
EFFICIENT IMPLEMENTATION OF SIMPLIFIED AES

AND ITS SIDE-CHANNEL ANALYSIS

BASİTLEŞTİRİLMİŞ İLERİ ŞİFRELEME

STANDARDI’NIN VERİMLİ UYGULAMASI VE YAN

KANAL ANALİZİ

BARIŞ BERK ZORBA

PROF. DR. ALİ ZİYA ALKAR

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Electrical and Electronics Engineering.

2022

i

ABSTRACT

EFFICIENT IMPLEMENTATION OF SIMPLIFIED AES

AND ITS SIDE-CHANNEL ANALYSIS

Barış Berk ZORBA

Master of Science, Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ali Ziya ALKAR

January 2022, 58 pages

Lightweight cryptography is gaining momentum as the number of connected Internet of

Things (IoT) devices in the world is expected to reach beyond 50 billion by 2030. With

all that massive amount of connectivity, the demand for communication security will be

higher as well as the edge processing speed. In this thesis, the Simplified AES (S-AES)

algorithm, a popular, fast and feasible solution for the security of embedded devices

concerning other ultra-lightweight block ciphers is studied. S-AES has been considered

as one of the better options in terms of memory usage in microcontrollers, where memory

is already in high demand. In this thesis, the S-AES encryption performance was

improved by simple, yet efficient techniques applied on the MixColumns layer.

STM32F4-DISCOVERY board having an ARM Cortex-M4 embedded processor is used

to demonstrate these techniques while relatively comparing them concerning each other

to show the performance improvements. Additionally, Altera Cyclone-IV and Xilinx

ii

BASYS-3 FPGA demo boards are used to demonstrate the high performance and low-

area implementation of this algorithm compared to other lightweight block ciphers. Side-

channel security of the implementation techniques was analyzed on STM32F4-

DISCOVERY board to prove the implementation is still secure even though the

performance is improved. As a conclusion, the embedded software and hardware

implementations of S-AES showed that this encryption algorithm can be used in

performance-critical areas such as Internet of Things (IoT).

Keywords: Simplified AES, Block Cipher, Embedded Software Implementation, FPGA

Implementation, Ultra-Lightweight Cryptography

iii

ÖZET

BASİTLEŞTİRİLMİŞ İLERİ ŞİFRELEME STANDARDI’NIN VERİMLİ

UYGULAMASI VE YAN-KANAL ANALİZİ

Barış Berk ZORBA

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği

Tez Danışmanı: Prof. Dr. Ali Ziya ALKAR

Ocak 2022, 58 sayfa

Hafif Blok Tipi Şifreleme yöntemleri, Nesnelerin İnterneti cihazlarının sayısının 2030

yılına kadar 50 milyarı aşması beklendiğinden ötürü ivme kazanmaktadır. Bütün bu

büyük miktarda bağlantı ile, iletişim güvenliğine olan talep ve uçtan uca işlem hızındaki

beklenti daha yüksek olacaktır. Bu tezde, diğer ultra hafif blok tipi şifrelemelere göre

gömülü cihazların güvenliği için popüler, hızlı ve uygulanabilir bir çözüm olan

Basitleştirilmiş AES (S-AES) algoritması incelenmiştir. Bu tezde S-AES, belleğin zaten

yüksek talep gördüğü mikrodenetleyicilerde bellek kullanımı açısından iyi bir seçenek

olarak gösterilmiştir. Bununla birlikte, S-AES şifreleme performansı, MixColumns

katmanında uygulanan basit ama etkili tekniklerle geliştirilebilmiştir. Bu teknikleri

doğrulamak için ARM Cortex-M4 gömülü işlemcisine sahip bir STM32F4-

DISCOVERY bordu kullanılırken, performans iyileştirmelerini göstermek için bu

katmanda uygulanan teknikler birbirleriyle karşılaştırılmıştır. Ek olarak, diğer Hafif Blok

Şifrelere kıyasla bu algoritmanın donanımda da yüksek performansta çalıştığını ve düşük

iv

alan kapladığını göstermek için Altera Cyclone-IV ve Xilinx BASYS-3 demo kartlarında

gerçeklenmiştir. Uygulamalarda performans iyileştirmesi olsa bile uygulamanın hala

güvenli olduğunu kanıtlamak için STM32F4-DISCOVERY bordu üzerinde çığ etkisi ve

yan kanal analizi incelenmiştir. Sonuç olarak, bu tez kapsamında S-AES'in gömülü

yazılım ve donanım uygulamaları, bu şifreleme algoritmasının Nesnelerin İnterneti (IoT)

gibi performans açısından kritik alanlarda kullanılabileceği gösterilmiştir.

Anahtar Kelimeler: Basitleştirilmiş İleri Şifreleme Standardı, Blok Tipi Şifreleme,

Gömülü Yazılım Gerçeklemesi, FPGA Gerçeklemesi, Ultra-Hafif Kriptografi

v

THANKS

 I would like to extend my sincere thanks to:

My esteemed professors, Prof. Dr. Ali Ziya ALKAR and Assoc. Prof. Murat AYDOS,

who guided my life with their vast knowledge and experience throughout my graduate

education,

Saim Buğrahan ÖZTÜRK and Erkan USLU for sharing their valuable ideas with me

while I was writing this thesis,

My father, my mother, my brother, and my wife who always supported me and showed

patience.

Barış Berk ZORBA

January 2022, Ankara

vi

CONTENTS

ABSTRACT ... i

THANKS ... v

CONTENTS ... vi

LIST OF FIGURES .. viii

LIST OF TABLES ... ix

SYMBOLS AND ABBREVIATIONS ... x

1. INTRODUCTION ... 1

1.1. Introduction to Applied Cryptography ... 1

1.2. Motivation of the Thesis .. 2

1.3. Thesis Work ... 4

2. BACKGROUND WORK .. 6

2.1. Symmetric-Key Cryptography ... 6

2.2. Block Ciphers ... 6

2.2.1. Modes of Operation ... 8

2.2.2. Advanced Encryption Standard (AES) ... 9

2.2.2. Simplified AES (S-AES) ... 11

2.3. Implementations of Block Ciphers ... 17

2.3.1. Performance vs. Security ... 17

2.4. Related Works .. 20

3. EXPERIMENTAL WORK ... 22

3.1. Software Implementation of S-AES .. 22

3.2. Embedded Software Implementation of S-AES.. 24

3.3. RISC-V and ARM Implementations of S-AES on QEMU 29

3.4. FPGA Implementation of S-AES ... 30

3.5. Security Analysis .. 35

3.5.1. Avalanche Effect ... 35

vii

3.5.2. Side-Channel Analysis .. 36

3.5.2.1. Timing Attack .. 37

3.5.2.2. Simple Power Analysis .. 38

4. RESULTS AND DISCUSSION ... 43

4.1. Results ... 43

4.2. Discussion .. 44

4.2.1. Discussion on Embedded Software Implementations 44

4.2.1. Discussion on Hardware Implementations ... 46

5. CONCLUSION ... 48

6. REFERENCES.. 50

APPENDICES .. 55

Appendix 1 – Commands While Executing S-AES on QEMU 55

Appendix 2 - Thesis Study Originality Report Error! Bookmark not defined.

CURRICULUM VITAE .. Error! Bookmark not defined.

viii

LIST OF FIGURES

Figure 2.1. Encryption and Decryption of a Feistel Structured Block Cipher [7] 7

Figure 2.2. Encryption of an SPN Structured Block Cipher [9] 8

Figure 2.3. Structure of S-AES Encryption and Decryption [3] 12

Figure 2.4. Processing Time Percentage of Every Layer in AES [26] 18

Figure 3.1. Pseudo Codes of the Implementations of GF (24) Multiplications 22

Figure 3.2. Pseudo Codes of Measurement of the Execution Time in STM32 51

Figure 3.3. Memory Utilization of S-AES Encryption .. 52

Figure 3.4. Synthesis Results of S-AES in Quartus II ... 57

Figure 3.5. Synthesis Results of S-AES in Vivado .. 58

Figure 3.6. Simulation Results of S-AES in Vivado .. 58

Figure 3.7. Schematic of the IP Core of S-AES Encryption Algorithm 59

Figure 3.8. Schematic of S-AES Encryption with 2x 16-bit Registers 59

Figure 3.9. Results of Static Timing Analysis ... 60

Figure 3.10. Avalanche Effect of Some Lightweight Block Ciphers [13, 52] 61

Figure 3.11. Block Diagram of the Power Analysis Experimental Setup 64

Figure 3.12. Power Consumption of the Core for 1 us/div .. 65

Figure 3.13. Power Consumption of the Core for 2 us/div .. 65

Figure 3.14. Analysis of the Power Consumption Waveform 66

ix

LIST OF TABLES

Table 2.1. Content of S-Box in SubNibbles layer ... 13

Table 2.2. Content of Inverse S-Box in InvSubNibbles layer 14

Table 2.3. Powers of Every Element in GF(24) ... 15

Table 2.4. Multiplication of 4 with the Elements of GF(24) .. 16

Table 3.1. Test Vectors in Hex .. 23

Table 3.2. Disassembled ARM Instructions of MixColumns Implementation Methods

 .. 28

Table 3.4. Results of Avalanche Effect ... 35

Table 3.5. Results of Timing Attack .. 36

Table 4.1. Implementation Results of Lightweight Block Ciphers on ARM Cortex-M4

 .. 44

Table 4.2. Implementation Results of Lightweight Block Ciphers on FPGAs 46

x

SYMBOLS AND ABBREVIATIONS

Symbols

GF(2n) Finite Field Extensions

Sn,n Nibble Representation of a Hex

wn,n Byte Representation of a Hex

⊕ XOR Operation

Abbreviations

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

CLB Configurable Logic Block

CPA Correlation Power Analysis

CPU Central Processing Unit

CYCCNT Clock Cycle Counter

DES Data Encryption Standard

DPA Differential Power Analysis

DWT Data Watchpoint and Trace Unit

FF Flip-Flop

FPGA Field Programmable Gate Array

GB GigaBytes

Gbps Gigabits per Second

GCC GNU Compiler Collection

GF Galois Field

HEX Hexadecimal

xi

IDE Integrated Development Environment

IoT Internet of Things

ISA Instruction Set Architecture

KB KiloBytes

LE Logic Element

LFSR Linear Feedback Shift Register

LSB Least Significant Bit

LUT Look-up Table

MB MegaBytes

Mbps Megabits per Second

MCU Microcontroller Unit

MDS Maximum Distance Separable

MHZ MegaHertz

ms Milliseconds

μs Microseconds

MSB Most Significant Bit

NIST National Institute of Standards and Technology

ns Nanoseconds

P2P Peer to Peer

RAM Random Access Memory

RCON Round Constant

RotNibble Rotate Nibble

RTL Register-Transfer Level

S-AES Simplified Advanced Encryption Standard

SCA Side-Channel Attacks

SPN Substitution–Permutation Network

xii

us Microseconds

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuit

WNS Worst Negative Slack

WSN Wireless Sensor Network

1

1. INTRODUCTION

1.1. Introduction to Applied Cryptography

There have been important developments in the field of information security in recent

years. As the technology constantly develops, security and performance requirements in

communication systems increase too. Encryption has a great role in latest communication

devices for keeping the information private and authenticated. New attacking techniques

are being applied by cryptanalysts each and every day. While the purpose is not only to

“break the code” but also to find many ways to pass the security barrier. Cryptographers

search for various ways to develop a secure and fast cryptosystem, where these encryption

algorithms rely on hard mathematical problems. When the mathematical structure of the

algorithm is built this way, it is nearly impossible to solve the plaintext or the key from

ciphertext using reverse engineering.

Cryptology is the science concerned with the security of data in communication systems,

which consists of cryptography and cryptanalysis. Moreover, Public-Key Cryptography

(PKC) and Symmetric-Key Cryptography are branched under the cryptography subject.

Even though PKC techniques provide confidentiality using public & private key pairs and

authentication using digital signatures, symmetric-key cryptography is considered as the

main subject to provide the same level of confidentiality with lower key size [1].

Symmetric-key encryption algorithms are divided into two: stream ciphers and block

ciphers, where block ciphers are the main concentration of this thesis. The data is

encrypted bit-by-bit in stream ciphers, leading the usage in Linear Feedback Shift

Registers (LFSR). The blocks are encrypted as a whole in these encryption algorithms

and then integrated using modes of operation techniques. Block ciphers are used in many

data communication environments and specific applications such as deterministic

pseudo-random number generation. Data Encryption Standard (DES) was used as the

national encryption standard by National Institute of Standards and Technology (NIST)

until it was broken with differential cryptanalysis technique [2].

2

After DES is broken, there was a need for a secure and fast block cipher, which led to a

competition started by the NIST. Rijndael was chosen as the most suitable algorithm for

the Advanced Encryption Standard (AES) competition by NIST due to its secure,

efficient, fast and feasible structure [3]. This block cipher has been used in different kinds

of applications ever since it was first introduced. Even though there has been plenty of

attacks applied on it, AES is still considered as secure considering algebraic security

according to NIST.

The most common attacks applied on block ciphers are differential and linear

cryptanalyses which are applied on the mathematical structure of the algorithm. Physical

attacks such as side-channel attacks and their countermeasures are some of the greatest

concerns of Cryptographic Engineering. Side-Channel Analysis (SCA) mainly consists

of timing attacks, power analysis, electromagnetic analysis, and cache attacks.

AES-256 is still utilized in security-critical applications of 5G communications [4],

whereas AES-128 is used as a lightweight block cipher for Internet of Things (IoT)

applications [5]. Even though AES is a comparably fast symmetric-key encryption

algorithm, most of the block ciphers are open to performance upgrades in both software

and hardware since faster instructions are developed in newer microarchitectures and the

demand on faster encryption algorithms increases as the nanometer technology grows.

Since the block ciphers are classified according to their structures, a performance upgrade

in a cipher might be used to speed up another that uses the same structure.

1.2. Motivation of the Thesis

Even though the fast peer to peer (P2P) transportation of data is a need, it is a matter of

fact that security plays an important role in latest communication systems. To maintain

security in IoT applications, integrity, authentication, and confidentiality must be

provided by the channel. While designing secure cryptosystems, preserving the

performance of the communication system is important in IoT. Performance evaluations

3

of encryption algorithms in the IoT applications are organized mainly based on memory,

timing and energy requirements [6], where the power consumption, computational

performance and utilized memory are some of the most important resource constraints.

Lightweight block ciphers are utilized in this process to fulfill the need for a fast and

reliably secure algorithm in IoT.

Even though modifying the key size, number of rounds or block size might be useful for

increasing the performance of a block cipher, it is not a great solution since the algebraic

security of the algorithm decreases. To standardize performance throughputs of block

ciphers, alternative structures or implementation techniques should be provided for

performance-critical applications.

The weakness of some block ciphers such as AES in SCA attacks revealed that

implementation methods resistant to SCA should be developed. It is a fact that there is a

need for a performance acceleration in the MixColumns layer of AES-like algorithms,

where Finite Field multiplications are utilized. At this point, it is feasible to apply the

performance upgrade on Simplified Advanced Encryption Standard (S-AES) algorithm

which is an AES-like algorithm that can be used to demonstrate the performance upgrade

on MixColumns layer. To do so, it is aimed to accelerate this layer using proposed

methods and fast implementation methods that already exist in the literature. Besides,

proposed method should provide durability to some SCA attacks for security

improvements. Increase in the throughput and total clock cycles should be verified using

various hardware and software platforms. The rationale of this research depends on the

weakness of block ciphers in embedded software implementation performances and

excessive area consumption in hardware.

Purpose of the study is to come up with a solution to solve the need for a high-

performance encryption algorithm in IoT applications. Moreover, the throughput of S-

AES was increased in this thesis study, while presenting the mathematical analysis,

comparing the implementations on target platforms and adapt to application domains such

as IoT or Ultra-Lightweight Cryptography. It is aimed to implement S-AES as a low-area

4

implementation on hardware, while the purpose in software is to apply Switch-Case

method as a fast and low memory consuming method in the MixColumns layer. It is

desired to prove that the method applied by comparing it with other efficient

implementation methods is successful in terms of performance and security parameters,

which are the building blocks of applied cryptography studies.

1.3. Thesis Work

S-AES, an AES-like symmetric-key encryption algorithm with lower rounds, block size

and key size, can been considered as one of the best options for high-performance

applications in Embedded Systems or IoT applications [7] and can be adapted to Ultra-

Lightweight Cryptography.

MixColumns is the layer of S-AES where the diffusion occurs by multiplying the bits of

plaintext. The mathematical structure of this layer is not modified in this research, though

its implementation is modified. The implementations on STM32, Altera Cyclone-IV and

Xilinx BASYS-3 demo boards are given as proof of concepts. Pre-calculated results of

the Galois Field (GF) multiplications in 24 are written into switch-case statements and

are called as a function. Another applicable model that relies on Look-up Table (LUT) is

also implemented. Lastly, the commonly known method of implementing MixColumns

layer is implemented where Maximum Distance Separable (MDS) matrix is used. Then,

the results of these three implementation methods are compared with each other. It is also

necessary not to waste resources in Embedded software implementations, while ensuring

high-performance encryption. Throughput and memory utilization are examined in

Atollic TrueSTUDIO for STM32 implementation, in order to scale the encrypt time and

total area that S-AES covers respectively.

It was stated by NIST that LUT implementations are robust against timing attacks [8].

SCA methods were applied on all of these three implementations and results are compared

between each other in the MixColumns stage and whole encryption process. To prove the

security needs of a block cipher, the Avalanche Effect of S-AES is analyzed, and an

average result is obtained compared to some other block ciphers.

5

This thesis consists of the background in Section 2 that includes a background on

symmetric-key cryptography, block ciphers, Advanced Encryption Standard, the

structure of S-AES, performance vs. security and related works, whereas its software,

embedded software and hardware implementations are explained in third section with

security analyses including Avalanche Effect and SCA resistance. The results and

comparison of this thesis work with other implementations are revealed in Section 4 as

Results and Discussion.

 6

2. BACKGROUND WORK

2.1. Symmetric-Key Cryptography

Symmetric-key cryptography is one of the most significant fields of mathematics and

engineering. It is classified under cryptography and differs from PKC with the number of

keys that are used during the encryption process. Symmetric-key encryption algorithms

are most frequently used in data communications to hide the data from intruders using a

single pre-shared key.

Symmetric-key cryptography is divided into two domains as block ciphers and stream

ciphers according to the data size of the encryption algorithm [9]. While the plaintext

enters the cryptosystem as bits in Stream Ciphers, it is encrypted as blocks in block

ciphers.

2.2. Block Ciphers

Operation modes in block ciphers are used for plaintext to be given as multiple blocks to

the input of the algorithm. While the mathematical design is not considered as the main

concentration of this thesis, the performance-security trade-off is examined the most. The

classification of block ciphers with respect to their structures are given in five categories

as shown below [10].

• Iterated block ciphers

• Substitution–permutation networks

• Feistel ciphers

• Lai–Massey ciphers

• Add-Rotate-XOR (ARX)

One of the most utilized Balanced Feistel network algorithms, DES, is used in the form

of two equally divided blocks during the encryption [11]. DES is given as a standard

example to demonstrate the structure of a Feistel cipher as shown in Figure 2.1.

 7

Figure 2.1 - Encryption and Decryption of a Feistel Structured Block Cipher [12]

The data is encrypted using substitution and permutation operations in SPN structure.

Substitution and Permutation layers can also be considered as confusion and diffusion

respectively according to their mathematical structures. A general SPN structure of a

block cipher is demonstrated in Figure 2.2, in which the plaintext is XORed with the

round key and divided into blocks for substitution in S-boxes and permutation in P-layers.

The finalists of the AES competition, Blowfish and Rijndael (also known as AES) can be

categorized as remarkable block ciphers with SPN structure [13].

 8

Figure 2.2 – Encryption of an SPN Structured Block Cipher [14]

2.2.1. Modes of Operation

When the input is longer than the defined block length, there are operation modes to

encrypt the message while using a single key [15]. Initialization Vector (IV) is the

randomly generated number used to start the encryption block and hence to produce

distinct ciphertext. The most common Modes of Operations used in block ciphers are

described below.

Electronic Codebook Mode (ECB): Each block is encrypted independently and

substituted with a value similar to codebook. Due to the identical plaintexts being

encrypted similarly, there is no diffusion in the block, which makes this mode insecure

from a point of view [16]. On the other hand, this method is simple, fast in implementation

and the damage or loss can be tolerated. However, because of using the same patterns in

the plaintext, this method is not suitable for encrypting documents and images.

 9

Cipher Block Chaining (CBC): Each ciphertext block is chained as the input of current

plaintext block while the initial vector is used as the first input. Since the encryption

depends on the blocks before it, this method brings in diffusion between blocks [17]. IV

integrity should be protected but not necessarily needed to be secret. A single bit error

may flip the next block, so this mode is not suitable for packet-critical applications.

Cipher Feedback Mode (CFB): While encrypting the IV with the key in the first block,

this method encrypts the ciphertext of previous block and XORs with the plaintext of the

current round. Because of a corrupted ciphertext block affecting every block after itself,

this mode is error-intolerant [18].

Output Feedback Mode (OFB): The only difference between OFB and CFB is that, OFB

uses the encrypted block of previous round as input to the current round, not the XORed

ciphertext where feedback is independent from the message. Therefore, the error

propagation is avoided in this mode [18]. However, when a plaintext is known, the output

of the forward cipher function will be known, which makes this mode insecure in some

ways.

Counter Mode (CTR): In CTR mode, current counter value is encrypted and XORed with

plaintext, where only the low-order bits of the input are altered with the encryption of

each block [19]. Furthermore, this method does not use any feedback value, which is an

advantage against algebraic cryptanalysis. The data blocks can be randomly accessed, and

the encryption is simple and fast.

2.2.2. Advanced Encryption Standard (AES)

In the competition of AES organized by NIST the idea was to replace DES with a faster,

feasible and most importantly more secure encryption standard. The finalists of the

competition were MARS, Twofish, RC6, Rijndael and Serpent. In most of the software

implementations on different processors, Serpent was found out as the slowest algorithm

out of all [20]. While the encryption rates were close at higher key sizes, Rijndael resulted

 10

in the highest-performing block cipher among all the finalists [20]. While this algorithm

had low memory consumption and a structure suitable for instruction-level parallelism, it

was mathematically easy to understand and implement on both hardware and software

[21]. Considering all the requirements of the competition, Rijndael was shown to have

the best design to be a standard.

Rijndael Algorithm was called as AES after the invention of Vincent Rijmen and Joan

Daemen [21]. Unlike DES, this algorithm does not have a Feistel structure. It is a

symmetric-key block cipher that has SPN structure. Its key size is modifiable as

128/192/256. Even though there are three standard key sizes, it may be modified by

changing the number of rounds and the length of the round key [22].

AES encryption algorithm consists of 4 layers that provide confusion and diffusion as

demonstrated in the instance of SPN structure in Figure 2.2. In MixColumn and SubBytes

layers, every byte is treated as an element of GF (28) and the arithmetics are computed in

this Finite Field. Since the block length is 128 bits, data is arranged in a 4x4 matrix,

whereas the key is arranged as:

• 4x4 matrix (128-bit key)

• 4x6 matrix (192-bit key)

• 4x8 matrix (256-bit key)

“SubBytes” layer is a non-linear substitution of bytes with the data in the lookup table so-

called S-box. The contents of the S-box are pre-computed inverses of Finite Field

elements [22]. In Rijndael, this inversion is always done in modulo P(x) = x8 + x4 + x3 +

x + 1.

“ShiftRows” layer is the step where a simple transposition occurs. Bytes in the second,

third and fourth row of state matrix are circularly left-shifted by 1, 2, and 3 times

respectively while the first row remains the same.

 11

“MixColumns” operation is the multiplication of the State Matrix by a fixed matrix called

MDS matrix. Additions and multiplications are performed in GF(28) in this state.

Diffusion in this state occurs by multiplying a byte of the state matrix with the

corresponding element of MDS matrix and then XORing with other elements of the state

matrix. Finally, each byte of a column in the state matrix is mapped into a new value after

the mixing operation [23]. Since multiplication with 1 in GF(28) is equal to the value

itself, it is only needed to compute the multiplication of the element of the state matrix

with 2 and 3.

“AddRoundKey” is the bitwise XOR operation of the round key with State Matrix. The

round key is defined as the key that is added to the current round, which was created from

the symmetric-key using the “Key Expansion Algorithm”. For instance, a 4-word (16-

byte) input symmetric-key is used to create 44-word (176-byte) round keys using this

algorithm. Moreover, the number of rounds for 128/192/256-bit key length is 10/12/14

respectively. There is an extra AddRoundKey layer in the first round and there is no

MixColumns layer in the last round according to Rijndael’s design.

AES decryption algorithm is very similar to encryption due to the fact that these layers

are easily reversible. AddRoundKey and ShiftRows layers are identical to their inverses.

There is a fixed Inverse S-Box to be replaced in InverseSubBytes layer and a fixed matrix

to be multiplied in InverseMixColumn layer.

2.2.2. Simplified AES (S-AES)

S-AES, an easy-to-understand educational algorithm, was founded by E. Schaefer and

introduced in 2003 [24]. Arithmetics in this block cipher are computed in GF(24) using

the polynomial P(x) = x4 + x + 1. The structure is the same as the original Rijndael,

whereas the number of rounds is simply two. Additionally, the significant difference is

that the block size and key size are both decreased to 16-bits for faster encryption and

implementation [3]. Just like Rijndael, the last round does not include MixColumns layer

and there is an extra AddRoundKey before the first round. The encryption and decryption

process of S-AES is given in Figure 2.3.

 12

Figure 2.3 - Structure of S-AES Encryption and Decryption [7]

At first, to process the input data block, the given ciphertext is converted to a state matrix.

Key Expansion Algorithm creates round keys 1 and 2 for the first and second rounds. The

original symmetric-key (w0w1) is used in the first AddRoundKey operation. The same

key is XORed with State Matrix in the decryption process. Byte representation of Round

Key is [𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5] whereas nibble representation of the State Matrix is

[
𝑆0,0 𝑆0,1

𝑆1,0 𝑆1,1
].

Bytes of RoundKey are computed using Eq. 2.1-2.6, while Eq. 2.7 is used to find Round

Constant. Since there are only 2 rounds in S-AES, there will be 2 Round Constant values:

RCON(1) & RCON(2).

 13

𝑤0 = 𝑤0 (2.1)

𝑤1 = 𝑤1 (2.2)

𝑤2 = 𝑤0 ⊕ RCON(1) ⊕ SubNibble(RotNibble(𝑤1)) (2.3)

𝑤3 = 𝑤1 ⊕ 𝑤2 (2.4)

𝑤4 = 𝑤2 ⊕ RCON(2) ⊕ SubNibble(RotNibble(𝑤3)) (2.5)

𝑤5 = 𝑤3 ⊕ 𝑤4 (2.6)

RC[i] = 𝑥𝑖 + 2 (2.7)

Using Eq. 2.7, RC[1] and RC[2] values are found as follows.

• RC[1] = x3 = 1000H

• RC[2] = x4 mod (x4 + x + 1) = 0011H

Since RCON(1) and RCON(2) constant values are used as hexadecimal (HEX) inputs,

they are represented as 0x80 and 0x30 respectively. Nibbles are substituted with State

Matrix instead of bytes in S-AES. Instead of SubBytes, this layer is called SubNibbles.

The contents of the S-box are precomputed inverses of Finite Field elements in GF(24).

Contents of S-Box and Inverse S-Box are given in Table 2.1 and Table 2.2 as hexadecimal

where the first row and columns are binary. SubNibbles layer involves four independent

nibble-to-nibble transformations [25].

Table 2.1 - Content of S-Box in SubNibbles layer

 00 01 10 11

00 9 4 A B

01 D 1 8 5

10 6 2 0 3

 14

11 C E F 7

Table 2.2- Content of Inverse S-Box in InvSubNibbles layer

 00 01 10 11

00 A 5 9 B

01 1 7 8 F

10 6 0 2 3

11 C 4 D E

ShiftRows is a simple layer since the State Matrix consists of 2 rows and 2 columns. In

encryption, the first row remains the same, while the second row is circularly shifted left.

Due to having 2 columns, InvShiftRows is the identical operation of ShiftRows.

MixColumns layer includes Finite Field multiplication of states with MDS matrix which

is [
1 4
4 1

]. The output nibbles of the MixColumns layer are given in Eq. 2.8-2.11 where

the multiplication is computed in GF(24).

𝑆′0,0 = 𝑆0,0 ⊕ (4 × 𝑆1,0) (2.8)

𝑆′1,0 = (4 × 𝑆0,0) ⊕ 𝑆1,0 (2.9)

𝑆′0,1 = 𝑆0,1 ⊕ (4 × 𝑆1,1) (2.10)

𝑆′1,1 = (4 × 𝑆0,1) ⊕ 𝑆1,1 (2.11)

In order to understand the multiplication in MixColumns layer, it is necessary to learn

Finite Field arithmetic. First of all, while computing the elements of the binary extension

field, GF(24), x+1 is replaced with x4 to arrange the coefficients of the polynomial into a

binary string [26]. Using this method, hexadecimal equivalences of these elements are

computed as shown in Table 2.3.

 15

Table 2.3 - Powers of Every Element in GF(24)

Element

of GF(24)
Calculation

Hex

Representation

x0 x0 = 1 1

x1 x1 = x 2

x2 x2 = x2 4

x3 x3 = x3 8

x4 x4 = x + 1 3

x5 x5 = x.(x + 1) = x2 + x 6

x6 x6 = x2.(x+1) = = x3 + x2 C

x7 x7 = x3.(x+1)=x4+x3=x3+x+1 B

x8 x8=x4+x2+x=x2+2x+1=x2+1 5

x9 x9 = x.(x2+1) A

x10 x10=x4+x2=x2+x+1 7

x11 x11=x3+x2+x E

x12 x12=x4+x3+x2+x=x3+x2+x+1 F

x13 x13=x4+x3+x2=x3+x2+1 D

x14 x14=x4+x3+x=x3+1 9

After computing the elements of the binary extension field, it is important to understand

the multiplication of every element with 4 since MDS matrix in S-AES includes

multiplication with only 1 and 4. From the fact that multiplying the input with one is equal

to itself, there are only 15 different possible values that a nibble can get. Multiplications

of every element in GF(24) with 4 are given in Table 2.4.

 16

Table 2.4 - Multiplication of 4 with the Elements of GF(24)

Multiplication Polynomial Representation Result in HEX

4 × 0 x2 . 0 0

4 × 1 x2.x0 = x2 4

4 × 2 x2.x1 = x3 8

4 × 3 x2.(x1 + 1) = x3 + x2 C

4 × 4 x2.x2 ≡ x + 1 3

4 × 5 x2.(x2 + 1) ≡ x2 + x + 1 7

4 × 6 x2.(x2 + x) ≡ x3 + x + 1 B

4 × 7 x2.(x2 + x + 1) ≡ x3 + x2 + x + 1 F

4 × 8 x2.x3 ≡ x2 + x 6

4 × 9 x2.(x3 + 1) ≡ x 2

4 × 10 x2.(x3 + x) ≡ x3 + x2 + x E

4 × 11 x2.(x3 + x + 1) ≡ x3 + x A

4 × 12 x2.(x3 + x2) ≡ x2 + 1 5

4 × 13 x2.(x3 + x2 + 1) ≡ 2x2 + 2x + 1 1

4 × 14 x2.(x3 + x2 + x) ≡ x3 + x2 + 1 D

4 × 15 x2.(x3 + x2 + x + 1) ≡ x3 + 1 9

InvMixColumn is computed using the same operation while changing the MDS matrix to

[
9 2
2 9

]. Due to multiplying a state matrix element with both 9 and 2, InvMixColumn

layer is slower than MixColumn layer. The output state matrix elements from the

InvMixColumn layer are given in Eq. 2.12-2.15.

𝑆′0,0 = (9 × 𝑆0,0) ⊕ (2 × 𝑆1,0) (2.12)

𝑆′1,0 = (2 × 𝑆0,0) ⊕ (9 × 𝑆1,0) (2.13)

𝑆′0,1 = (9 × 𝑆0,1) ⊕ (2 × 𝑆1,1) (2.14)

 17

𝑆′1,1 = (2 × 𝑆0,1) ⊕ (9 × 𝑆1,1) (2.15)

2.3. Implementations of Block Ciphers

There are different implementation techniques in the literature for implementing each

layer of block ciphers. SPN and Feistel network ciphers are implemented frequently for

performance and security purposes. As an example, ARX ciphers are easy to implement

both in hardware and software due to using logical operations [27].

Hardware implementations of block ciphers appeared to be mostly faster than software

implementations in the literature due to the availability of multiprocessing in hardware

[28]. Processors of the computer or Microcontroller Units (MCUs) are generally used to

implement algorithms on bare-metal due to the unnecessity of a complex structure in

mathematical operations. In software, high throughput can be achieved using Assembly

language because of using fewer instructions in each layer.

Encryption time in terms of clock cycles and utilized area in terms of memory usage are

some of the important parameters when the implementation performance of a block cipher

is measured [29]. Since the operations depend on the target platform’s capabilities, the

implementation efficiency depends on the algorithm’s structure being whether hardware-

oriented or software-oriented.

Some block ciphers such as AES are adjustable for the area (Lightweight Cryptography,

IoT, security-critical applications, etc.) that the algorithm will be used in relation to the

structure of the algorithm [30]. As the key size increases, encryption time increases,

which leads to a more secure system for brute-force attacks [31]. For high-performance

applications, AES-128 or a similar block cipher having less rounds is preferred.

2.3.1. Performance vs. Security

The critical points in the design of a cryptosystem are the implementation performance

and security. The security consists of the algorithms' resistance to cryptanalysis

 18

techniques such as SCA, linear, differential, or algebraic cryptanalysis. Even though the

algebraic cryptanalysis is a big threat to symmetric-key block ciphers, AES is still

algebraically secure [32]. It is difficult to design a secure and fast algorithm, yet it is

possible to rearrange the key size of AES to adjust the algorithm for different applications

that require various security demands. The time it takes to process every layer of AES in

software can be seen in Figure 2.4.

Figure 2.4 - Processing Time Percentage of Every Layer in AES [33]

According to the Institute for Defense Analyses Science and Technology Division,

security metrics of a cryptographic algorithm are Type, Functions, Key Size, Rounds,

Complexity, Attacks, and Strength [34]. There is another significant parameter called the

Avalanche Effect. It refers to a small change in the input, affecting greater change in the

output. In the design of block ciphers, Avalanche Effect is highly desired.

SCA is a cryptanalysis method where the information can be gathered via the board of

the hardware implementations of cryptographic algorithms. Implementation

characteristics are used to expose the details of the encryption [35]. There are many SCA

techniques such as Timing Attacks, Power Analysis attacks, Electromagnetic Analysis

attacks, Fault Induction Attacks, optical SCA, traffic analysis attacks, etc. Timing attacks

are applied by sending random data and collecting the period of running time for different

 19

inputs to obtain cryptographic parameters [36]. Power analysis consists of the analysis of

the power that is consumed during the transitions between 1's and 0's. The transition from

0 to 1 consumes more power compared to the transition from 1 to 0 [37]. The

electromagnetic attack is collecting meaningful data that leaks from the board which

occurs by the changes in the electric current magnitude [38]. Electromagnetic coverings

are used to weaken this type of SCA.

From the researches of Quantum Computers’, it is a known fact that the processing speed

will increase with the increasing qubit size [39]. It is assumed that many encryption

algorithms will become vulnerable since the quantum computers are capable of

decreasing the number of steps to N/2 where N is the key length. The security level of the

algorithm also depends on key length, which should be at least 80-bits according to

today's processors' frequencies [15]. With the help of Quantum processors, symmetric-

key encryption algorithms might be vulnerable against Brute Force Attacks including

AES-128 due to the key length halving to 64 bits [40]. However, AES-192/256 might still

be strong enough to resist quantum computers for more years [40]. The emergence of

Quantum Computers leads mathematicians to search for a more secure algorithm or to

hide the details of already existing algorithms. Quantum Grover Attack was applied on

S-AES and a new method is proposed to recover the private key when the Grover attack

is applied [41].

On the other hand, there are many areas where high-performance algorithms are needed

such as bus tickets, health-care devices, or school ID cards. Lightweight Cryptography

finds applications in such areas, with emphasis on wireless communication or IoT

applications. In these kinds of applications, encryption is still an ultimate priority where

performance is also a must.

Mathematical operations are used in all of the layers of AES. In a survey on symmetric

ciphers, multiplication takes 2881 clock cycles where arithmetic operations take clock

cycles between 100-200 [42]. Therefore, there are steps to be taken to speed up

multiplication during encryption.

 20

2.4. Related Works

S-AES algorithm was first introduced and mathematically examined [24], though it was

not implemented and performance or security analyses were not performed. The idea of

implementing MixColumns as LUT was first proposed in [43] though the throughput was

not enhanced compared to an MDS matrix implementation. In this thesis, the shift and

add algorithm with respect to Basic and Fast LUT techniques implemented on any binary

Finite Field are compared. Since the LUT is computed once, it is efficient to call the

function many times. In software implementations, this approach is simple and easily

implementable but may waste memory.

In [44], another approach to compute MixColumns layer in AES was presented and

implemented in hardware. As a result of comparison with AES that implements

MixColumns layer using MDS matrix, the proposed method is shown to have less number

of gates.

In the research of [7], the performance of a Wireless Sensor Network (WSN) is improved

while the memory usage is reduced using S-AES. The algorithm was implemented in a

Field Programmable Gate Array (FPGA) and this implementation showed that S-AES

can be used in a variety of areas to improve the performance of cryptosystems. The results

proved that the throughput of S-AES is close to Hummingbird but less than AES, while

the occupied memory was much lower than both AES and Hummingbird.

In [45], the researchers applied a cryptanalysis technique to break the key used in S-AES

based on Known Plaintext Attack. Genetic Algorithms are used for cryptanalysis on S-

AES for the first time. Consequently, this thesis provided reduced search space mostly

for known plaintexts.

Another application that S-AES is used is on IP address management in [46]. This

implementation provides different IP addresses generated by S-AES to users trying to

access the network. This research revealed that S-AES is an option to provide security in

 21

different domains including computer networks, cyber-physical systems, etc. and can be

used to ensure confidentiality.

In [47], a modified version of AES is used for encrypting the health parameters of patients

to keep privacy. The implementation also provides low power consumption which is

important for IoT applications. This research showed that mathematical or

implementational modifications on AES are applicable, although the result may not

always be promising.

In [48], AES was again modified to improve processing speed and minimize the memory

usage in embedded system applications. The proposed algorithm is called "LMEP-S-

AES" and functions similar to AES. The application area of this research is quite similar

to ours which is an implementation of a block cipher in an embedded processor, although

the implementation process, used algorithm and the target MCUs are different. The round

key remains the same for all rounds in LMEP-S-AES, although it differs in every round

for S-AES.

Finally, even though the researches on modifying AES may be found useful and provide

speed-ups, they are not standardized and cannot be used for security-critical or

performance-critical applications. Because of this reason, a standardized algorithm such

as S-AES should be used for encryption in IoT applications or domains where Ultra-

Lightweight Cryptography is utilized.

 22

3. EXPERIMENTAL WORK

3.1. Software Implementation of S-AES

S-AES was implemented in C programming language, using Dev-C as Integrated

Development Environment (IDE), where the high-level programming language codes

were compiled using GNU Compiler Collection (GCC) version 4.9.2. ShiftRows and

SubNibbles are the easiest layers of all two versions due to their linear algebraic property.

In this implementation, 3 different codes are written that included 3 different

implementations of S-AES MixColumns: LUT, MDS and Switch-Case. Source codes of

S-AES written for software and hardware platforms can be found in [49].

In the MixColumns layer of the encryption, every input is to be multiplied by 4 which

corresponds to x3 in GF(24). Therefore, the multiplication could be expressed using Eq.

3.1.

𝑆𝑜𝑢𝑡 = ((𝑆𝑖𝑛. 𝑥). 𝑥). 𝑥 (3.1)

While the “multiplication by 4” operation is calculated bitwise, the output of the

multiplication by 4 operation results as shown in Eq. 3.2-3.5.

𝑜𝑢𝑡3 = 𝑖𝑛1 (3.2)

𝑜𝑢𝑡2 = 𝑖𝑛0 ⊕ 𝑖𝑛3 (3.3)

𝑜𝑢𝑡1 = 𝑖𝑛2 ⊕ 𝑖𝑛3 (3.4)

𝑜𝑢𝑡0 = 𝑖𝑛2 (3.5)

Since we are working with nibbles in Finite Field, multiplication in the implementation

will be equal to shifting and XORing operations. Because of having the polynomial P(x)

= x4 + x + 1, every number in GF(24) that are higher than x4 will be replaced by x + 1 as

 23

explained in Section 2.2.2. Since x + 1 in the binary field corresponds to 3, there will be

an additional XOR operation to encounter the overflow that can happen due to x4.

Therefore, multiplication with 4 is computed by left shifting the input 3 times if the MSB

of the input is 0. When the MSB is equal to 1, the input is left-shifted and XORed with

hexadecimal 3 for 3 turns.

After computing the hexadecimal values of Finite Field elements, the multiplication of

every element of GF(24) with 4 has to be calculated for LUT implementation. Then the

results of these calculations are written down in a LUT and called for every different input

state. Moreover, this pre-calculation does not create a vulnerability in the implementation

since the diffusion is provided by XORing the states as told in Eq. 2.8-2.11.

The third and last implementation, Switch-Case, was still based on the pre-calculation of

these Finite Field elements with 4. This time the algorithm does not search for the value

inside the LUT. Instead, it outputs the chosen "case". This fast selection mechanism is

practical for small block-sized cryptosystems. Although, it might cover too much memory

when used in long plaintexts.

LUT, MDS, and Switch-Case implementations of this diffusion layer are shown in Figure

3.1. In order to verify the correctness of the encryption, we entered 2 test vectors as input

from [7, 45, 50], as given in Table 3.1 and the results are verified.

Table 3.1 - Test Vectors in Hex

Plaintext Key Ciphertext

6F6B A73B 0738

616E A73B 5547

6279 A73B C36A

 24

Figure 3.1 - Pseudo Codes of the Implementations of GF (24) Multiplications

3.2. Embedded Software Implementation of S-AES

The S-AES code implemented in software is the same as in embedded software except

the execution time measurement part. The MCU that is used to implement this algorithm

is STM32F4-DISCOVERY which is a high-performance board that included an ARM

Cortex-M4 32-bit core. This controller works with the maximum frequency of 168

MegaHertz (MHz), and it included 1 Megabyte (MB) of Flash memory and 128 Kilobytes

(KB) of Random-Access Memory (RAM) which were enough to fit the memory

expectations of S-AES. Since Cortex-M4 has a pipelined structure, it fetches, decodes,

and executes the disassembled instructions in a short period.

In order to implement an algorithm on an embedded processor, the critical point is to run

the correct timer for the purpose. Data Watchpoint and Trace Unit (DWT) of STM32F4-

DISCOVERY board is used in our application to count the cycles that pass-through S-

AES encryption process. Clock Cycle Counter (CYCCNT) register of DWT counts until

the end of the operation which is connected to the 168 MHz system clock. The pseudo

code of the algorithm to measure the execution time is given in Figure 3.2.

 25

Figure 3.2 - Pseudo Codes of Measurement of the Execution Time in STM32

In cryptosystems, throughput is considered as the rate of data that is successfully

encrypted over unit time. In other words, it is the size of the plaintext over execution time

which is shown in Eq. 3.6 [51]. To calculate the execution time of the encryption process,

the cycles that pass between starting and ending times are measured as shown in Eq. 3.7,

while setting a breakpoint after measuring the ending time.

Throughput =
Block Length

Execution Time
 (3.6)

Execution Time =
Total Clock Cycles

CPU Clock Frequency
 (3.7)

In this implementation, the total clock cycle of the key scheduling is counted as 1785

whereas the encryption took 1172 clock cycles in an ARM Cortex-M4 processor. Since

the block length is 16 bits, the execution time and throughput of S-AES encryption can

be found using the following calculations.

• Execution Time =
1172 clock cycles

168 MHz
= 6.97 μs

• Throughput =
16 𝑏𝑖𝑡𝑠

6.97 μs
= 2.29 Mbps

The encryption times in terms of clock cycles of three implementation techniques in

MixColumns layer are given below.

• MDS: 394 clock cycles

• LUT: 409 clock cycles

• Switch-Case: 240 clock cycles

 26

From these results, the processing time of MixColumns layer over whole encryption is

240/1172 in Switch-Case method and 394/1279 in MDS method. In percentage, it is

20.47% and 12.86% when Switch-Case and MDS matrix are used respectively.

Therefore, it can be said that the performance of MixColumns is improved using the

proposed method.

Memory utilization of the encryption algorithm is also an important factor alongside the

clock cycles. Total memory and utilized memory can be viewed using the Build Analyzer

tool of Atollic TrueStudio. When all of the files in the project are included, the program

takes up 2.19 KB out of 1 MB in Flash memory and 1.09 KB in RAM. In total, 3.28 KB

of memory is used in this application which can be seen in Figure 3.3.

Figure 3.3 - Memory Utilization of S-AES Encryption

Change in memory usage is not significant between MixColumns implementation

techniques, although the fastest method is found as the most memory consuming method

in terms of Flash Memory where RAM utilization stays unchanged as 1.09 KB. The

program includes startup and configuration files, which also consume half of the Flash

memory and 94% of RAM. The total memory utilizations of encryption in each method

after other files are excluded from the project is given below.

• S-AES encryption (using Switch-Case): 1.17 KB

• S-AES encryption (using LUT): 1.1 KB

• S-AES encryption (using MDS): 1.05 KB

Since the algorithm searches the output in LUT, the performance of this method is slower

than using the MDS matrix. The compiled and built codes are stored in the Flash memory

 27

and RAM, not the Cache Memory. Even though using LUT takes lower clock cycles than

multiplication as stated in the literature [43], the results are observed to be just the

opposite. This is due to the Central Processing Unit (CPU) memory search where the

desired output is stored in the LUT method. On the other hand, only logical operations

are computed using the Arithmetic Logic Unit (ALU) while implementing this layer with

an MDS matrix. The Switch-Case method resulted to be the fastest compared to both LUT

and the MDS methods which are used in the literature.

To examine the time consumption of every method, it is easier to compare the clock

cycles of instruction sets using Assembly language codes. Compiler, Assembler, and

Linker are used in the routine of software development in a high-level programming

language, whereas only Assembler and Linker are utilized in an Assembly code [52]. The

software codes of each method that were written in C programming language were

converted to Assembly codes after compilation. Consequently, an object file was created

in the same folder as the project workspace.

While working on Dev-C/C++ IDE, "IDA Freeware" tool is used to disassemble the C

codes into Assembly codes since it was a free and easy tool. Although, the free tool does

not support object files compiled for ARM and needs an "ELF" dynamic library for ARM.

To disassemble the embedded software codes, GNU ARM Embedded Toolchain was

utilized which is a Pre-built GNU toolchain for ARM Cortex-M processors. With the help

of "arm-none-eabi-objdump" command, the object file was disassembled into Assembly

instructions. This command was applied to all of the three MixColumn implementation

methods and the total clock cycles that each instruction takes are compared with each

other[53]. The total number of instructions that are contained in the encryption process

are found as follows.

• S-AES Encryption (using MDS): 76 instructions

• S-AES Encryption (using LUT): 80 instructions

• S-AES Encryption (using Switch-Case): 146 instructions

 28

Although there are 146 instructions in Switch-Case method, a few instructions are

computed while calling the output from cases. Instruction cycles to compute one nibble

in MixColumns are presented in Table 3.2.

As it can also be seen from the Assembly code, the procedure of a LUT is to copy a block

of memory by store and load operations which takes 1 + N clock cycles each. The letter

"N" in LUT represents the number of registers to be loaded or stored. For instance, in

"ldmia" instruction, N is equal to 5 due to using r0, r1, r2, and r3 registers for loading and

r5 register for storing. Consequently, the clock cycles to compute "ldmia" and "stmia"

becomes 6 each. Since the execution time of one nibble becomes 12 clock cycles, the

reason for low-speed encryption in LUT method was proved.

On the other hand, the procedure of MDS was divided into 2 depending on the entering

Most Significant Bit (MSB) of the nibble. The corresponding nibble is branched, loaded

into a register, and shifted towards left three times. Additionally, logical AND operation

and logical XOR operation are computed if the corresponding bit is equal to one. Finally,

in Switch-Case method, it only takes 3 or 4 clock cycles to read the nibble that was written

inside the "case" because of only writing, storing, and branching operations.

Table 3.2 - Disassembled ARM Instructions of MixColumns Implementation Methods

Method ARM Instruction Description Clock Cycles

MDS1

b.n 36<multiplyBy4+0x36> Branch 1

ldr r3, [r7, #4] Load Word 1 or 2

lsrs r3, r3, #3
Logical Shift

Right
1

MDS2

bne.n

2a<multiplyBy4+0x2a>

Branch Not

Equal
1

ldr r3, [r7, #4] Load Word 1 or 2

lsls r3, r3, #1
Logical Shift

Left
1

 29

and.w r3, r3, #15 Logical AND 1

eor.w r3, r3, #3
Logical

Exclusive OR
1

LUT

ldmia r5!,[r0, r1, r2, r3]
Load Multiple,

Increment After
1+N

stmia r4!,[r0, r1, r2, r3]
Store Multiple,

Increment After
1+N

Switch-Case

movs r3, #0 Move (Segment) 1

str r3, [r7, #4] Store Word 1 or 2

b.n b4<multSwitch+0xb4> Branch 1

Theoretically, the execution time of InvMixColumns in the decryption phase will take

much time due to the multiplication of every element in GF(24) with 2 and 9 instead of

just 4. All of the other steps in decryption will approximately have similar encryption

times compared to encryption because of performing the inverse of the same operations.

Single execution times of the multiplication in MixColumns layer in terms of clock cycles

can be stated as given below:

• MDS: 4 or 6 (depending on the state matrix)

• LUT: 10

• Switch-Case: 4

3.3. RISC-V and ARM Implementations of S-AES on QEMU

The purpose of this experiment is to compare two architectures and verify whether ARM

is the best possible option to implement S-AES on or not. Most of the newly designed

block ciphers are verified on RISC-V and ARM cores. As RISC-V is another architecture

used for high-performance computing applications, it was a requirement to at least

demonstrate our cryptosystem on this core.

 30

 S-AES is implemented on QEMU which is a simulator running on a Linux distribution

(Ubuntu 18.04) for both RISC-V and ARM architectures. The simulated RISC-V board

is selected as “RV64”. The execution time of RISC-V implementation is measured as

0.004998 seconds, whereas it took 0.003995 seconds to execute the algorithm on ARM

architecture. Even though the execution time difference shows the high-performance

implementation of ARM compared to RISC-V in this experiment, it does not indicate the

encryption time since it includes more instructions during the fetch and execute steps of

the processor. Commands while compiling, running, and disassembling on both platforms

are mentioned in Appendix 1.

Consequently, it was shown that the implementation of S-AES on ARM took less time

due to having a less complex ISA (Instruction Set Architecture) and including more

compatible instructions for encryption operations which lead to the feasibility of block

ciphers on ARM architectures.

In this experiment, we used the object files created by the C implementation of S-AES as

introduced in Section 3.1 to compare the execution times between ARM and RISC-V

architectures. Eventually, it is found out that ARM is, yet the best architecture that S-AES

can be implemented on due to its fast instructions as explained in Section 3.2.

3.4. FPGA Implementation of S-AES

Since many of the block ciphers are implemented on hardware to provide high throughput

compared to software implementations, the implementations are put in FPGA

Benchmarking competitions arranged by NIST.

It was also important to demonstrate the high performance and low-area implementation

of S-AES in FPGA to obtain alternatives to other ultra-lightweight block ciphers. To do

so, the algorithm was implemented in VHSIC Hardware Description Language (VHDL),

and all of the modules are behaviorally tested in simulation with test benches. The VHDL

implementation was performed in Quartus II and Xilinx Vivado 2021.1 tools to ensure

 31

validity. Compact and fast VHDL implementation of S-AES can be found in [49] with

their corresponding test benches.

The synthesized code was embedded to Altera Cyclone IV FPGA that appears to be on

EP4CE6E22C8 demo board to capture the area of the implementation on hardware.

According to its datasheet, the device has 6,272 logic elements, 144 pins, and a speed

grade of 8 out of 9. This IC is categorized under Enhanced Thin Quad Flat Pack and

operates up to 85° C maximum temperature. Moreover, compact S-AES design was also

verified using Xilinx BASYS-3 demo board.

From the results of the S-AES VHDL implementation as shown in Figure 3.4 and Figure

3.5, it can be stated that all of the logic elements are implemented using combinational

circuits. Additionally, there are no memory elements used in the core algorithm since S-

AES only relies on mathematical operations. Because of having 16-bit key, plaintext, and

ciphertext; the module uses only 50 pins on the device which is a compact and feasible

solution for FPGAs with fewer pins such as Cyclone-IV and Artix-7. It is also

advantageous that there will be no need for a register file or RAM to read the inputs and

write the outputs, where the inputs and outputs can directly be assigned to pins for FPGA

benchmarkings. Moreover, most of the lightweight cryptography algorithms are not

compatible with this board even though they have fast and low-area structure.

 32

Figure 3.4 - Synthesis Results of S-AES in Quartus II

Figure 3.5 - Synthesis Results of S-AES in Vivado

The top module is simulated using ModelSim-Altera tool for Cyclone-IV and ISim tool

for BASYS-3. Simulation results of S-AES VHDL implementation in Vivado are shown

in Figure 3.6. Test vectors used in software implementations are also verified on this

platform. The encryption process starts at the rising edge of the second clock period since

the plaintext and key enter the encryption at this point. As a result of the simulation, the

encryption process took only 1 clock cycle on hardware.

 33

Figure 3.6 - Simulation Results of S-AES in Vivado

During the calculation of throughput, the same method in software implementations is

utilized as given in Eq. 4.5 and 4.6, where FPGA clock frequency is used instead of CPU

clock frequency. To measure the throughput of the encryption, it is essential to perform

Static Timing Analysis on the target FPGA which is an important step of FPGA

Benchmarking [54]. To do so, the top-level encryption block is connected to two 16-bit

registers from the input and output that are designed using a total of 32 Flip-Flops (FF).

Addition of FF’s do not cause an effective decrease in throughput since FF’s are only

capable of creating hold times and the delay is caused by the setup time of the

combinational circuit [55]. The Schematic of the core algorithm and register-driven

circuit are given in Figure 3.7 and Figure 3.8.

 34

Figure 3.7 - Schematic of the IP Core of S-AES Encryption Algorithm

Figure 3.8 - Schematic of S-AES Encryption with 2x 16-bit Registers

After decreasing the pre-defined clock period to 4 ns, the WNS value decreases to 0.025

when the period is 4 ns, as it can be seen from Figure 3.9. From the results of the timing

analysis, the execution time of the S-AES encryption is found as 2.85 ns. Accordingly,

the working clock frequency of the FGPA in Xilinx BASYS-3 is found as 329 MHz,

where the throughput becomes 5.61 Gigabits per second (Gbps) as calculated in the

equation below.

 35

Throughput =
Block Length

Execution Time
=

16 𝑏𝑖𝑡𝑠

2.85 𝑛𝑠
= 5.61 𝐺𝑏/𝑠

Figure 3.9 - Results of Static Timing Analysis

3.5. Security Analysis

S-AES key size and number of rounds are pretty small for performance, but the algorithm

complexity is high enough in the manner of diffusion and confusion. Differential and

Linear cryptanalysis of the S-AES cipher was introduced in [24], stating that the

algorithm cannot be broken by an algebraic attack. Avalanche Effect is measured to

analyze the security of the cipher, while the security of the key and encryption operations

are measured in SCA.

3.5.1. Avalanche Effect

An important parameter while measuring the security of a block cipher is the Avalanche

Effect. The same test vector in Table 3.1 is used to measure the Avalanche Effect as

shown in Table 3.4. Firstly, 1 bit of the plaintext is flipped, and it is observed that 6 bits

of the text are changed. Then 1 bit of the key is flipped, and it is observed that 10 bits of

the text are changed. The average rate of change in ciphertext compared to plaintext is 8

bits out of 16 bits. Therefore, the Avalanche Effect of S-AES is equal to 50%. Avalanche

Effects of some block ciphers are shown in Figure 3.10. According to this graph, AES is

the most desired block cipher for Avalanche Effect while S-AES has an average value

and ended up with a promising result despite its low text-key sizes.

 36

Table 3.4 - Results of Avalanche Effect

Process Plaintext Key Ciphertext

Test Vector 6F6B A73B 0738

Changing

Plaintext
6E7B A73B 9737

Changing Key 6F6B A72B D284

Figure 3.10 - Avalanche Effect of Some Lightweight Block Ciphers [13, 56]

3.5.2. Side-Channel Analysis

It is a fact that SCA has a big role in embedded system implementations of algorithms

including FPGAs and MCUs. Since the main concentration of this thesis is ARM Cortex-

M4, it is necessary to examine the strength of this implementation against at least the

most common and basic SCA such as Timing Attack and Simple Power Analysis.

 37

3.5.2.1. Timing Attack

From the fact that the encryption process should not be data-dependent, it is important to

analyze the encryption times of the three implementations with altering plaintexts [57].

The results of obtained ciphertexts, clock cycles of the encryption process, and clock

cycles of the MixColumns layer are given in Table 3.5 based on the implementation

method.

Table 3.5 - Results of Timing Attack

Method Plaintext Key Ciphertext
Clock Cycles of

MixColumns

Clock Cycles of

Encryption

MDS

1624 A73B 9F44 393 1281

6028 A73B 221B 396 1284

2F94 A73B 1278 393 1281

LUT

1624 A73B 9F44 409 1327

6028 A73B 221B 409 1327

2F94 A73B 1278 409 1327

Switch -

case

1624 A73B 9F44 229 1121

6028 A73B 221B 232 1124

2F94 A73B 1278 234 1126

Each mathematical operation takes a different time to compute, which leads MDS method

to return in different encryption times. From the controlled experiment in Timing Attack,

it is found out that it takes 393 and 396 clock cycles to compute the MixColumns layer

when the key is fixed to "A73B". The reason for this output is due to the extra "AND"

and "XOR" operations when the MSB of the entering nibble is equal to 1 as shown in

Figure 3.1. When the plaintext is 1624, the value of the state matrix is 3744 before

entering the MixColumns layer. It takes 393 clock cycles to compute this plaintext since

neither of the MSB of nibbles in 3744 is equal to one. On the other hand, the state matrix

is equal to CB45 before computing the MixColumns layer when the plaintext is 6028.

Since the MSB of "0x0C" and "0x0B" are equal to one, it takes 3 more clock cycles to

 38

encrypt this plaintext. Since the operation in the encryption process should not alter the

encryption time or current flowing through the processor to counter SCA [57], MDS

matrix method can be vulnerable against Timing Attacks.

As explained in Section 2.3.1, LUT method is robust against timing attacks [8] because

it gives output in the same periods instead of computing the input. As it can be seen from

Table 3.5, the encryption process took 1327 clock cycles independent from the plaintext.

This is due to loading or storing the data in identical time slots independent from the input

as explained in Table 3.2. Therefore, it can be clearly said that LUT method

implementation is invulnerable against Timing Attacks.

Execution times in Switch-Case for different inputs resulted in similar execution times.

Since no mathematical operation occurs in this method, it can be stated that the execution

time depends on reading and branching as explained in Section 3.2. From the results of

Table 3.5, multiplication using MDS matrix might be vulnerable against SCA, whereas

Switch-Case and LUT methods provided a secure implementation in terms of Timing

Attack since the execution time does not depend on the input or operation.

3.5.2.2. Simple Power Analysis

In order to perform Simple Power Analysis, datasheet of STM32F4-DISCOVERY board

was searched to measure the power consumption of the MCU from the correct unit. While

examining the power consumption of an embedded processor, the current that passes

through the supply voltage of the processor was measured since the critical data such as

key can be recovered from this pin. Accordingly, measuring the power using the current

probe of a highly sensitive digital oscilloscope was the best method to obtain a noise-free

signal. During this process, Tektronix TCP0030 current probe is used with DPO7254

Digital Phosphor Oscilloscope.

From the datasheet of the MCU, Vcap1 and Vcap2 were found as the nodes that connect two

grounding capacitors, known as C33 and C36 respectively, to the processor in

STM32F407-DISCOVERY board. In order to prevent the noise, the current measurement

 39

was obtained from the ground leg of the corresponding capacitor. Generally, the regulator

that feeds the processor is shut down and the processor is fed externally with a power

supply to decrease the noise in this type of SCA. Although, the bypass regulator that

reduces the core voltage in STM32F4-DISCOVERY board is embedded inside the core.

Because of this reason, the current measurement was obtained from the ground leg of C33

using the current probe. Block diagram representation of the Power Analysis

experimental setup is given in Figure 3.11.

Figure 3.11 - Block Diagram of the Power Analysis Experimental Setup

Waveforms of the power consumption of the core during the execution of S-AES were

shown in Figure 3.12 and Figure 3.13. The x-axis shows time domain, where y-axis shows

the drain current of ARM Cortex-M4. Since the execution time of S-AES is found as 6.97

μs in Section 3.2, whole process is included in the waveforms as the total passing time is

10 μs in Figure 3.12 and 20 μs in Figure 3.13.

 40

Figure 3.12 - Power Consumption of the Core for 1 us/div

Figure 3.13 - Power Consumption of the Core for 2 us/div

The horizontal orange line in the waveforms shows the average current value. As

introduced in Section 2.3.1, the drain current that feeds the core increases when a logic

operation occurs on ALU, which means that the MCU core consumes more power when

there is a state change. It can be inferred that a total of 5 increasing points shown on

 41

Figure 3.12 is due to occurrence of a bit flip from 0 to 1, since it consumes more power

than the transition from 1 to 0 [37].

Differential Power Analysis (DPA) and Correlation Power Analysis (CPA) are more

methodologic techniques for power consumption in SCA for revealing the key, whereas

SPA can be useful for finding out the operation performed in the core [58]. Since the

layers of block ciphers having SPN structures consist of substitution and permutation

operations, it is possible to determine the performed layer by the voltage or current level.

As introduced in Section 2.2.2, S-AES performs 4 layers in 2 rounds, where MixColumns

is performed only once. Due to performing the highest computation in MixColumns layer

as shown in Figure 2.4, it can be inferred that the current fluctuates on the average current

value for more than 1.5 μs after the 4th peak of the waveform. Since most of the nibbles

are substituted before XORing in Switch-Case implementation of MixColumns, this

fluctuation and peak after that can be estimated as the MixColumns layer of S-AES as

shown in Figure 3.14.

Figure 3.14 – Analysis of the Power Consumption Waveform

Eventually, no critical data such as a block of the state matrix or a part of the key was

gathered using SPA, while it was shown that the processed layer can be approximated if

 42

the structure of the block cipher is well-known. Even though the acquired information

can be useless for the attacker, it is required to create confusion in every operation to

prevent the encryption system safe against SCA.

 43

4. RESULTS AND DISCUSSION

4.1. Results

In this thesis, S-AES implementation performance has been improved using the proposed

Switch-Case method regarding the standard MDS matrix implementation. Three methods

for implementing the MixColumns layer of S-AES were applied on an STM32F4-

DISCOVERY and compared with each other. With the proposed Switch-Case method, a

faster implementation was obtained because of executing simpler instructions with a little

trade-off from memory. On the other hand, implementing MixColumns layer using MDS

matrix was shown as a slower but memory-saving method in ARM architecture. Finally,

LUT was presented as the slowest but the simplest one to implement with an average

memory consumption. The structure of the block cipher was analyzed, and as a

contribution, the proposed Switch-Case method was shown as the best option due to its

simple and fast structure which resulted in a throughput of 2.29 Megabits per Second

(Mbps) on ARM Cortex-M4.

The memory analyses on the MCU and FPGA boards showed that S-AES encryption

process does not waste too much memory neither in software nor hardware. While

validating the area utilization of S-AES on hardware, Altera Cyclone-IV and Xilinx

BASYS-3 boards were used. 48 LUTs in Cyclone-IV and 30 LUTS in BASYS-3 are

utilized which are highly considered as low-area implementations. Regarding to the static

timing analysis, the implemented Register-Transfer Level (RTL) works on 329 MHz in

BASYS-3, which lead to a throughput of 5.61 Gbps. Lowest-area and highest-throughput

implementation of S-AES on FPGA was performed in this study.

While investigating the security of the implementation, the Avalanche effect of the cipher

was examined and an average of 50 percent change in the plaintext occurred in the

demonstrations. Timing attack was applied on S-AES implementation methods and the

resulting execution times were compared with each other. Switch-Case and LUT methods

were proven to be invulnerable against the attack, while the output obtained from MDS

method was found out to be dependent to the MSB of the input. Therefore, proposed

 44

Switch-Case method can be used to replace the MDS matrix implementation in AES-like

block ciphers when Side-Channel security is considered as critical. It was also

experienced that MixColumns is the only layer that causes a weakness against Timing

Attack since execution time of the core in other layers stay unchanged.

Another non-invasive SCA was performed in the implementation, which is known as

SPA, where none of the parts of the key, state matrix or ciphertext are recovered.

Although, the time intervals where specific operations are performed are revealed by

knowing the structure of the block cipher. Using this method, power consumption during

the MixColumns layer that was implemented using Switch-Case method was

approximated on the waveform.

4.2. Discussion

4.2.1. Discussion on Embedded Software Implementations

Implementation in software showed that this algorithm can be used in some embedded

system applications. The target areas are ultra-lightweight cryptography and IoT

applications, where cryptographic algorithms or protocols are implemented and used

mostly in real-time environments [59]. Its standards are introduced in ISO/IEC 29192

which is the standard for Information Technology/ Security Techniques. According to

this document, there are block ciphers that are suitable for only hardware and only

software such as SEA, IDEA, TEA, and AES. Properties of some block ciphers

implemented in ARM Cortex-M4 that are compared with S-AES are presented in Table

4.1.

Table 4.1- Implementation Results of Lightweight Block Ciphers on ARM Cortex-M4

Algorithm Block Size Key Size
Clock

Cycles

Memory

(KB)

AES [60] 128 128 943 4.39

3DES [61] 64 56 5620 -

Blowfish [62] 64 32–448 440 4

 45

PRESENT [63] 64 80 1618 4.5

CLEFIA [51] 128 128 3349 1.3

TWINE [51] 64 80 2463 1.3

HUMMINGBIRD-2 [64] 16 128 332 2.3

S-AES 16 16 1172 1.17

PRESENT is a state-of-art ultra-lightweight block cipher and is fast in hardware. There

is another ultra-lightweight block cipher called HUMMINGBIRD which has 4.7 times

faster throughput than PRESENT. Furthermore, this Ultra-Lightweight Cipher is resistant

to linear and differential cryptanalyses [25]. Another Lightweight block cipher called

KLEIN is especially for the usage of resource-constrained devices [65], whereas TWINE

algorithm introduces simple embedded software implementation with its Feistel structure

[66]. S-AES was shown as the lowest area consumption encryption algorithm out of all

Lightweight Cryptography algorithms implemented in this work. The common point of

these algorithms is that they yield slow throughput when implemented in software.

Switch-Case implementation of MixColumns is also shown as applicable to AES, but this

causes slightly more of a memory waste due to high length block size and three times

more multiplications in GF(24). On the other hand, there is only one Finite Field

multiplication in the encryption phase and there are two multiplications in the decryption

phase that are based on shifting and XORing operations when the implementation

perspective is considered.

Finally, it can be inferred that S-AES is a great option for low-power microcontroller

applications such as IoT or Ultra-Lightweight Cryptography where moderate security is

required. On the other hand, for security-critical applications, this algorithm might not be

a good option due to its small key size. In this process, it is found out that fast

implementation or algebraic design of a block cipher does not only require performance

improvement but also requires secure, feasible, and accessible implementation.

 46

4.2.1. Discussion on Hardware Implementations

Implementations of some lightweight block ciphers in Altera Cyclone-IV and Xilinx

BASYS-3 FPGAs are given in Table 4.2. The source codes of the verified block cipher

IP cores are taken from Open Cores [67], except S-AES, which is performed during the

experimental work of this thesis study. From the table, it can be stated that AES, DES

and Noekeon are fast and low-area implementations, whereas AES appeared to waste too

much memory on Cyclone-IV. On the other hand, S-AES is exceptionally fast and

memory efficient compared to other lightweight block ciphers.

Table 4.2 – Implementation Results of Lightweight Block Ciphers on FPGAs

Block Cipher Structure Performance

Utilized Area on Devices

Altera Cyclone-

IV

(EP4CE6E22C8)

Xilinx

BASYS-3

(XC7A35T)

Block Cipher

Block

Size

(bits)

Key Size

(bits)

Clock

Cycles

Area

(LUT)

Area

(FF)

Area

(LUT)

Area

(FF)

AES [68] 128 128 10 4773 264 1069 264

Camellia [69] 128 128 26 4486 6994 7437 8223

DES [70] 64 56 18 740 142 367 142

Noekeon [71] 128 128 15 980 264 760 264

PRESENT

[72]
64 80 33 224 152 180 152

TEA [73] 64 128 65 301 231 200 231

XTEA [74] 64 128 268 389 162 319 162

S-AES 16 16 1 48 0 24 0

Since the working frequency of the FPGA depends on the designed RTL, it is not possible

to obtain the working frequency of the algorithm unless the static timing analysis is

 47

applied. Therefore, comparing the total clock cycles and number of LUTs are better scales

for hardware benchmarking since the delay on the circuit depends on the combinational

circuits, and not registers [75]. Another variable to scale the efficiency of the hardware

implementation, Throughput/Area is not presented on the table due to its incorrectness

while the memory elements are considered in some of the block cipher implementations.

 48

5. CONCLUSION

In this thesis, S-AES was mathematically analyzed and implemented in software and

hardware, while the resistance against side-channel attacks was examined. Switch-Case

method was proposed to implement MixColumns layer, while comparing the encryption

times with LUT and MDS methods. Accordingly, it was shown that the MixColumns

layer in AES-like algorithms can be accelerated with a small trade-off from memory using

the proposed method. With the QEMU implementation, execution time of S-AES was

shown to be faster on ARM architecture rather than RISC-V. A fast and low area

hardware implementation showed that block ciphers like S-AES can be implemented

without any registers with the lowest possible number of LUTs. Furthermore, proposed

method brought invulnerability of MixColumns layer against Timing Attack. SPA was

applied against the implementation on STM32 board and the time duration of the

MixColumns operation was approximated using the fluctuations and peaks on the power

consumption waveform. The Avalanche Effect of this cipher was found out to be 50 %,

which is a promising result for such a small key size compared to other lightweight block

ciphers.

To sum up, we showed that performance in a block cipher is an important parameter that

needs to be improved while maintaining the implementation security since performance

critical applications are requested as the technology evolves. Based on this thesis, it can

be said that S-AES algorithm can be utilized in IoT applications where ultra-lightweight

cryptography applications are needed for fast and comparably secure encryption.

In addition to this study, DPA or CPA analysis of this implementation can be studied for

security enhancements. Since the MCU we are using is a low-power microcontroller, a

µA scalable probe is needed for precise power measurement from the core which leads to

a more accurate key correlation. Therefore, CPA can be applied on STM32

implementation of S-AES using a µA scalable probe as a future work for security

improvements.

 49

In terms of performance improvements, Switch-Case technique can also be applied to

AES-128/192/256 to provide an efficient and high-throughput software implementations.

An IoT application can be performed as well to verify the software or hardware

encryption performance in IoT devices.

 50

6. REFERENCES

[1] H. Wang, B. Sheng, C. C. Tan and Q. Li, Comparing symmetric-key and public-key

based security schemes in sensor networks: A case study of user access control, 2008

The 28th International Conference on Distributed Computing Systems, IEEE, 2008, pp.

11-18.

[2] E. Biham and A. Shamir, Differential cryptanalysis of the data encryption standard,

Springer Science & Business Media, 2012.

[3] W. Stallings, Cryptography and network security, 4/E, Pearson Education India,

2006.

[4] A. H. Awlla and S. M. Aziz, Secure Device to Device Communication for 5G

Network Based on improved AES, The Scientific Journal of Cihan University–

Sulaimaniya PP, 57 (2021) 67.

[5] W. Yu and S. Köse, A lightweight masked AES implementation for securing IoT

against CPA attacks, IEEE Transactions on Circuits and Systems I: Regular Papers, 64

(2017) 2934-2944.

[6] S. Maitra, D. Richards, A. Abdelgawad and K. Yelamarthi, Performance Evaluation

of IoT Encryption Algorithms: Memory, Timing, and Energy, 2019 IEEE Sensors

Applications Symposium (SAS), 2019, pp. 1-6.

[7] N. Kavana and S. PremanandaB., Implementation of Simplified AES algorithm for

Wireless Sensor Nodes on FPGA, 2013.

[8] J. Bonneau and I. Mironov, Cache-Collision Timing Attacks Against AES, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 201-215.

[9] A. Biryukov, Block Ciphers and Stream Ciphers: The State of the Art, IACR

Cryptol. ePrint Arch., 2004 (2004) 94.

[10] A. Sevin and A. A. O. Mohammed, A survey on software implementation of

lightweight block ciphers for IoT devices, Journal of Ambient Intelligence and

Humanized Computing, (2021) 1-15.

[11] V. Nachef, J. Patarin and E. Volte, Feistel ciphers, Cham: Springer International

Publishing, (2017).

[12] S. S. Ali and D. Mukhopadhyay, Differential fault analysis of Twofish,

International Conference on Information Security and Cryptology, Springer, 2012, pp.

10-28.

[13] P. Patil, P. Narayankar, D. G. Narayan and S. M. Meena, A Comprehensive

Evaluation of Cryptographic Algorithms: DES, 3DES, AES, RSA and Blowfish,

Procedia Computer Science, 78 (2016) 617-624.

[14] B.-T. Liu, L. Li, R.-X. Wu, M.-M. Xie and Q. P. Li, Loong: a family of

involutional lightweight block cipher based on SPN structure, IEEE Access, 7 (2019)

136023-136035.

[15] P. B. Ghewari, J. Patil and A. Chougule, Efficient hardware design and

implementation of AES cryptosystem, International journal of engineering science and

technology, 2 (2010) 213-219.

[16] I. F. Elashry, O. S. Faragallah, A. M. Abbas, S. El-Rabaie and F. E. Abd El-Samie,

A new method for encrypting images with few details using Rijndael and RC6 block

ciphers in the electronic code book mode, Information security journal: A global

perspective, 21 (2012) 193-205.

 51

[17] R. Awangga, Peuyeum: A Geospatial URL Encrypted Web Framework Using

Advance Encryption Standard-Cipher Block Chaining Mode, IOP Conference Series:

Earth and Environmental Science, IOP Publishing, 2018, pp. 012055.

[18] H. M. Heys, Analysis of the statistical cipher feedback mode of block ciphers,

IEEE Transactions on Computers, 52 (2003) 77-92.

[19] J. Jaffe, A first-order DPA attack against AES in counter mode with unknown

initial counter, International Workshop on Cryptographic Hardware and Embedded

Systems, Springer, 2007, pp. 1-13.

[20] B. Schneier and D. Whiting, A Performance Comparison of the Five AES Finalists,

AES Candidate Conference, 2000, pp. 123-135.

[21] J. Daemen and V. Rijmen, The design of Rijndael, Springer, 2002.

[22] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and

practitioners, Springer Science & Business Media, 2009.

[23] E. G. Ahmed, E. Shaaban and M. Hashem, Lightweight mix columns

implementation for AES, Proceedings of the 9th WSEAS international conference on

Applied informatics and communications (AIC'09), 2009, pp. 253-258.

[24] M. A. Musa, E. F. Schaefer and S. Wedig, A Simplified AES Algorithm and its

Linear and Differential Cryptanalyses, Cryptologia, 27 (2003) 148-177.

[25] D. Engels, X. Fan, G. Gong, H. Hu and E. M. Smith, Hummingbird: Ultra-

Lightweight Cryptography for Resource-Constrained Devices, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2010, pp. 3-18.

[26] E. Savaş and Ç. K. Koç, Finite field arithmetic for cryptography, IEEE Circuits and

Systems Magazine, 10 (2010) 40-56.

[27] D. Hong, J.-K. Lee, D.-C. Kim, D. Kwon, K. H. Ryu and D.-G. Lee, LEA: A 128-

Bit Block Cipher for Fast Encryption on Common Processors, Springer International

Publishing, Cham, 2014, pp. 3-27.

[28] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks and L. Wingers, The

SIMON and SPECK lightweight block ciphers, Proceedings of the 52nd Annual Design

Automation Conference, Association for Computing Machinery, San Francisco,

California, 2015, pp. Article 175.

[29] M. Umair, Comparison of Symmetric Block Encryption Algorithms, ResearchGate,

April, (2017).

[30] C. Manifavas, G. Hatzivasilis, K. Fysarakis and Y. Papaefstathiou, A survey of

lightweight stream ciphers for embedded systems, Security and Communication

Networks, 9 (2016) 1226-1246.

[31] J. Thakur and N. Kumar, DES, AES and Blowfish: Symmetric key cryptography

algorithms simulation based performance analysis, International journal of emerging

technology and advanced engineering, 1 (2011) 6-12.

[32] S. Simmons, Algebraic Cryptanalysis of Simplified AES∗, Cryptologia, 33 (2009)

305-314.

[33] A. Kak, AES: The Advanced Encryption Standard lecture notes on Computer and

Network Security, Lecture8, 2017.

[34] M. N. A. Wahid, A. Ali, B. Esparham and M. Marwan, A comparison of

cryptographic algorithms: DES, 3DES, AES, RSA and blowfish for guessing attacks

prevention, Journal Computer Science Applications and Information Technology, 3

(2018) 1-7.

[35] T.-H. Le, C. Canovas and J. Clédiere, An overview of side channel analysis

attacks, Proceedings of the 2008 ACM symposium on Information, computer and

communications security, 2008, pp. 33-43.

 52

[36] C. Rebeiro, D. Mukhopadhyay and S. Bhattacharya, An Introduction to Timing

Attacks, Timing Channels in Cryptography: A Micro-Architectural Perspective,

Springer International Publishing, Cham, 2015, pp. 1-11.

[37] M. N. I. Khan, S. Bhasin, A. Yuan, A. Chattopadhyay and S. Ghosh, Side-Channel

Attack on STTRAM Based Cache for Cryptographic Application, 2017 IEEE

International Conference on Computer Design (ICCD), 2017, pp. 33-40.

[38] J. Longo, E. De Mulder, D. Page and M. Tunstall, SoC It to EM: ElectroMagnetic

Side-Channel Attacks on a Complex System-on-Chip, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2015, pp. 620-640.

[39] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner and D.

Smith-Tone, Report on post-quantum cryptography, US Department of Commerce,

National Institute of Standards and Technology, 2016.

[40] V. Mavroeidis, K. Vishi, M. D. Zych and A. Jøsang, The impact of quantum

computing on present cryptography, arXiv preprint arXiv:1804.00200, (2018).

[41] M. Almazrooie, R. Abdullah, A. Samsudin and K. N. Mutter, Quantum Grover

Attack on the Simplified-AES, Proceedings of the 2018 7th International Conference

on Software and Computer Applications, Association for Computing Machinery,

Kuantan, Malaysia, 2018, pp. 204–211.

[42] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann and L. Uhsadel, A Survey of

Lightweight-Cryptography Implementations, IEEE Design & Test of Computers, 24

(2007) 522-533.

[43] A. Mahboob and N. Ikram, Lookup table based multiplication technique for GF

(2m) with cryptographic significance, IEE Proceedings-Communications, 152 (2005)

965-974.

[44] L. Hua and Z. Friggstad, An efficient architecture for the AES mix columns

operation, 2005 IEEE International Symposium on Circuits and Systems, 2005, pp.

4637-4640 Vol. 4635.

[45] R. Vimalathithan, D. Rossi, M. Omana, C. Metra and M. Valarmathi, Cryptanalysis

of Simplified-AES Encrypted Communication, International Journal of Computer

Science and Information Security, 13 (2015) 142.

[46] N. Hakiem, A. U. Priantoro, M. U. Siddiqi and T. H. Hasan, Generation of

cryptographic one-to-many mapping IPv6 address using S-AES, Proceeding of the 3rd

International Conference on Information and Communication Technology for the

Moslem World (ICT4M) 2010, 2010, pp. E13-E18.

[47] M. Khader, M. Alian, R. Hraiz and S. Almajali, Simplified AES algorithm for

healthcare applications on Internet of Thing, 2017 8th International Conference on

Information Technology (ICIT), 2017, pp. 543-547.

[48] S. J. Manangi, P. Chaurasia and M. P. Singh, Simplified AES for Low Memory

Embedded Processors, Global Journal of Computer Science and Technology, (2010).

[49] Simplified AES Source Codes, https://github.com/bariszorba/simplifiedAES

(Date of Access: 2021-10-19)

[50] Ü. Çavuşoğlu, S. Kaçar, A. Zengin and I. Pehlivan, A novel hybrid encryption

algorithm based on chaos and S-AES algorithm, Nonlinear Dynamics, 92 (2018) 1745-

1759.

[51] L. Ertaul and S. K. Rajegowda, Performance analysis of CLEFIA, PICCOLO,

TWINE Lightweight block ciphers in IoT environment, Proceedings of the

International Conference on Security and Management (SAM), The Steering Committee

of The World Congress in Computer Science, Computer …, 2017, pp. 25-31.

[52] D. Page, Linkers and Assemblers, Practical Introduction to Computer

Architecture, Springer London, London, 2009, pp. 397-450.

https://github.com/bariszorba/simplifiedAES

 53

[53] J. Yiu, Chapter 3 - Technical Overview, in: J. Yiu (Ed.) The Definitive Guide to

ARM® CORTEX®-M3 and CORTEX®-M4 Processors (Third Edition), Newnes,

Oxford, 2014, pp. 57-73.

[54] K. E. Murray and V. Betz, Tatum: Parallel Timing Analysis for Faster Design

Cycles and Improved Optimization, 2018 International Conference on Field-

Programmable Technology (FPT), 2018, pp. 110-117.

[55] V. Manohararajah, S. D. Brown and Z. G. Vranesic, Heuristics for Area

Minimization in LUT-Based FPGA Technology Mapping, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 25 (2006) 2331-2340.

[56] C. Pei, Y. Xiao, W. Liang and X. Han, Trade-off of security and performance of

lightweight block ciphers in Industrial Wireless Sensor Networks, EURASIP Journal on

Wireless Communications and Networking, 2018 (2018) 117.

[57] Q. Ge, Y. Yarom, D. Cock and G. Heiser, A survey of microarchitectural timing

attacks and countermeasures on contemporary hardware, Journal of Cryptographic

Engineering, 8 (2018) 1-27.

[58] O. Lo, W. J. Buchanan and D. Carson, Power analysis attacks on the AES-128 S-

box using differential power analysis (DPA) and correlation power analysis (CPA),

Journal of Cyber Security Technology, 1 (2017) 88-107.

[59] M. Katagi and S. Moriai, Lightweight cryptography for the internet of things, Sony

Corporation, 2008 (2008) 7-10.

[60] K. Atasu, L. Breveglieri and M. Macchetti, Efficient AES implementations for

ARM based platforms, Proceedings of the 2004 ACM symposium on Applied

computing, Association for Computing Machinery, Nicosia, Cyprus, 2004, pp. 841–

845.

[61] G. Bansod, N. Raval and N. Pisharoty, Implementation of a New Lightweight

Encryption Design for Embedded Security, IEEE Transactions on Information

Forensics and Security, 10 (2015) 142-151.

[62] M. P. H. Dixit, U. L. Bombale and M. V. B. Patil, Comparative Implementation of

Cryptographic Algorithms on ARM Platform.

[63] T. B. S. Reis, D. F. Aranha and J. López, PRESENT Runs Fast, Springer

International Publishing, Cham, 2017, pp. 644-664.

[64] D. Engels, M.-J. O. Saarinen, P. Schweitzer and E. M. Smith, The Hummingbird-2

lightweight authenticated encryption algorithm, International Workshop on Radio

Frequency Identification: Security and Privacy Issues, Springer, 2011, pp. 19-31.

[65] Z. Gong, S. Nikova and Y. W. Law, KLEIN: A New Family of Lightweight Block

Ciphers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 1-18.

[66] T. Suzaki, K. Minematsu, S. Morioka and E. Kobayashi, Twine: A lightweight,

versatile block cipher, ECRYPT Workshop on Lightweight Cryptography, 2011.

[67] Open Cores, https://opencores.org/ (Date of Access:

[68] AES VHDL Core, https://github.com/hadipourh/AES-VHDL (Date of Access:

2021-10-19)

[69] Camellia VHDL Core, https://opencores.org/projects/camellia-vhdl (Date of

Access: 2021-10-19)

[70] DES VHDL Core, https://github.com/mitkof6/DataEncryptionStandard (Date of

Access: 2021-10-19)

[71] Noekeon VHDL Core, https://opencores.org/projects/noekeoncore (Date of Access:

2021-10-19)

[72] PRESENT VHDL Core, https://opencores.org/projects/present (Date of Access:

2021-10-19)

https://opencores.org/
https://github.com/hadipourh/AES-VHDL
https://opencores.org/projects/camellia-vhdl
https://github.com/mitkof6/DataEncryptionStandard
https://opencores.org/projects/noekeoncore
https://opencores.org/projects/present

 54

[73] Tiny Encryption Algorithm (TEA) VHDL Core,

https://opencores.org/projects/tiny_encryption_algorithm (Date of Access: 2021-10-19)

[74] XTEA VHDL Core, https://opencores.org/projects/xteacore (Date of Access: 2021-

10-19)

[75] W. Feng, J. Greene and A. Mishchenko, Improving FPGA Performance with a S44

LUT Structure, Proceedings of the 2018 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, Association for Computing Machinery, Monterey,

CALIFORNIA, USA, 2018, pp. 61–66.

https://opencores.org/projects/tiny_encryption_algorithm
https://opencores.org/projects/xteacore

 55

APPENDICES

Appendix 1 – Commands While Executing S-AES on QEMU

Commands

Platform

RISC-V ARM

Compiling the algorithm with

64-bit architectures

riscv64-linux-gnu-gcc -

static -o s_aes_riscv

s_aes.c

aarch64-linux-gnu-gcc -

static -o saes64 s_aes.c

Running the object file on

rv64 core of qemu-riscv64

library

qemu-riscv64 -cpu rv64

s_aes_riscv

qemu-aarch64 -L

/usr/aarch64-linux-gnu

./s_aes_arm

Disassembling the object file

qemu-riscv64 -d in_asm -

D log_riscv -cpu rv64

s_aes_riscv

aarch64-linux-gnu-

objdump -D s_aes_arm

