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As insulting statements become more frequent on online platforms, these negative 

statements create a reaction and disturb the peace of society. Identifying these expressions 

as early as possible is important to protect the victims. Offensive language detection 

research has been increasing in recent years. Offensive Language Identification Dataset 

(OLID) was introduced to facilitate research on this topic. Examples in OLID were 

retrieved from Twitter and annotated manually. Offensive Language Identification Task 

comprises three subtasks. In Subtask A, the goal is to discriminate the data as offensive 

or non-offensive. Data is offensive if it contains insults, threats, or profanity. Five 

languages datasets, including Turkish, were offered for this task. The other two subtasks 

focus on categorizing offense types (Subtask B) and targets (Subtask C). The last two 

subtasks mainly focus on English. 
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This study explores the effects of the usage of Bidirectional Encoder Representations 

from Transformers (BERT) models and fine-tuning methods on offensive language 

detection on Turkish Twitter data. The BERT models that we use are pre-trained in 

Turkish corpora. Our fine-tuning methods are designed by considering the Turkish 

language and Twitter data. The importance of the pre-trained BERT model in a 

downstream task is emphasized. In addition, experiments with classical models are 

conducted, such as logistic regression, decision tree, random forest, and support vector 

machine (SVM). 
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ÖZET 

 

 

BERT MODELLERİYLE TÜRKÇE TWİTTER VERİLERİNDE 

SALDIRGAN DİL TESPİTİ 
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Tez Danışmanı: Prof. Dr. İlyas ÇİÇEKLİ 

Ocak 2022, 50 sayfa 

 

 

Online platformda hakaret içeren ifadeler arttıkça bu saldırgan ifadeler tepki yaratarak 

toplumun huzurunu bozmaktadır. Bu ifadelerin erken tespit edilmesi mağdurların 

korunması açısından önemlidir. Saldırgan dil tespit araştırmaları son yıllarda artmaktadır. 

Bu konudaki araştırmaları kolaylaştırmak amacıyla Saldırgan Dil Tanımlama Veri 

Kümesi (OLID) oluşturulmuştur. OLID verileri Twitter’dan toplanmış ve manuel olarak 

etiketlenmiştir. Saldırgan Dil Tanımlama Görevi üç alt görevden oluşur. Alt Görev A'da 

amaç, verileri saldırgan veya saldırgan olmayan olarak ayırt etmektir. Hakaret, tehdit 

veya küfür içeriyorsa veriler saldırgandır. Bu görev için Türkçe dâhil beş dilde veri seti 

hazırlanmıştır. Diğer iki alt görev, saldırı türlerinin (Alt Görev B) ve hedeflerin (Alt 

Görev C) sınıflandırılmasına odaklanır. Son iki alt görev için sadece İngilizce veri seti 

bulunmaktadır. 
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Bu çalışma, Dönüştürücülerden Çift Yönlü Kodlayıcı Gösterimleri (BERT) modellerinin 

ve ince ayar tekniklerinin kullanımının Türkçe Twitter verilerinde saldırgan dil tespiti 

üzerindeki etkilerini araştırmaktadır. Kullandığımız BERT modelleri Türkçe ile ön 

eğitime tabi tutulmuştur. İnce ayar teknikleri ise Türkçe dili ve Twitter verileri göz önüne 

alarak hazırlandı. Çalışmamızda önceden eğitilmiş BERT modelin hedef görev 

üzerindeki önemi vurgulandı. Ayrıca lojistik regresyon, karar ağacı, rastgele orman ve 

destek vektör makineleri (SVM) gibi klasik modeller kullanılarak deneyler yapıldı. 

 

 

Anahtar Kelimeler: Doğal Dil İşleme, Saldırgan Dil Tespiti, BERT 
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INTRODUCTION 

Social media usage is rapidly increasing each day, and its impact on human life is also on 

the rise. Some comments on social media contain offensive expressions that disrupt the 

psychology of the addressee. Machine learning methods are widely used to detect 

offensive language instead of rule-based systems. Rule-based methods, such as basic 

word filters, are not effective because the context of the words, the author of the discourse, 

and the target addressee are also important features for the utterance to be classified as 

offensive [1]. In recent years, interest in offensive language detection has increased. In 

addition to research on offensive language detection, some previous studies have focused 

on different aspects of offensive language detection, such as hate speech detection [2, 3], 

abusive language detection [4], and bullying detection [5]. These concepts are related, but 

they are slightly distinct [6]. For example, cyberbullying is an aggressive behavior against 

a victim; offensive language is more general, does not target a specific person. The 

surveys [6, 7] present a systematic review of definitions and sources related to these 

abusive subjects.  

 

OffensEval 2019 task [8] was organized for offensive language identification for English. 

Three subtasks were created regarding offensive language identification (Subtask A), 

offense type categorization (Subtask B), and offense target identification (Subtask C). 

The subject of all subtasks is assigning the test dataset to predefined labels. Multilingual 

datasets on different languages were included in offensive language detection in 

OffensEval 2020 task [9]. Both tasks aroused a lot of interest, and many offensive 

language detection systems competed on the given tasks. One of the datasets in 

OffensEval 2020 task is the offensive language identification dataset on Turkish tweets. 

We have tested some pre-trained BERT [10] models on this Turkish dataset. Our BERT-

based models obtained compatible results with the best systems on the Turkish dataset 

[11]. Turkish dataset was collected from Twitter and manually annotated by volunteers. 

 

BERT is a pre-trained language model that yields state-of-the-art results in many NLP 

tasks. After the model is pre-trained with a large dataset, it is fine-tuned with the target 

dataset. While the pre-training phase helps the model understand the language, the fine-
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tuning process helps the model learn features for the target task. BERT can process the 

words in a sentence in parallel utilizing transformers. Processing words in parallel rather 

than sequentially allows the model to learn the context information of a word based on 

its surroundings. Different BERT models could be generated by changing the pre-training 

dataset or the architecture. 

 

In this study, we research the effect of different BERT-based models and fine-tuning 

methods on Turkish offensive language classification. We used BERT models that are 

trained on Turkish texts such as BERTurk, DistilBERTurk, and ConvBERTurk [12]. We 

refer to operations that we perform on the dataset during the fine-tuning phase by fine-

tuning methods. We designed our fine-tuning methods considering twitter specific 

features such as hashtags and emojis and language-specific features such as average word 

length in the Turkish language. We also pay attention to word statistics to remove or add 

dictionary definitions in fine-tuning strategies. Our empirical results show that the 

significant effect on the performance of the system is the used BERT model. Fine-tuning 

methods have a minor impact on the performance of the system. 

 

Contributions 

 We made a comprehensive analysis of fine-tuning methods and BERT models for 

Turkish offensive language detection. 

 

 We observed that the pre-trained BERT model is more substantial on performance 

than fine-tuning methods. Data-specific features may seem promising, but they 

did not affect the results as much as different BERT models. 

 

 We performed an extensive literature review on Offensive Language 

Identification in Social Media in the context of OffensEval 2019 and OffensEval 

2020. 
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The Outline of the Thesis 

 Chapter 0 presents background information about text classification, classical 

models, pre-trained language models, transfer learning, and BERT models. 

 Chapter 3 presents the related works on offensive language identification tasks 

and explains the dataset. 

 Chapter 4 details our fine-tuning methods, pre-trained BERT models, and 

experimental setup. 

 Chapter 5 presents and analyses the results of the models. 

 Chapter 0 concludes the thesis with a summary.
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BACKGROUND 

In this chapter, we will briefly mention the text classification problem, the classical 

classification methods that we used, and the importance of deep networks in the 

classification problem. Since the BERT model is crucial in our research, we will give 

information about the BERT model, pre-trained language models, and transfer learning. 

 

Text Classification 

Text classification is a classical natural language processing (NLP) problem that tries to 

assign predefined labels to text units such as sentences, paragraphs, documents, etc. The 

text classification process involves the following steps: 

 Text preprocessing techniques aim to remove noise in a text and make the text 

more valuable for NLP models. Stemming, converting text to lower or upper case, 

removing punctuations, removing stop words are typical preprocessing 

techniques. The nature of a given text and target application must be taken into 

consideration when applying preprocessing steps. For example, stemming has 

little influence in Turkish text classification when the dataset is large [13], in 

English and Czech classification task has a negative influence [14], in German 

information retrieval has a positive effect [15]. 

 

 Text representation or transformation: Most classification algorithms take 

inputs as vectors or matrices. Term frequency - Inverse document frequency (TF-

IDF) is a method that represents a text in vector format while considering the 

importance of words. The formula of TF-IDF is shown in Eq. 1. 𝑡𝑓𝑡,𝑑 and 𝑖𝑑𝑓𝑡 

refer to term frequency and inverse document frequency of t, respectively. Word 

embedding and transformers are other choices for text representation. 

 

𝑇𝐹-𝐼𝐷𝐹𝑡,𝑑 = 𝑡𝑓𝑡,𝑑 . 𝑖𝑑𝑓𝑡 

 

(1) 
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 Selection and application of classification techniques: Most classical methods 

contain two parts. In the first part, features are extracted from the text by the 

methods such as bag of words. In the second part, selected features are fed into 

classifiers. Two phases methods have some limitations. For instance, these 

methods need feature engineering which is mostly tedious, and extracted features 

are not generic for every classification task. To address the limitation of using 

hand-crafted features neural approaches have been explored. The core component 

of these approaches is a machine-learned embedded model that maps the text to 

low-dimension continuous feature vectors. In this way, the need for feature 

extraction is eliminated. 

 

 Classifier evaluation: The confusion matrix is shown in Table 0.1. TP means 

True Positive, FP means False Positive, FN means False Negative, TN means 

True Negative. 

For the evaluation of results, recall, precision, and F1 values are taken into 

consideration. Recall, precision and F1 are calculated as shown in Eq. 2, 3, 4, and 

5. 

 

Table 0.1 Confusion Matrix 

Predicted class 

Actual class 

N P 

N TN FP 

P FN TP 

 

 

Recall shows the proportion of actual positives that are identified correctly. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(2) 

Precision shows the proportion of positive identifications that are actually correct. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(3) 

F1 score is the harmonic mean of Recall ad Precision. 

𝐹1 =  
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

      (4) 

Macro-F1 score is the arithmetic mean of individual per-class F1-scores where C 

is the total number of classes: 

𝑚𝑎𝑐𝑟𝑜 − 𝐹1 =  
1

𝐶
∑ 𝐹1𝑖

𝐶

𝑖=1

 

 

      (5) 

Classical Methods 

Machine learning methods intend to predict the outcome of new observations based on 

previous observations. Machine learning algorithms try to perform these operations 

without being explicitly programmed. In this thesis context, the classical methods refer 

to machine learning methods that use algorithmic structures to solve the problem. Experts 

select the algorithm and features for these methods. 

 

Logistic Regression 

Logistic Regression is a binary classifier, and it tries to predict the hyperplane that 

separates two classes in the best way [16]. Logistic function, also called sigmoid, is the 

core of Logistic Regression. The logistic function maps prediction probabilities between 

0 and 1. The probability of the label being yi is determined by Eq. 6, xn are training 

samples, βn are parameters that try to be learned by maximum likelihood. 

 

𝑃(𝑦𝑖) =  
1

1 + 𝑒−(𝛽0+⋯ + 𝛽0𝑋0) 
 

(6) 
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Decision Tree 

Decision trees use a tree-like structure decision mechanism to classify the dataset [17]. 

Each node contains a decision mechanism. According to decisions made by the root node, 

the decision algorithm proceeds to the next decision node. Leaf nodes are the last stage 

for classifying data into class labels. Decision trees are easy to construct and understand; 

however, they suffer from low bias and high variance. Removing some parts of the 

decision tree by pruning or bootstrapping multiple decision trees are enhancement 

methods for overfitting. 

 

Random Forest 

Random forest [18] is an ensembling algorithm that combines the results of more than 

one algorithm to solve problems. Different trees are constructed using different bootstrap 

samples of the data. While standard trees choose the best variable to split each node, 

Random Forest chooses the split variable from a subset of possible variables. Outputs of 

trees are ranked then the highest one is selected for prediction. It reduces the overfitting 

in decision trees by improvements in bootstrapping. Figure 0.1 illustrates a simple 

overview of Decision Tree and Random Forest. 

 

Decision Tree Random Forest
 

Figure 0.1 Decision Tree and Random Forest 
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SVM 

SVM [19] is a supervised learning model used for regression and classification tasks. 

Finding hyperplanes between data clusters is the primary goal of SVM. Maximum 

margins are found to detect optimum hyperplanes. Support vectors are the closest data 

points to hyperplanes in each data cluster. An example visualization of a possible 

hyperplane for a linearly separable dataset is given in Figure 0.2. 

x2

x1  

Figure 0.2 SVM Hyperplane 

 

max 𝛾(𝜔, 𝑏)   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ∀𝑖  𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥  0 (7) 

 

Eq. 7 gives intuition of the algorithm. It suggests maximizing the margin between each 

data point and hyperplane. 𝛾 is the margin, (𝜔𝑇𝑥𝑖 + 𝑏)  is the support vector, y is the 

class of prediction. 

 

Pre-trained Language Models 

Pre-trained language models [20] are trained with task-independent large datasets. In this 

manner, the model understands the language before data is used for the downstream task. 

Pre-trained models drew attention in 2006 [21]. Imagenet [22] shows the success of pre-

trained models in computer vision. Training the model on unlabeled images resulted in 

the more accurate tuning of the weights in the deep network. The model trained with a 

large set of images was used with fine-tuning for smaller tasks. In this chapter, we 
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summarize key concepts that lead to pre-trained language models and discuss pre-trained 

models from NLP perspective. 

 

In order to process the words in a text, it is necessary to obtain vector representations. 

Two different word embedding methods are used: non-contextual and contextual. Non-

contextual methods such as Word2vec [23], GloVe [24] do not regard the context of the 

word. These methods cannot capture high-level concepts such as polysemy due to the 

embedding of words being static. Another problem is that they cannot represent out of 

vocabulary (OOV) words. Character-based embedding methods such as CharCNN [25] 

and fastText [26] had developed to compensate for this deficiency. 

 

In the contextual embedding method, the context is considered when creating the word 

vector. Thus, context-dependent features are obtained. ELMo [27] concatenates the 

representations of two-layer Bidirectional LSTM that are pre-trained on a bidirectional 

language modeling task. Each layer contains forward and backward passes. The ULMFiT 

[28] model expands pre-trained language models by adding a fine-tuning step for 

classification tasks. The ULMFiT uses Bidirectional LSTM architecture. Recent pre-

trained language models use more advanced architectures such as Transformer. OpenAI 

GPT [29] utilizes a decoder stack for generating text in an autoregressive manner. 

Autoregression allows the output of a sequence to be the input for the next step. BERT 

loses autoregression to gain the ability to be bidirectional. BERT splits data into fixed-

length segments, and this method does not respect semantic features such as sentence 

boundary. Hence, the model fails to capture long-term dependency beyond the specified 

length. Transformer-XL [30] passes previously processed segment information to the 

current segment. Thus fragments are recurrently connected with each other, and the model 

can capture long-term dependencies. It is found that BERT was undertrained. To improve 

the training procedure, RoBERTa [31] experimented with methods; training the model 

longer using a larger dataset, removing NSP objective, increasing sequence size, and 

changing masking pattern during training time. Importantly, RoBERTa uses extra 

datasets for training. RoBERTa outperforms BERT and XLNet [32] on most GLUE 

benchmark results. The proliferation of non-English models has led to the idea of creating 

models that can work on any language. To reduce the parameter size and communication 
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cost of BERT, ALBERT [33] proposes two methods: factorized embedding 

parameterization and cross-layer parameter sharing. Although ALBERT models have 

fewer parameters than corresponding BERT structures, the training and inference phases 

of ALBERT models take longer. Google research released mBERT, which is a 

multilingual version of BERT. mBERT [10] is pre-trained with a shared vocabulary and 

capable of working with 104 top languages. XLM [34] improves BERT performance by 

translation language model (TLM). TLM applies MLM objective on two bilingual 

sentences which have the same meaning. XLM could leverage the representation of low-

resource languages by using high-resource languages counterparts. XLM-R [35] is a 

version of RoBERTa trained with large multilingual corpora, 2.5TB CommonCrawl data. 

The model outperforms previous multilingual language models on cross-lingual 

benchmarks. 

  

Transfer Learning 

Transfer learning [36] is a methodology that allows the features learned by a model to be 

used in other models that have similar domains. Adapting pre-trained language models to 

downstream tasks is a transfer learning method. There are a few issues to consider when 

transferring information to downstream tasks. 

 A pre-trained model should be selected that is compatible with the needs of the 

task to be used. For example, while BERT model achieves high accuracy in 

question answering tasks due to NSP, it is not suitable for the sentence generation 

task. 

 The data of the pre-trained models and the data of the downstream task should be 

similar. For example, the English pre-trained model - English downstream task 

will achieve more accurate results than the Turkish pre-trained model - English 

downstream task. There are a large number of pre-trained models (PTMs) that 

satisfy the need for different languages and domains. 

 Whether to fine-tune the model for the downstream task should be decided. BERT 

fine-tune the parameters to adjust the parameters according to the downstream 

task. ELMo utilizes a feature-based approach to enable the use of predetermined 

parameters for each downstream task. 
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Figure 0.3 Transfer Learning, adapted from [20] 

 

Transformer Architecture 

Transformer [37] architecture that uses attention mechanisms [38] was proposed as an 

alternative to Long Short-Term Memory networks (LSTM) and other Recurrent Neural 

Networks models. The attention mechanism helps the model focus on other words and 

decides which focused words are important. For example, in the sentence “The dog didn’t 

cross the street because it was too tired” it is hard to decode the meaning of the word “it” 

for LSTM networks because LSTM networks process sentences unidirectional, and these 

networks have a long-term dependency problem. On the other hand, transformers could 

understand the “it” and “dog” relation because of the attention mechanism. Self-attention 

solves the problem by updating hidden states while looking at other words in the entire 

sequence. Figure 2.4 shows the attention pattern produced by the selected attention head 

in the encoder stack’s last layer. The left half of the figure shows that the word “dog” is 

among the words that the selected attention head pays attention to while processing the 

word “it”. Similarly, the right half of the figure shows the importance of the context of 

the word “it” for the word “dog”. 

 

Source Model Target Model

Source Dataset Target Dataset

Knowledge Transfer
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Figure 0.4 Attention Visualization (Tensor2Tensor [39] library) 

 

Figure 2.5 shows the illustration of the Transformer model. It contains encoder and 

decoder stacks. While encoders create representations of inputs, decoders construct 

outputs. Self-attention blocks convert tokens to key (K), query (Q), and value (V) 

matrices by applying three linear transformations as shown in Eq. 8. X denotes given 

inputs, W indicates trainable weight matrices. The dot product of K and Q generates the 

attention score, V represents the original token. Attention score calculated after division 

with the dimension of key vector as shown in Eq. 9.  

 

𝑉 =  𝑊𝑉𝑋,  𝐾 =  𝑊𝑘𝑋,  𝑄 =  𝑊𝑞𝑋        (8) 

  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

𝑑𝑘
)𝑉 

      (9) 

 

Lample and Conneau [33] extend attention with multi-head attention (Eq. 10), which 

combines attention calculations for each split of K, Q, and V matrices. Combining 

attention heads allows the model to find different patterns in the input sequence. Lastly, 

to represent the order of the words, a positional encoding vector is given to the model. 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … . , ℎ𝑒𝑎𝑑𝑛)𝑊𝑂 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖, 𝐾𝑊𝑖, 𝑉𝑊𝑖) 

    (10) 
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Figure 0.5 Transformer Model, adapted from [37] 

 

BERT 

BERT pre-trains a bidirectional deep neural network that uses transformer architecture. 

BERT was pre-trained with the masked language modeling (MLM) and next sentence 

prediction (NSP) objectives. MLM is simply a filling in the blanks task [40]. BERT 

randomly chooses a word from a sentence and tries to predict that word from the context. 

While this masking word estimation process, BERT tries to predict the word by 
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combining the right and left context in which the word occurs. NSP is a classification 

algorithm that tries to find the successor and premise of the given two sentences. The 

BERT base model contains 12 layers of 768 hidden size and 12 self-attention heads. The 

BERT-large model contains 24 layers of 1024 hidden size and 16 self-attention heads. 

 

Figure 2.6 shows simple classification processes. Encoder stack processes sentence 

tokens in parallel. An encoder contains a self-attention block and a feed-forward neural 

network. After calculating token representations with the encoder, these representations 

are fed into an output layer for the classification task. [CLS] is a special token that 

indicates this task is a classification task. [SEP] token indicates the end of the sentence. 

BERT operates on the fixed-length input. Sentences shorter than the predefined length 

have to be padded with empty tokens. The original BERT model’s fixed input size is 512. 

 

Figure 0.6 BERT Model Classification 

 

Bert Tokenization and Encoding 

Tokenization is a process to divide the text into words and sub words. BERT model 

assigned unique IDs to each token. Calculated tokens need to be converted its 

corresponding IDs. When pre-trained models are used, some words in the test data might 

not appear in the model’s dictionary. This problem is called OOV problem. The symbol 

[UNK] could be used to replace OOV words, but this leads to information loss. To 

overcome of OOV words representation problem, BERT uses Wordpiece [41] 

tokenization algorithm. The process is started with creating a language that contains 

individual characters in the language, then the most frequent symbol combinations in the 

vocabulary are iteratively added to the new vocabulary. The likelihood of this new symbol 
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must be greater than the previously added symbol for adding the dictionary. A sentence’s 

journey throughout the tokenization and encoding process is shown below. 

 

Original Sentence: Tembellik ve uyku düşmanımızdır. 

Tokenized Sentence: ['Tem', '##bel', '##lik', 've', 'uyku', 'düşmanı', '##mız', '##dır', '.'] 

[CLS] and [SEP] Added Tokens: ['[CLS]', 'Tem', '##bel', '##lik', 've', 'uyku', 'düşmanı', 

'##mız', '##dır', '.', '[SEP]'] 

Padded Tokens: ['[CLS]', 'Tem', '##bel', '##lik', 've', 'uyku', 'düşmanı', '##mız', '##dır', '.' 

, '[SEP]', '[PAD]'] 

Token IDs: [2, 3403, 10197, 2102, 1992, 8055, 16359, 4666, 2077, 18, 3, 0] 



 

 

 
16 

RELATED WORKS 

Offensive Language Identification 

Offensive language detection is a text classification problem, and it has received a lot of 

attention in recent years. There are related but slightly different topics in literature, such 

as hate speech [2, 3], abusive content [4], and bullying [5]. Several workshops for 

offensive content such as ALW2 [42] and TRAC [43, 44] were created. Supervised 

learning is often used to classify offensive language. The dataset is annotated according 

to whether it is offensive or not, and the model is expected to predict the label of the test 

data. Therefore, datasets are critical in training and testing the model. Most of the 

adversarial attacks work caused performance degradation, and hence they show 

weaknesses of machine learning methods for hate speech detection [1]. 

 

In 2019 and 2020, OffensEval tasks [8, 9] were organized for offensive language 

identification, and many systems competed in the given tasks. For OffensEval 2019 task, 

a dataset [45] was created for English, which consists set of tweets that are tagged as 

Offensive and Not Offensive for Subtask A; for Subtask B and Subtask C, other 

annotation schemas were utilized, which we will briefly mention. Turkish dataset was 

included in OffensEval 2020 [9] created for Subtask A. We used this Turkish dataset [11] 

introduced for the offensive language identification task in our experiments. Our BERT-

based models achieved performance as efficient as the performance of the top system in 

OffenseEval-2020. In the remainder of this chapter, we provide information about the top 

systems of OffensEval 2019 and 2020. We focused on the results of Subtask A. 

 

Pre-trained transformer models achieve high performance in offensive language 

detection. Lots of the models [46-50] competed in OffenseEval-2019. The participating 

teams that applied pre-processing steps to BERT models stood at the top [46, 49, 50]. 

BERT models achieve top results when compared to the ensemble of a large variety of 

different models [47]. The ensemble model had overfitted the training data. NLPR@ 

SRPOL [48] combines several models: LSTM, Transformer, OpenAI’s GPT, Random 

forest, SVM in an ensemble with various embeddings: ELMo, fastText, custom 
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embeddings, and Universal Sentence Encoder. They also used an openly available dataset 

and custom-built corpora labeled by linguists. 

 

Pre-trained models in the target language are effective in identifying offensive languages 

[46, 51-53]. LT@Helsinki [52] ranked 1st in Danish Subtask A using NordicBERT. They 

applied some pre-processing techniques, such as reducing the length of characters that 

appear more than two consecutive times and segmenting hashtags into words by adding 

white spaces before every capital letter. LISAC FSDM-USMBA [53] stood at the 1st rank 

for Arabic. They used BERT to create tweets representations and fed tweet 

representations to a sigmoid classifier. They also translated emojis into Arabic meanings. 

SU-NLP [54] and KUISAIL [55] managed to rank in the top three in Subtask A for the 

Turkish language by utilizing BERTurk. NTU_NLP [56] intends to take advantage of the 

hierarchical structure of the English dataset. Their model solves all three subtasks 

simultaneously. The architecture has three layers. The output of each layer is used to form 

the input of the next layer. The input of the first layer is the output of BERT. The input 

of the second layer is the concatenation of the output of the first layer (D1-OUT) and the 

output of BERT. The input of the third layer is the concatenation of the output of the 

second layer (D2-OUT) and the output of BERT. D1-OUT is directly connected to the 

output layer of Subtask A, D2-OUT is directly connected to the output layer of Subtask 

B, the output of the second layer OUT is directly connected to the output layer of Subtask 

C. 

 

Multilingual models gained popularity with the introduction of multilingual datasets in 

2020. When comparing monolingual and multilingual language models on offensive 

language detection, it is found that monolingual models achieve higher F1 scores [51, 

57]. Galileo [58] obtains the highest F1 score in the Turkish language (0.8258) using an 

ensemble of XLM-R base and XLM-R [35] large models, followed by multilingual fine-

tuning using the OLID and SOLID except for English. Rouges [59] fine-tuned XLM-R 

with all five languages in sequential order: English, Turkish, Greek, Arabic, and Danish. 

NLPDove [60] used semi-supervised labels from SOLID [9] and cross-lingual language 

with data selection. Moreover, they used an ensemble of several mBERT models that use 

minor variations in parameters. GruPaTo [61] retrained mBERT model with MLM 
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objective using language-specific Twitter messages along with fine-tuning the model with 

language-specific training sets. I2C [62] fine-tunes the mBERT model using the dataset 

generated by the Smote-Tomek method and the original dataset. LIIR [63] used mBERT 

and applied a cross-lingual augmentation approach to enhance the training dataset. ALT 

[64] participated with an ensemble of SVM, DNN, and mBERT models for Arabic and 

mBERT models for English. 

 

Several works [54, 58, 60, 65-67] focused on ensembles of pre-trained transformer 

models. UHH-LT [65] used an ensemble combining four different ALBERT models 

(large-v1, large-v2, xxlarge-v1, and xxlarge-v2). This team achieved the best 

performance in English Subtask A in OffenseEval-2020. Using Convolutional Neural 

Network (CNN) with LSTM, Bidirectional LSTM with attention besides BERT to 

combine into an ensemble SU-NLP makes a slight improvement over BERT model. 

Moreover, researchers of SU-NLP included the training data they collected for the LSTM 

model training. Some researchers used BERT to obtain contextualized word vectors  [55] 

and used CNN for classification. The team amsqr [68] utilized a stacked ensemble of 

neural networks. 

 

Experiments [46, 52, 66] show that machine learning models cannot surpass the 

performance of pre-trained language models. In 2019 most successful non-BERT model 

is MIDAS [69] which ranked 5th in Subtask A. They used an ensemble of CNN, 

Bidirectional LSTM with attention, and Bidirectional LSTM + Bidirectional GRU. In 

2020 most participants that used machine learning models combine them with other pre-

trained models to create an ensemble. JCT [70] ranked 6th in Danish using random forest. 

INGEOTEC [71] produces decision function values for the same dataset then combines 

these values in a classifier. 

 

Pre-processing methods were widely utilized in OffensEval tasks. Substituting emoji to 

equivalent text [46, 72-75], converting hashtags to text [55, 64, 74, 75], text lowercasing, 

[49, 54, 72, 73], and removing punctuations [54, 64] are common pre-processing 

methods. Removing symbols and emoji substitution degrades performance in the English 
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language [72]. To the best of our knowledge, no study has been conducted to examine 

pre-processing methods on performance in detail. 

 

Several studies were conducted to solve the class imbalance problem by increasing the 

size of the dataset. AlexU-BackTranslation-TL [76] augment the English dataset by 

translating tweets to another language then translating to English. By applying this 

process, they had new versions of existing tweets. Ferryman [67] used the cross-lingual 

approaches that translates a sentence to three other languages then adds translations to the 

training dataset.  NLPR@ SRPOL, KS@LTH (for English), TysonYU [74], amsqr 

utilized external datasets. ALT showed that external data is useful for performance 

improvement. SU-NLP downsample non-offensive dataset to eliminate risks of the data 

imbalance problem. 

 

Some words used in Twitter are not encountered in books or newspapers. The vector of 

these words is problematic. The character-level encoding used to avoid this problem 

worked well to detect the offensive language in Arabic [77]. In addition, character gram 

features are more helpful than word gram features in random forest [70]. CharacterBERT 

[78] is a BERT version that uses Character-CNN module to represent wordpiece tokens. 

CharacterBERT achieves either the same or better results in classification problems than 

BERT, and it is more robust to misspellings. 

 

Table 0.1 summarizes the performance of the teams for the described classification 

schema. PTM column indicates if the model used a pre-trained model; ML-PTM column 

indicates if the model used the multilingual pre-trained models; Ensemble column 

indicates if the model used an ensemble of models; Pre-processing column indicates if 

the model applies pre-processing methods; Dataset Change column indicates if the model 

used dataset other than provided by OffensEval organizers. Dataset change also includes 

the usage of SOLID and data augmentation methods. 
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Table 0.1 Overview of Team Performances in Subtask A 

Team PTM ML- 

PTM 

Ensemble Pre-

processing 

Dataset 

Change 

NULI [46]      

Nikolov-Radivchev [47]      

NLPR@ SRPOL [48]      

UM-IU@ LING [49]      

Embeddia [50]      

KS@ LTH [51]      

LT@Helsinki [52]      

LISAC FSDM-USMBA [53]      

SU-NLP [54]      

Kuisail [55]      

NTU_NLP [56]      

ANDES [57]      

Galileo [58]      

Rouges [59]      

NLPDove [60]      

GruPaTo [61]      

I2C [62]      

LIIR [63]      

ALT [64]      
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UHH-LT [65]      

Guir [66]      

Ferryman [67]      

amsqr [68]      

MIDAS [69]      

JCT [70]      

INGEOTEC [71]      

BNU-HKBU [72]      

YNUWB [73]      

TysonYU [74]      

Kungfupanda [75]      

AlexU-BackTranslation-TL [76]      

 

 

Dataset 

The dataset in OffenseEval-2019 is OLID which consists of three parts. In Subtask A, 

models need to identify if a given tweet is offensive or non-offensive. In Subtask B, the 

goal is to categorize offensive tweets as targeted or untargeted. In Subtask C, the focus is 

to detect the target type in an offensive tweet. Offensive tweets in Subtask A are the 

dataset of Subtask B; targeted tweets in Subtask B are the dataset of Subtask C. 

OffensEval 2020 does not provide an additional hierarchical dataset for English. A large 

weekly labeled Semi-Supervised Offensive Language Identification Dataset (SOLID) for 

English is published. In addition, for Subtask A, multilingual datasets for languages: 

English, Turkish, Greek, Arabic, and Danish are included. 

We focused on Subtask A, known as the offensive language identification task. In this 

task, we used the Turkish dataset to classify data labeled as offensive and non-offensive. 
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The sample dataset is represented in Table 0.2. Turkish dataset contains 31756 tweets as 

training set and 3528 tweets as test set. Table 0.3 shows the distribution of labels in this 

dataset. In the given dataset, volunteers annotated Turkish tweets manually with the 

following labels. 

Offensive (OFF): Tweets that contain inappropriate language, insults, or threats. 

Not Offensive (NOT): Tweets that do not contain offensive content. 

 

Table 0.2 Sample Dataset of Tweets 

Id Tweet Label 

10906 Benden başka herkese iyi geceler NOT 

19321 @USER Burası da fena değil atkafalı OFF 

26169 Ps3 veya ps4 lazım var mı satan? NOT 

30126 elim ayağım titriyor öyle bakma lan vicdansız OFF 

 

Table 0.3 Distribution of Labels in Tweets 

Label Data 

Train Test 

OFF 6129 716 

NOT 25627 2812 

TOTAL 31756 3528 
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OFFENSIVE LANGUAGE DETECTION 

Initially, we applied pre-processing steps that include converting text to lowercase, 

removal of punctuation, Twitter-specific “user” token, and symbols like “@” and “#”. 

After pre-processing, we employ NLTK tokenizer for tokenizing tweets. We ran classical 

machine learning algorithms to create a baseline and have more detailed information 

about the dataset. We explored the effects of different fine-tuning methods and pre-

trained BERT models for this classification task.  

 

Classical Methods 

We experimented with four classical methods: Logistic Regression, Decision Tree, 

Random Forest, and SVM. We selected Logistic Regression as the first method to work 

with, Decision Tree and Random Forest to gain intuition about the dataset, SVM due to 

its wide usage in classification. Models used TF-IDF with the feature set size is equal to 

3000. We employed sklearn [79] libraries and set regularization parameter 10 for SVM. 

We used default values for other features at sklearn 0.24.2 version. 

 

Fine-tuning Methods 

In the first part of our study, we focused on different fine-tuning methods. We used fine-

tuning method term for the pre-processing method whose effect we wanted to research. 

This section can be interpreted as feature engineering because we examined the training 

dataset and searched for ways to increase accuracy. We chose Fixed Prefix Stemmer 

regarding Turkish language features; we applied Removing Strong Words, Dictionary 

Definition for Rare Words, Hashtag Segmentation, and Removing Emoji methods by 

analyzing Twitter data features. 

 

Removing Rare Words 

Removing rare words from text is a common pre-processing step. If a rare word happens 

to be noise, removing it would improve the performance. In addition, rare words do not 

improve performance and cause computational cost. A recent study [13] shows that 

removing stop words has little effect on the Turkish classification task. Considering the 
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features of the language used in social media and BERT models, we researched whether 

results that comply with this study can be obtained. In this step, we experimented with 

removing words where the occurrence rate is below 0.1. 

 

Fixed Prefix Stemmer 

Fixed Prefix Stemmer (FPS) [80] is a stemming technique that takes the first n characters 

of the specified word. If the word has fewer than n characters, truncation operation would 

not be performed, and the word is used as it is. Turkish is an agglutinative language; 

however, the usage of prefixes is uncommon. The idea of FPS is based on the observation 

that Turkish roots are not affected by changing suffixes. Taking the first five letters of 

words yields better results than taking the first three or the first seven letters. It is found 

that stemming and stop word removing have little effect on the classification task. 

However, the size of the dataset that used in the research was large [13], and we were 

interested in researching the effect of FPS on a small dataset like the one we used. To 

observe the effect of FPS, we fine-tuned BERT model by taking the first five letters of 

each word. 

 

Removing Strong Words 

Adding a strong positive word “love” to an offensive text degrades the performance of 

the models, hence showing the weakness of machine learning models [2]. The word 

“love” was chosen to attack the hate speeches. We wanted to examine the effect of 

removing negative words from non-offensive tweets and removing positive words from 

offensive tweets. We identify negative and positive words by reviewing the frequently 

used words depending on the tweet type. For example, the word “beyinsiz” was 

considered negative, while “mutluluk” was considered positive.  

 

Dictionary Definition for Rare Words 

Words in natural language follow Zipfian [81] distribution; some words are frequent 

while most are rare. To learn the embeddings of these words, the model needs to be 

trained with a large amount of data containing that word. Another option would be 
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treating rare words as OOV words by changing them to “UNK” special token. But this 

approach causes the loss of the information contained in that specific word. In both cases, 

the embedding of rare words is poorly optimized. Auxiliary data such as lexical [82] and 

semantic knowledge [83] provide useful information for learning word embeddings. 

Producing embeddings from dictionary definitions improves the performance of a 

downstream task [84]. TDK [85] is a dictionary for the Turkish language. We used their 

definitions instead of rare words that occurred once in the dataset. 

 

Hashtag Segmentation 

Twitter data contains “#” sign that indicates a keyword or topic. Hashtags could be 

regarded as a group of words that lack space. Changing word boundary by removing 

whitespace breaks word models [2]. Hashtags could be informative; hence, parsing and 

obtaining compound words as tokens will increase the data size. For example, in the tweet 

“#OdtueBaharSenlikleri için herkes  kendini paraladı ama unutmasınlarki bu hareketler 

size taş sopa küfür olarak geri dönecektir..” hashtag refers to a specific event. Therefore, 

we wanted to examine the effect of segmenting hashtags. We split hashtags into words 

using the Turkish NLP library [86]. 

 

Removing Emoji 

Emojis are small pictures used in electronic messages and web pages. They are some of 

the most common ways to convey emotions and sentiments in social messaging 

applications. Twitter data contains more emoji than the pre-training dataset of BERT. 

Some emoji were misused in the training dataset, for example, “Hadi hepimize geçmiş 

olsun. Benim beyin yine stop etti. Ağlamak üzereyim. @USER 💜💜”. Heart shape does 

not relate to the meaning of the sentence. Therefore, we wanted to examine the effect of 

removing emojis. 

 

Emoji2text 

Users could complement or emphasize the meaning of the message using emojis. The 

prevalence of emoji usage in the web [87] has made emoji attractive for various NLP 
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tasks such as sentiment classification [88], human-computer interaction [89], and web 

mining [90]. Converting emojis to text is a typical pre-processing step in offensive 

language identification tasks. Translating emoji into words in offensive language [72] 

leads to a drop in accuracy. The authors of the article argue that some emoji characters 

are used with different meanings in different contexts. We suggest fine-tuning by 

replacing emojis with Turkish text equivalents could improve performance. We used an 

emoji library [91] to obtain the English meanings, then translated the definitions to 

Turkish. For example, 😀 was converted to Sırıtan Surat (Grinning Face). 

 

Pre-trained BERT Models 

In the second part of our study, we focused on BERT models that are pre-trained with the 

Turkish dataset. For BERT models, we set the learning rate as 2e-5, batch size as 32. We 

trained the models with 4 epochs. 

 

BERTurk 

Turkish BERT model (BERTurk) was pre-trained on 35GB corpus size that contains 

Oscar Corpus [92], Opus Corpora [93], and Wikipedia dump. The model uses 12 

transformer layers. BERTurk models differ in vocabulary size 32k and 128k, both of them 

have cased and uncased versions. 

 

DistilBERTurk 

Large-scale pre-trained language models give state-of-the-art results on NLP tasks but 

require a lot of data and time to train. Due to the high computational complexity and large 

storage requirements of these models, they cannot be deployed on low-resource 

machines. Knowledge distillation [94-96] is a compression technique that trains smaller 

networks by using larger networks. In the simplest term, the student model is trained to 

reproduce the behavior of the teacher model by trying to match its weights to the teacher 

model’s weights. The output of the teacher network in the last layer is fed into the student 

network, and the student corrects the weights according to the errors [96]. The teacher 

can be a single model, or it can be an ensemble of multiple models (Figure 0.1) 
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Figure 0.1 The Generic Teacher–Student Framework for Knowledge Distillation, adapted 

from [96] 

 

DistilBERT [97] was proposed to compress BERT model without much degradation in 

performance. DistilBERTurk is a version of DistilBERT for the Turkish language. 

DistilBERTurk was trained on 7GB of the original training data, using the cased version 

of BERTurk as a teacher model. DistilBERT uses the same pre-training dataset as BERT, 

it reduces the size of BERT by 40%, and it is 60% faster. 

DistilBERT uses soft targets [95] that are probabilities calculated by the softmax function 

as shown in Eq. 11. zi is the model score for the i-th class, T is a temperature factor that 

controls the importance of each soft target.  

 

𝑝(𝑧𝑖 , 𝑡) =
exp (

𝑧𝑖
𝑇⁄ )

∑ exp (
𝑧𝑗

𝑇⁄ )𝑗

 

 

(11) 

The student loss function is defined as cross-entropy cost function (Eq. 12). ti is a 

probability estimated by the teacher, and si is a probability estimated by the student. 

 

𝐿𝑐𝑒 =  ∑ 𝑡𝑖 ∗ 𝑙𝑜𝑔(𝑠𝑖)
𝑖

 
    (12) 
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ConvBERTurk 

BERT heavily relies on global self-attention blocks. Some of the BERT heads only need 

to learn local dependencies, which means unnecessary computation costs. ConvBERT 

[98] was created to remove this redundancy and improve BERT performance on 

downstream tasks by changing some heads using a natural local operation. Due to the 

convolution success of extraction of local features, the usage of convolution layers as 

complementary for self-attention on the pre-training phase was proposed. ConvBERTurk 

is a version of ConvBERT for the Turkish language, and it was trained on 32k vocabulary 

cased version for the Turkish language. 

 

ConvBERT enhances novel span-based dynamic convolution. LConv ties all weights 

along channel dimensions using different kernels at each position. Thus, polysemy words 

could have different kernel representations. A mixed attention block is a mixture of self-

attention and span-based dynamic convolution. 

 

Light-weight convolution is calculated as shown in Eq. 13. X denotes input, W denotes 

convolution kernel. The output kernel is efficient in modeling local dependencies; 

however, kernel parameters are fixed. Therefore to capture the diversity of the tokens is 

problematic. 

 

𝐿𝐶𝑜𝑛𝑣(𝑋, 𝑊, 𝑖) = ∑ 𝑊𝑗

𝑘

𝑗 = 1

 . 𝑋
(𝑖 + 𝑗 − 

𝑘+1
2

)
 

       (13) 

 

Dynamic convolution could learn different kernel parameters for different inputs words 

(Eq. 14). However, polysemy words have the same parameters, and these parameters are 

not related to the context of words. 

 

𝐷𝐶𝑜𝑛𝑣(𝑋, 𝑊𝑓 , 𝑖)  =  𝐿𝐶𝑜𝑛𝑣(𝑋, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓 , 𝑋𝑖)), 𝑖) (14) 
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Span-based dynamic convolution generates different kernel parameters for different 

spans of words, which means the context of words is also taken into consideration (Eq. 

15). ʘ operator denotes span-based dynamic convolution; Ks is span-based K vector; K, 

Q, and V are vectors that are obtained by applying linear transformation of input X. 

 

𝑆𝐷𝐶𝑜𝑛𝑣(𝑄, 𝐾𝑠, 𝑉 ;  𝑊𝑓 , 𝑖)  =  𝐿𝐶𝑜𝑛𝑣(𝑉, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓 (𝑄  ʘ  𝐾𝑠)), 𝑖) (15) 

 

Mixed attention for the word “Car” can be calculated as shown in Eq. 16. Same query, 

but different keys generate attention maps and convolution kernels. Car(,) denotes 

concatenation operation.  

 

𝑀𝑖𝑥𝑒𝑑 − 𝐴𝑡𝑡𝑛(𝐾, 𝑄, 𝐾𝑠, 𝑉 ;  𝑊𝑓 )  

=  𝐶𝑎𝑟(𝑆𝑒𝑙𝑓 − 𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉 ), 𝑆𝐷𝐶𝑜𝑛𝑣(𝑄, 𝐾𝑠, 𝑉 ; 𝑊𝑓 )) 

(16) 
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RESULTS AND DISCUSSION 

Results of Classical Methods 

We shared the performance of classical machine learning methods in Table 0.1. SVM 

yields the best performance. Since there is a 0.025 difference with SVM and Logistic 

Regression results, we conclude that the dataset is linearly separable. We experimented 

with linear, polynomial, radial basis function, sigmoid kernels for SVM and got the best 

result with linear kernel. The decision tree and random forest results reveal that ensemble 

methods achieve higher scores than single models. The size of the tweets tagged as non-

offensive is around four times the size of offensive tweets (25627 NOT, 6129 OFF). An 

imbalanced dataset may cause machine learning methods to perform poorly. Resampling 

the training dataset, using different word representations other than TF-IDF, applying 

different pre-processing steps, and ensembling multiple models are further research paths. 

 

Table 0.1 Results of Classical Models 

Model Method F1 

Logistic Regression Pre-processing 0.622 

Decision Tree Pre-processing 0.629 

Random Forest Pre-processing 0.634 

Svm Pre-processing 0.649 

 

Figure 0.1 shows the performance of classical methods as confusion matrices. Logistic 

regression made the least error in marking non-offensive tweets as offensive. In addition, 

it is the most successful classical method in finding non-offensive tweets. Decision tree 

is the most successful classical method for finding offensive tweets. On the other hand, 

random forest yields the highest errors in marking offensive tweets as non-offensive. 
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Figure 0.1 Confusion Matrix of Classical Methods 

 

Results of BERT Models 

BERT model experimental results are shown in Table 0.2. Experiments point out the 

importance of the pre-training dataset and the network architecture on which the model 

is pre-trained. BERTurk (cased, 128k) and ConvBERT obtained the best results. Pre-

training BERT models over far more iterations using a larger dataset [13] gains a 

significant performance boost. mBERT [35] similarly uses a large dataset for pre-training. 

Performance improvement when adding more information for rare words, substituting 

emoji with their Turkish equivalents, and hashtag segmentation supports the need for a 

larger dataset. Models like GPT-3 that were pre-trained using more data would yield even 

better results. However, studies [99, 100] show that training these models requires 

substantial energy consumption. Therefore, we regard architectural changes in models as 
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promising for future research. There are BERT models of the same size that yield different 

results, such as BERTurk (cased, 32k), BERTurk (uncased, 32k), BERTurk (cased, 128k), 

and BERTurk (uncased, 128k). Uncased versions outperform their cased versions. The 

possible reason is that BERT tokenizer adds different words to the dictionary for 

uppercase and lowercase versions of the same word. In addition, on social platforms such 

as Twitter, users ignore the case sensitivity; using the cased version brings an extra 

calculation cost. 

 

Fine-tuning methods involving data reduction mostly downgrade the performance except 

Removing Emoji and Removing Strong Words. Emoji could have been misused by the 

user, or it is not useful for BERT. Removing Strong Words result is better than BERT 

base as Grondahl et al. [2] pointed out. The reason for the failure in the FPS model could 

be that this model breaks the BERT tokenizer. For example, “başkanım” word tokenized 

as “#başkan” and “#ım” words, while the shortened form “başka” tokenized as “#başka”. 

 

Test data contains swear, misspelled words, and emojis not frequently encountered in 

newspapers or books. The more frequent a word appears in the pre-training data, the better 

its representation is learned. A pre-trained model in the target domain [30] increases the 

model performance. Therefore, a model that is pre-trained in Turkish tweet corpora would 

improve classification performance. 

 

KUISAIL achieves a 0.814 F1 score for the Turkish language by feeding the last four 

layers of BERT into a CNN layer. This process happened at the fine-tuning stage. 

ConvBERT changed some of the attention heads with convolution layers. When 

comparing KUISAIL and ConvBERT results, we conclude that pre-training model 

structure is more important than fine-tuning methods. 

 

Character-based models are more resistant to simple evasion attacks based on text 

transformation than word-based models [2]. Simple evasion attacks are adding letters in 

words, changing word boundaries by adding or deleting spaces, and adding innocuous 

words into text. Using character level tokenization instead of wordpiece tokenization 
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could be helpful for classification robustness. CharacterBERT is a character-based BERT 

implementation. At the time of writing, there was no pre-trained CharacterBERT for the 

Turkish language. 

 

Table 0.2 Results of BERT Models 

Model Method F1 

BERTurk (cased, 32k) Removing Rare Words 0.806 

BERTurk (cased, 32k) Fixed Prefix Stemmer 0.810 

BERTurk (cased, 32k) Pre-processing 0.812 

BERTurk (cased, 32k) Removing Strong Words 0.814 

BERTurk (cased, 32k) Dictionary Definitions for Rare Words 0.814 

BERTurk (cased, 32k) Hashtag Segmentation 0.816 

BERTurk (cased, 32k) Removing Emoji 0.817 

BERTurk (cased, 32k) Emoji2text 0.819 

DistilBERTurk Pre-processing 0.754 

BERTurk (uncased, 32k) Pre-processing 0.818 

BERTurk (cased, 128k) Pre-processing 0.821 

BERTurk (uncased, 128k) Pre-processing 0.823 

ConvBERTurk Pre-processing 0.823 

 

Figure 0.2 shows the confusion matrices of the models that cause the most change in the 

performance. We compare the performance of the models with the performance of 

BERTurk (cased, 32k). ConvBERTurk made fewer errors in predicting offensive tweets, 

and the non-offensive tagging error of offensive tweets has also been reduced. On the 

other hand, ConvBERT made more errors in predicting non-offensive tweets, and the 

offensive tagging error of non-offensive tweets has also been increased. BERTurk 

(uncased, 128k) model outperforms BERTurk (cased, 32k) in any predictions. 

DistilBERTurk does not exceed BERTurk (cased, 32k) performance on any predictions. 

Comparing two top methods (BERTurk (uncased, 128k) and ConvBERTurk), 
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ConvBERTurk’s recall score is higher, while BERTurk (uncased, 128k) has a higher 

precision score. 

 

 

Figure 0.2 Confusion Matrices of BERT Models 

 

Table 5.3 lists our top results and the models that we reviewed. Galileo reached the 

highest F1 score among the multilingual models. The models it uses are trained in a larger 

dataset than mBERT, which other multilingual models heavily use, and it ensembles the 

two models. Other successful models SU-NLP, KUISAIL, and KS@LTH have 

demonstrated the efficiency of models trained in the language of the downstream task. 

The training data of the BERT models used by the teams affect the result. For example, 

while the dictionary size of the BERT model we use is 128k, SU-NLP uses the model 

with 32k dictionaries. 
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Table 0.3 Results for Turkish Subtask A 

Team Score Team Score 

Galileo 0.8258 GruPaTo 0.7790 

BERTurk (uncased, 128k)/ConvBERTurk 0.823 INGEOTEC 0.7758 

SU-NLP 0.8167 Ferryman 0.7737 

KUISAIL 0.8141 ANDES 0.7737 

KS@LTH 0.8101 I2C 0.7735 

NLPDove 0.7967 LIIR 0.7720 

TysonYU 0.7933 LT@Helsinki 0.7719 

Rouges 0.7815   

 

 

Misclassified Tweets 

Table 5.3 shows some of the misclassified tweets and possible reasons. Using innuendo, 

spelling errors within words, adding spaces within a swear word, using negative words 

for affection, and using foreign words are possible reasons. 

 The polarity of words affects the performance of the model. In short sentences, 

the effect of the strong positive or strong negative word in the sentence is higher. 

Using innuendo, using strong positive words in an offensive context, using strong 

negative words in a non-offensive context, using phrases degrades the 

performance.  

 As the language changes, pre-trained models will need to be re-pre-trained 

because the context will change. Using context information created after pre-

trained models release and foreign words degrades the performance. 

 Intentional or accidental typo affects the performance of the model. For example, 

users may aim to avoid systems that detect swear words by placing spaces between 

letters in them. Typo cause BERT tokenizer to perform poorly. 
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Table 0.4 Example of Misclassified Tweets 

Tweet Label Prediction Cause 

Ekonomi ile top yekün mücadele için bol bol 

sigara için, her paket de extra 2 TL katkınız 

olsun... 

OFF NOT 

Innuendo 

1 hafta sonra gidiyorum sizinde 

dostluğunuzunda sevginizinde şehrinizinde 

içine tükürim 

OFF NOT 

Typo (tükürim) 

ŞU DÜNYA DÜZ DİYENLER    Ş   İ   K   T   

İ   R   G   İ   D   İ   N   LÜTFEN 
OFF NOT 

Adding spaces 

Eski sevgilimi Tinder’da göremem çünkü 

hornet kullanıyor. Djjdxj keşke şaka olsaydi:( 
OFF NOT 

Context 

information(tinder-

hornet) 

Ya siz niye böyle kafayı yediniz :( OFF NOT 
Phrase (kafayı 

yediniz) 

Şeref ekmek bulamazken şerefsiz bulur NOT OFF 
Negative word 

(şerefsiz) 

Kız haklı dağılın haydi devaam İyikiDoğdun 

EgeKökenli 
NOT OFF 

BERT tokenizer 

(devaam) 

@USER Gardaş dedim bağrıma bastım galleş 

çıktın püüagg 
NOT OFF 

Using negative 

words for affection 

(galleş) 

Yan komşumuz yine formunda.    Küçük 

çocuğuna;   Zaruke xelke mezin dibin akil 

dibin,yeme mezin dibin din u har dibin 😆 

NOT OFF 

Foreign words 

(Zaruke xelke 

mezin dibin akil 

dibin,yeme mezin 

dibin din u har 

dibin) 
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CONCLUSION 

In this thesis, we researched the effects of fine-tuning techniques and different BERT 

models on the Turkish offensive language classification task. We developed our fine-

tuning methods by analyzing the dataset, and we experimented with BERT models that 

pre-trained on Turkish corpora. 

 

Besides BERT models, we also implemented some of the classic methods, and as we 

expected, we achieved lower F1 scores than all BERT models. SVM yields the highest 

score among classical methods. We suggested possible improvement paths such as; 

resampling the training dataset, using different word representations other than TF-IDF, 

applying different pre-processing steps, and ensembling multiple models. 

 

In general, fine-tuning methods that reduce the dataset downgrade performance, while 

methods that increase the dataset provide a slight improvement. Although the fine-tuning 

techniques that aimed to take advantage of the features of Twitter data affected the 

success of the model, they were not as effective as the size or the architecture of BERT 

models. 

 

Experimental results show the importance of the pre-trained model. Pre-training BERT 

models over far more iterations using a larger dataset and improving the deficiencies in 

BERT architecture yields comparable performance to best systems on the Turkish 

language dataset. However, we are confident that modifying the model architectures will 

be more appropriate for future research since pre-training larger models will demand 

higher energy consumption. A pre-trained model in the target domain increases the model 

performance. Therefore, a model that is pre-trained in Turkish tweet corpora would 

improve classification performance. 

 

We analyzed the misclassified data and listed probable reasons, such as; using innuendo, 

using rare words that do not appear in the pre-training dataset, and typos. We concluded 

that the user would also desire to deceive offensive language detection systems. For 
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example, the user can change a letter in a word and break the model's word tokenization 

process. In such cases, we expect that using character-based models such as 

CharacterBERT will achieve higher accuracy. 
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