4. Total packet loss

This analysis gives information about the number of packets dropped due to the route

preferences of the tested routing methods that are run on the scenarios. The total number

62

of dropped packets for all flows are summed under the scenarios and compared with respect

to routing methods.

Figure 5.9 Total packet loss results of routing algorithms according to scenarios

RL is a ML approach that seek the best solution space when it focuses to the long-term

rewards. In this context, it is important that the proposed approach kept packet loss to

a minimum in Scenario 1, which is a relatively short-term test as seen in Figure 5.9.

Additionally, our model remained below for packet loss under the 55000 in total in Scenario

3 which is the longest test scenario than others. When the trends of packet loss results of the

methods are examined, our approach has a decreasing packet loss rate.

5.6.5. Average received packet per second

Average received packet per second analysis is another performance measure metric of the

QoS. The higher this value is within the scope of the capacity of the network components, the

better the system capacity utilization. The average amount of packets transferred per second

for each flow is added up and divided by the total number of flows. In this way, a knowledge

about the instant packet transfer capacity of each routing method is obtained.

63

Figure 5.10 Average received packet per second results of routing algorithms according to scenarios

The average number of received packets gives important clues for network capacity

utilization. It is normal for each of the routing methods to be close at this point, as the routing

operations are done somehow. While all of the methods successfully transmitted around 340

or more packets in average to the target hosts, our approach had the best performance in

Scenario 1 and Scenario 3, but equal performance in Scenario 2 as seen in Figure 5.10

5.6.6. Flow duration

Flow time analysis aims to observe the provided bandwidth by the tested routing methods

for selected flows. Since the traffic generated in the scenarios is exactly the same, the

starting times of the examined flows are same, but the ending times may vary according

to the provided bandwidth capacity of the methods.

In this section, flow time analysis has been calculated for each scenario. The total duration

of the randomly selected flows from each test is examined in terms of routing methods. The

randomly selected flows for analysis within the scenarios are exactly the same setup for each

routing method.

64

Figure 5.11 Flow duration analysis for Scenario 1

As seen in Figure 5.11, eight flows are randomly selected under Scenario 1. The lines parallel

to the y-axis of the graphs give the duration time of each routing technique for the relevant

flow. When examined in this context, the routing method we propose is always completed in

a shorter time, especially in long-term flows.

When the results obtained in Figure 5.12 are examined, a total of 11 randomly selected

flows are discussed. STP method is worst, especially in long-term flows, when our proposed

method completed the flows in shorter times compared to the equally weighted QoS method.

In Figure 5.13, we examined the duration time of randomly selected 15 flows in total, which

are obtained through Scenario 3. As seen in figure, this scenario has a longer and more

intense traffic than the other tests, however our approach seems to perform much shorter

times, especially in elephant-like flows.

65

Figure 5.12 Flow duration analysis for Scenario 2

Figure 5.13 Flow duration analysis for Scenario 3

66

5.6.7. System load balance

System load balance test examines the cumulative load passing over network devices at

certain time intervals. Many QoS issues on the network occur in the form of unbalanced

use of network resources and then packets delays and drops. The transferred data through

five switches on the distribution and core layers which are defined in the predefined topology

is examined in the time axis for each routing approach.

The analyses is ordered as our proposed routing method, equally-weighted QoS routing

method and STP method. Because of the intense and longer traffic characteristics, Scenario

3 is studied in the load balance analysis on the switches. In the Scenario 3 test, which is 1650

seconds in total, the cumulative amount of data passing through the relevant switches every

550 seconds is recorded. In this way, the usage intensities of the switches are analysed both

in the intermediate times and in the long run.

Figure 5.14 Cumulative received data amount on core and distribution switches for our proposed
routing method

In Figure 5.14, the cumulative load distribution graph of our proposed routing method is

shown in three discrete time periods. Except for Switch 1, the amount of cumulative data

passing through other switches is close. In particular, it is expected that the an RL gives

67

better results in a longer period. However, when Figure 5.15 and Figure 5.16 are examined,

the amount of data forwarded using Switch 1 is greater in our recommended method than

other methods.

Figure 5.15 Cumulative received data amount on core and distribution switches for equally weighted
QoS routing method

In Figure 5.15, when the loads passing through the switches in the time axis are examined,

it can be said that a load balance is exist except Switch 1. However, a equally weighted QoS

routing logic for QoS factors caused a load sharing bias between Switches 3-5 and Switches

2-4. When the reason for this situation is examined, it is seen that 27 hosts are connected to

Switch 2-4 in the distribution layer and 25 hosts are connected to Switch 1-5 in total (See

Figure 5.1). Thus this method, instead of distributing the data load to other switches, it has

made a simple routing.

Due to the algorithm of the STP method, some switches are blocked to prevent loops and

it causes in making load balancing efforts difficult. As seen in Figure 5.16, the effect of

this blocking and free paths is noticeable on the switches negatively even in different time

periods.

68

Figure 5.16 Cumulative received data amount on core and distribution switches for STP routing
method

Table 5.3 Statistical evaluation of loads on the time intervals for each routing methods

Routing Methods

Time Period 1(550. sec) Time Period 2(1100. sec) Time Period 3(1650. sec)

SD Min-Max Diff. Median SD Min-Max Diff. Median SD Min-Max Diff. Median

SDN RL-based QoS 147 365 658 436.9 1156 1713 612.7 1477 2899

SDN Equally-weighted 192 456 756 542 1360 1513 789.2 1941 2686

Traditional STP 213 540 624 757.7 1852 1383 1164.1 2961 2404

In Table 5.3, the time period-based standard deviations of the loads passed on the switches

are found. Based on the fact that the smallest deviation value describes the closeness of the

variables to each other, our proposed approach obtained the smallest deviation values in all

time intervals. Also, to additional information about the data load ranges, the difference

of maximum and minimum loads and median values are provided for each time period.

According to the table, our method has the minimum standard deviation results for all time

periods. Additionally, the minimum ranges on the difference of minimum and maximum

load values are achieved in the proposed routing method.

When we evaluate our intelligent routing approach and other SDN-based and traditional STP

69

methods, our proposal showed its advantages in various aspects in all analyses. Applying

the load balancing for network sustainability and QoS requirements at the same time require

being good at many performance metrics. For this reason, our method achieves effective

results in all of them but it is open to development getting better results.

70

6. CONCLUSION

Today, the increase in the amount of data produced day by day and the variety of devices that

generate the data is a warning for the network infrastructures. It is insufficient to manage

computer networks, which are an extremely dynamic and variable environment, only by

simple routing techniques such as best-effort. A network management that is unaware of

the load status of the network and a neglected QoS needs of the flows dissatisfies the users

and reveals various system problems. In this context, load balancing and QoS are among the

most important topics of computer networks in terms of both QoE and sustainable usage of

the network system resources. These issues have been studied for a long time with traditional

routing methods and new generation programmable and centralized management approaches

such as SDN [31–35].While some of these studies focus on these issues separately [16, 44],

and some of them focus on both simultaneously with inserting one of the QoS factors [15,

57].

Egilmez et al. [13] try to optimize the QoS requirements of multimedia flows and provide

a flow classification method. After classification, multimedia flows are routed through

QoS-guaranteed routes, while other flows are routed using a traditional method. In another

flow classification method [14], flows are routed through bandwidth-guaranteed routes or

multiple routes according to their type. Kosugiyama et al. [17] proposed a flow aggregation

based routing approach to reduce end-to-end latency. Flow classification-centered studies put

lowered QoS priority flows into the second plan. On the other hand, techniques that assign

guaranteed routes for elephant flows can get congestion in a biased flow trend. Classifying

the flows and sending them from certain routes or routing them in a aggregated way pose a

threat to the load balancing of the network elements.

Shi et al. [15] suggest different routing policies for elephant and mouse flows. Nkosi et

al. [16] propose routing to the new incoming flow requests from the route with the least

occupancy rate. Network traffic has a dynamic structure. Therefore, routing according to

the flow type as in the proposed studies or routing the flow on most appropriate available

71

bandwidth encounter problems in an excessively biased flow traffic. In addition, since only

caring bandwidth is considered among the QoS factors, other factors such as latency and

packet loss can not meet the requirements.

When the existing studies are examined, we have not come across any study that considers

load balancing and QoS demands for the data layer at the same time, to the best of our

knowledge. For this purpose, the first of our research questions is to develop a method that

considers these two important concepts at the same time. In order to develop such a method,

a structure that monitors both the load status of the data layer devices and the QoS factors

is required. Considering the dynamic and variable nature of the network environment, there

is a need for a method that can work well and fast in stochastic situations. In the work [44],

which makes a weighted QoS calculation to make the most ideal routing, requires a long

computation time for the simulated annealing method to give good results. In another ML

supported work [49] clustering techniques have been used to find the most appropriate route,

but the selected clustering methods cannot work successfully in large search spaces such as

network environment. In this context, RL was preferred in our study as a technique that can

take adaptive routing decisions in a dynamic network environment and does not have much

computational load.

This study proposes an intelligent and effective routing method using the SDN paradigm. A

Q-learning based load balancing and QoS-aware SDN approach uses RL to learn the network

environment variables and determines optimal routes even at various traffic densities.

Proposed approach tries to balance the data load passing through the network devices

for the sustainability of the network environment and for each client to achieve sufficient

QoS. It performs adaptive responding with Q-learning to provide more effective QoS in

a democratized load distribution on the network environment simultaneously. The load

balancing is performed by creating incoming routing requests with the most accurate QoS

weights. The proposed approach periodically monitors the total delay, available bandwidth,

and the total hop count of each flow request. When a flow request arrives to the controller,

the QoS scores of the all suitable routes are calculated with the ideal weights for ranking and

the highest scored route is selected for routing and then the routing is executed.

72

Proposed SDN controller design is compared with an equally weighted OoS-aware SDN

routing approach and a traditional STP routing method. 3 different network scenarios are

generated to evaluate routing methods’ performances according to the QoS and load-balance

requirements. Traffic scenarios are created with varying numbers of flows and generating

flows at shorter intervals. All methods are evaluated in terms of latency, jitter, packet loss,

number of packets per second and bandwidth capacity, which are critical for QoS requests.

Additionally, we select randomly some of the flows and their total durations are compared

for routing methods under different scenarios to obtain some insights about ability of QoS

provision of each method. In order to measure the load balancing performance of the

methods, cumulative load distribution of the switches are evaluated in short and long time

periods.

All of the tests are taken under 3 different scenarios, our study achieved a a relatively better

result in most of the experiments. In the bandwidth provisioning capacity test, we compared

how much data the routing approaches transferred on average per second across the traffic

scenarios. This test also gives insight about how efficiently the network environment is used.

Our proposed approach performed a data transfer over 4 Mbps in all tests, and achieved best

performance in the first and last scenarios. In scenario 2, we obtain almost equal bandwidth

providing result with the Equally-weighted QoS routing approach. In average delay time per

flow test is inquired across routing methods. Our method results happened around 25 ms

delay per flow on Scenario 1 and 3 as best performances. Only in the second test scenario

there was a small increase in result and took the second place. The jitter is an important QoS

factor for some applications. SDN-based routing approaches bring an additional data transfer

overhead on the network. When the instantaneous state of the network is obtained from the

data layer, communication with application layer takes place simultaneously. In such a case,

a poorly designed control layer causes congestion problems such as delay and jitter can occur

in the routing tasks. Our approach produced significantly lower average jitter in the first two

scenarios. It also outperformed traditional STP, staying under 0.6 ms in all scenarios. Packet

loss is a QoS factor that have to be considered especially for flow requests that need to be

routed with the UDP. The minimum packet loss is preferred for a desired QoE. It is also

73

an indication of the load-balanced use of the network environment by avoiding congestion

issues. Unlike other routing methods, the proposed routing technique has resulted in packet

loss with a decreasing acceleration in the long run. As it is known, RL tends to choose the

best actions by focusing on the long-term reward. In the first and last scenarios, it achieved

around 22000 and 54000 packets in total packet loss, respectively. Average received packet

per second test is suggested as a way of examining the average bandwidth provisioning test in

packet size. The proposed method completed the test results in the first place, except for the

Scenario 2. Parallel to the intensity of the scenarios, the average number of instantaneously

transmitted packets follows an increasing trend. The total duration of a flow that is routed

from source to destination nodes gives information about the choice of bandwidth of the

selected route. In this context, the duration time of some randomly selected flows from each

scenario were tested. In the tested flows, particularly the long-term elephant-type flows, our

proposed approach achieved the shortest duration times. Our approach optimizes one of the

key factor of the QoS while also performing resource allocation. The load-balanced use of

network devices during routing has a positive effect on many QoS factors. Because, the

determination of non-congested routes allows the packets of the flow to be transmitted with

the least networking problems. In this context, the cumulative load distribution passing over

the 5 switches which are determined within the scope of the topology, has been examined for

all routing methods within the Scenario 3. The proposed RL-based routing method showed

a more load-balanced distribution on the switches in the long run compared to the other two

methods. The load distribution of the other SDN-based routing proposal was influenced by

the network element distribution connected to the switches. According to the method and

results, the research questions that we asked within the scope of our study were answered as

follows.

• RQ-1: Can QoS and load balancing subjects which are often handled separately, be

addressed simultaneously? We offered an RL-based controller design to address QoS

and load balancing research topics at the same time. The proposed method assigns

three optimal weights on QoS score calculation to determine best route for requested

flow. On the other hand, the QoS factor weights are selected according to the load

74

status of the network. System feeds each other to optimize load distribution and

ensure QoS requirements of any flow. For this reason, we connected load balanced

and QoS-aware approaches in a one architecture using RL domain.

• RQ-2: Is it possible to utilize the capacity of the network in a balanced way and to meet

the QoS demand of the flows equally and democratically? The question is answered

in a most way according to the proposed tests in Section 5.6. In the system load

balance analysis, the proposed routing method achieved better load distribution for

selected switches than other methods thanks to the RL. The better load distribution

on the network prevents system from congestion issues and it is expected a health

environment for data transfer. To test this hypothesis, some QoS factor oriented tests

such as total packet loss, average jitter-delay time and bandwidth provisioning capacity

are proposed and the routing methods are compared each other according to their

performances. Our routing method achieved a relatively better results than other the

routing methods at least two test scenarios on each performance tests. In this context,

we can report that the proposed controller satisfies flow QoS needs when distributing

the load in a balanced way. Another side, our routing method is performed equally or

slightly poor results than equally-weighted QoS routing approach in some tests. We

explain it with the two-way objective function and the long-run optimizer selection.

In two-way objective function, the proposed method adaptively adjusts QoS factor

weights to distribute load democratically and to meet QoS needs of each flow. Also,

Q-learning method search the best results in the long-run to gather higher rewards in

the next states. These two objective does not considered in other SDN based method

simultaneously and the flows are routed only QoS manners. Thus, some challenges

can be ignored to achieve higher performance in the large perspective for our method.

To prove that, the proposed method has best scores nearly all the test in Scenario 3 that

is the largest scenario than others.

The proposed routing approach is designed on the Q-learning technology which does not

need excessive computational power, considers both load balancing and QoS factors while

75

routing according to the traffic status of the network. This work is open to development by

network administrators and researchers with a reward function and action space definitions

which can be designed to the needs of the network environment. It also incorporates the

power of the best-effort technique into the route selection mechanism. With all these aspects,

our study offers its contributions to the literature.

In the future, we plan to add an additional controller for the parallel jobs which manages

system states such as delay, bandwidth. In this way, we aim for a more modular method by

separating standard works from the routing. In routing decision side, it is aimed to work on

a deep Q-learning method and an adaptive self-updating mechanism in order to learn and

moderate network traffic more effectively. The non-linearity of the network traffic requires

a comprehensive action space for QoS weight selection. The hidden layered architecture of

the deep learning offers to learn sophisticated patterns in a composed way. Thus, a more

advanced Q-table is obtained and can be used for better routing operations. Additionally, a

self-updating mechanism is planned to implement. In this way, it is considered to offer an

approach that periodically incorporates changing network traffic patterns.

76

REFERENCES

[1] Cisco Annual Internet Report (2018–2023) White Paper. Technical report, Cisco

Systems, Inc, 2020.

[2] R. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,

2018.

[3] Software-Defined Networking: The New Norm for Networks. Technical report,

Open Networking Foundation, 2012.

[4] D.Kreutz, F. M. V. Ramos, and S. Azodolmolky S. Uhlig P. E. Verı́ssimo,

C. E. Rothenberg. Software-defined networking: A comprehensive survey.

Proceedings of the IEEE, 103(1):14–76, 2015. doi:10.1109/JPROC.2014.

2371999.

[5] Component-based software defined networking framework - build sdn agilely,

2022.

[6] Cisco. Campus network for high availability design guide, 2008.

[7] J. Desjardins. How much data is generated each day?, 2019.

[8] N. McKeown and G. Parulkar L. Peterson J. Rexford S. Shenker J. Turner

T. Anderson, H. Balakrishnan. Openflow: Enabling innovation in campus

networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, 2008. doi:10.1145/

1355734.1355746.

[9] S. Jain and J. Ong L. Poutievski A. Singh S. Venkata J. Wanderer J. Zhou M. Zhu

J. Zolla U. Hölzle S. Stuart A. Vahdat A. Kumar, S. Mandal. B4: Experience with

a globally-deployed software defined wan. 43(4):3–14, 2013. ISSN 0146-4833.

doi:10.1145/2534169.2486019.

77

[10] Z. Wang and J. Crowcroft. Quality-of-service routing for supporting

multimedia applications. IEEE Journal on Selected Areas in Communications,

14(7):1228–1234, 1996. doi:10.1109/49.536364.

[11] M. Karakus and A. Durresi. Quality of service (qos) in software defined

networking (sdn): A survey. Journal of Network and Computer Applications,

80:200–218, 2017. ISSN 1084-8045. doi:https://doi.org/10.1016/j.jnca.2016.12.

019.

[12] L. Li and Q. Xu. Load balancing researches in sdn: A survey. In 2017

7th IEEE International Conference on Electronics Information and Emergency

Communication (ICEIEC), pages 403–408. 2017. doi:10.1109/ICEIEC.2017.

8076592.

[13] H. Egilmez and A. M. Tekalp S. T. Dane, K. T. Bagci. Openqos: An openflow

controller design for multimedia delivery with end-to-end quality of service over

software-defined networks. In Proceedings of The 2012 Asia Pacific Signal and

Information Processing Association Annual Summit and Conference, pages 1–8.

2012.

[14] J. Yan and B. Liu X. Guo H. Zhang, Q. Shuai. Hiqos: An sdn-based multipath

qos solution. China Communications, 12(5):123–133, 2015. doi:10.1109/CC.

2015.7112035.

[15] X. Shi and T. Yang L. Zhang P. Liu H. Zhang Z. Liang Y. Li, H. Xie. An

openflow-based load balancing strategy in sdn. Computers, Materials Continua,

61:385–398, 2019. doi:10.32604/cmc.2020.06418.

[16] M. C. Nkosi and S. Dlamini A. A. Lysko. Multi-path load balancing for sdn data

plane. In 2018 International Conference on Intelligent and Innovative Computing

Applications (ICONIC), pages 1–6. 2018. doi:10.1109/ICONIC.2018.8601241.

[17] T. Kosugiyama and T. Hayashi K. Yamaoka K. Tanabe, H. Nakayama. A

flow aggregation method based on end-to-end delay in sdn. In 2017 IEEE

78

International Conference on Communications (ICC), pages 1–6. 2017. doi:10.

1109/ICC.2017.7996341.

[18] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine learning, 8(3):279–292,

1992.

[19] J. F. Kurose. Computer networking: A top-down approach featuring the internet,

3/E. Pearson Education India, 2005.

[20] J. Sherry and S. Ratnasamy. A survey of enterprise middlebox deployments.

2012.

[21] R. Perlman. An algorithm for distributed computation of a spanningtree in an

extended lan. In Proceedings of the Ninth Symposium on Data Communications,

SIGCOMM ’85, page 44–53. Association for Computing Machinery, New York,

NY, USA, 1985. ISBN 0897911644. doi:10.1145/319056.319004.

[22] Open networking foundation. https://opennetworking.org/, 2017.

[23] A. Lazar and F. Marconcini K.S. Lim. Realizing a foundation for

programmability of atm networks with the binding architecture. Selected Areas

in Communications, IEEE Journal on, 14:1214 – 1227, 1996. doi:10.1109/49.

536363.

[24] D.L. Tennenhouse and D.J. Wetherall G.J. Minden J.M. Smith, W.D. Sincoskie.

A survey of active network research. IEEE Communications Magazine,

35(1):80–86, 1997. doi:10.1109/35.568214.

[25] M. Caesar and J. Rexford A. Shaikh J. van der Merwe D. Caldwell, N. Feamster.

Design and implementation of a routing control platform. In Proceedings of the

2nd Conference on Symposium on Networked Systems Design Implementation -

Volume 2, NSDI’05, page 15–28. USENIX Association, USA, 2005.

79

https://opennetworking.org/

[26] N. Feamster and E. Zegura J. Rexford. The road to sdn: An intellectual history

of programmable networks. SIGCOMM Comput. Commun. Rev., 44(2):87–98,

2014. ISSN 0146-4833.

[27] O. Salman and A. Chehab I. H. Elhajj, A. Kayssi. Sdn controllers: A comparative

study. In 2016 18th Mediterranean Electrotechnical Conference (MELECON),

pages 1–6. 2016. doi:10.1109/MELCON.2016.7495430.

[28] A. Binsahaq and K. Salah T. R. Sheltami. A survey on autonomic provisioning

and management of qos in sdn networks. IEEE Access, 7:73384–73435, 2019.

doi:10.1109/ACCESS.2019.2919957.

[29] Mininet Contributors. Mininet. http://mininet.org/.

[30] J. H. Cox and J. Ivey R. J. Clark G. Riley H. L. Owen J. Chung, S. Donovan.

Advancing software-defined networks: A survey. IEEE Access, 5:25487–25526,

2017. doi:10.1109/ACCESS.2017.2762291.

[31] S. Saraswat and R. Mishra A. Gupta T. Dutta V. Agarwal, H. P. Gupta. Challenges

and solutions in software defined networking: A survey. Journal of Network and

Computer Applications, 141:23–58, 2019. ISSN 1084-8045. doi:https://doi.org/

10.1016/j.jnca.2019.04.020.

[32] R. Ruby J. Pan M. Tanha, D. Sajjadi. Traffic engineering enhancement by

progressive migration to sdn. IEEE Communications Letters, 22(3):438–441,

2018. doi:10.1109/LCOMM.2018.2789419.

[33] N. Bizanis and F. A. Kuipers. Sdn and virtualization solutions for the internet of

things: A survey. IEEE Access, 4:5591–5606, 2016. doi:10.1109/ACCESS.2016.

2607786.

[34] M. Amiri and M. Abdallah H. Al Osman, S. Shirmohammadi. An sdn controller

for delay and jitter reduction in cloud gaming. In Proceedings of the 23rd ACM

International Conference on Multimedia, MM ’15, page 1043–1046. Association

80

http://mininet.org/

for Computing Machinery, New York, NY, USA, 2015. ISBN 9781450334594.

doi:10.1145/2733373.2806397.

[35] L Tello-Oquendo and V. Pla S. C. Lin, I. F. Akyildiz. Software-defined

architecture for qos-aware iot deployments in 5g systems. Ad Hoc Networks,

93:101911, 2019. ISSN 1570-8705. doi:https://doi.org/10.1016/j.adhoc.2019.

101911.

[36] J. M. Llopis and T. Janaszka J. Pieczerak. Minimizing latency of critical traffic

through sdn. In 2016 IEEE International Conference on Networking, Architecture

and Storage (NAS), pages 1–6. 2016. doi:10.1109/NAS.2016.7549408.

[37] M Huang and W. Xu S Guo Y. Xu W. Liang, Z. Xu. Dynamic routing

for network throughput maximization in software-defined networks. In IEEE

INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer

Communications, pages 1–9. 2016. doi:10.1109/INFOCOM.2016.7524613.

[38] A. Azzouni, R. Boutaba, and G. Pujolle. Neuroute: Predictive dynamic routing

for software-defined networks. In 2017 13th International Conference on

Network and Service Management (CNSM), pages 1–6. 2017. doi:10.23919/

CNSM.2017.8256059.

[39] H. Xu and H. Deng H. Huang H. Wang X.Y. Li, L. Huang. Incremental

deployment and throughput maximization routing for a hybrid sdn. IEEE/ACM

Transactions on Networking, 25(3):1861–1875, 2017. doi:10.1109/TNET.2017.

2657643.

[40] M. Amiri and S. Shirmohammadi H. Al Osman. Game-aware and sdn-assisted

bandwidth allocation for data center networks. In 2018 IEEE Conference on

Multimedia Information Processing and Retrieval (MIPR), pages 86–91. 2018.

doi:10.1109/MIPR.2018.00023.

81

[41] C. C. Lin and W. B. Chen H. H. Chin. Balancing latency and cost in

software-defined vehicular networks using genetic algorithm. Journal of Network

and Computer Applications, 116, 2018. doi:10.1016/j.jnca.2018.05.002.

[42] C. Lin and Z. Liu S. Jia J. Zhu Y. Bi, H. Zhao. Dte-sdn: A dynamic traffic

engineering engine for delay-sensitive transfer. IEEE Internet of Things Journal,

5(6):5240–5253, 2018. doi:10.1109/JIOT.2018.2872439.

[43] T. Radusinovic S. Tomovic. Fast and efficient bandwidth-delay constrained

routing algorithm for sdn networks. In 2016 IEEE NetSoft Conference and

Workshops (NetSoft), pages 303–311. 2016. doi:10.1109/NETSOFT.2016.

7502426.

[44] C. Lin and G. Deng K. Wang. A qos-aware routing in sdn hybrid networks.

Procedia Computer Science, 110:242–249, 2017. ISSN 1877-0509. doi:https:

//doi.org/10.1016/j.procs.2017.06.091. 14th International Conference on Mobile

Systems and Pervasive Computing (MobiSPC 2017) / 12th International

Conference on Future Networks and Communications (FNC 2017) / Affiliated

Workshops.

[45] S. Xu and J. Ren S. Wang X. Wang, G. Yang. Routing optimization for cloud

services in sdn-based internet of things with tcam capacity constraint. Journal of

Communications and Networks, 22(2):145–158, 2020. doi:10.1109/JCN.2020.

000006.

[46] R. Boutaba and S. Ayoubi N. Shahriar F. Estrada-Solano O. Caicedo Rendon

M. Salahuddin, N. Limam. A comprehensive survey on machine learning for

networking: Evolution, applications and research opportunities. Journal of

Internet Services and Applications, 9, 2018. doi:10.1186/s13174-018-0087-2.

[47] H. Ghalwash and C. H. Huang. A qos framework for sdn-based networks. In 2018

IEEE 4th International Conference on Collaboration and Internet Computing

(CIC), pages 98–105. 2018. doi:10.1109/CIC.2018.00024.

82

[48] T. Chin and K. Xiong M. Rahouti. Applying software-defined networking to

minimize the end-to-end delay of network services. SIGAPP Appl. Comput. Rev.,

18(1):30–40, 2018. ISSN 1559-6915. doi:10.1145/3212069.3212072.

[49] S. Kumar and S. Virendra G. Bansal, S. Gaurang. A machine learning approach

for traffic flow provisioning in software defined networks. In 2020 International

Conference on Information Networking (ICOIN), pages 602–607. 2020. doi:10.

1109/ICOIN48656.2020.9016529.

[50] J. Chavula and H. Suleman M Densmore. Using sdn and reinforcement learning

for traffic engineering in ubuntunet alliance. In 2016 International Conference

on Advances in Computing and Communication Engineering (ICACCE), pages

349–355. 2016. doi:10.1109/ICACCE.2016.8073774.

[51] I. A. Akyildiz P. Wang M. Luo S. C. Lin, and. Qos-aware adaptive routing in

multi-layer hierarchical software defined networks: A reinforcement learning

approach. In 2016 IEEE International Conference on Services Computing (SCC),

pages 25–33. 2016. doi:10.1109/SCC.2016.12.

[52] S. Sendra and J. M. Jimenez O. Romero A. Rego, J. Lloret. Including artificial

intelligence in a routing protocol using software defined networks. In 2017 IEEE

International Conference on Communications Workshops (ICC Workshops),

pages 670–674. 2017. doi:10.1109/ICCW.2017.7962735.

[53] G. Stampa and V. Muntés-Mulero A. Cabellos M. Arias, D. Sánchez-Charles. A

deep-reinforcement learning approach for software-defined networking routing

optimization. arXiv preprint arXiv:1709.07080, 2017.

[54] F. Francois and E. Gelenbe. Optimizing secure sdn-enabled inter-data

centre overlay networks through cognitive routing. In 2016 IEEE 24th

International Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS), pages 283–288. 2016. doi:10.1109/

MASCOTS.2016.26.

83

[55] D. Casas-Velasco and N. Fonseca O. C. Rendon. Intelligent routing based on

reinforcement learning for software-defined networking. IEEE Transactions on

Network and Service Management, 18(1):870–881, 2021. doi:10.1109/TNSM.

2020.3036911.

[56] A. Al-Jawad and O. Gemikonakli R. Trestian I. S. Comşa, P. Shah. Redo:

A reinforcement learning-based dynamic routing algorithm selection method

for sdn. In 2021 IEEE Conference on Network Function Virtualization and

Software Defined Networks (NFV-SDN), pages 54–59. 2021. doi:10.1109/

NFV-SDN53031.2021.9665140.

[57] A. Montazerolghaem and M. H. Yaghmaee. Load-balanced and qos-aware

software-defined internet of things. IEEE Internet of Things Journal,

7(4):3323–3337, 2020. doi:10.1109/JIOT.2020.2967081.

[58] X. Guo and M. Peng H. Lin, Z. Li. Deep reinforcement learning based qos-aware

secure routing for sdn-iot. IEEE Internet of Things Journal, PP:1–1, 2019. doi:10.

1109/JIOT.2019.2960033.

[59] M. Hosseinzadeh A. Rezaee A. A. Neghabi, N. Jafari. Load balancing

mechanisms in the software defined networks: A systematic and comprehensive

review of the literature. IEEE Access, 6:14159–14178, 2018. doi:10.1109/

ACCESS.2018.2805842.

[60] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier, New

York, 1976.

[61] T. H. Cormen and C. Stein C. E. Leiserson, R. L. Rivest. Introduction to

Algorithms, 3rd Edition. MIT Press, 2009. ISBN 9780262533058.

[62] L Liao and V. C. M. Leung. Lldp based link latency monitoring in software

defined networks. In 2016 12th International Conference on Network and Service

Management (CNSM), pages 330–335. 2016. doi:10.1109/CNSM.2016.7818442.

84

[63] Z. Shu and S. Wang D. Li S. Rho C. Yang J. Wan, J. Lin. Traffic engineering

in software-defined networking: Measurement and management. IEEE Access,

4:3246–3256, 2016. doi:10.1109/ACCESS.2016.2582748.

[64] C. Hedrick. Routing Information Protocol. RFC 1058, 1988. doi:10.17487/

RFC1058.

[65] L. Al Shalabi and Z. Shaaban. Normalization as a preprocessing engine for data

mining and the approach of preference matrix. In 2006 International Conference

on Dependability of Computer Systems, pages 207–214. 2006. doi:10.1109/

DEPCOS-RELCOMEX.2006.38.

[66] R. L. S. de Oliveira and L. R. Prete C. M. Schweitzer, A.A Shinoda. Using

mininet for emulation and prototyping software-defined networks. In 2014 IEEE

Colombian Conference on Communications and Computing (COLCOM), pages

1–6. 2014. doi:10.1109/ColComCon.2014.6860404.

[67] V. Guéant. iperf - the tcp, udp and sctp network bandwidth measurement tool,

2014.

[68] K. Papagiannaki and P. Thiran K. Salamatian C. Diot N. Taft, S. Bhattacharyya.

A pragmatic definition of elephants in internet backbone traffic. In Proceedings

of the 2nd ACM SIGCOMM Workshop on Internet Measurment, IMW ’02, page

175–176. Association for Computing Machinery, New York, NY, USA, 2002.

doi:10.1145/637201.637227.

[69] C. Estan and G. Varghese. New directions in traffic measurement and accounting:

Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst.,

21(3):270–313, 2003. doi:10.1145/859716.859719.

[70] K. C. Lan and J. Heidemann. A measurement study of correlation of internet

flow characteristics. Computer Networks, 17:46–62, 2006. doi:10.1016/j.comnet.

2005.02.008.

85

[71] Y. Zhang and S. Shenker L. Breslau, V. Paxson. On the characteristics and origins

of internet flow rates. SIGCOMM Comput. Commun. Rev., 32(4):309–322, 2002.

doi:10.1145/964725.633055.

[72] J. Bergstra and B. Kégl R. Bardenet, Y. Bengio. Algorithms for hyper-parameter

optimization. In P. Bartlett F. Pereira K.Q. Weinberger J. Shawe-Taylor,

R. Zemel, editor, Advances in Neural Information Processing Systems,

volume 24. Curran Associates, Inc., 2011.

86

Appendix A

Topology and Scenario Initialization

Figure 6.1 Topology initialization process using Mininet

87

Figure 6.2 Scenario initializations. Predefined flow settings and traffic details is shown

88

Appendix B

iperf Flow Report

Figure 6.5 shows the data transfer report created with the iperf network traffic generation

tool. In a virtual topology which is created using Mininet, network traffic is generated

between the source and target hosts using iperf . Host 23, which is determined as the target

host in Figure 6.3, receives the data that is sent from host 13, which is defined as the source

host in Figure 6.4. On the target host, listened port is specified for the communication. On

the other hand, the size of the data to be sent and the amount of bandwidth are specified

on the source host. In addition, the logging period of the receiving data is determined with

−i host 23. The transferred data from source host to target host is periodically recorded

and generates the report in Figure 6.5. The data size, bandwidth, jitter, average delay time,

total number of packets, number of lost packets and network power values are obtained in a

second period. These reports are generated for each flow in the test scenarios. At the end,

They are used to measure performance of tested approaches.

Figure 6.3 Flow initialization command on receiver host using iperf tool

89

Figure 6.4 Flow initialization command on sender host using iperf tool

90

Figure 6.5 Periodic data transfer report that is written in receiver host using iperf tool

91

Appendix C

Additional Tuning Evaluation

The CMA calculation of the reward value is also examined for the appropriate RL model

selection. Below, each test figure shows the performance results of the models at different

lr values, while keeping the γ value constant. When we evaluate the results, it is seen that

when γ and lr are determined as 0.1, the highest CMA of reward is obtained in the long run.

Figure 6.6 CMA of R for different lr, γ = 0.1 Figure 6.7 CMA of R for different lr, γ = 0.3

Figure 6.8 CMA of R for different lr, γ = 0.6 Figure 6.9 CMA of R for different lr, γ = 0.9

92

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLES
	FIGURES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Scope of the Thesis
	1.2. Contributions
	1.3. Methodology of the Thesis
	1.4. Organization

	2. BACKGROUND OVERVIEW
	2.1. Q-Learning
	2.2. Traditional TCP/IP Networks
	2.3. Spanning Tree Protocol
	2.4. OpenFlow
	2.5. Software Defined Networking
	2.5.1. Components of SDN
	2.5.1.1. Data Layer
	2.5.1.2. Control Layer
	2.5.1.3. Application Layer

	2.6. Quality of Services
	2.7. Mininet
	2.8. Ryu Controller

	3. RELATED WORK
	3.1. Single-factor centered QoS approaches
	3.2. Multi-factor centered QoS approaches

	4. PROPOSED METHOD
	4.1. Network Traffic and Route Awareness Module
	4.1.1. Route Discoverer
	4.1.2. Network Statistics Tracker

	4.2. QoS and Load Awareness Module
	4.2.1. Available Bandwidth Tracker
	4.2.2. Delay Time Tracker
	4.2.3. Route Hop Tracker
	4.2.4. Switch Load Tracker

	4.3. Route Selector Module
	4.3.1. Equally QoS-aware Route Selector
	4.3.2. Q-learning based Adaptive QoS and Load-aware Route Selector
	4.3.2.1. Overview
	4.3.2.2. Environment
	4.3.2.3. State
	4.3.2.4. Action
	4.3.2.5. Reward
	4.3.2.6. The Optimal Policy
	4.3.2.7. Exploration and Exploitation Technique
	4.3.2.8. Training the Q-learning model

	4.4. Flow Starter Module

	5. EXPERIMENTS AND RESULTS
	5.1. Test Environment
	5.2. Flow Generation
	5.3. Test Scenarios
	5.4. Performance Criteria
	5.5. Tuning the proposed RL-based Approach
	5.6. Results and Analysis
	5.6.1. Bandwidth provisioning capacity
	5.6.2. Average delay time
	5.6.3. Average jitter time
	5.6.4. Total packet loss
	5.6.5. Average received packet per second
	5.6.6. Flow duration
	5.6.7. System load balance

	6. CONCLUSION
	Appendix

