
EVALUATING THE USE OF NEURAL RANKING
METHODS IN SEARCH ENGINES

SİNİRSEL SIRALAMA YÖNTEMLERİNİN ARAMA
MOTORLARINDA KULLANIMININ

DEĞERLENDİRİLMESİ

Ömer ŞAHİN

Prof. Dr. İlyas ÇİÇEKLİ
Supervisor

Dr. Gönenç ERCAN
Co-Supervisor

Submitted to
Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements
for the Award of the Degree of Master of Science

In Computer Engineering

2022

http://fenbilimleri.hacettepe.edu.tr/index_eng.html
https://www.hacettepe.edu.tr/

ABSTRACT

EVALUATING THE USE OF NEURAL RANKING METHODS

IN SEARCH ENGINES

Ömer ŞAHİN

Master of Sciences, Department of Computer Engineering

Supervisor: Prof. Dr. İlyas ÇİÇEKLİ

Co-Supervisor: Dr. Gönenç ERCAN

January 2022, 77 pages

A search engine strikes a balance between effectiveness and efficiency to retrieve
the best documents in a scalable way. Recent deep learning-based ranker meth-
ods prove effective and improve state of the art in relevancy metrics. However,
unlike index-based retrieval methods, neural rankers like BERT do not scale to
large datasets. In this thesis, we propose a query term weighting method that
can be used with a standard inverted index without modifying it. Using a pair-
wise ranking loss, query term weights are learned using relevant and irrelevant
document pairs for each query. The learned weights prove to be more effective
than term recall values previously used for the task. We further show that these
weights can be predicted with a BERT regression model and improve the perfor-
mance of both a BM25 based index and an index already optimized with a term
weighting function. In addition, we examine document term weighting meth-
ods in the literature that work by manipulating term frequencies or expanding

i

https://www.cs.hacettepe.edu.tr/

documents for document retrieval tasks. Predicting weights with the help of con-
textual knowledge about document instead of term frequencies for documents
terms significantly increase retrieval and ranking performance.

Keywords: Information Retrieval, Passage Ranking, Term Weighting, Pairwise
Ranking Optimization

ii

ÖZET

SİNİRSEL SIRALAMA YÖNTEMLERİNİN ARAMA

MOTORLARINDA KULLANIMININ DEĞERLENDİRİLMESİ

Ömer ŞAHİN

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Danışman: Prof. Dr. İlyas ÇİÇEKLİ

Eş Danışman: Dr. Gönenç ERCAN

Ocak 2022, 77 sayfa

Bir arama motoru, en alakalı belgeleri ölçeklenebilir bir zamanda alabilmeli,
etkinlik ve verimlilik arasında bir denge kurmalıdır. Son zamanlardaki derin
öğrenme tabanlı sıralayıcı yöntemlerinin etkili olduğu kanıtlanmıştır ve alaka
ölçütlerinde en son teknolojiyi oluşturmaktadır. Ancak, dizin tabanlı alma
yöntemlerinin aksine, BERT gibi sinirsel sıralayıcılar büyük veri kümelerine
ölçeklenemez. Bu tezde, standart bir ters indekslemeyi değiştirilmeden
kullanılabilecek bir sorgu terimi ağırlıklandırma yöntemi öneriyoruz. Sorgu
terim ağırlıkları, ikili sıralama kaybı kullanılarak her sorgu için alakalı ve
alakasız belge çiftleri kullanılarak eğitilir. Öğrenilen ağırlıkların, bu görev için
daha önce kullanılan terim hatırlama değerlerinden daha etkili olduğu
kanıtlanmıştır. Ayrıca, bu ağırlıkların bir BERT regresyon modeli ile tahmin
edilebileceğini ve hem BM25 tabanlı bir indeksin hem de bir terim
ağırlıklandırma fonksiyonu ile halihazırda optimize edilmiş bir indeksin
performansını iyileştirdiğini gösteriyoruz. Ek olarak, belge alma görevleri için
terim sıklıklarını değiştirerek veya belgeleri genişleterek çalışan literatürdeki

iii

https://www.cs.hacettepe.edu.tr/

belge terimi ağırlıklandırma yöntemlerini inceliyoruz. Belge terimleri için terim
frekansları yerine belge hakkındaki bağlamsal bilginin yardımıyla ağırlıkları
tahmin etmek, alma ve sıralama performansını önemli ölçüde artırır.

Anahtar Kelimeler: Bilgi Getirme, Pasaj Sıralama, Terim Ağırlıklandırma, İkili
Sıralama Optimizasyonu

iv

ACKNOWLEDGEMENTS

I am grateful to my supervisor Prof. Dr. İlyas Çiçekli and my co-supervisor
Dr. Gönenç Ercan for guiding me in this journey and illuminating the way I
walkthrough.

I thank valuable lecturers of Hacettepe University, Department of Computer En-
gineering, for the courses that improve my skills and experiences in the field
when I studied for my master’s.

In addition, I would like to thank my family for supporting me unsparingly while
I am working on accomplishing my degree of master.

v

CONTENTS

ABSTRACT i

ÖZET iii

ACKNOWLEDGEMENTS v

CONTENTS vii

LIST OF FIGURES xi

LIST OF TABLES xiii

LIST OF SYMBOLS xv

LIST OF ABBREVIATIONS xvii

1 INTRODUCTION 1
1.1 Motivation and Scope . 1
1.2 Contribution . 2
1.3 Thesis Organization . 3

2 LITERATURE REVIEW 5
2.1 Ranking Function . 5
2.2 Relevance Feedback . 7
2.3 Term Weighting . 7
2.4 Learning to Rank . 9

3 LANGUAGE MODELS 11
3.1 Transformer . 11

3.1.1 Encoder and Decoder . 11
3.1.2 Attention . 13

Scaled Dot-Product Attention 13
Multi-Head Attention . 14

3.1.3 Position-wise Feed-Forward Networks 14
3.1.4 Positional Encoding . 15

vii

3.2 Bidirectional Encoder Representations from Transformers 15
3.2.1 Model Architecture . 16
3.2.2 Input/Output Representations 16
3.2.3 Pre-Training . 16

Masked Language Model . 16
Next Sentence Prediction . 17

3.2.4 Fine-tuning . 17
3.3 Text to Text Transfer Transformer . 17

3.3.1 Model Architecture . 18
3.3.2 Input/Output Representations 18
3.3.3 Pre-Training . 19
3.3.4 Fine-Tuning . 19

4 SEARCH ENGINE 21
4.1 Lucene . 22

4.1.1 Text Index . 22
4.1.2 Query Search . 23

5 RELEVANCE FEEDBACK 25
5.1 Term Recall Based Term Weighting 26
5.2 Pairwise Ranking Loss Based Term Weighting 27

5.2.1 Min-Max Normalization . 29
5.2.2 Minimization Absolute Values of Negative Weights 30
5.2.3 Non-Negative Weight Constraint 30
5.2.4 Pair Selection . 31

6 TERM WEIGHTING 33
6.1 Query Term Weighting . 33

6.1.1 DeepTR . 33
6.1.2 DeepCT-Query . 35
6.1.3 Term Weight Prediction Model 36

6.2 Document Term Weighting . 38
6.2.1 DeepCT - Index . 39
6.2.2 TextRank . 40
6.2.3 Doc2Query . 41
6.2.4 DocTTTTTQuery . 41

viii

7 EVALUATION 43
7.1 Recall . 43
7.2 Mean Average Precision . 44
7.3 Mean Reciprocal Rank . 44
7.4 Normalized Discounted Cumulative Gain 44
7.5 Paired t-Test . 45

8 EXPERIMENTS 47
8.1 Dataset . 47
8.2 Configurations . 49
8.3 Methods to Evaluate . 50

9 RESULTS 53
9.1 Number of Pair for Pairwise Term Weight Optimization 54
9.2 Query Term Weighting . 55

9.2.1 Term Recall and Pairwise Term Weight Optimization 55
9.2.2 Term Weight Estimation . 57
9.2.3 Combining with Index Term Weighting 59

9.3 Document Term Weighting . 61
9.3.1 Term Frequency Models . 61
9.3.2 Term Expansion Models . 62

9.4 Phrase Search . 63
9.4.1 Maximum Length of Phrases 63
9.4.2 Phrase Weighting . 64

9.5 Overall Results . 66

10 CONCLUSION 69

REFERENCES 71

ix

LIST OF FIGURES

3.1 Transformer Network Architecture 12
3.2 Attention Mechanism of Transformer 13

6.1 BERT Query Term Weighting Model Architecture 38
6.2 Doc2Query Document Expansion Model 41

8.1 MS MARCO Passage-Term Histogram 48
8.2 MS MARCO Query-Term Histogram 49
8.3 MS MARCO Query-Relevant Passage Histogram 49

xi

LIST OF TABLES

5.1 Relevant and irrelevant pair for a query. 32

8.1 The number of passages and queries in MS MARCO collection. . . 47
8.2 BM25 parameter configurations for methods. 50

9.1 Number of documents to optimize pairwise model. 54
9.2 Query term weighting with oracle methods using the document

relevance information. MRR, MAP, and RECALL metrics evaluation. 56
9.3 Query term weighting with oracle methods using the document

relevance information. NDCG metric evaluation. 56
9.4 Query term weighting using estimated term weights. MRR, MAP,

and RECALL metrics evaluation. 58
9.5 Query term weighting using estimated term weights. NDCG met-

ric evaluation. 59
9.6 Combined effect of query term weighting with index term weight-

ing (DeepCT-Index). MRR, MAP, and RECALL metrics evaluation. 60
9.7 Combined effect of query term weighting with index term weight-

ing (DeepCT-Index). NDCG metric evaluation. 60
9.8 Document term weighting. MRR, MAP, and RECALL metrics eval-

uation. 61
9.9 Document term weighting. NDCG metric evaluation. 62
9.10 Document term expansion. MRR, MAP, and RECALL metrics eval-

uation. 63
9.11 Document term expansion. NDCG metric evaluation. 63
9.12 Maximum length of the phrases. 64
9.13 Term Weighting for Phrase Query. MRR, MAP, and RECALL met-

rics evaluation. 65
9.14 Term Weighting for Phrase Query. NDCG metric evaluation. 65
9.15 Overall results of query and document term weighting. 67

xiii

LIST OF SYMBOLS

Q Query
D Document
DRel Relevant document
DIrrel Irrelevant document
DK Top K documents
qi ith term of the query
avgdl Average document length
Dq Set of relevant documents
Dq,t Set of relevant documents that contain term t
Qd Set of queries that address the document
Qd,t Set of queries that address the document and contain term t
~w Weight vector of query terms
wi Weight of ith query term
Wmax Maximum term weight in ~w
Wmin Minimum term weight in ~w
~x Feature vector of the relevant document
~y Feature vector of the irrelevant document
α Minimum distance between relevant and irrelevant documents, margin

xv

LIST OF ABBREVIATIONS

NLP Natural Language Processing
TF Term Frequency
IDF Inverse Document Frequency
BoW Bag of Words
BERT Bidirectional Encoder Representations from Transformers
T5 Text to Text Transfer Transformer
MAP Mean Average Precision
MRR Mean Reciprocal Rank
NDCG Normalized Discounted Cumulative Gain
qid Query ID
pid Passage ID
Min-Max Mininimum-Maximum Normalization
Min-Abs-Neg Minimization Absolute Values of Negative Weights
Non-Neg Non-Negative Weight Constraint

xvii

1. INTRODUCTION

1.1 Motivation and Scope

A typical search engine retrieves the “best” matching documents to a user query.
Its effectiveness is measured through how accurately it ranks documents against
the query. On the other side, the retrieval algorithm must scale to billions of
documents and thus must be efficient. Recent research show that contextual-
ized word embeddings like BERT [6] are effective in retrieval and outperform the
long-standing baseline BM25 [34] significantly. Unfortunately, processing all doc-
uments with a ranker like BERT is not efficient and scalable. Recent studies try to
address this problem by striking a balance between effectiveness and efficiency
using multi-stage retrieval systems [25, 3].

In multi-stage search engines, the first stage is to create a subset of documents
by selecting the documents that are possibly related to the query. The second
stage is re-ranking the candidate documents according to their relevance with the
query. In the second stage, more complex learning-to-rank algorithms re-rank the
candidate documents chosen in the first stage.

As an alternative solution, it is possible to process only the query with BERT and
transfer information via term weights to an efficient index-based retrieval method
like BM25. This allows the retrieval system to scale to large datasets but still be
able to capture the importance of the terms using rich semantic information cap-
tured in BERT embeddings. Furthermore, a readily available standard inverted
index-based retrieval system like Lucene1 can be used without any modifications.

Frequency-based ranking algorithms such as BM25 use corpus statistics to deter-
mine the importance weights for terms. A term appearing in a large portion of the
documents is deemed to be less important, while a normally less frequent term is
assigned a large weight. Inverse document frequency (IDF) is an effective weight-
ing scheme that incorporates this to BM25. BM25 can be further improved when
some form of relevance feedback is available, i.e., when relevant documents to
the query are known. The proportion of relevant documents a term appears in is
used as the weighting factor. We will refer to this as the Term Recall value of the

1Apache Lucene search engine - lucene.apache.org

1

https://lucene.apache.org/

term. While this improves the retrieval effectiveness, the term recall values are
specific to the query and do not generalize to a diverse set of queries.

Term recall based weights are effective in optimizing recall at high cutoff values,
as terms appearing in all relevant documents are boosted. A term appearing
in all relevant documents will be assigned a high weight value, even though it
is also commonly used in irrelevant documents. A stop word appearing in all
documents will be assigned a high weight. In this thesis, we investigate the use of
pairwise ranking loss to learn the term weights of each query as a replacement for
term recall values. This can potentially adjust term weights to better distinguish
relevant documents from irrelevant ones. Furthermore, we continue to show that
these learned weights can be predicted by the BERT model and yield performance
improvements over term recall based weights.

1.2 Contribution

To increase effectiveness and maintain efficiency simultaneously, most of the ap-
proaches in the literature do index-time term weighting, which manipulates doc-
uments before the index. Considering the size and accessibility of the indices,
re-indexing might not be feasible or possible. In other respects, term weights
can also be applied in search-time by preprocessing the query with a deep learn-
ing model. In such a case, term weighting for query terms is an effective and
efficient way to fetch relevant documents for the query. For this purpose, we fo-
cus on query term weighting that aims to estimate optimum weights for query
terms by optimizing a pairwise ranking loss to achieve higher scores for relevant
documents than irrelevant ones and propose a BERT regression model to predict
desired target term weights.

We propose a new relevance feedback method that learns optimum term weights
for a query to retrieve relevant documents in the top ranks. The pairwise loss-
based optimization method tries to find the best coefficients for query terms that
boost term contribution in BM25. When boosting terms according to importance
fetching relevant documents, it has to not tend to favor irrelevant documents. The
proposed relevance feedback method called pairwise term weight optimization
generalizes over hard instances of relevant and irrelevant pairs to choose relevant
documents instead of irrelevant ones. The optimization highlights terms that

2

express the query and relevant document and reduce the effect of the generic
terms that are insignificant for relevant documents.

Pairwise term weight optimization runs supervised, which means it requires la-
beled data for the query. To boost query term weights in the search time, we
propose BERT based regression model that takes term and the query as input,
and the model estimates target term weight which can be term recall or pairwise
optimized ones. The proposed BERT regression model allows to phrase weight-
ing like term weighting as distinct from the term estimation frameworks in the
literature thanks to the term-query input design. The BERT regression model is
trained with the proposed relevance feedback as offline, and with the minor ad-
dition of inference time for query term weight estimation in search time, better
retrieval and ranking performances are obtained.

Besides our proposed relevance feedback and term weight estimation methods,
we bring together a comparison of the query and document term weighting mod-
els. We evaluate different approaches for query and document term weighting
schemes and investigate the neural network models they use for representing
natural language. In addition to the approaches for the studied task in the litera-
ture, we present research for relevance feedback and language models.

1.3 Thesis Organization

In the next chapter, we review the literature for seeking the history of ranking
functions, relevance feedback, term weighting, and recent learning-to-rank algo-
rithms. The development of the probabilistic ranking functions is investigated,
and BM25, which is the most known probabilistic weighting scheme, is used
in experiments. Probabilistic relevance feedback method and the different term
weighting frameworks are evaluated, and some of term weighting frameworks
use the examined relevance feedback method. Learning-to-rank approaches are
defined, and recent researches about learning-to-rank algorithms are inspected.

In the chapter of Language Models, Transformer based language models are
given. The network architectures of these language models are represented. Pre-
training and fine-tuning procedures are explained. The given language models
are used by evaluated term weighting models and the proposed term estimation
model.

3

In Search Engine chapter, logic of a typical text search engine is explained. The
capabilities of an open-source text search engine called Lucene are given. Text
indexing and query searching processes are detailed.

In the chapter of Relevance Feedback, the usage of relevance feedback methods
in the ranking function is explained. The existing relevance feedback method
called Term Recall is presented, and a pairwise-loss-based optimization method
for optimum relevance feedback is proposed.

In Term Weighting chapter, query and document term weighting frameworks
are given. Query term boosting methods and the proposed BERT-based term
weight estimation model is specified. Document term weighting models that by
manipulating term frequencies or expanding documents are indicated.

In the following chapters, evaluation metrics for retrieval and ranking perfor-
mance are given. The dataset for retrieval task and configurations of the test setup
is remarked. In the result chapter, the results of all experiments are explained for
different metrics and different test cases.

At the end of the thesis, final thoughts and evaluations are given as a conclusion
of the thesis.

4

2. LITERATURE REVIEW

The text ranking is an old topic. Indexing documents and searching something in
that indexed documents done for years. In this chapter, text retrieval and ranking
techniques in the literature are reviewed in several titles. In the first part, the
ranking schemes and probabilistic weighting schemes are investigated. In the
next part, relevance feedback is looked over for retrieval performance. In the
next part, query and document term weighting methods are explored. Finally,
we inform about learning-to-rank algorithms.

There is a well-known statistical relevance feedback method called term recall
and various term weighting schemes that use term recall in literature. Most term
weighting models focus on document term weighting, and there are fewer query
term weighting models. Furthermore, there is no study to use query and doc-
ument term weighting together. There is a work area for new relevance feed-
back and evaluating the combination of query and document term weighting
approaches in the literature.

2.1 Ranking Function

One of the most known probabilistic weighting schemes is BM25 [34]. In BM25,
BM stands for "Best Match". The probabilistic weighting schemes rely on the
exact term matching. To calculate the relevance score for a document with re-
spect to the input query, there are must be common terms between both of them.
Consequently, the cumulative relevance scores of each term give the document
relevance score.

The traditional probabilistic term weighting scheme can be formulated as follow
[31, 32]:

(k3 + 1)q
k3 + q

× (k1 + 1) f
k1L + f

× log(r + 0.5)(N − n− R + r + 0.5)
(n− r + 0.5)(R− r + 0.5)

(2.1)

where k1 and k3 are constant, which helps to scale the weights, q and f are the
term frequencies, q is in the query and f is in the document. In the equation, N
is the number of total documents in the collection, the number of documents that
contain the term is shown as n. The number of relevant documents is R and the

5

number of relevant documents that contain the term is r. The normalized docu-
ment length is computed as the length of this document divided by the average
document length of all documents in the collection, and the normalized docu-
ment length is represented as L.

BM11 uses the probabilistic term weighting equation (Equation 2.1) with addi-
tional value to sum with cumulative document score. The following equation
shows the additional query information:

k2nq
1− L
1 + L

(2.2)

where k2 is another constant and nq is the number of term in query, in other
words, length of the query.

BM15 is the same as BM11 except k1L+ f changed with the k1 + f in probabilistic
weighting scheme (Equation 2.1).

BM25 is the combination of BM11 and BM15 with a scaling factor. Overall rele-
vance score for a document is calculated as follow [43]. The detailed equation of
BM25 at Chapter 5, Relevance Feedback.

BM25(D, Q) =
n

∑
i=1

IDF(qi) · TF(D, qi) (2.3)

BM25F [40, 41] is a variation of BM25 that handles the contribution of a field when
the document consists of several fields such as headlines, contents.

BM25+ [33] is an extension for BM25 to dissolve an incompleteness in BM25. As
a consequence of the incompleteness, the long documents that contain the term
may be scored the same as the shorter documents that do not have the term due
to normalization of the term frequencies by the length of the document. To solve
this problem, an additional free parameter δ added to TF(D, qi) as distinct from
BM25. BM25 equation is changed to the following equation:

BM25(D, Q) =
n

∑
i=1

IDF(qi) · [TF(D, qi) + δ] (2.4)

where δ is an additional free parameter that equals 1 in default.

6

2.2 Relevance Feedback

Terms have different contributions to the relevance score. The term frequencies
do not involve any contextual information to retrieve a document. A relevance
feedback metric can be defined when knowing the relevance between queries and
documents in the collection.

A probabilistic relevance feedback is defined by Mogotsi [20]. Assume that, for
each term xt in the query, there is constant pt that is probability estimation. Set
of user judgment relevant documents is defined as R =

{
d : Rd,q = 1

}
. When

relevant and irrelevant document sets are big enough, the relevance feedback pt

for term t is shown as follow:

pt =
|VRt|
|VR| (2.5)

where VRt is the set of relevant documents that contain term xt, and VR is the
set of all relevant documents. With smoothing factor, the relevance feedback for
term xt equals to following equation:

pt =
|VRt|+ 1

2
|VR|+ 1

(2.6)

This probabilistic relevance feedback can be applied to the document-side. The
relevance probability is estimated by replacing with each other the query and
document in the assumption. The document-side relevance probability is calcu-
lated as the same but this time VRt is the set of queries that address the document
and contain term xt and VT is the set of queries that address the document, and
xt is the tth term of the document, instead of a query.

The probabilistic relevance feedback without smoothing factor is called Term Re-
call and it is used in retrieval frameworks [49, 5] to obtain more knowledge than
the statistical TF-IDF values.

2.3 Term Weighting

Term frequencies and inverse document frequencies are statistical relevance feed-
back about a term that is independent of the input query in a basic way. Term

7

weighting is more accurate relevance feedback about terms for retrieval and rank-
ing relevant documents by replacing term frequency with estimated term weight.

To realize this purpose, there are several methods such as estimating target rel-
evance feedback by contextual embeddings, defining term importance by term
co-occurrence, or predicting possible queries that address to the document and
expand the document with these possible queries. Some of these methods can be
applied in both document and query terms.

DeepTR is a query term weighting method that boosts the score of the term in
the ranking function proposed by Zheng and Callan [49]. DeepTR tries to esti-
mate term recall [20] relevance feedback by using the distance between the term
and the query as a feature vector. Terms are represented in the feature space by
Word2Vec [19] word embeddings. The query is the average of the word vectors
that compose the query itself.

Dai and Callan [5] proposed a contextual term weighting framework called
DeepCT for document and query terms. The contextual knowledge about text
extracted with BERT [6] language model and a regression layer tries to predict
target relevance feedback which is term recall [20]. The pre-trained BERT
language model is fine-tuned for the task that estimates term recall values with
an additional regression layer.

TextRank is a graph-based keyword extraction model proposed by Mihalcea and
Tarau [18]. TextRank uses the PageRank [1] algorithm to find the most impor-
tant terms in the document by using their co-occurrence matrix. Relevance feed-
back of the terms is defined by the PageRank algorithm in Text Rank. Most co-
occurrence terms in the documents are the most important terms to represent the
documents and the terms that co-occurrence with most important terms is impor-
tant as well in regard to the PageRank algorithm.

Document expansion models change term frequencies by adding terms and
reduce term mismatching between query and document by adding new terms to
the document. Doc2Query [24] and its follow-up work DocTTTTTQuery [23]
models expand documents by estimating queries that address to the document.
Both models use sequence-to-sequence [42] neural network architecture that
takes documents as input sequence and predicts queries as output sequence.
Doc2Query model is trained end-to-end to estimate possible queries for

8

documents. DocTTTTTQuery model is fine-tuned for query estimation task
from Text-to-Text Transfer Transformer model trained as a generative language
model for different tasks with rich text data by Raffel et al. [30].

A more recent research, DeepImpact [17] combines document expansion by
DocTTTTTQuery [23] and term weighting together. The enriched documents
with the help of document expansion by DocTTTTTQuery reduce word
mismatching and the contextual document term weighting helps to get better
ranking and retrieving performance.

2.4 Learning to Rank

Learning-to-Rank algorithms use three main approaches that are point-wise, pair-
wise, and list-wise to rank documents, and focus on representation or interaction
of query and document.

The learning-to-rank approaches can be listed as follows:

• Point-wise approach learns to rank documents on a single document and
input query. The point-wise model calculates the relevance score for each
document.

• The pair-wise approach learns which of the document pairs is more relevant
to the input query. The model compares the documents in pairs according
to their relevance to the query and returns the more relevant document.
RankSVM [14] and RankBoost [7] use the pair-wise approach to rank docu-
ments by judging which documents in the pair are more relevant with the
input query.

• The list-wise approach learns to rank the set of documents according to their
relevance to the input query. The model returns an ordered list of docu-
ments. ListNet [4], AdaRank [47] and LambdaMart [2] apply the list-wise
approach. The set of documents is ranked as a whole in a single run.

Representation-focused learning-to-rank algorithms extract a representative fea-
ture vector for the query and the document individually and relevance scores are
measured by using the similarity between representation vectors of query and
document pair. DSSM [12], CDSSM [39], ARC-I [11], and SQA [36] learning-to-
rank algorithms focus on the representation of document and query.

9

Interaction-focused learning-to-rank algorithms try to match the query and docu-
ment feature patterns according to the interaction of the query and the document.
The more matching patterns the higher the relevance between the query and the
document. DRMM [9], ARC-II [11], MatchPyramid [26], Match-SRNN [45], Deep-
Rank [27] learning-to-rank algorithms focus on the interaction between document
and query.

Zamani et al. [48] proposed a sparse representation method for documents in the
collection. The sparse representation vectors are used to index documents by in-
verted index [50] structure. The queries are represented as sparse vectors in the
same space. The matched non-zero values between query and documents pro-
vide document retrieval and the similarity of sparse vectors gives the relevance
score.

Recent research BERT-based ranking models like Passage Re-ranking [22], TF-
Ranking [10], ColBERT [15] and COIL [8] show that contextualized word embed-
dings like BERT [6] are effective in retrieval and outperform the long-standing
baseline BM25 [34] significantly.

10

3. LANGUAGE MODELS

3.1 Transformer

Transformer [44] is a model that uses the attention mechanism to detect global
dependencies between input and output sequences instead of recurrence. On the
machine translation task, Transformer achieved better quality success and the
transformer model needs less time for training significantly due to more paral-
lelization than recurrent models.

In many sequence transduction tasks, the main objective is finding relevance be-
tween tokens in the long sequence range. Self-Attention provides to learn these
dependencies in a long-range by creating combinations of the tokens in the se-
quence. Additionally, self-attention layers work faster than recurrent layers, if
the sequence length is less than the representation dimensionality.

Transformer consists of encoder and decoder architecture, both encoder and de-
coder use stacked self-attention and point-wise fully connected dense layers. The
model architecture of Transformer is given in Figure 3.1.

3.1.1 Encoder and Decoder

The encoder part of Transformer is stacked N identical layers that consist of two
sub-layers. The first one of the sub-layers is a multi-head self-attention mecha-
nism and the second one is a position-wise feed-forward network that fully con-
nected. There are residual connections around sub-layers which are followed by
a normalization layer.

The decoder of Transformer is stacked N identical layers similar to the decoder.
The decoder has one more sub-layer between multi-head attention and position-
wise feed-forward block. The additional sub-layer applies multi-head attention
to the output of the encoder stack. As in the encoder, there are residual con-
nections around sub-layers and after that, a normalization layer. In the decoder
stack, the self-attention sub-layer is adjusted to ensure prediction at position i
rely on the known output that position is less than i by masking.

11

FIGURE 3.1: Model architecture of Transformer [44]

12

FIGURE 3.2: Scaled Dot-Product Attention and Multi-Head Atten-
tion [44]

3.1.2 Attention

The definition of the attention function is mapping a query and a set of key-value
pairs to an output that is the sum of values weighted by the compatibility of the
query and key, which corresponds to the query.

Scaled Dot-Product Attention

Queries, keys of dimension dk, and values of dimension dv are taken by scaled
dot-product attention as input. The keys of dimension dk are used for scale factor
when computing dot-products of the query by dividing each key to

√
dk. After

that, softmax is applied to values for weighting. Scaled Dot-Product Attention
layer is shown on the left in Figure 3.2.

The scaled dot-product attention is computed as follows:

13

Attention(Q, K, V) =

(
QKT
√

dk

)
V (3.1)

where Q is the query set matrix, K and V are for the keys and values respectively.
KT is the transpose of the K.

Multi-Head Attention

Each query, key, and value are projected to linear space h times by independent
linear projections for dq, dk, and dv dimensions. The attention function for these
linearly projected queries, keys, and values is applied in the manner of parallel.
The output of attention functions which is at head h, are concatenated with each
other and another linear projection is applied over this concatenation. Multi-
Head Attention layers are shown on the right in Figure 3.2.

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO (3.2)

where

headh = Attention(QWQ
i , KWK

i , VWV
i) (3.3)

where weights of liner projections WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈

Rdmodel×dv , and WO ∈ Rhdv×dmodel .

3.1.3 Position-wise Feed-Forward Networks

There is a fully connected feed-forward network that is performed at each posi-
tion separately and with the same weight for different positions. Each layer has
different weights for the feed-forward network.

The Feed-forward network performs two linear transformations and it has the
ReLU activation function which is in between linear transformations.

Fully connected feed-forward performed as follow:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.4)

14

3.1.4 Positional Encoding

Transformer has no information about the position of the tokens in the sequence
by relatively or absolutely due to Transformer does not contain any recurrence or
convolution. For the sake of giving positional information, there is the positional
encoding for adding to input embeddings at the beginning of encoder and de-
coder stacks. To sum the positional encoding and input embeddings, they have
the same dimension dmodel.

The positional encoding obtained as given sine equation:

PE(pos,2i) = sin(pos/100002i/dmodel) (3.5)

where positions of the token in the sequence are shown as pos and the dimension
shown as i.

3.2 Bidirectional Encoder Representations from Transformers

BERT (Bidirectional Encoder Representations from Transformers) is a language
representation model that is designed to pre-train on unlabeled text corpus by
bidirectional to learn the context of the text. Transformer applies bidirectional
self-attention, each token interacts with other tokens in BERT architecture.

The pre-train objective of the BERT is the masked language model (MLM). Ran-
domly selected tokens in a text sequence are masked and the model tries to find
masked words by using the context of the text extracted from unmasked terms in
the task of the masked language model.

The language representation models are pre-trained by two known approaches
which are future-based and fine-tuning. The unidirectional language models such
as ELMo [28] and Generative Pre-trained Transformer (GPT) [29] have the same
objective for pre-training. ELMo applied a future-based approach, it has task-
specific features. GPT has fewer task-specific features and it can be trained for
any other task by simply fine-tuning.

15

3.2.1 Model Architecture

The architecture of BERT consists of Transformer described by Vaswani et al. [44]
in multi-layer bidirectional form. Transformer applies bidirectional self-attention,
each token interacts with other tokens on both left and right sides in BERT archi-
tecture.

In BERT architecture, L stands for the number of layers, in other words, Trans-
former blocks, H stands for the hidden size, and A stands for the number of
self-attention heads. Base BERT model has 12 layers, 768 hidden sizes, and 12
self-attention heads. The total number of parameters is 110 million for the base
model of BERT.

3.2.2 Input/Output Representations

BERT has special tokens to represent single sentences and pairs of sentences like
question-answer tasks without any ambiguation to create a generalized language
model by independent from any task. Each text sequence starts with the special
classification token [CLS] which represents the final hidden state that aggregated
through the sequence, and this token is used on the classification tasks. To sep-
arate sentences in a pair of text sequences, the special separator token [SEP] is
used between the first sentence and the second sentence.

BERT uses WordPiece embeddings [46] to tokenize text sequences into tokens
of vocabulary which has 30.000 unique tokens. WordPiece tokenization handles
decode single character and full word without suffering mismatch.

3.2.3 Pre-Training

BERT pre-trained two unsupervised tasks that are masked language model
(MLM) and next sentence prediction (NSP). BERT was pre-trained with a large
text corpus by using BooksCorpus which consists of 800M words and English
Wikipedia which consists of 2.500M words.

Masked Language Model

In the masked language model, randomly 15% of tokens are masked of all to-
kens in a text sequence that tokenized by WordPiece. When pre-train BERT by
MLM task, the model only predicts to masked words. With help of bidirectional

16

transformer architecture, each token interacts with any other tokens in both left
or right ways. In this way, masked terms are predicted by using the context of
the whole text sequence.

Randomly chosen tokens in a text sequence are replaced with the special token
[MASK] by 0.8 probability, by 0.1 probability a random token is used instead of
the masked one, and the other 0.1 probability chosen token is used as it is without
masking.

Next Sentence Prediction

Some NLP tasks like Question Answering are based on detecting interaction be-
tween two sentences. To detect the relationship between pairs of sentences, BERT
pre-trained for the next sentence prediction (NSP). In half of the training data,
the second sentences are actually the continuation of the first sentences. In the
other half, the second sentences are unrelated to the first ones. BERT is trained
to predict the first sentence is followed by the second sentence or not in the NSP
task.

3.2.4 Fine-tuning

BERT pre-training creates a language model that can extract contextual embed-
dings with the help of Transformer’s self-attention mechanism [44]. Through this,
BERT can be used in many language processing tasks by only fine-tuning.

The pre-trained BERT model is used as a starting point to fine-tune a specific task.
The model is fine-tuned end-to-end using task-specific inputs and outputs. The
aggregated representation token [CLS] is feed-forward into classification layers
on classification tasks. At the end of fine-tuning, all parameters in BERT and
task-specific layers are updated.

The fine-tuning requires less time compared to pre-training of BERT.

3.3 Text to Text Transfer Transformer

Raffel et al. [30] proposed a model that approaches each natural language pro-
cessing (NLP) task as a text-to-text problem. The idea of the Text to Text Transfer
Transformer (T5) is the learning of a language model by using a huge amount

17

of English text knowledge and fine-tune for downstream tasks which are ques-
tion answering, document summarization, sentiment classification, and machine
translation.

The rich dataset was obtained from the internet. Each month, nearly 20TB of text
data is written on the internet. The web-based text data called "Colossal Clean
Crawled Corpus", filtered by some preprocessing such as discarding web pages,
which contain placeholder "lorem ipsum" text, slangy words, programming lan-
guages, or short web pages. The cleaned text corpus is used to learn a generative
language model to become applicable for the text-to-text tasks.

3.3.1 Model Architecture

T5 tries to explore the limits of transfer learning by understanding the text and
fine-tuning for tasks by learning a language model for the English language with
a rich and clean text corpus. To this end, the T5 model uses a similar architecture
with Transformer as proposed by Vaswani et al. [44] instead of proposing a new
network architecture. To actualize the text-to-text approach, the generative lan-
guage model is required, therefore, BERT [6] language model is not applicable for
this task. Though, the configuration of the encoder and decoder of Transformer
is the same with the BERTBASE model structure.

T5 model architecture has some differences from Transformer. One of them is
removing layer normalization bias and adding to the residual path from outside
as layer normalization. Another difference is relative position embeddings [37]
are used instead of sinusoidal position embedding.

3.3.2 Input/Output Representations

Each downstream task is considered a text-to-text task. Therefore, a task-specific
prefix is used before the input text as an indicator for the downstream task. For
example, to translate an English sentence to German, the prefix will be "translate
English to German:" and that is followed by the input sentence. And the output
of this input sequence is the translation of the English sentence to the German
one. Another example, to summarize a long text, the prefix "TL;DR:" (stand for
"too long, didn’t read") is added to the text. The input text is given with this prefix
and the output is the summary of the input.

18

The input text sequences are represented with WordPiece [46] tokens as same as
BERT input representation. T5 model fine-tuned to translate English to German,
French, and Romanian, therefore, the WordPiece vocabulary extended to cover
other languages. The web pages are used to crawl text in these languages and
expand vocabulary. At the end of this, the T5 model only supports a constant set
of languages.

3.3.3 Pre-Training

Pre-training is performed on the T5 to learn a generative language model before
fine-tuning to apply downstream tasks. The pre-training was done in the manner
of the unsupervised learning text-to-text task. T5 model pre-trained with cleaned
web crawled text corpus (Colossal Clean Crawled Corpus) from April 2019. The
dataset consists of about 750GB of text data.

T5 pre-training task is inspired by BERT’s "masked language model". In T5, the
masked language model is masking randomly chosen tokens in the input se-
quence and the T5 model tries to predict the original text. Additionally, prefix
language modeling which is the next sentence prediction in BERT’s pretraining
task and deshuffling input text is evaluated by T5. The deshuffling language
model is the put the text in order to original form from a scrambled input se-
quence.

In all pre-training objectives, the input and the output of the T5 are used as the
text sequence. To measure the loss of the generative performance of the T5 model,
the cross-entropy loss was used, and the model was optimized with AdaFactor
[38]. When prediction, at each timestep highest probability is chosen, which is
called greedy decoding.

3.3.4 Fine-Tuning

After pre-training with text-to-text tasks to learn a generative language model, T5
is fine-tuned for specific tasks which can be also solved as text-to-text objectives.
All downstream tasks are combined into a single model by fine-tuning by adding
a prefix to the input text sequence to specify the task.

The downstream tasks like question answering, document summarization, sen-
timent classification, and machine translation are fine-tuned by identifying with

19

task-specific prefix and the output of the model is the expected text of these tasks.
For classification tasks, the expected output is the target class in text format.
Thence, the multiple NLP tasks are handled with a single model.

20

4. SEARCH ENGINE

Search engines are tools that retrieve related information about user requests.
Most of the time, user fill a form which has different fields such as text, date,
or list, the search engines try to find relevant information that is in kind of doc-
ument, web page, etc. by seeking the form of request. Search engines can be
specialized for a specific area like library search tool or more general like web
search tools that can search text or media.

A search engine has two main objectives. The first objective is retrieving relevant
information for an input request, and the second one, ranking retrieved informa-
tion by their relevance score according to the input request.

For this purpose, a search engine may have a single-stage or multi-stage. Single-
stage search engines produce results in a single fetching and ranking algorithm.
In multi-stage search engines, retrieving possible related information and rank-
ing them are separated into two stages. Multi-stage searching provides using
a lightweight information retrieval algorithm to select possible documents as a
subset of the collection. After that, a complex ranking algorithm can be used to
sort a subset instead of ranking the whole collection for each input request.

In multi-stage search engines for text data, first, the collection is ranked in an
efficient way and creates a subset for the input query. After that, a more effective
ranking algorithm re-rank the subset of the collection. To achieve easy access to
documents that contain one of the words in the query, the inverted index method
is used. To determine the most possible documents, retrieved documents are
ranked by BM25.

In this thesis, the search engine specialized for searching text documents by text
queries. The main focus of this work is ranking all documents in the collection.
Improving first-stage retrieval performance by maintaining the efficiency of the
first-stage retrieval on the search time is aimed.

21

4.1 Lucene

Lucene1 is an open-source framework that provides text indexing and search-
ing capabilities. Lucene framework is written in Java programming language.
Lucene is a lightweight and reliable search engine specialized in text search. It re-
quires a small amount of memory usage, and it works high performance. Lucene
has fielded text search and it can rank documents according to queries with a
similarity metric like BM25. Lucene supports more than 10 languages and some
language-specific processing can be applied on the index time and query time.

4.1.1 Text Index

Lucene index documents with inverted index method. The inverted index is a
way to access documents by searching a set of words without requiring investi-
gating all documents in the corpus. The inverted index is a data structure that
stores documents, and by searching words, can easily reach documents in the
index. To create an inverted index, first, unique words are extracted from the
corpus, and it is a vocabulary of the corpus. Unique words are used for con-
structing an index table. After that, document references are mapped to words if
they contain the word in the index table. Thus, when a word is searched, the set
of documents that have the word is accessed by O(1) complexity.

In this thesis, the English language corpus is used to evaluate methods. There-
fore, a language-specific analyzer, the English analyzer is used, Lucene has a
built-in language analyzer for English. Lucene also provides a set of options that
can be applied like ignoring stopwords or stemming words. These preprocessing
are applied in search time too.

Default English analyzer applies pre-processes on the corpus consecutively
which are word tokenizer, possessive filter, lower case filter, stopword filter, and
porter stemmer in the index time.

• Word Tokenizer: A text corpus is tokenized into the words according to
word break rules by using the Unicode Text Segmentation algorithm.

• Possessive Filter: The possessive filter gets rid of possessives (trailing ’s)
from words.

1Lucene - lucene.apache.org

22

https://lucene.apache.org/

• Lower Case Filter: All word tokens converted to lowercase.

• Stopword Filter: Removes words that are stopwords from the text.

• Porter Stemmer: Words are transformed to the stemmed version by porter
stemmer algorithm. Porter stemmer normalizes terms by removing the
commoner morphological and inflexional endings from words in English.

4.1.2 Query Search

The query search is done term by term. TF-IDF scores are calculated for each
term in the query and cumulative scores of them give the document score for the
query for BM25 similarity. The same pre-process in the index time is applied to
the query before document search. Additionally, there are several options when
searching a query like a phrase search and fuzzy search. There is a boost factor
for query term weighting as well.

With the help of query term boosting, query term weighting methods can be eas-
ily evaluated by adding weight to terms to query before search. With reference
to this, there can be a coefficient for each term as a boost that is multiplied by the
term score to define the importance of the term.

what^0.137 is^1.043 dynamic^0.812 resolution^0.910

Lucene query search provides phrase search instead of word by word document
search. The sequential words can be searched as a single term and the phrase
is searched in the document in the same way. At this stage, with fuzzy search,
phrases match with phrases in the documents if the edit distance is less than the
defined fuzzy value.

what is "operating system misconfiguration"~3

23

5. RELEVANCE FEEDBACK

The ranking is the task of finding relatively higher scores for relevant documents
than irrelevant ones. In this way, relevant documents are placed at the top of
the output result list. Relevance feedback information identifies if the presented
documents are relevant or not. While this information is not usually available,
methods using pseudo-relevance feedback exists that utilize user interactions to
adjust the retrieval methods. Term recall is such a method that uses the term
weights to adjust the retrieval function like BM25 to retrieve relevant documents.

BM25 score of a query Q that consists of terms q1, q2, · · · , qn, and document D, is
calculated as follows [43]:

BM25(D, Q) =
n

∑
i=1

IDF(qi) · TF(D, qi) (5.1)

TF(D, qi) =
f (qi, D) · (k1 + 1)

f (qi, D) + k1

(
1− b + b |D|avgdl

) (5.2)

where f (qi, D) is term frequency of qi in the document D, |D| is length of the
document. Average document length is given as avgdl. k1 is the parameter to
control the rate of term-frequency saturation and b is the parameter for the effect
of document length normalization. IDF(qi) is the inverse document frequency
that contain qi is shown as:

IDF(qi) = log
(

N − n(qi) + 0.5
n(qi) + 0.5

+ 1
)

(5.3)

where N is the number of documents and n(qi) stands for number of document
that contains qi.

BM25 equation with weighted terms can be written as follow:

BM25tw(D, Q) =
n

∑
i=1

wi · IDF(qi) · TF(D, qi) (5.4)

where wi is weight of ith term of the query.

25

When ranking documents for the given query, each term has a different effect on
fetching relevant documents. Some terms are more meaningful to understand the
keywords of the query while others serve a more grammatical purpose. Term re-
call is a probabilistic weight function for setting wi weights. It uses only relevant
documents to weighting the terms, and without using the information in other
irrelevant documents in the corpus.

5.1 Term Recall Based Term Weighting

The importance of the query term in the given query to retrieval success is deter-
mined by the term recall value. Term recall is the ratio of the number of relevant
instances that contain the term over the total number of all relevant instances.
Thus, term recall shows the usage frequency of a term in the relevant instances
and contribution to fetch relevant ones.

Term recall can be applied over two side of term weighting. For query term
weighting, term recall is number of relevant documents with the term divided
by number of all relevant documents, and the equation is as follows:

TermRecall(t, q) =
|Dq,t|
|Dq|

(5.5)

where Dq,t is set of relevant documents that contain the term of query and Dq is
set of relevant documents for the query. While this weighting scheme rewards
terms appearing in relevant documents, it does not penalize terms with low dis-
criminative value. A stop word appearing in all documents both relevant and
irrelevant will receive the maximum weight under this framework.

For document term weighting, this time, the number of queries that address to
document is used. The term recall value of a query term is the number of queries
that contain the term for the document divided by the number of all queries that
address the document. Term recall for document term weighting is shown as
follows:

TermRecall(t, d) =
|Qd,t|
|Qd|

(5.6)

26

where Qd is the set of queries for document d and Qd,t is the subset of Qd that
contains term t. Due to the queries being shorter than the documents, for all
document terms, a term weight cannot be produced under the term recall scheme.

5.2 Pairwise Ranking Loss Based Term Weighting

We propose an optimization function that learns optimal weights for query terms
to achieve a higher weighted BM25 score for relevant documents than irrelevant
ones.

Let BM25(D, qi) be BM25 value of the ith term of the query for document D.
In this case, BM25 score of document D with weighted terms equals to w1 ·
BM25(D, q1) + w2 · BM25(D, q2) + · · · + wn · BM25(D, qn). In this equation, n
is the number of terms in the query, and it does not change for different docu-
ments. For this equation, we try to optimize term weights to obtain a higher final
BM25 score for relevant documents and bring forward the most important query
terms for retrieval performance.

Sorting is based on pairwise comparisons between the documents. The docu-
ments which are relevant to the query should have a higher rank compared to
the irrelevant documents. To find term weights that lift the score of relevant doc-
uments, an optimization based on pairwise ranking loss is designed.

For an input query Q = {q1, q2, · · · , qn}, relevant documents are paired with ir-
relevant ones to form a training instance. A training instance is represented with
two feature vectors formed of BM25 values for each term in the same order with
query terms. Feature vectors can be represented as DRel =< x1, x2, · · · , xn > for
relevant document and DIrrel =< y1, y2, · · · , yn > for irrelevant document in the
pair. BM25 score of the relevant document is written like BM25tw(DRel, Q) =

w1 · x1 + w2 · x2 + · · ·+ wn · xn. In the same way, for irrelevant document BM25,
score is BM25tw(DIrrel, Q) = w1 · y1 + w2 · y2 + · · ·+ wn · yn.

The final objective is to learn term weights that produce high scores for relevant
documents while reducing the score of irrelevant ones. The pairwise optimiza-
tion aims to provide the following condition, and the loss function can be defined
as the next one:

27

BM25tw(DRel, Q) ≥ BM25tw(DIrrel, Q) + α (5.7)

loss =
[maximum(BM25tw(DIrrel, Q)− BM25tw(DRel, Q) + α, 0)]2

2
(5.8)

where α is the margin between relevant and irrelevant document pairs, assur-
ing that the difference between a relevant and irrelevant document is at least α

[35]. If the weighted BM25 score of the relevant document is greater than sum
of the margin and the irrelevant one, then the loss will be 0, and weights are not
updated.

Let BM25tw(DRel, Q) be equal to ~w ·~x and BM25tw(DIrrel, Q) equals to ~w ·~y, and
· is dot product. If relevant score is less than the irrelevant one and margin α,
~w ·~x < ~w ·~y + α, derivative of loss with respect to weights as follows:

δloss
δ~w

= (~w ·~y− ~w ·~x + α)(~y−~x) (5.9)

To find optimal weights using a gradient, Adam [16] optimizer is used. Adam
optimizer is an optimization algorithm of stochastic objective by based gradient
on first-order. For each weight, individual adaptive learning rates are used in
Adam optimizer. Rescaling of the gradient does not vary parameter changing
values and hyperparameters limit the step-sizes. The weights are updated at
each iteration to find the optimal solutions by the following equations.

Biased first moment and second raw moment estimation updated as follow:

mt ← β1 ·mt−1 + (1− β1) · gt (5.10)

vt ← β2 · vt−1 + (1− β2) · g2
t (5.11)

where β1 and β2 is moment estimation parameters as exponential decay rates in
range [0, 1), and the initial values of the first and second moment vectors are 0.

Bias corrected first and second raw moments are calculated as follow:

m̂t ← mt/
(
1− βt

1
)

(5.12)

28

v̂t ← vt/
(
1− βt

2
)

(5.13)

where t is the timestep, in another word, the number of iteration. Timestep t
increased by 1 at the beginning of each iteration and the initial value is 0.

Finally, the weights are updated as follow:

wt ← wt−1 − α · m̂t/
(√

v̂t + ε
)

(5.14)

where α is the stepsize and ε is the very small number to prevent undefinition
due to zero division in the equation.

Initial weights are defined as a normal distribution with 0.5 mean and 0.05 stan-
dard deviation. After pairwise ranking loss-based term weighting, some of the
optimal weights for query terms can be negative. That means the optimal so-
lution is provided by penalizing unwanted terms. The negative term weights
are not applicable by search framework Lucene. Therefore, all weights must be
greater or equals to 0. To provide this constraint, there are two ways, the weights
are normalized after optimization or force the weights to be positive when search-
ing optimal solution.

The first way is the min−max normalization, the optimized term weights fit the
range 0 and 1. When learning optimal term weights, we can force the weights
to be positive with constraint. For this purpose, a cost value is added to the loss
for being negative weights, or another solution, negative values are projected to
zeros in each iteration after updating weights.

5.2.1 Min-Max Normalization

Final weights, optimized for the higher BM25 score for relevant documents, are
in the range −∞ and ∞. After the optimization, to scale the weights between 0
and 1, min-max normalization applied as follows:

Scaled wi =
wi −Wmin

Wmax −Wmin
(5.15)

where wi is the ith term weight for query, Wmax is the maximum term weight for
the query, and Wmin is the minimum term weight for the query.

29

5.2.2 Minimization Absolute Values of Negative Weights

Positive term weights let us be sure that optimized weights promote the most
valuable terms in the query to fetch relevant documents. However, negative
weights refer to reduce document score by penalizing unwanted terms.

To prevent this, a cost function that aims to minimize absolute values of the neg-
ative weights is added to the loss. Irrelevant documents cause negative weights
due to the loss, to this end, the additional cost function tries to minimize the
gap between negative scores of terms and zero. Negative scores are calculated
by element-wise multiplication of estimated weights and feature vectors of the
irrelevant documents. The document features are always positive due to BM25
calculation and negative scores are caused by negative weights.

For this objective, the additional cost function written as follow:

cost = |minimum(~w�~y, 0)| (5.16)

where � is element-wise multiplication, ~w is weights and ~y is feature vector of
irrelevant features.

The derivative of the cost function by w is:

δcost
δ~w

= sign((~w�~y)�~y) (5.17)

when ~w�~y < 0 otherwise 0.

At the end of the optimization, there can be still negative weights even if they are
close to 0. To prune negative weights, the weights below zero are ignored and
projected to 0 as following equation:

~w = maximum(~w, 0) (5.18)

5.2.3 Non-Negative Weight Constraint

In the training time, the negative weights are projected to another space by as-
signing them to 0 at each iteration after updating weights. In the next iteration,
the equation tries to find another solution without negative weights. If a weight

30

tends to negative values, it is prohibited by ignoring weights less than 0 at each
iteration. The final solution is in positive space with the help of the non-negative
constraint.

In each iteration, the following operation is applied to optimized weights after
updating weights by gradient:

~wt+1 = maximum(~wt, 0) (5.19)

where ~wt is the updated weights by optimizer and ~wt+1 the new weights for next
iteration. The non-negative constraint is like ReLU activation function, but it is
applied to the weights instead of the output.

5.2.4 Pair Selection

Relevant and irrelevant pair selection starts with the initial BM25 ranking with-
out weighting terms. Relevant instances are known for a query thanks to the
labels, and they are picked from the collection. Ranking documents by original
(unweighted) queries is called the initial run. Irrelevant instances are selected
from the top results that are retrieved by the initial run, after excluding relevant
instances for the query. This allows the model to discriminate the relevant docu-
ments from irrelevant false positives of the default BM25.

Each relevant document is matched with irrelevant documents from the initial
run to construct pairs. Pair generation is based on cross-production of the rele-
vant and irrelevant documents. The number of pairs at the end of the pair gen-
eration depends on the number of documents retrieved by the initial run and the
number of relevant documents. Most of the queries fetch the desired number of
documents from the initial ranking, but some of them may be less result if there
is less match with the documents.

Each query is optimized independently from the other queries. This method in a
way overfits weights with respect to relevant and irrelevant documents per each
query. In this way, the optimization model predicts the best weights to increase
relevant document weights and decrease irrelevant ones when compared to each
other. It should be noted that as these weights would be too specific to a query
and not generalize to a different query, they would not be useful for a search

31

engine. However, as we proceed to predict these weights for an unseen query
using contextualized word embeddings, considering both the semantics of the
query and the role of the term in the query, it is applicable to unseen queries. After
estimating optimal weights, a contextual model like BERT learns the predicted
weights by only using the query terms.

In short, the pairwise term weight optimization method learns specific term
weight for each query by overfitting relevant and irrelevant pairs for the query.
A language model like BERT aims to understand contextual information of
queries to predict these optimized term weights by learning interactions
between terms in the query. In the end, a term weighting model is trained that
estimates pairwise term weight for each term in a query.

TABLE 5.1: Relevant and irrelevant pair for a query.

Query What is dynamic resolution?

Relevant DynamiX is a unique implementation of real-time dynamic res-
olution technique that is designed to enable a tunable minimum
performance level to increase the playability of a game by dy-
namically changing the render target resolution of objects in real
time, without the need of the game developer to design it in ad-
vance.

Irrelevant Imaging the larynx’s positions and the vocal folds’ vibrations is
possible using dynamic MRI. This technique permits measure-
ments of laryngeal structures and glottal parameters in dynamic
function with multiplanar high-resolution imaging.

*Query and passages were taken from MS MARCO passage dataset.

32

6. TERM WEIGHTING

The term weighting adds more contextual knowledge to text than statistical in-
formation from term frequency and inverse document frequency [5, 17, 49]. For
specialized tasks, term weights are estimated with the help of contextual knowl-
edge. The specialized task is determined as document retrieval and ranking. To
this end, the term weighting can be applied to the documents in index time or to
the queries in the search time. By this means, term weighting carries much more
retrieval and ranking information than the classic TF-IDF features.

In this thesis, document and query term weighting methods in the literature
were examined. The BERT-based term weight estimation model was evaluated
with the proposed pairwise relevance feedback. In the following sections, the
query term weighting methods in literature and proposed BERT-based estimation
model are given. Next, the document term weighting methods in the literature
are explained.

6.1 Query Term Weighting

Query terms are weighted to indicate how essential their contribution to the
query for retrieval and ranking documents. Contextual knowledge is used for
query term weighting. The documents are retrieved and ranked with matched
query terms. The cumulative scores of the query terms give the document rel-
evance score for the query. As mentioned in Chapter 5, Relevance Feedback,
predicted weights are used as a coefficient.

DeepTR and DeepCT-Query use term recall as relevance feedback. To predict tar-
get relevance feedback, DeepTR uses a term-query difference vector calculated
by word embedding vectors. DeepCT-Query is the same framework as DeepCT-
Index, DeepCT-Query handles term weighting on the query side. Additively, a
proposed query term estimation model based on BERT is explained in this sec-
tion.

6.1.1 DeepTR

DeepTR [49] is a method that weighting query terms by their distance to query
itself. The distance between term and query is measured by word embedding

33

vectors. The word embedding is weighting words to represent according to their
semantic values as a k dimensional vector. Embedding vector of word wi in k
dimensional space is shown like wi = 〈x0, x1, x2 · · · xk〉. Word2Vec [19] word
representation as vector space method was used in DeepTR.

The importance of the query term in the given query to retrieval success is deter-
mined by the term recall value. Term recall for query term weighting is a ratio of
the number of relevant documents that contain the term over the total number of
all relevant documents. Thus, term recall shows the usage frequency of the query
term in the relevant documents and contribution to fetch relevant ones.

Features

The features for each term in a query are extracted by its distance to the query.
The distance is calculated by word embedding vectors. A query is represented
in a k dimensional space by taking average word vectors of terms that form the
query and the feature of a term is the vectorial distance between the word em-
bedding vector of the term and the query.

Let a query is represented as qi = ti1, ti2, ti3, . . . , tin, and wij is a word embedding
vector for tij. In this case, the feature vector xij of tij calculated as follows:

xij = wij − w̄qi (6.1)

where

w̄qi =
1
ni

ni

∑
k=1

wik (6.2)

Training

DeepTR model tries to estimate the term recall value for each query term. The
input of the model is the distance of the term to query. The target values of the
model are logit of term recalls. The target value for term tij is calculated as fol-
lows:

yij = log
rij

1− rij
(6.3)

34

where rij is term recall value of the term tij.

The model tries to learn weights of β in the equation of y = β>x. Before the
optimization l1-norm regularization applied to input features. Finally, the model
tries to optimize LASSO regression as follows:

β̂ = arg min
β∈Rp

1
2

M

∑
i=1

ni

∑
j=1

(
yij − β>xij

)2
+ λ‖β‖1 (6.4)

where M is number of queries, ni is term number of ith query, xij is feature vector
and yij target of ith query’s jth term.

At the end of the model estimation, sigmoid values are computed for predicted
weights to map predictions in [0, 1] range. Final query term weights are calcu-
lated as follows:

̂P (t | R) = sigmoid
(

β̂>x
)
=

exp
(

β̂>x
)

1 + exp
(

β̂>x
) (6.5)

6.1.2 DeepCT-Query

DeepCT [5] is a framework to weighting terms based on contextual embeddings.
Term frequency does not contain any clue about the context of the text, and it
can be equal for relevant and irrelevant documents. To extract contextualized
embeddings for words in the text, the BERT [6] natural language model is used.

DeepCT is a regression model that tries to learn target term weight value by con-
textual knowledge of the text for each word in the text by fine-tuning the BERT
model. The input of the regression layer of the model is the tth contextual em-
bedding of the BERT sequential output. Word importance weight is calculated by
DeepCT as follow:

ŷt,c = ~wTt,c + b (6.6)

where Tt,c is the contextual embedding for text c, w is the weight and b is the bias
of the linear regression.

35

DeepCT tries to minimize mean squared error (MSE) between target and pre-
dicted weights.

lossMSE = ∑
c

∑
t
(yt,c − ŷy,c)

2 (6.7)

where y is the target weights and ŷ is the predicted weights.

Term weight predictions of DeepCT are in the range between −∞ and ∞, still,
most predictions remain in the [0, 1] range due to ground truth weights in the
[0, 1].

BERT tokenization generates subwords for words that are not in the vocabulary of
BERT. When computing MSE loss, the first subword is used for evaluating as the
entire word and other subwords are masked in DeepCT. For example, DeepCT
is tokenized as ”deep” and ”##ct”, the loss of the model prediction is computed
over ”deep” which is the first subword and ”##ct” is masked out.

DeepCT-Query [5] is a way to the usage of DeepCT framework for weighting
query terms. In DeepCT-Query, the terms of the queries are weighted and the
term recall value is used as a relevance feedback target. The similar way with
DeepTR, target term weights of queries are defined by the term recall for query
term weighting.

In the search time, estimated query term weights are multiplied by BM25 rele-
vance score of the term to boost score by term importance, as mentioned in Chap-
ter 5, Relevance Feedback.

6.1.3 Term Weight Prediction Model

Pairwise term weight optimization model runs in the manner of supervised learn-
ing. The model must know relevant and irrelevant pairs for the query with the
query itself. For this reason, weight estimation cannot be made for new queries
in the search-time. A BERT based regression model is trained with the weights
optimized pairwise, the BERT model uses only the input query to predict term
weights of the query.

To fine-tune the BERT model, a regression task targeting query term weights is
used. BERT takes term and query as a pair. The term of the query and query

36

itself are separated with special token [SEP]. This way, the interaction between
individual terms and queries is learned. The pooled output of BERT which is
[CLS] token vector is followed by a fully connected feed-forward layer with a
single output value. The output layer has no activation function due to trained as
a regression task. To prevent overfitting and achieve more generalization there is
a dropout layer with 0.2 probability between pooled output and fully connected
layer. The model is trained with the MSE (mean squared error) by fine-tuning the
pre-trained BERT model to estimates the term weights of the input query. The
model is optimized with Adam [16] optimizer and 10% of training steps are used
as warm-up steps.

All training pairs have a target value between 0 and 1. For this reason, most
of the predicted term weights fall into this range. In the end, negative weights
are ignored and set as 0. Non-negative term weights enable the use of boosting
factors available in most search engines.

Thanks to interaction architecture, phrases which are sequential words can be
weighted as terms. The first part of the input is the phrase in the query and the
second part is the query, both of them are separated by the special token. The
target weight predicted by the model is for a phrase instead of a single word in
this case.

In search-time, the model estimates weights of each term of the query simultane-
ously. For each term in the query, model estimates weights as the coefficient for
terms. An example for tokenization of the query and forming input given with
BERT term weight learning model architecture at Figure 6.1.

The proposed term weighting model and DeepCT [5] framework use the same
pre-trained BERT model to understand the context of the text to predict target
term weight. The main difference between DeepCT and ours is the proposed
model can estimate term weights for phrases with the help of the interaction ar-
chitecture. DeepCT takes a query as an input and predicts term weights for each
token in the query. In other respect, the proposed BERT-based term weight esti-
mation model takes term and query as a pair, and it can predict term weights for
tokens or phrases in the same architecture.

37

FIGURE 6.1: An example input and model architecture for term
weight estimation.

6.2 Document Term Weighting

The main idea behind the document term weighting is rearranging term frequen-
cies by repeating terms up to estimated term weights. Document term weighting
can be investigated in two approximations. The first one is the use of existing
terms to rearrange term frequencies. By the repetition of the terms by the esti-
mated weights, term frequencies of the documents are formed up to represent
contextual knowledge to increase retrieval and ranking performance.

The second approximation uses contextual knowledge to estimate possible
queries that address this document. The document is expanded by predicted
possible queries for itself. Thus, term frequencies that are important for retrieval
and ranking, are increased. Additionally, if there are new terms in the document
expansion, they reduce term mismatching between the document and the query
in search time.

DeepCT-Index and TextRank methods based on term frequency increasing of ex-
isting terms. DeepCT-Index uses contextual information extracted by the BERT

38

language model, and TextRank extracts semantic relation between terms by us-
ing co-occurrences. Doc2Query and DocTTTTTQuery models use sequence-to-
sequence language models that generate possibles query for the input document
and predicted queries expand the document. Thus, term frequencies are changed
and new terms are added to documents.

6.2.1 DeepCT - Index

The primary usage of DeepCT framework is the document term weighting. Both
DeepCT-Query and DeepCT-Index tasks use the same framework on different
sides of the term weighting and different target values. Target term weights for
document term weighting task is defined by the importance of a term for the doc-
ument. The importance of a term is measured by how necessary when fetching
the document. For this purpose, term recall value is used as a metric for tar-
get term importance, for document term weighting, term recall calculates as the
number of queries with the term for the document divided by the number of all
queries that address the document.

The predicted term weights are converted to term frequencies by multiplying
each term in the document by predicted weights. Most of the predicted weights
are in the [0− 1] range, to multiplying terms, integer weights are required. For
this reason, TFDeepCT is a way of representing term weights as an integer value:

TFDeepCT(t, d) = round(ŷt,d × N) (6.8)

where ŷt,d term weight that predicted for term t in document d. N is a scale factor
for prediction into the integer range. In DeepCT, N = 100 is used that provides
two-digit precision is enough for this task.

An alternate way to make small values more visible is taking the square root of
the predicted term weights and it causes the document to consist of more terms:

TFDeepCT(t, d) = round(
√

ŷt,d × N) (6.9)

39

where ŷt,d term weight that predicted for term t in document d with same as
previous integer representation, and the scale factor N equals to 100 for square
root representation in two-digit precision.

6.2.2 TextRank

TextRank [18] is a graph-based ranking algorithm. In fact, TextRank is used to
extract keywords that important for the semantic of the text from a text. In a
graph-based model, vertices represent words in the text and edges show the co-
occurrence of words that linked. The base idea of the graph-based ranking al-
gorithm is the showing importance of a word for the text by looking at the co-
occurrence link for the word and the word’s connections. As a projected result,
words with more links and their connections have much more effect on the text.

PageRank [1] algorithm is used for word weighting by TextRank. Words in the
text are represented as vertices of the graph and numbers of co-occurrence of
words that formed together in a window-size range construct the weighted edges
of the graph.

PageRank algorithm optimized as follows, when graph G = (V, E) is a directed
graph with a set of vertices V and edges E:

S (Vi) = (1− d) + d ∗ ∑
j∈In(Vi)

1∣∣Out
(
Vj
)∣∣S (Vj

)
(6.10)

where In(Vi) is the set of vertices that point to Vi and Out(Vj) is the set of vertices
that are pointed by Vi and d is a damping factor that can be assigned in range [0,
1] for fusing jumping probability from a peak to another in the graph.

TextRank can be used for weighting document terms. For each document in
the corpus, TextRank algorithm applied to documents. Extracted keywords are
weighted by TextRank confidence score. In a similar way with DeepCT, docu-
ment terms are repeated in the document according to confidence scores. In this
way, obtained term frequencies are used as term weighting.

40

6.2.3 Doc2Query

Doc2Query [24] uses a sequence-to-sequence transformer [44] model that predicts
possible queries to be searched for a document. The document expansion process
of Doc2Query model is given in Figure 6.2.

FIGURE 6.2: Doc2Query document expansion method [24].

Doc2Query transforms documents into queries with the help of the sequence-to-
sequence transformer model. The model is trained with query-document pairs
that are relevant to each other. After that, possible queries are predicted by the
transformer model for each document in the corpus. Finally, generated queries
are added to the end of the original documents. In this way, document terms
weighting is provided by increasing the term frequency of possible words and
adding new words to the document that helps to reduce vocabulary mismatch-
ing.

6.2.4 DocTTTTTQuery

DocTTTTTQuery [23] applies the same method of Doc2Query [24] that weighting
terms of documents and expanding it with new words. In DocTTTTTQuery, T5
[30] is used instead of sequence-to-sequence transformer. For the rest, the model
is fine-tuned with query-document pairs to predict possible queries that answer
to relevant documents, in the same way with Doc2Query. Then, predicted queries

41

are added to documents for indexing as in Doc2Query. By the success of the
T5 over the sequence-to-sequence model, better document terms weighting and
better word estimating (to prevent vocabulary mismatching) are achieved.

42

7. EVALUATION

The retrieval and ranking performances are evaluated with different metrics and
different cuts of the results. Performances of existing and proposed methods are
evaluated with Mean Reciprocal Rank (MRR), Mean Average Precision (MAP),
Recall, and Normalized Discounted Cumulative Gain (NDCG) metrics. These
evaluation metrics measure models on the performances of finding relevant doc-
uments and ranking correct order according to their relevance by input query.

The MAP measures the performance of getting relevant documents at the very
beginning of the results. MRR and NDCG measure the ranking performance of
the models based on the ranking positions of the relevant documents with the
input query. The recall metric measures the performance of catching relevant
documents in the top results. With these evaluation metrics, the performance of
the models is compared by their retrieval and ranking of relevant documents to
the input query.

With the help of the given metrics, the retrieval and ranking performances are
evaluated. Additionally, the significance of the improvement by proposed meth-
ods to baselines was measured. The significance test was applied over evaluation
queries for each metric by the paired t-test.

7.1 Recall

Recall shows the success of fetching relevant documents from all relevant ones.
The recall at K is the ratio of the number of relevant documents in the top K results
to the total number of relevant documents. The equation of recall is shown as
follow:

RecallK =
|DK ∩ DRelevance|
|DRelevance|

(7.1)

where DK is top K documents, and DRelevance is relevant documents with the input
query.

43

7.2 Mean Average Precision

Precision shows the success of being relevant documents in the top results. The
precision at K is the ratio of the number of relevant documents in the top K results
to the number of ranked K top documents. The equation of precision is shown as
follow:

PrecisionK =
|DK ∩ DRelevance|

K
(7.2)

where DK is top K documents, and DRelevance is relevant documents with the input
query.

The Mean Average Precision (MAP) is the average precision at K of all input
queries. MAP is the division of the sum of precisions PK for all queries to the
number of queries, as follow:

MAP =
∑Q

q=1 PK(q)

|Q| (7.3)

where PK is the precision of the query q at K and Q is the set of queries.

7.3 Mean Reciprocal Rank

The Mean Reciprocal Rank (MRR) is the average of the reciprocal ranks. Recipro-
cal rank is the inverse of the first relevant document index for a query. Reciprocal
rank is calculated by dividing 1 by to rank of the document, and MRR is the sum
of the reciprocal ranks of the query set divided by the number of queries, as fol-
low:

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

(7.4)

where Q is the set of queries and ranki is the rank position of the first relevant
document for the i’th query.

7.4 Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG) [13] shows the success of the
list order of documents according to their relevance score. NDCGK at K is the

44

discounted cumulative gain (DCGK) that normalized by inverse discounted cu-
mulative gain (IDCGK).

Discounted cumulative gain at K (DCGK) is a metric that penalizes the lower
ranks for relevant documents. DCGK is the sum of relation indicators that are di-
vided by the logarithm of the rank indices. Relation indicator reli shows relevant
or not of i′th document with the input query.

DCGK =
K

∑
i=1

reli
log2(i + 1)

(7.5)

The DCGK depends on the query. When comparing more than one query, the
normalization factor is required. The DCGK is normalized across queries as fol-
low:

IDCGK =
|RELK |

∑
i=1

2reli − 1
log2(i + 1)

(7.6)

where RELK is the ordered list of documents that are relevant to the query by
their relevance, and the size of the list is K.

For a query, NDCGK is computed as follows:

NDCGK =
DCGK

IDCGK
(7.7)

7.5 Paired t-Test

Paired t-test is a statistical hypothesis test that investigates the difference between
two lists of data for the same subject. The similarity of the distribution between
paired lists of data is tested with the help of paired t-test.

The equation of the paired t-test as follow:

t =
d̄− µd

sd/
√

n
(7.8)

45

where d̄ is the sample mean difference, sd is the standard deviation of the differ-
ences and n is the number of samples. The H0 : µd = 0 when it is null hypothesis
and H1 : µd 6= 0 when it is alternative hypothesis.

The statistical significance threshold is defined as 0.05 to measure significance.
When the calculated p− value is less than the significance threshold, the alterna-
tive hypothesis is favored by rejecting the null hypothesis. In this case, there is a
significant difference in the distribution of the results.

46

8. EXPERIMENTS

8.1 Dataset

In order to construct a framework that searches text queries in text corpus as a
search engine, query-document pairs that are relevant to each other are required.
Large corpus, queries which are for training and testing and their relation that
indicate query-document pair is relevant or not, are essential to evaluate models
with different approaches for effectiveness and efficiency of the search engine
framework.

To meet these needs, the MS MARCO1 [21] dataset that is widely used in re-
lated works for information retrieval and learning-to-rank tasks are used. The
MS MARCO has two tasks which are document and passage ranking. The com-
petition can be evaluated by ranking or re-ranking for both tasks. Document
and passage ranking tasks use a large dataset that consists of the same queries
and human-supervised labels. Labels are made that indicate relevance between
queries and documents by human supervise.

To evaluate the usage of the neural ranking algorithms, the dataset of the MS
MARCO passage retrieval task is chosen in this thesis. The passage ranking
dataset has nearly 8.9 million passages, more than 5 hundred thousand train-
ing, and about 7 thousand evaluation queries. The exact number of records in the
MS MARCO dataset is given in Table 8.1. The collection of the passages consists
of a unique identifier pid for each passage, and the passage text. Train and eval-
uation queries have unique identifier qid and query text. The relations between
query and passage are given as pid− qid pairs.

1MS MARCO - microsoft.github.io/msmarco

TABLE 8.1: The number of passages and queries in MS MARCO
collection.

Collection Number of Records

Passages 8841823
Train Queries 502939
Dev Queries 6980

47

https://microsoft.github.io/msmarco/

FIGURE 8.1: Histogram of the number of terms over passages.

The dataset consists of three-part. The passage collection was indexed, and all
evaluations for the query term weighting task were run over this index. Docu-
ment term weighting approaches manipulate original passage collection and the
changed collection was re-indexed. The train queries were used in model train-
ing and parameter tuning. Parameters of BM25, k1 and b, were tuned by ran-
domly selected queries from train queries. In model training, part of training
queries were selected as the validation set for the model evaluation. Dev queries
in MS MARCO, were used as a test set, all evaluations and comparisons were
performed with dev queries. The dev queries of MS MARCO are used as the test
set for evaluated methods in the literature as well.

The distribution of the number of passages in the MS MARCO collection is given
in Figure 8.1 by the number of terms in the passages. According to the figure,
most of the passages consist of around 50 terms and nearly all of them have less
than 150 terms.

A similar distribution for queries is given in Figure 8.2 that shows the distribution

48

FIGURE 8.2: Histogram of the number of terms over train and dev
queries.

FIGURE 8.3: Histogram of the number of relevant passages over
train and dev queries.

of the number of queries by the number of terms in the queries for both train and
dev query sets. For both query sets, most of them consist of 3 to 10 terms.

Another distribution about queries and the number of relevant passages in the
MS MARCO dataset. In Figure 8.3, the number of relevant passages are given for
queries. According to this, most of the queries in both train and dev set refer to a
single passage.

8.2 Configurations

BM25 has free parameters that are k1 and b. The parameter sets for baseline, doc-
ument term weighting methods, and query term weighting methods are given

49

TABLE 8.2: BM25 parameter configurations for methods.

Method k1 b

BM25 0.82 0.68

DeepCT-Index 10.0 0.90
DeepCT-Index (sqrt) 18.0 0.70
TextRank 10.0 0.90
TextRank (sqrt) 18.0 0.70

Doc2Query

0.82 0.68DocTTTTTQuery
Doc2OnlyQuery
DocTTTTTOnlyQuery

Oracles

0.82 0.68DeepTR
DeepCT-Query
BERT Models

at Table 8.2. DeepCT-Index and TextRank weight document terms by increas-
ing occurring frequency with predicted term weight. BM25 parameters for these
methods are used as specified for DeepCT2, the parameters were fine-tuned [5].
For other methods, fine-tuned parameters3 for baseline are used.

8.3 Methods to Evaluate

The experiment setups are required an indexed collection for query and docu-
ment term weighting method to evaluate retrieval and ranking performance with
the help of a text search framework.

To evaluate BM25 baseline, the original MS MARCO4 collection indexed with
Lucene5 search engine. Query term weighting methods DeepTR, DeepCT-Query,
and proposed query term weight estimation method run with the original MS
MARCO collection. Query term weighting methods were trained from scratch
and evaluated with MS MARCO collection for evaluations. DeepTR query term
weighting was coded and trained in reference to Zheng and Callan [49]. The

2DeepCT, github.com/AdeDZY/DeepCT
3Anserini: BM25 Baseline for MS MARCO Passage Ranking,

github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md
4MS MARCO - microsoft.github.io/msmarco
5Lucene - lucene.apache.org

50

https://github.com/AdeDZY/DeepCT
https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md
https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md
https://microsoft.github.io/msmarco/
https://lucene.apache.org/

Bag-of-Words approach was evaluated for single term weighting that is called
DeepTR-BoW of DeepTR method and results were obtained for DeepTR-BoW.
DeepCT-Query was trained with its source code6 that provided by authors. The
proposed relevance feedback and term estimation method were designed, built,
and trained for the evaluations.

The collection generated with a document term weighting method has to be re-
indexed to evaluate each method. The retrieval and ranking performance of these
methods are evaluated by searching over the document-term-weight indexed col-
lections. The weighted documents7 for DeepCT-Index were downloaded and in-
dexed with Lucene to evaluate performance. The predicted queries8,9 for doc-
ument expansion methods Doc2Query and DocTTTTTQuery, were used to ex-
pand documents, and the expanded documents were re-indexed. Document term
weights were predicted by TextRank from the beginning, and documents were in-
dexed by manipulating term frequencies to compare evaluation metrics with the
other methods.

All evaluation results were produced from scratch in this thesis. Weights of the
query terms are predicted with the mentioned methods in the same conditions for
evaluations. Collections were indexed from scratch for TextRank with the help of
the Lucene framework. For DeepCT-Index, Doc2Query, and DocTTTTTQuery,
collections were indexed from estimated term weights or expansion as well as all
other indexes.

6DeepCT, github.com/AdeDZY/DeepCT
7DeepCT, boston.lti.cs.cmu.edu/appendices/arXiv2019-DeepCT-Zhuyun-Dai
8Doc2Query, github.com/castorini/anserini/blob/master/docs/experiments-doc2query.md
9DocTTTTTQuery, github.com/castorini/docTTTTTquery

51

https://github.com/AdeDZY/DeepCT
http://boston.lti.cs.cmu.edu/appendices/arXiv2019-DeepCT-Zhuyun-Dai/
https://github.com/castorini/anserini/blob/master/docs/experiments-doc2query.md
https://github.com/castorini/docTTTTTquery

9. RESULTS

There are two main ideas to weighting terms for better retrieval and ranking per-
formance by applying to queries on search time or documents on index time.
In this chapter, we evaluate query term weighting and document term weight-
ing methods in the literature. In addition, we propose a new relevance feedback
method over term recall and evaluate success on the query term weighting task
with other known models.

In the first section of the results, an optimal number of pairs to optimize the pair-
wise loss based relevance feedback method is evaluated. For the proposed rele-
vance feedback method, we experiment with different numbers of pairs to find
the winning spot for an optimal solution.

In Section 9.2, firstly we evaluate the performance of proposed new relevance
feedback over the term recall. To see the applicability of the pairwise relevance
feedback method in the real-life scenario, the proposed BERT-based term weight
estimation model is compared to query term weighting approaches in the litera-
ture. At last, the combination of the query and document term weighting meth-
ods is investigated by using the proposed query term weighting scheme.

Document term weighting which is another main idea, explored in Section 9.3.
We list document term weighting approaches that increase term frequencies or
enrich documents with new terms in the literature. To create an overview, dif-
ferent types of approaches are evaluated on the same dataset and test cases are
expanded with additional experiments.

At the end of the results, searching queries as phrases with different lengths in-
stead of word by word is tested. We create test cases to find optimal phrase length
for phrase searching. With the help of the proposed BERT-based term weight es-
timation model, we can predict term weights that targeted pairwise optimized
relevance feedback for phrases.

Consequently, overall results are brought together into a single table to survey
all evaluated approaches. Query term weighting and document term weighting
methods are compared to each other and success obtained by combining these
two approaches is observed.

53

The evaluations results for query and document term weighting methods in liter-
ature were acquired from different steps for each method. For accurate compari-
son and extended metrics, all results were obtained with the same index configu-
ration, and the results were matched with reference papers.

9.1 Number of Pair for Pairwise Term Weight Optimization

In pairwise optimization, pairs are constructed from at the top of initial results to
generate hard negative instances. To reduce the score of confusing irrelevant doc-
uments, hard negative samples are required. The relevant and irrelevant docu-
ments are paired by cross-product to generate pairs with hard negative instances.
After ranking documents with the original queries, relevant documents are ex-
cluded from the result, and the rest of them are considered irrelevant documents.
In other respect, extreme negative instances may prevent the model from being
more generalized for collection. Still, there are far more completely irrelevant
documents than confusing ones.

TABLE 9.1: Number of documents to optimize pairwise model.

#Docs MRR@10 MAP@10 NDCG@5 NDCG@10 RECALL@1000
20 0.2348 0.2398 0.2513 0.2758 0.7522

100 0.2562 0.2625 0.2750 0.3066 0.8193
200 0.2621 0.2692 0.2800 0.3130 0.8406
400 0.2657 0.2723 0.2841 0.3173 0.8610
500 0.2638 0.2709 0.2825 0.3156 0.8706
600 0.2654 0.2722 0.2834 0.3167 0.8733
800 0.2662 0.2733 0.2845 0.3177 0.8784

1000 0.2633 0.2706 0.2814 0.3150 0.8814

To get a number of documents from the initial run that are enough to general-
ize the model and achieve good results, retrieval and ranking performances are
compared in Table 9.1. The pairwise query term weight optimization method
was evaluated with the min-max normalization. In regard to Table 9.1, the higher
the number of documents, acquire higher the retrieval and ranking scores. At
the point between 800 and 1000 documents, the ranking performance slightly re-
duced with respect to MRR@10, MAP@10, and NDCG metrics. But then, retrieval
performance still increasing with respect to RECALL@1000. This spot was cho-
sen to define the number of documents to optimize the model without missing

54

relevant documents with acceptable ranking performance loss. In the next exper-
iments, 1000 documents were selected from the top of the initial results.

The number of pairs for each query can be different. Most of the queries fetch
1000 documents after initial rank. After relevant queries are excluded from the
top results, the rest of the documents number differs. In the end, the number of
pairs equals all relevant documents number in collection multiplied by irrelevant
documents number in the results.

9.2 Query Term Weighting

The pairwise term weight optimization method is proposed as an alternative
to the term recall to retrieve documents more accurately. After that, the BERT
weight estimation model was trained to predict term recall and pairwise opti-
mized term weights and compared with different methods in literature to eval-
uate the success of pairwise optimization and the model. First, the target term
weight functions are evaluated and compared to each other, to measure the ef-
fectiveness improvement that can be attributed to the proposed target weights
optimized using pairwise ranking loss. Following this, results showing the BERT
based predicted term weights will be evaluated and compared to each other. Fi-
nally, we investigate the use of the proposed query term weighting method with
an existing index based term weighting method.

9.2.1 Term Recall and Pairwise Term Weight Optimization

First, BM25 and oracle target query term weights are compared to each other. The
baseline is the scores of the original evaluation queries. The original queries are
ranked with BM25 rank algorithm and the same configuration as other methods.
As can be seen by Table 9.2 and Table 9.3, the target weighting schemes can im-
prove the baseline BM25 by more than 30% in MRR, MAP and NDCG metrics
with improvements up to 15% for RECALL metrics.

The query term weighting is not applied to the queries, stated in other words, all
weights are considered the same in BM25 results. The oracle scores are shown as
the best possible outcome when term recall values or pairwise optimized weights
are perfectly predicted. The oracle methods use the relevant and irrelevant doc-
ument labels, which are not typically available at the search time. In this regard,

55

they can be considered as the upper bounds for the BERT based weight predic-
tion methods. In evaluations of the oracle, term weighting schemes are applied
to the evaluated queries directly. Term recall and pairwise optimized weights are
extracted for the evaluation set as supervised.

Comparison of oracles which are term recall and pairwise are given in Table 9.2
and Table 9.3. According to oracle results, the pairwise term weight optimiza-
tion methods achieves significantly (shown in Table 9.2 and Table 9.3 with ∗)
higher scores on ranking relevant passages at the very top results as per MRR@10,
MAP@10 and NDCG metrics than the term recall method.

TABLE 9.2: Query term weighting with oracle methods using the
document relevance information. MRR, MAP, and RECALL metrics

evaluation.

Method MRR@10 MAP@10 RECALL
@100 @1000

BM25 0.1875 0.1958 0.6700 0.8575

TermRecall 0.2582 0.2661 0.7743 0.9234

PairWise (Min-Max) 0.2676* 0.2745* 0.7427 0.8805
PairWise (Min-Abs-Neg) 0.3086* 0.3162* 0.7867* 0.9027
PairWise (Non-Neg) 0.3089* 0.3164* 0.7877* 0.8999

TABLE 9.3: Query term weighting with oracle methods using the
document relevance information. NDCG metric evaluation.

Method NDCG
@5 @10 @20

BM25 0.2024 0.2342 0.2578

TermRecall 0.2781 0.3145 0.3393

PairWise (Min-Max) 0.2850* 0.3190 0.3413
PairWise (Min-Abs-Neg) 0.3292* 0.3625* 0.3848*
PairWise (Non-Neg) 0.3290* 0.3628* 0.3848*

Pairwise optimization aims to increase BM25 score of relevant documents against
irrelevant ones. In this way, the ranking performance of pairwise optimization is
way better than term recall. On the other hand, term recall is a statistical metric
that gives which term is more important to retrieve relevant documents without

56

knowing irrelevant ones. As a result, term weighting by term recall can find
much more relevant documents than pairwise optimization when considering
wide range of ranks such as top 1000 documents, but metrics focusing on top
ranks are improved with pairwise methods as it is able to discriminate relevancy
in more detail as it considers irrelevant documents as well.

The weights of the query terms must be positive numbers due to constraints of
the Lucene framework. To ensure that, three methods are proposed and evalu-
ated for pairwise optimization. The first one is the fitting weights into the [0− 1]
range. This causes at least one weight to equal to 0 and at least one weight equals
to 1. The other two methods are applied to the model when optimizing weights.
One of them is increasing cost when there are negative weights and the opti-
mization model tries to minimize absolute values of the negative weights. This
method still may predict negative weights and the negative weights must be as-
signed to the 0. The 0 assignment to the negative weights was used as a layer
constraint in the third method. At the end of each iteration, negative weights are
ignored and assigned to 0. This kind of projection allows us to make sure the
weights are always greater or equal to 0.

According to Table 9.2 and Table 9.3, both minimize absolute negative and non-
negative constraints methods achieve significantly higher performance than the
min-max normalization method. The min-max normalization can cause result in
the loss of information due to fitting the optimized weights into a fixed range.
Therefore, the min-max normalized pairwise optimization had less success on
the ranking and retrieval performance. The other two methods achieved very
close results on performance metrics due to the 0 assignment operation to be sure
non-negative weights at the end of the optimization. Consequently, the follow-
ing pairwise optimization evaluations will continue with min-max normalization
and non-neg constraint.

9.2.2 Term Weight Estimation

Oracle results show the possibly best results when predicted query term weights
perfectly as term recall or pairwise optimization. In real life, there is no way
to find exact values of term recall or pairwise term weights due to unique and
unknown input queries. A way to overcome these unknown query inputs is by

57

creating a generalized model that learns term weights of queries by supervised
and predicts term weights of new queries in the search-time.

To this end, models try to estimate term weight as close as possible to the ground
truth to achieve scores as good as oracles. DeepTR-BoW and DeepCT-Query are
the query term weighting approaches that use term recall as term weight, in the
literature for the document ranking task. The proposed BERT based term-query
interaction model is evaluated with term recall and pairwise as the target of the
query term weighting task.

When the target value changes to pairwise optimized ones, the query-term in-
teraction model acquires significantly (shown in Table 9.4 and Table 9.5 in bold*)
higher scores for ranking and retrieving relevant documents for the input query
than DeepCT-Query model. The results indicate that, target term weights learned
by pairwise ranking loss independently for each query, can also be predicted by
a BERT based regression model. The proposed relevance feedback achieves the
best results compared to both DeepCT-Query and BERT-TermRecall in all metrics.
It is interesting to note that, although Oracle TermRecall achieves high recall val-
ues compared to Pairwise oracle weights (Table 9.2, Table 9.3), when considering
the BERT predicted weights recall of BERT-Pairwise is significantly better than
BERT-TermRecall.

TABLE 9.4: Query term weighting using estimated term weights.
MRR, MAP, and RECALL metrics evaluation.

Method MRR@10 MAP@10 RECALL
@100 @1000

BM25 0.1875 0.1958 0.6700 0.8575

DeepTR-BoW 0.1901 0.1989 0.6845 0.8738
DeepCT-Query 0.1915 0.2005 0.6907 0.8821

BERT-TermRecall 0.1930 0.2020 0.6954 0.8837
BERT-PairWise (Min-Max) 0.2012* 0.2097* 0.7062* 0.8870*
BERT-PairWise (Non-Neg) 0.2005* 0.2092* 0.7065* 0.8842

As Table 9.4 and Table 9.5 show, DeepCT-Query achieves slightly higher scores
than DeepTR-BoW on any metric, both methods try to predict term recall values
of the query terms. DeepCT-Query tries to understand the semantic of each term in
the query in considering contextual relation, but DeepTR-BoW simply uses vectors

58

TABLE 9.5: Query term weighting using estimated term weights.
NDCG metric evaluation.

Method NDCG
@5 @10 @20

BM25 0.2024 0.2342 0.2578

DeepTR-BoW 0.2053 0.2380 0.2620
DeepCT-Query 0.2060 0.2393 0.2631

BERT-TermRecall 0.2080 0.2414 0.2657
BERT-PairWise (Min-Max) 0.2179* 0.2517* 0.2750*
BERT-PairWise (Non-Neg) 0.2167* 0.2509* 0.2746*

of terms that measure how far from the query with direction. Due to the use
of semantic information, DeepCT-Query is slightly better than DeepTR-BoW for
retrieval and ranking tasks.

Pairwise optimization with non-negative constraint model got higher scores on
any evaluation metrics when supervised evaluation (Oracle results, Table 9.2, Ta-
ble 9.3). However, the BERT-based contextual model that tries to estimate pair-
wise optimized term weight, did not succeed in this increase. BERT-based model
made very close estimation for both min-max normalization and non-negative
constraint methods of the pairwise term weight optimization model when com-
pare the evaluation metrics on ranking and retrieval performance.

As a final note, DeepCT-Query, DeepTR-BoW and BERT-TermRecall methods all
try to predict Term Recall weights using different supervised regression meth-
ods. The proposed BERT-TermRecall method achieves the best results compared
to these three methods. The proposed BERT based method and DeepCT-Query are
very similar and achieve similar results to each other.

9.2.3 Combining with Index Term Weighting

DeepCT-Index [5] is a document term weighting method which is detailed in Sec-
tion 9.3. The term frequencies are modified before indexing using the estimated
term weights. The query is executed on the modified index. The proposed
query term weighting method can also be applied to a re-weighted index such
as DeepCT-Index. This strategy can combine the effects of both methods and re-
sult in superior outcomes.

59

Query term weights are estimated by the proposed BERT model using the modi-
fied TF and IDF values obtained from DeepCT-Index. The result of BM25, DeepCT-
Index, and weighted query one is given in Table 9.6 and Table 9.7. As can be seen
from the results, the proposed model improves DeepCT-Index significantly, with
improvements in all metrics. This demonstrates that combining the proposed
query term weighting method with existing index term weights can improve the
results even further. The BERT-Pairwise model adds a minimal overhead to the
search engine, taking less than 23 ms when processed with an RTX 2060 GPU.

TABLE 9.6: Combined effect of query term weighting with index
term weighting (DeepCT-Index). MRR, MAP, and RECALL metrics

evaluation.

Method MRR@10 MAP@10 RECALL
@100 @1000

BM25 0.1875 0.1958 0.6700 0.8575
DeepCT-Index 0.2440 0.2516 0.7550 0.9086

DeepCT-Index 0.2534* 0.2608* 0.7732* 0.9137*+ BERT-Pairwise (Min-Max)
DeepCT-Index 0.2524* 0.2599* 0.7721* 0.9127*+ BERT-Pairwise (Non-Neg)

TABLE 9.7: Combined effect of query term weighting with index
term weighting (DeepCT-Index). NDCG metric evaluation.

Method NDCG
@5 @10 @20

BM25 0.2024 0.2342 0.2578

DeepCT-Index 0.2624 0.2979 0.3227

DeepCT-Index + BERT-Pairwise (Min-Max) 0.2728* 0.3091* 0.3335*
DeepCT-Index + BERT-Pairwise (Non-Neg) 0.2727* 0.3077* 0.3319*

Both pairwise optimization methods got close results similar to the original cor-
pus index. The min-max normalized pairwise optimized weights are slightly bet-
ter than the non-negative constraint optimized one.

60

9.3 Document Term Weighting

Document term weighting is done by two different approaches. One of them in-
creasing the term frequency by repeating terms as estimated term weight, and
the other approach is the expansion document with possible query terms. These
approaches are evaluated under two captions and the methods that use these
technics in the literature are compared to each other. Additionally, the perfor-
mances of the document term expansion models are measured by only using the
expansion part without the original document.

9.3.1 Term Frequency Models

In Table 9.8 and Table 9.9, BM25 results evaluation scores show the ranking and
retrieval performance of running the original queries on the original corpus.
When there is no manipulation on the documents and if not boost query terms,
BM25 scores obtained. DeepCT-Index and TextRank change the documents and
repeat the terms by their term weight estimation method. There are two
different variations of both methods. The square root variant increases the
resolution of the estimation by square rooting estimated term weight due to
weights are between 0 and 1.

TABLE 9.8: Document term weighting. MRR, MAP, and RECALL
metrics evaluation.

Method MRR@10 MAP@10 RECALL
@100 @1000

BM25 0.1875 0.1958 0.6700 0.8575

DeepCT-Index 0.2440 0.2516 0.7550 0.9086
DeepCT-Index-sqrt 0.2445 0.2516 0.7573 0.9095

TextRank 0.1358 0.1431 0.5539 0.7738
TextRank-sqrt 0.1456 0.1535 0.5774 0.7872

According to the results, DeepCT-Index significantly increases the ranking and
retrieval performance with respect to BM25. DeepCT-Index-sqrt achieved a slightly
better result than DeepCT-Index. The square root of the term weight provides a
representation of the terms in a larger space. Whenever TextRank reduced the
performance even BM25 scores, the effect of the square root is observed.

61

TABLE 9.9: Document term weighting. NDCG metric evaluation.

Method NDCG
@5 @10 @20

BM25 0.2024 0.2342 0.2578

DeepCT-Index 0.2624 0.2979 0.3227
DeepCT-Index-sqrt 0.2627 0.2999 0.3238

TextRank 0.1459 0.1718 0.1909
TextRank-sqrt 0.1559 0.1836 0.2037

TextRank is a method to find keywords in the text. The keywords are not enough
to represent the documents themselves. Therefore, TextRank performance is the
worst one. In other respect, DeepCT-Index uses the contextual knowledge of the
documents to weighting terms. Through, DeepCT-Index is more successful to es-
timate term weights.

9.3.2 Term Expansion Models

Term expansion-based document term weighting models are expanded original
documents with possible query terms. With help of term expansion, term mis-
matching reduces, and adding an existing term in the document increases term
frequency and it affects the document in the same way with the document term
weighting models.

Doc2Query and DocTTTTTQuery use the same document expansion methods, but
the model in DocTTTTTQuery is much more complex and it is a generalized
generative language model. Besides, Doc2Query expanses documents with 10
estimated queries and DocTTTTTQuery expanses documents with 40 estimated
queries. As a consequence, DocTTTTTQuery is more successful on the ranking
and retrieval performance on any metrics, as shown in Table 9.10 and Table 9.11.

In Table 9.10 and Table 9.11, ranking and retrieval performances of Doc2Query
and DocTTTTTQuery models are evaluated with only document expansion part.
Because of the more estimated queries and better generative language model,
DocTTTTTOnlyQuery is overwhelmingly better than Doc2OnlyQuery when only
using expansions. Without original documents, Doc2OnlyQuery is worse than
BM25 and DocTTTTTOnlyQuery reduces its ranking and retrieval performance.

62

TABLE 9.10: Document term expansion. MRR, MAP, and RECALL
metrics evaluation.

Method MRR@10 MAP@10 RECALL
@100 @1000

BM25 0.1875 0.1958 0.6700 0.8575

Doc2Query 0.2216 0.2296 0.7180 0.8928
DocTTTTTQuery 0.2762 0.2845 0.8194 0.9475

Doc2OnlyQuery 0.1290 0.1333 0.4223 0.6144
DocTTTTTOnlyQuery 0.2634 0.2712 0.7927 0.9275

TABLE 9.11: Document term expansion. NDCG metric evaluation.

Method NDCG
@5 @10 @20

BM25 0.2024 0.2342 0.2578

Doc2Query 0.2394 0.2724 0.2966
DocTTTTTQuery 0.2996 0.3371 0.3645

Doc2OnlyQuery 0.1372 0.1548 0.1686
DocTTTTTOnlyQuery 0.2839 0.3218 0.3485

9.4 Phrase Search

Lucene framework gives chance to searching phrases which are sequences of
words, as a single term. The maximum length of phrases and relevance feed-
back estimation are retrieval and ranking performance evaluated in this section.

To clusters words into a meaningful phrase, phrases that are start or end with
stopwords, are ignored. By this means, the number of phrases is reduced and
possible phrases are kept in the query. Together with phrases, the original query
words are used in the search. Phrases give additional information to the original
query. The phrases are combined as the n− gram order.

9.4.1 Maximum Length of Phrases

The first thing in the phrase search evaluation is the effect of the maximum length
of the phrases. The length of the phrases is limited by 3 and the length of the input
query (the whole query can be a phrase). Each phrase is added to the query if its

63

length is less than or equal to the limit. When the limit is defined as 3, there are
phrases with lengths 2 and 3.

TABLE 9.12: Maximum length of the phrases.

Method MRR@10 MAP@10 RECALL@1000 NDCG
@10 @20

Tri-Phrase 0.1639 0.1723 0.8405 0.2041 0.2257
Max-Phrase 0.1611 0.1697 0.8382 0.2012 0.2223

In Table 9.12, Tri-Phrase refer to maximum length of the phrases are limited by
3, and Max-Phrase results addresses to the unlimited phrase length. According
to the retrieval and ranking metrics, limiting the length of the phrases produces
more meaningful phrase terms and gets slightly higher scores than the search
results of the phrases without specifying any length limit. Hence, next phrase
search evaluations are done with the limited length of the phrases, called tri-
phrase.

9.4.2 Phrase Weighting

The query term weighting can be applied to the phrases as the same as term
weighting. Weights are estimated for each phrase besides the word weights. Es-
timated weights are used to boost the relevance score for the word or phrase
and the cumulative relevance score gives the document relevance score. BM25
score that is original queries, phrase added queries without weighting and ora-
cle weighted phrase queries evaluated in Table 9.13 and Table 9.14.The proposed
BERT-based term weight estimation model allows phrase weighting. Thanks to
phrase weighting, estimated phrase weights are evaluated in the results.

In regard to results in Table 9.13 and Table 9.14, phrase search reduces retrieval
and ranking performance of the original queries. When stick with the phrase
search, pairwise optimization with non-negative constraint got higher retrieval
and ranking performance than the term recall relevance feedback for oracle re-
sults. Pairwise optimization and min-max normalization achieved fewer scores
than term recall, for this reason, when estimating term weights min-max normal-
ized one is not included. BERT estimated pairwise optimized weights achieved
approximately the same improvement on the results with word-based query term
weighting (Table 9.4, Table 9.5) although still under BM25.

64

BERT estimations for term recall target weights are better than the estimated pair-
wise optimized weights according to results in Table 9.13 and Table 9.14. The re-
sults are still worst than the word-by-word search for the phrase search. The pair-
wise optimization for word-search achieved the highest evaluation scores and
beat the term recall relevance feedback.

TABLE 9.13: Term Weighting for Phrase Query. MRR, MAP, and
RECALL metrics evaluation.

Method MRR@10 MAP@10 RECALL
@100 @1000

BM25 0.1875 0.1958 0.6700 0.8575
Tri-Phrase 0.1639 0.1723 0.6212 0.8405

Oracle Tri-Phrase 0.2681 0.2756 0.7762 0.9269-TermRecall
Oracle Tri-Phrase 0.2564 0.2635 0.7542 0.9050-Pairwise (Min-Max)
Oracle Tri-Phrase 0.2887 0.2971 0.7844 0.8997-Pairwise (Non-Neg)

BERT Tri-Phrase 0.1936 0.2025 0.6952 0.8846-TermRecall
BERT Tri-Phrase 0.1885 0.1975 0.6906 0.8836-Pairwise (Non-Neg)

TABLE 9.14: Term Weighting for Phrase Query. NDCG metric eval-
uation.

Method NDCG
@5 @10 @20

BM25 0.2024 0.2342 0.2578
Tri-Phrase 0.1760 0.2041 0.2257

Oracle Tri-Phrase-TermRecall 0.2880 0.3219 0.3468
Oracle Tri-Phrase-Pairwise (Min-Max) 0.2753 0.3103 0.3339
Oracle Tri-Phrase-Pairwise (Non-Neg) 0.3099 0.3425 0.3678

BERT Tri-Phrase-TermRecall 0.2085 0.2421 0.2657
BERT Tri-Phrase-Pairwise (Non-Neg) 0.2027 0.2356 0.2606

65

9.5 Overall Results

In this section, overall results are shown in Table 9.15. The table contains baselines
such as original query and document scores, query term weighting methods, doc-
ument term weighting methods, document expansion methods, and finally the
combination of the query and document term weighting approaches.

According to Table 9.15, document expansion models achieve the highest score
on any ranking and retrieval metrics. Enriching documents reduce term mis-
matching between query and documents and it allow weighting for document
terms in another perspective. To obtain maximum performance increment, the
original documents must be kept in the index, considering the results that just
using expanded part.

Applying term weighting on the document in index time gets better retrieval
and ranking performance than the query term weighting. However, we combine
these two approaches and achieve higher performance than the single one. We
chose DeepCT-Index as the index and the proposed pairwise relevance feedback
model as query term weighting to demonstrate the success of the combination.

As mentioned before, the proposed relevance feedback method and term weight
estimation model accomplished better results than query term weight approaches
in the literature. The success of the proposed pairwise relevance feedback method
and combinability with the existing indices are presented in Table 9.15.

66

TA
B

L
E

9.
15

:O
ve

ra
ll

re
su

lt
s

of
qu

er
y

an
d

do
cu

m
en

tt
er

m
w

ei
gh

ti
ng

.

M
et

ho
d

M
R

R
@

10
M

A
P@

10
R

EC
A

LL
N

D
C

G
@

10
0

@
10

00
@

5
@

10
@

20

BM
25

0.
18

75
0.

19
58

0.
67

00
0.

85
75

0.
20

24
0.

23
42

0.
25

78

D
ee

pT
R

-B
oW

0.
19

01
0.

19
89

0.
68

45
0.

87
38

0.
20

53
0.

23
80

0.
26

20
D

ee
pC

T-
Q

ue
ry

0.
19

15
0.

20
05

0.
69

07
0.

88
21

0.
20

60
0.

23
93

0.
26

31
BE

R
T-

Te
rm

R
ec

al
l

0.
19

30
0.

20
20

0.
69

54
0.

88
37

0.
20

80
0.

24
14

0.
26

57
BE

R
T-

Pa
ir

w
is

e
(M

in
-M

ax
)

0.
20

12
0.

20
97

0.
70

62
0.

88
70

0.
21

79
0.

25
17

0.
27

50
BE

R
T-

Pa
ir

w
is

e
(N

on
-N

eg
)

0.
20

05
0.

20
92

0.
70

65
0.

88
42

0.
21

67
0.

25
09

0.
27

46

D
ee

pC
T-

In
de

x
0.

24
40

0.
25

16
0.

75
50

0.
90

86
0.

26
24

0.
29

79
0.

32
27

D
ee

pC
T-

In
de

x-
sq

rt
0.

24
45

0.
25

16
0.

75
73

0.
90

95
0.

26
27

0.
29

99
0.

32
38

Te
xt

R
an

k
0.

13
58

0.
14

31
0.

55
39

0.
77

38
0.

14
59

0.
17

18
0.

19
09

Te
xt

R
an

k-
sq

rt
0.

14
56

0.
15

35
0.

57
74

0.
78

72
0.

15
59

0.
18

36
0.

20
37

D
oc

2Q
ue

ry
0.

22
16

0.
22

96
0.

71
80

0.
89

28
0.

23
94

0.
27

24
0.

29
66

D
oc

TT
TT

TQ
ue

ry
0.

27
62

0.
28

45
0.

81
94

0.
94

75
0.

29
96

0.
33

71
0.

36
45

D
oc

2O
nl

yQ
ue

ry
0.

12
90

0.
13

33
0.

42
23

0.
61

44
0.

13
72

0.
15

48
0.

16
86

D
oc

TT
TT

TO
nl

yQ
ue

ry
0.

26
34

0.
27

12
0.

79
27

0.
92

75
0.

28
39

0.
32

18
0.

34
85

D
ee

pC
T-

In
de

x
+

Pa
ir

w
is

e
(M

in
-M

ax
)

0.
25

34
0.

26
08

0.
77

32
0.

91
37

0.
27

28
0.

30
91

0.
33

35
D

ee
pC

T-
In

de
x

+
Pa

ir
w

is
e

(N
on

-N
eg

)
0.

25
24

0.
25

99
0.

77
21

0.
91

27
0.

27
27

0.
30

77
0.

33
19

67

10. CONCLUSION

A text search engine works with a huge amount of corpus, and it keeps text data
in a structured database to retrieve as fast as possible when queried by a user
request. Search engines use retrieval and ranking algorithms when searching a
query to find the best candidates that meet the user request in the vast dataset. To
take advantage of a search engine in all possible ways, neural network solutions
are applied to documents and queries. While doing this, minimal overhead has
to be added to the search cost to ensure a fluent user experience.

The usage of neural networks to improve retrieval and ranking performance fo-
cus on two sides of the query searching task. The first one is editing documents
in index-time and the second one is weighting query terms in search-time. The
index-time operations are offline and its cost does not affect the execution time of
the search. However, weighting query terms adds an additional operation that
estimates term weights to the search-time.

Semantic knowledge is the key to the predicting term weights of a document or
a query. The language models that are well known were surveyed to understand
principles of work, architecture, and their application for this task, in the thesis.
Statistical relevance feedback method called Term Recall and pairwise weight
optimization which was developed for better relevance feedback method were
detailed in this study.

In this thesis, we evaluated the application of neural networks in index-time and
search-time as a ranking method by weighting terms. We created a benchmark
for document term weighting and document expanding methods in the literature.
In addition, we compared query term weighting approaches with our model and
we proposed a relevance feedback method that uses pairwise ranking loss to find
optimal term weights for the input query.

Considering experiments that evaluate retrieval and ranking performance with
several metrics, the query and document term weighting is a decent way to re-
trieve more accurate documents for the input query and rank properly by a rele-
vance metric like BM25. When we compare the best results of the usage of the
neural network in search-time and index-time, the document term weighting
methods in the index-time got better results than query term weighting in the

69

search-time. One of the advantages of these two approaches is they can be used
together in the same search engine. According to the experiments, the combina-
tion of the query and document term weighting significantly exceeded to only
using query or document term weighting.

The actual contribution of this work is the utilization of the well-known pairwise
loss function for the term weighting as relevance feedback besides comparing
term weighting approaches in the literature. The pairwise relevance feedback
method finds optimal weights that boost the contribution of essential terms for
relevant documents when throwing back the irrelevant ones. The proposed rele-
vance feedback method outperformed the statistical term recall. To support our
work, we applied the pairwise optimized term weights estimated by the BERT-
based regression model to queries in search-time with minimal cost. The pro-
posed relevance feedback method increased retrieval and ranking performance
significantly compared to term recall approaches.

Pairwise term weight optimization requires lots of pairs for generalization and
hard negative instances for an optimal solution. A query can fetch more than
a thousand documents, and the initial ranking of documents consists of mostly
hard negative instances. To this end, the proposed relevance feedback method
was demonstrated on the query term weighting task, and the strategy was eval-
uated from various perspectives.

The combination of query term expansion models and the proposed query term
weighting is considered as future work of this thesis. Evaluating the proposed
relevance feedback method on the document term weighting is an additional task
for follow-up works. Additionally, studies can increase the predictability of rele-
vance feedback to catch oracle results.

70

REFERENCES

[1] Sergey Brin and Lawrence Page. “The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine”. In: Computer Networks 30 (1998), pp. 107–117.

[2] Christopher JC Burges. “From ranknet to lambdarank to lambdamart: An
overview”. In: Learning 11.23-581 (2010), p. 81.

[3] Yinqiong Cai et al. “Semantic Models for the First-stage Retrieval: A Com-
prehensive Review”. In: CoRR abs/2103.04831 (2021). arXiv: 2103.04831.

[4] Zhe Cao et al. “Learning to Rank: From Pairwise Approach to Listwise Ap-
proach”. In: Proceedings of the 24th International Conference on Machine Learn-
ing. ICML ’07. Corvalis, Oregon, USA: Association for Computing Machin-
ery, 2007, 129–136. ISBN: 9781595937933. DOI: 10.1145/1273496.1273513.

[5] Zhuyun Dai and Jamie Callan. “Context-Aware Sentence/Passage Term
Importance Estimation For First Stage Retrieval”. In: CoRR abs/1910.10687
(2019). arXiv: 1910.10687.

[6] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[7] Yoav Freund et al. “An E cient Boosting Algorithm for Combining Prefer-
ences”. In: International Conference on Machine Learning, Madison WI. Cite-
seer. 1998.

[8] Luyu Gao, Zhuyun Dai, and Jamie Callan. “COIL: Revisit Exact Lexical
Match in Information Retrieval with Contextualized Inverted List”. In:
CoRR abs/2104.07186 (2021). arXiv: 2104.07186.

[9] Jiafeng Guo et al. “A Deep Relevance Matching Model for Ad-Hoc Re-
trieval”. In: Proceedings of the 25th ACM International on Conference on Infor-
mation and Knowledge Management. CIKM ’16. Indianapolis, Indiana, USA:

71

https://arxiv.org/abs/2103.04831
https://doi.org/10.1145/1273496.1273513
https://arxiv.org/abs/1910.10687
https://arxiv.org/abs/2104.07186

Association for Computing Machinery, 2016, 55–64. ISBN: 9781450340731.
DOI: 10.1145/2983323.2983769.

[10] Shuguang Han et al. “Learning-to-Rank with BERT in TF-Ranking”. In:
CoRR abs/2004.08476 (2020). arXiv: 2004.08476.

[11] Baotian Hu et al. “Convolutional neural network architectures for matching
natural language sentences”. In: Advances in neural information processing
systems 27 (2014), pp. 2042–2050.

[12] Po-Sen Huang et al. “Learning Deep Structured Semantic Models for Web
Search Using Clickthrough Data”. In: Proceedings of the 22nd ACM
International Conference on Information |& Knowledge Management.
CIKM ’13. San Francisco, California, USA: Association for Computing
Machinery, 2013, 2333–2338. ISBN: 9781450322638. DOI:
10.1145/2505515.2505665.

[13] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated Gain-Based Evalua-
tion of IR Techniques”. In: ACM Trans. Inf. Syst. 20.4 (Oct. 2002), 422–446.
ISSN: 1046-8188. DOI: 10.1145/582415.582418.

[14] Thorsten Joachims. “Optimizing Search Engines Using Clickthrough Data”.
In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD ’02. Edmonton, Alberta, Canada: As-
sociation for Computing Machinery, 2002, 133–142. ISBN: 158113567X. DOI:
10.1145/775047.775067.

[15] Omar Khattab and Matei Zaharia. “ColBERT: Efficient and Effective Pas-
sage Search via Contextualized Late Interaction over BERT”. In: Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval. New York, NY, USA: Association for Computing
Machinery, 2020, 39–48. ISBN: 9781450380164.

[16] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

72

https://doi.org/10.1145/2983323.2983769
https://arxiv.org/abs/2004.08476
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/775047.775067

[17] Antonio Mallia et al. “Learning Passage Impacts for Inverted Indexes”. In:
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’21. Virtual Event, Canada: As-
sociation for Computing Machinery, 2021, 1723–1727. ISBN: 9781450380379.

[18] Rada Mihalcea and Paul Tarau. “TextRank: Bringing Order into Text”. In:
Proceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing. Barcelona, Spain: Association for Computational Linguistics,
July 2004, pp. 404–411.

[19] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vec-
tor Space”. In: 1st International Conference on Learning Representations, ICLR
2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. Ed.
by Yoshua Bengio and Yann LeCun. 2013.

[20] I. C. Mogotsi. “Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze: Introduction to information retrieval”. In: Information Retrieval 13.2
(Sept. 2009), pp. 192–195. DOI: 10.1007/s10791-009-9115-y.

[21] Tri Nguyen et al. “MS MARCO: A Human Generated MAchine Reading
COmprehension Dataset”. In: CoRR abs/1611.09268 (2016). arXiv: 1611 .
09268.

[22] Rodrigo Nogueira and Kyunghyun Cho. “Passage Re-ranking with BERT”.
In: CoRR abs/1901.04085 (2019). arXiv: 1901.04085.

[23] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. “From doc2query to
docTTTTTquery”. In: Online preprint (2019).

[24] Rodrigo Nogueira et al. “Document Expansion by Query Prediction”. In:
CoRR abs/1904.08375 (2019). arXiv: 1904.08375.

[25] Rodrigo Nogueira et al. “Multi-Stage Document Ranking with BERT”. In:
CoRR abs/1910.14424 (2019). arXiv: 1910.14424.

73

https://doi.org/10.1007/s10791-009-9115-y
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/1910.14424

[26] Liang Pang et al. “A study of matchpyramid models on ad-hoc retrieval”.
In: arXiv preprint arXiv:1606.04648 (2016).

[27] Liang Pang et al. “DeepRank: A New Deep Architecture for Relevance
Ranking in Information Retrieval”. In: Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management. CIKM ’17. Singapore,
Singapore: Association for Computing Machinery, 2017, 257–266. ISBN:
9781450349185. DOI: 10.1145/3132847.3132914.

[28] Matthew E. Peters et al. Deep contextualized word representations. 2018. arXiv:
1802.05365 [cs.CL].

[29] Alec Radford et al. “Improving language understanding by generative pre-
training”. In: (2018).

[30] Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer”. In: CoRR abs/1910.10683 (2019). arXiv: 1910 .
10683.

[31] S. E. Robertson and K. Sparck Jones. “Relevance weighting of search
terms”. In: Journal of the American Society for Information Science 27.3 (May
1976), pp. 129–146. DOI: 10.1002/asi.4630270302.

[32] S. E. Robertson and S. Walker. “Some Simple Effective Approximations to
the 2-Poisson Model for Probabilistic Weighted Retrieval”. In: SIGIR ’94.
Ed. by Bruce W. Croft and C. J. van Rijsbergen. London: Springer London,
1994, pp. 232–241. ISBN: 978-1-4471-2099-5.

[33] Stephen Robertson and Hugo Zaragoza. “The Probabilistic Relevance
Framework: BM25 and Beyond”. In: Foundations and Trends® in Information
Retrieval 3.4 (2009), pp. 333–389. ISSN: 1554-0669. DOI:
10.1561/1500000019.

[34] Stephen E Robertson et al. “Okapi at TREC-3”. In: Nist Special Publication Sp
109 (1995), p. 109.

74

https://doi.org/10.1145/3132847.3132914
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.1002/asi.4630270302
https://doi.org/10.1561/1500000019

[35] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A uni-
fied embedding for face recognition and clustering”. In: 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 815–823.
DOI: 10.1109/CVPR.2015.7298682.

[36] Aliaksei Severyn and Alessandro Moschitti. “Learning to Rank Short Text
Pairs with Convolutional Deep Neural Networks”. In: Proceedings of the
38th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval. SIGIR ’15. Santiago, Chile: Association for Computing
Machinery, 2015, 373–382. ISBN: 9781450336215. DOI: 10.1145/2766462.
2767738.

[37] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. “Self-Attention with
Relative Position Representations”. In: CoRR abs/1803.02155 (2018). arXiv:
1803.02155.

[38] Noam Shazeer and Mitchell Stern. “Adafactor: Adaptive Learning Rates
with Sublinear Memory Cost”. In: Proceedings of the 35th International Con-
ference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, 2018, pp. 4596–4604.

[39] Yelong Shen et al. “Learning Semantic Representations Using Convolu-
tional Neural Networks for Web Search”. In: Proceedings of the 23rd Interna-
tional Conference on World Wide Web. WWW ’14 Companion. Seoul, Korea:
Association for Computing Machinery, 2014, 373–374. ISBN: 9781450327459.
DOI: 10.1145/2567948.2577348.

[40] K. Sparck Jones, S. Walker, and S.E. Robertson. “A probabilistic model of
information retrieval: development and comparative experiments: Part 1”.
In: Information Processing & Management 36.6 (2000), pp. 779–808. ISSN: 0306-
4573. DOI: https://doi.org/10.1016/S0306-4573(00)00015-7.

[41] K Sparck Jones, S Walker, and S.E Robertson. “A probabilistic model of
information retrieval: development and comparative experiments: Part 2”.

75

https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1145/2766462.2767738
https://doi.org/10.1145/2766462.2767738
https://arxiv.org/abs/1803.02155
https://doi.org/10.1145/2567948.2577348
https://doi.org/https://doi.org/10.1016/S0306-4573(00)00015-7

In: Information Processing & Management 36.6 (2000), pp. 809–840. ISSN: 0306-
4573. DOI: https://doi.org/10.1016/S0306-4573(00)00016-9.

[42] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learn-
ing with neural networks”. In: Advances in neural information processing sys-
tems. 2014, pp. 3104–3112.

[43] Andrew Trotman, Antti Puurula, and Blake Burgess. “Improvements to
BM25 and Language Models Examined”. In: Proceedings of the 2014
Australasian Document Computing Symposium. ADCS ’14. Melbourne, VIC,
Australia: Association for Computing Machinery, 2014, 58–65. ISBN:
9781450330008. DOI: 10.1145/2682862.2682863.

[44] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Asso-
ciates, Inc., 2017, pp. 5998–6008.

[45] Shengxian Wan et al. “Match-srnn: Modeling the recursive matching struc-
ture with spatial rnn”. In: arXiv preprint arXiv:1604.04378 (2016).

[46] Yonghui Wu et al. “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation”. In: arXiv preprint
arXiv:1609.08144 (2016).

[47] Jun Xu and Hang Li. “AdaRank: A Boosting Algorithm for Information
Retrieval”. In: Proceedings of the 30th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. SIGIR ’07. Am-
sterdam, The Netherlands: Association for Computing Machinery, 2007,
391–398. ISBN: 9781595935977. DOI: 10.1145/1277741.1277809.

[48] Hamed Zamani et al. “From Neural Re-Ranking to Neural Ranking:
Learning a Sparse Representation for Inverted Indexing”. In: Proceedings of
the 27th ACM International Conference on Information and Knowledge
Management. CIKM ’18. Torino, Italy: Association for Computing

76

https://doi.org/https://doi.org/10.1016/S0306-4573(00)00016-9
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/1277741.1277809

Machinery, 2018, 497–506. ISBN: 9781450360142. DOI:
10.1145/3269206.3271800.

[49] Guoqing Zheng and Jamie Callan. “Learning to Reweight Terms with Dis-
tributed Representations”. In: Proceedings of the 38th International ACM SI-
GIR Conference on Research and Development in Information Retrieval. SIGIR
’15. Santiago, Chile: Association for Computing Machinery, 2015, 575–584.
ISBN: 9781450336215. DOI: 10.1145/2766462.2767700.

[50] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. “Inverted Files
versus Signature Files for Text Indexing”. In: ACM Trans. Database Syst. 23.4
(Dec. 1998), 453–490. ISSN: 0362-5915. DOI: 10.1145/296854.277632.

77

https://doi.org/10.1145/3269206.3271800
https://doi.org/10.1145/2766462.2767700
https://doi.org/10.1145/296854.277632

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation and Scope
	Contribution
	Thesis Organization

	LITERATURE REVIEW
	Ranking Function
	Relevance Feedback
	Term Weighting
	Learning to Rank

	LANGUAGE MODELS
	Transformer
	Encoder and Decoder
	Attention
	Scaled Dot-Product Attention
	Multi-Head Attention

	Position-wise Feed-Forward Networks
	Positional Encoding

	Bidirectional Encoder Representations from Transformers
	Model Architecture
	Input/Output Representations
	Pre-Training
	Masked Language Model
	Next Sentence Prediction

	Fine-tuning

	Text to Text Transfer Transformer
	Model Architecture
	Input/Output Representations
	Pre-Training
	Fine-Tuning

	SEARCH ENGINE
	Lucene
	Text Index
	Query Search

	RELEVANCE FEEDBACK
	Term Recall Based Term Weighting
	Pairwise Ranking Loss Based Term Weighting
	Min-Max Normalization
	Minimization Absolute Values of Negative Weights
	Non-Negative Weight Constraint
	Pair Selection

	TERM WEIGHTING
	Query Term Weighting
	DeepTR
	DeepCT-Query
	Term Weight Prediction Model

	Document Term Weighting
	DeepCT - Index
	TextRank
	Doc2Query
	DocTTTTTQuery

	EVALUATION
	Recall
	Mean Average Precision
	Mean Reciprocal Rank
	Normalized Discounted Cumulative Gain
	Paired t-Test

	EXPERIMENTS
	Dataset
	Configurations
	Methods to Evaluate

	RESULTS
	Number of Pair for Pairwise Term Weight Optimization
	Query Term Weighting
	Term Recall and Pairwise Term Weight Optimization
	Term Weight Estimation
	Combining with Index Term Weighting

	Document Term Weighting
	Term Frequency Models
	Term Expansion Models

	Phrase Search
	Maximum Length of Phrases
	Phrase Weighting

	Overall Results

	CONCLUSION
	REFERENCES

