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ABSTRACT

DERIVATIONS AND AUTOMORPHISMS OF SOME INFINITE MATRIX
ALGEBRAS

Tunahan YILMAZ
Master of Science, Department of Mathematics
Supervisor: Prof. Dr. Feride KUZUCUOGLU
(June) 2021, 75 pages

Let R be a commutative ring with identity and M, (R) be the algebra (ring) of all n x n
matrices over R. Note that an additive map © of a ring R into itself is said to be a derivation
of Rif ®(xy) = D(x)y+2D(y) forall 2,y € R. Studies on automorphisms and derivations
of matrix algebras and matrix rings have been actively continuing since the 1950s. In the first
study on this subject, in the case of R being a field, Skolem-Noether showed that each au-
tomorphism of the matrix algebra M,,(R) is an inner automorphism ([10, Theorem 4.3.1]).
It has also been shown that every derivation of M, (R) is inner in the case when R is a
field (see [10, Proposition(p100)]). Later on, these studies were extended to the subalgebras
(subrings) of the matrix algebra (ring) M,,(R).

Since the 2000s, studies on Lie and Jordan automorphisms and Lie and Jordan derivations
of M,,(R) matrix algebras (rings) and subalgebras (subrings) have been started to appear in
the literature. This thesis aims to bring automorphism and derivation problems to infinite
matrix algebras and rings. The first chapter of this thesis, which consists of five chapters,
contains the historical development of the subject of this thesis and relevant information.
Second chapter covers some basic definitions and theorems which will help us better un-
derstand the work to be done in the following chapters. In the third chapter, infinite matrix
algebras and rings are introduced, and some of their basic properties are observed. In the
fourth chapter, derivations of column finite matrix rings are discussed. In the last chapter, all

Lie derivations of (upper) niltriangular infinite matrix algebras are described.

Keywords: Automorphism, Derivation, Lie derivation, Infinite matrix algebras, Ring of

column-finite matrices, Niltriangular matrix.



OZET

BAZI SONSUZ MATRIS CEBIRLERININ TUREVLERI VE
OTOMORFIZMALARI

Tunahan YILMAZ
Yiiksek Lisans, Matematik Boliimii
Tez Damismani: Prof. Dr. Feride KUZUCUOGLU
Haziran 2021, 75 sayfa

R birimli ve degismeli bir halka ve M,,(R) kiimesi R iizerinde tanimli n x n tipindeki
biitiin matrislerin olusturdugu cebir (halka) olsun. ® doniisiimii, /2 halkas: iizerinde taniml
toplamsal bir doniisiim olmak tizere eger her 2,y € R i¢in D(zy) = D(z)y + 29D(y) ko-
sulunu sagliyorsa bu doniisiime R halkasinin bir tiirev doniisiimii denir. Matris cebirleri ve
matris halkalarinin otomorfizmalari ve tiirevleri iizerine ¢alismalar 1950 yillarindan beri aktif
olarak devam etmektedir. Bu konudaki ilk ¢alismada, R yerine F' cismi alindiginda M,,(F')
matris cebirinin her otomorfizmasinin bir i¢ otomorfizma oldugu Skolem-Noether tarafindan
gosterilmigtir ([10, Theorem 4.3.1]). Bununla birlikte, yine R yerine F' cismi alindiginda,
M., (F') matris cebirinin her tiirev doniisiimiiniin ise bir i¢ tiirev doniisiimii oldugu kanit-
lanmigtir (bkz. [10, Proposition(p100)]). Daha sonra bu ¢aligmalar M,,(R) matris cebirinin
(halkasinin) alt cebirlerine (halkalarina) taginmustir.

2000’1i yillardan itibaren ise M, (R) matris cebirlerinin (halkalarinin) ve alt cebirlerinin
(alt halkalarinin) Lie ve Jordan otomorfizmalari ile Lie ve Jordan tiirevleri izerine calismalar
literatiirde yer almaya baslamistir. Bu tezin amaci otomorfizma ve tiirev problemlerini son-
suz matris cebirlerine ve halkalarina tasimaktir. Beg boliimden olusan bu tezin ilk boliimii,
tez konusun tarihsel gelisimi ve ilgili bilgilerden olusmaktadr. Ikinci boliim sonraki boliim-
lerde yapilacak ¢aligmalarin daha iyi anlasilmasinda yardimci olacak bazi temel tanim ve
teoremleri icermektedir. Ugiincii boliimde sonsuz matris cebirleri ve halkalar1 tanitilmis ve
bunlarin bazi temel 6zellikleri incelenmistir. Dordiincii boliimde siitun sonlu matris halka-
larmnin tiirevleri ele alinmistir. Son boliimde ise (iist) niliiggensel sonsuz matris cebirlerinin

Lie tiirevlerinin karakterizasyonu verilmistir.

Anahtar Kelimeler: Otomorfizma, Tiirev, Lie tiirev, Sonsuz matris cebirleri, Siitun sonlu

matris halkasi, Niliiggensel matris.
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Chapter 1

INTRODUCTION

In this chapter, as we mentioned in the abstract part, we focus on the historical development
of the issues we will cover in this thesis. There is no doubt that knowing what has been done
in the past will help us grasp the importance of our work. In this sense, this chapter will
guide us throughout our thesis. By the way, here we introduce a few necessary definitions
and concepts to understand what is being discussed. (Of course, the definitions and theorems

required in the next chapters are discussed more broadly in the following chapter.)

Definition 1.0.1. For any unit element = of a ring R, the mapping

ap: R — R

y — ayr !

defines an automorphism. It will be called the inner automorphism of R.

Definition 1.0.2. Let « be an arbitrary element of a ring Rz, then the additive map

D,: R — R

turns out to be a derivation, called inner.

Before going into details, let us make a little briefing about the notations. Unless specif-
ically stated otherwise, from here on the notations 2 and /' denote a commutative ring with
identity and a field, respectively. We are now ready to get down to the heart of the matter. In
1950, a study that inspired many mathematicians was carried out. It was shown that each au-
tomorphism of the matrix algebra M, (F’) of all n x n matrices with coefficients in F is inner

automorphism (see [10]). Of course, this study made many researchers wonder if a similar
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result can be extended to some subalgebras of M,,(F") too. Dubisch and Perlis were one of
them. What they did in 1951 was describe the automorphisms of the subalgebra N'7T,,(F)
of all n X n matrices with zero on and below the main diagonal (see [8]). Also, in 1987,
S.Jondrup ([13]) determined the automorphisms of the ring of upper triangular matrices with
entries in F. Now, before making the following definitions, we would like to mention some
studies on the ring N'T},(R) of all n x n (upper) niltriangular matrices over R, where R is
an associative ring with identity. In 1983, Levchuk showed that every automorphism of the
ring N'T,,(R) is equal to the product of diagonal, inner and central automorphisms (see [16]).
And besides, in 2006, Chun and Park proved that every derivation of N'T,(R) is a sum of a

certain diagonal, ring and a strongly nilpotent derivation (see [6]).

Definition 1.0.3. An R-linear map ¢ of a Lie algebra L satisfying

o[k, p]) = [p(k), p] + [k, 0(p)] forall k,p € L
is called a Lie derivation of L.

Definition 1.0.4. An additive map d of a ring R is called a Jordan derivation if it satisfies
d(ros)=d(rs+sr)=d(r)s+ sd(r) + rd(s) + d(s)r
for arbitrary elements r, s € R, where r o s = rs + sr.

Of course, the problem of classifying Lie and Jordan derivations (automorphisms) of
matrix algebras and their subalgebras has also attracted the attention of many people. S.Ou,
D.Wang and R.Yao described all Lie derivations of N'T},(R) in 2007 (see [17]). Jordan
derivations of the ring N'T},( R) were also characterized by F.Kuzucuoglu in 2011 (see [15]).

Now, let us consider the set M (F') of all square matrices over F' indexed by Z*x Z*.

That is,
MOO(F) = {X = (xij)i,jEZJr | Ti; € F and l,j < Z+}

This set forms a vector space with respect to usual matrix addition and scalar multiplication.
In the light of the product of finite matrices, let’s define
(XY )i = Z LijYjk
j=1
where X, Y € M (F). Clearly, in order for the product matrix XY to exist, the set
{j | zijyjr # 0} must be finite for all i,k € Z*. By the way, even if the matrix multi-

plication is defined on this set, the associativity may not hold. This is exactly what we will
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discuss in the third chapter. Of course, in order to extend the studies on finite matrix algebra
to the context of infinite matrices, we need some subsets of M, (F') which has the struc-
ture of a ring (algebra). So, it is important for those working on this to know when infinite
matrices are defined and obey associativity law.

By Mc¢(R), we denote the set of all Z* x Z* matrices with a finite number of nonzero
entries in each column. Such matrices will be called column finite. It should be noted
that M¢;(F') is an uncountable dimensional vector space and there is a one-to-one corre-
spondence between column finite matrices and linear endomorphisms of the vector space
FZ" with respect to canonical basis. Besides, what makes this set valuable is that it has a
ring structure. To be more precise, we can talk about the derivations and automorphisms of
M f(R). For example, R.Slowik ([20]) characterized the derivations of the ring M¢¢(R)
in 2015 in the case of R being an associative ring with 1. In the fourth section, we discuss
this article in detail.

Finally, we write 7. (R) to denote the set of all Z*x Z* upper triangular matrices over
R. This set forms a Lie algebra with [X,Y] = XY — Y X where X,Y € T, (R). More
interestingly, it has a subset worth studying. What W.Hotubowski, I.Kashuba and S.Zurek
did in 2007 was determine all derivations of its Lie subalgebra N'T,,,(R) of all strictly upper

triangular matrices (see [11]). In the last section, we concentrate on this article.



Chapter 2

PRELIMINARIES

In this chapter, basic definitions and related theorems required in later chapters will be dis-

cussed. Firstly, we focus on what a Lie algebra is.

2.1 Lie Algebras

We start off this section with definition of a ring in which the associativity need not be

satisfied.

Definition 2.1.1. A Lie ring L is defined as a nonassociative ring such that its multiplication

nn

." satisfies the following conditions
1. x.x =0 forall x € L (anti-commutativity)
2. (x.y).z2+ (y.2).x+ (z.2).y =0 forall z,y,z € L (the Jacobi identity).

Example 2.1.2. The set N'T,,(R) of all (upper) niltriangular n X n matrices over any asso-
ciative ring R with identity forms a Lie ring if multiplication is defined as "v .y = xy — yx.”
This operation is called commutation. Actually, what is even more interesting is that we can
extend this to all associative rings. In other words, any associative ring has the structure of

a Lie ring under commutation.
Of course, a Lie ring may fail to form a ring:

Example 2.1.3. Consider the set 3 = {XT =-X|X e ./\/ln(F)} of all n x n skew
matrices over a field F. It can be easily shown that B is a Lie ring under commutation;

however, it is not a ring with usual matrix multiplication.



Definition 2.1.4. Let F be a field. A set A (# ©) is said to be an F-algebra if
¢ There is an operation "+" such that (4, +) is an abelian group,

¢ There is a function

FxA — A
(A\z) — A
(that is, there is a multiplication by scalar) such that .4 forms a vector space over F

with respect to "+" and multiplication by scalars,

* There is a multiplication ".

AxA — A

(z,y) — wy
which is F'-bilinear, i.e.,
(x4+y)z=xz+yz and z(y + 2) = xy + xz forall z,y,z € A,
AMzy) = (A\z)y = z(\y) forall z,y € A\ € F.
Definition 2.1.5. Let A be an F-algebra. We call it associative if
(xy)z = x(yz) forall z,y,z € A.
Also, A is said to be unital if there exists 14 € A such that 1 4x = x = x14 forall x € A.

Example 2.1.6. One can easily see that M,,(F') - the vector space of all n x n matrices
over a field F - forms a unital associative algebra with respect to matrix multiplication.

Obviously, the identity matrix is the identity element in this algebra.

This much information about Lie rings and algebras is enough for us. Now, we are ready
to talk about what Lie algebra is. You will soon see why we have given these algebra and

Lie ring definitions beforehand.
Definition 2.1.7. Let F' be a field. A F'-vector space L together with a F'-bilinear map

[—,—]: LxL — L
(k,p) = k0,
which is called the Lie bracket or commutator is said to be Lie algebra if
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* (£1) Anti-commutativity : [k, ] = 0 for all x € £, and

* (£3) The Jacobi Identity : [k, [p, z]] + [p, [z, k]| + [z, [k, p]] = O for all k, p, z € L.

Using bilinearity of the Lie bracket [—, —], one can see that
0=1[r+pr+p] =[xkl +[k o +[p k] +[p,p] = [k, p] + [p, K].
Therefore, due to condition (L), it must be
[k, p] = —[p, k| forall k,pe L.
In fact, we can interpret the definition of Lie algebra in two ways:
* A Lie algebra is nothing but than an algebra satisfying £, and £, with "[k, p| = kp."
* A Lie ring that also has the structure of an algebra is a Lie algebra.

Let’s take a look at a couple of Lie algebras. In all of the examples below, /' will denote an

arbitrary field.

1. Let gl(V) be the vector space of all linear maps from V' to V, where V is a finite-
dimensional F'-vector space. Then, it forms a Lie algebra if the Lie bracket defined
by

[k,pl =Kkop—pok for k,pe gl(V).

We will call it general linear algebra. ( "o" stands for the composition of maps.)

2. Now, we are going to introduce "matrix version" of the above example. M,,(F') also

has the structure of a Lie algebra with the Lie bracket defined by

[k, p] = Kp — pE,
where kp is the usual matrix multiplication.

I would like to talk about one more thing about this Lie algebra because it will guide
us in the following chapters: Let &;; be an n X n matrix which has a "1" in the 7j-th
entry and all other entries are 0. It will be called matrix unit. What is crucial here
is that these matrix units form a basis for the vector space M,,(F). To put it another
way, the set
{e511<ij<n}
6



is a basis for M,,(F'). It is also useful to know that
&> &kl = 0kt — 0y,
where 0 is the Kronecker delta. This formula will make calculations easier in M, (F').

3. Recall that a matrix k € M,,(F) is called upper triangular if x;; = 0 for all ¢ > j.
Write 7, (F) for the vector subspace of all upper triangular matrices in M,,(F’). It also

becomes a Lie algebra with the same bracket in M, (F).

4. Likewise, the subspace of all strictly upper triangular n x n matrices is a Lie algebra
if the Lie bracket defined as in M,,(F'). (Recall that we call a matrix & strictly upper

triangular if x;; = 0 for all ¢ > j.) This Lie algebra is shown by N'T,,(F).
5. If A is an associative algebra over F’, then A becomes a Lie algebra with

[z,y] = xy — yx forall z,y € A.

Actually, in the light of examples (3) and (4), one can realize that subset of a Lie algebra £
may also form a Lie algebra. In the next section, we will focus on subalgebras and ideals of

a Lie algebra.

2.2 Subalgebras and Ideals
Let £ be a Lie algebra over a field F.
Definition 2.2.1. A vector subspace VWV C L is called a Lie subalgebra of L if
[k,p] € W forall k,pe W.
Now, we shall give the definition of an ideal of a Lie algebra.
Definition 2.2.2. A vector subspace U/ C L is called an ideal of L if
[k,pl €U forall ke L, peU.

Any Lie algebra £ has at least two ideals: the trivial ideal {0} and L itself. Note that a

subalgebra may fail to be an ideal; however, an ideal is always a subalgebra. One can easily
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show that 7,(F) constitute an example of a subalgebra of M,,(F') which is not an ideal.

Now, consider the centre of £ defined as follows:
Z(L) = {Fa €L]|[k,p =0 forall pe C}.

It is a quick check to see that Z(L£) is an ideal of £. What is important here is that £ = Z(L)
if and only if £ is abelian. We must keep this fact in mind. Also, note that finding the center
of a Lie algebra £ is not as easy as it seems; it may take time to determine what Z(£) is. In

the Chapter 5, we will face such a case.

Let U and V be ideals of a Lie algebra £. We will close out this section with discussing

how to construct new ideals from I/ and V. In fact, we can do this in many ways:

* Firstly, we shall observe that the subspace &/ N V is an ideal of L. Let k € £ and
p € UNV. Then, it must be [x,p] € U NV since U and V are ideals. This is why
U NV forms an ideal of L.

* Now, consider the following set
U+V= {/{—I—p|lieu,p€V}.
It is not hard to see that this set is an ideal of L.

* The above examples suggest that we might define a product of ideals. Let’s consider

the subspace

U, v] = Span{[/f,p] |keU,pe V}.

We shall show that [/, )] is also an ideal of L. Now, let k € U, p € V, and z € L.

Then, using the Jacobi identity we have

2, [, pl] = [k, [z, P1] + [[2, K, o

Of course, [z, p] € V as V is an ideal. Hence, [k, [z, p|]] € [U,V]. Likewise, one can
directly see that [[z, k], p|] € [U, V]. Accordingly, |z, [k, p]] € [U,V]. Now, all we will
do is check whether or not [z, z] € [U, V] in the case when z € L and x € [U,V]: By
construction of [U, V], it must be = = > \;[k;, pi], where \; are scalars and «; € [

and p; € J. Since the Lie bracket is bilinear,

[z 2] = [2,) Nl o]l = > Milz, [, pill.
8



As discussed above, each |z, [k;, p;] € [U,V]. Hence, [z,2] € [U,V]. The result

follows.

Maps that are structure preserving help us understand the structure of a mathematical object
such as a vector space, group, or ring. For example, linear maps are helpful to understand
how different vector spaces related to each other. In the following sections, our purpose is to

extend this view to Lie algebras.

2.3 Homomorphisms

Let £, £, and £, be Lie algebras over a field F.

Definition 2.3.1. A linear map ¢ : £; — L5 is called homomorphism if

¢([r, p]) = [0(k), &(p)] forall x,p € Ly.

Definition 2.3.2. We say that a homomorphism ¢ : £ — L is an automorphism if ¢ is

bijective.

Now, we are going to introduce a significantly important homomorphism: Let x € L.
Consider the following map
ad: £ — gl(L)
k — adwk
defined by adk(p) = [k, p| forall p € L.
The bilinearity of the commutator implies that x — adk is linear. It can be easily shown
that ad is a homomorphism between £ and gl(£). We call it adjoint homomorphism. It is

important to note that the kernel of ad is the centre of L.

2.4 Derivations

Let A be an F-algebra, where F' is a field. An F-linear map ® : A — A is called a
derivation of A if

D(zy) =D(x)y +2D(y) forall z,y € A.

The adjoint homomorphism discussed above provides a "nice" example of a derivation. Let

L be a Lie algebra and x € L. It follows from the Jacobi identity that the map adx : £L — L

9



satisfies the necessary condition to be a derivation:

adr([p, z]) = [r, [p, 2]] = [[%, pl, 2] + [p, [, 2]] = [adk(p), 2] + [p, adr(2)]
for all p, z € L. We call such a derivation inner derivation.

Now, let’s write DerA for the set of derivations of .A. This set is a vector subspace of
gl(A) since it is closed under addition and scalar multiplication and contains the zero map.
As you guessed, there is another reason why we are talking about this set besides being a
vector subspace of gl(A). DerA also has the structure of a Lie subalgebra of g/(.4). (One
can deduce that if © and € are derivations of an algebra, then [D,¢] = D€ — €D is a
derivation as well.)

We have just seen that Lie algebras are nothing more than algebras satisfying (£;) and

(L3). Now, we shall take this critical result as a definition:

Definition 2.4.1. An F'-linear map ¢ of a Lie algebra L satisfying

o[k, p]) = [p(K), p] + [k, p(p)] forall r,pe L

is called a lie derivation of L.

2.5 Quotient Algebras and Isomorphism Theorems

Let U be an ideal of the Lie algebra L. Of course, U has the structure of a vector subspace
of £, and so one may consider the cosets z + U = {z +plpeld } where z € £ and the
quotient vector subspace
Ly = {z—l—u | zEE}.
Now, we are going to see that this quotient vector subspace also forms a Lie algebra. In the
light of our "undergraduate abstract algebra" knowledge, we may define a Lie bracket on
L /14 as follows
k+U,z+U| = [k, 2]+ U for k,z € L.

Of course, the bracket on the right-hand side is the Lie bracket defined on £. Now, we check
if the bracket on £ /74 is well-defined. Let k +U, 2 +U, k' +U, 2’ +U € £ /14 and suppose
k+U=rK+Uandz+U =7 +U.Thenk — k' € U and z — 2z’ € U. All we have to do is

show that [/, 2'| + U = [k, z] + U. It follows from the bilinearity of the Lie bracket in £ that
5, 2] =[r+ (k= K), 2"+ (2 = 2)]

=k, 2]+ [k — K, 2T+ [,z =]+ [k — K, 2= 7]

10



Obviously, the final three summands must belong to ¢/ since U is an ideal. Thus, it must be
K+ U, 2"+ U] = [p,z] + U.

This is exactly what we wanted to show. Also, one can check that the Lie bracket on £ u
is bilinear and satisfies the conditions (£;) and (£5). That is, £ /74 has the structure of a Lie
algebra with this bracket.

As expected, we have isomorphism theorems for Lie algebras as in vector spaces and

groups. Let us state them:
Theorem 2.5.1. (Isomorphism Theorems) Let L, L1 and L4 be Lie algebras over a field F.

1. (First Isomorphism Theorem) If ¢ : L1 — Lo is a homomorphism between L, and

Ly, then ker¢ and im¢ are ideals of L, and Lo, respectively. Also,
Ly [ kere = imo.
2. (Second Isomorphism Theorem) Let U and V be ideals of our Lie algebra L. Then
U+V) )y =Ujyay.

3. (Third Isomorphism Theorem) If U and V are ideals of L such that U C 'V, then
V Jiy is an ideal of £ /14 and

Clu vy =Ly
Before moving onto the next section let’s do a couple of examples:

Example 2.5.2. The trace of a square matrix k, denoted tr(k), is defined to be the sum of its
diagonal elements. Let’s consider the following linear map
¢: My(F) — F
K — tr(k)

, where F'is a field. Now

o([k, p]) = d(kp — pK) = tr(kp — pK)
= tr(kp) — tr(px)
= [tr(k),tr(p)]

— [6(. 6()] =0
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forall k,p € M, (F), showing that ¢ is a Lie algebra homomorphism. Clearly, ¢ is surjec-
tive and its kernel is S,,(F'), which is the Lie subalgebra of matrices whose traces are zero.

Therefore, it follows from the first isomorphism theorem that

M (F) /gn(p) ~F
Example 2.5.3. Let L be a Lie algebra over a field F. The set of all inner derivations of L
is a Lie subalgebra of Der(L). We will denote it by I Der(L). Now, let’s define a map
¢: L — IDer(L)
K — adk

Clearly, ¢ preserves addition and scalar multiplication. Now

o([r, p])(2) = [[5, p], 2]
= [k, [p, 2]] = [p, [k, 2] (by Jacobi identity)

= ([¢(x), 2(p)])(2)

forall k,p,z € L, proving that ¢ is a Lie algebra homomorphism. It is also easy to see that

@ is a surjective map and

K6T¢:{KE£|¢(/{):GCZI€:0 }
:{/@eﬁun,p]:Oforallp GE}

= {/@EEMEZ(E)} = Z(L).

Consequently, by the first isomorphism theorem

IDer(L) = ﬁ/g(g).

Remark 2.5.4. As it happens, all mathematical objects and concepts which we dealt with so
far were constructed over a field F. However, it should be kept in mind that we can carry all
these works to a commutative ring with slight differences. For example, an algebra A over
a commutative ring I? is nothing more than an 2-module with an R-bilinear multiplication
map "."
AxA — A
(z,y) — ay.
In the last chapter we will describe all derivations of a Lie algebra over a commutative ring

with identity.
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We have already discussed that M, (F’)-the vector space of all n x n matrices over a field
F'- becomes an unital associative F'-algebra with respect to usual matrix multiplication. As
we all know, matrices play a significant role in algebra. Therefore, the need to classify all
derivations and automorphisms of this algebra has become inevitable. This is precisely what

we will talk about in the following section.

2.6 Automorphisms and Derivations of The Matrix Algebra M, (F)

Throughout this section, as in others, F’ will be a field. Let’s start off this section with the

definition below:

Definition 2.6.1. A finite dimensional associative F'-algebra A is said to be a central simple

algebra if
e Ais simple,
* Center of A is precisely F.

Example 2.6.2. The matrix algebra M,,(F') provides a good example of a central simple

algebra.

In this section, our goal is to characterize automorphisms and derivations of M,,(F'). To
do this, we first state the Skolem-Noether theorem, which characterizes the automorphisms

of simple rings and guides those studying central simple algebras.

Theorem 2.6.3. [10, Theorem 4.3.1](Skolem-Noether) Every automorphism of a finite di-

mensional central simple algebra is inner.

It immediately follows from the Skolem-Noether theorem that every automorphism of the
algebra M,,(F) is inner. It takes a long time to give proof of the Noether-Skolem theorem

to deduce this fact. Instead, we present the simplest proof of this very crucial fact.

Theorem 2.6.4. [19, Theorem 1.1] Suppose that ¢ is a bijective linear map of M.,,(F') such
that p(XY) = ¢(X)p(Y) for all X, Y € M, (F). Then there must be an invertible matrix
P e M, (F) with $(X) = PXP~! for every X € M, (F).

Proof. Let ¢ : M,,(F) — M, (F) be a linear map satisfying above hypotheses. Take two

column vectors which are different from zero v,w € F™. Then, of course, one can find an
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element z € F such that ¢(vw?)z # 0. Now, let’s construct a map P : F™ — F" which
maps x to ¢(zw')z. Obviously, the linearity of ¢ implies P is a linear map. Also, P is

nonzero as Pv is nonzero. Now observe that

PXy = ¢(Xywh)z
= o(X)p(yw")z
= ¢(X)Py

for any choice of y € F™ and X € M, (F), giving us that PX = ¢(X)P. As you guessed,
the last job we will do is to see that the P is invertible. Now, let w € F™™. Using the surjectivity
of ¢ one can find Y € M, (F) such that ¢(Y)Pv = uw = PYw. This implies that P is

surjective, and so invertible. The result follows. O]

Theorem 2.6.5. [10, Proposition(p100)] Let A be a simple algebra finite dimensional over

its center F. Then any derivation of A is inner.

Proof. Let® be a derivation of \A. First, consider A, which is the ring of all 2 x 2 matrices

over A. Of course, A also has the structure of a central simple algebra. Now, put

r D(x) z 0
B = cx €Ay and C = xe A
0 T 0 x

(Clearly, ®(\) = 0 for A € F.) Then, the mapping ¢ : C' — B defined by

z 0 r D(x)
0 =z 0 =

is an isomorphism between C' and B leaving F’ elementwise fixed. Also C' ~ A. From the

Noether-Skolem Theorem there must be an invertible matrix

u -y
E.AQ
zZ v
such that
r Dx)| |u y u y| |z O
0 T Y zZ v 0 =z



Therefore:

zu+D(r)z = ux
zy +D(z)v = yx
Tz = zx

U = v,

U
for all z € A. Clearly, it must be v, z € F. Besides, invertibility of Y forces one of
Z v

these scalars, say z, to be nonzero. Now, put ¢t = uz~'. Then D (z) = tz — xt forall z € A.

Consequently, ® is inner. [l
As a straight consequence of above theorem, we have:

Corollary 2.6.6. Let F' be a field. Then any derivation of the matrix algebra M,,(F) is

inner.

We have discussed how to define product of ideals ¢/, V of a Lie algebra L. Now, we

make use of this construction in the next section by considering the ideals

£, L] 1L, 12, L] [£, £, £, L]]], -

2.7 Nilpotent Lie Algebras
The lower central series (or descending central series) of a Lie algebra L is defined as:
Ql =L and Qz = [‘CyQi—l] for ¢ > 2.

Then "2; D Q9 D Q3 D ...". It should be noted that €2; is an ideal of £ (and not just an ideal
of €2,_1) for each i € N since the product of ideals is an ideal. The reason of why we call

this series "lower central series" is that

Qi/Qi+1 C Z(Q/Qwﬂ) forany i € N.
Definition 2.7.1. Let £ be a Lie algebra. We call it nilpotent if €2,, = 0 for some n > 1.

Now, we shall determine if the Lie algebra N5(F') of strictly upper triangular 5 x 5

matrices over a field F' is nilpotent. To do this, we shall observe the lower central series
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of N5(F). This observation also helps us better understand the subject we will discuss in
Chapter 5.
Let X,Y € N5(F). One can easily compute that

0 0 213 214 215
0 0 0 294 295
XY-YX=Z=[00 0 0 2
00 0 0 0
00 0 0 O

Since Qy = [N5(F),N5(F)] = [Q4, €] is defined to be the linear span of elements of the
form [X,Y] = XY — Y X, where X, Y € N(5, F), we have

0 0 213 214 215

0 0 0 20 295
QQ:[Ql,Ql]:{ZGJ\/})(F)\ZZ 00 0 0 =z }

00 0 0 O

00 0 0 O

In other words, €25 C N5(F) consists of matrices whose entries one above the main diagonal

are all zeros. Similarly, in the case when X € Q, and Y€ N;(F), we obtain

0 0 0 214 215

0 00 0 245

XY-YX=Z=1000 0 0

000 0 O

000 0 O

Hence :
00 0 214 215
000 0 =295
ng[Qg,Ql]z{ZENg,(F)]Z: 000 0 O }CQ2-

000 0 O
000 0 O
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Using similar arguments, one can see that

000 0 25
0000 0

Q4:[Qg,Ql]z{Z€N5(F)|Z= 0000 O }c93
0000 0
0000 0

and

Q5 = [Qy, ] ={O}.

Hence, the Lie algebra N5(F) of strictly upper triangular 5 x 5 matrices over a field F is
nilpotent.
Now we are going to propose another interesting feature of the sets (2; we observed

above.

Lemma 2.7.2. The sets §);, © > 1 are invariant under any derivation o of the Lie algebra

N(5, F).

Proof. As mentioned in the previous section, the sets €; are ideals of N'(5, F'). Now, we will
show that p(€2;) C €, for any derivation ¢ of N'(5, F').

Let ¢ be any derivation of N'(5, F'). By definition, ©(€2;) C Q. It is also clear that the
set €); are invariant under ¢ for7 > 5as ; = [;_1,Q4] = {0} fori > 5. Hence, all we have

to do is determine whether the sets {25, {25 and €24 are invariant under . Let ¢ = 2. Then

©(22) = ([, n]) = (), Q] + [, (1))
C o) — () + Qup(Q1) — ().
O — O + 90 —

Of course, 2,2, C €2,. Hence,
90(92) CQy— QO+ Qs —Qy C Q.

Through a similar process, one can easily see that p(€23) C Q3 and ¢(£24) C 4. Thereby,

the result follows. O]
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Chapter 3

Infinite Matrices

A matrix X = (z;;) which has infinite number of columns or rows (or both) is called an
infinite matrix. In this chapter, we will deal with infinite matrices whose rows and columns
are indexed by Z* x Z* with entries in the field F' of characteristic zero. We define addition

and scalar multiplication on infinite matrices as follows:
X+Y = (:L‘ij + yij)i,jeﬁ and A\ X = ()\xz-j)mew,where AEF.

We denote this vector space of infinite matrices by M. (F). As expected, infinite matrices
differs significantly from finite matrices in many ways. Let’s take a look at a few reasons

lead to this:

* As we all know, the concept of determinant has a pretty important place in the finite
matrix theory and the role determinants play cannot be ignored; however, there is no

corresponding phenomenon for infinite matrices.

* Consider the ring M,,(F) of all n x n matrices over a field F. Let X = (4;)1<ij<n

and Y = (y;x)1<jk<n € M, (F). Recall that their product is defined as

XY = ( Z xijyjk)lgi,kgn
j=1

However, when we move this definition to infinity case, we run into a big problem.

To be more precise, the multiplication of two infinite matrices X = (xij)i’jez+ and
Y = (yjr)jrez+
oo
XY = ( Z xijyjk)i,kew
j=1
may not exist because the above sum may diverge for some values of i, k € Z*.
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* Moreover, one may expect a variety of fundamental theorems in the theory of finite
matrices to be valid in the case of infinite matrices. It is possible that we may obtain
corresponding theorems for infinite matrices, but this is very unlikely to happen due to

convergence and other difficulties to be discussed in this chapter.

Richard G.Cooke introduced some basic definitions and mentioned a couple of characteristic

properties of infinite matrices in [7]. We will talk about them in the following two sections.

3.1 Some Fundamental Definitions

An infinite matrix /o, € M (F) defined as

0 1#7
is called the identity matrix. Also, the matrix O whose all entries are zero is called the zero
matrix. Clearly, OX = XO = O for any choice of X = (x;;); jez+; however, it is not
necessary that X or Y must be the zero matrix so that their product is zero.
A matrix D = (d;j); jez+ € Moo(F) such that d;; = 0 in the case when ¢ # j is called a

diagonal matrix. We will use the notation (d;);cz+ to denote a diagonal matrix

d 0 0
0 dy O
0 0 ds

A diagonal matrix X is said to be a scalar matrix if

A0 O
0O X 0 ..

X =M, = , where \ € F.
0 0 X

Let X be a matrix in M, (F’) such that z;; = 0 when j > 7. Such a matrix is called
lower triangular matrix. Also, a matrix X is said to be an upper triangular matrix if
x;; = 0 when j <.
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We call a matrix X column- finite if each column of X consists of finite number of
non-zero elements. The symmetric definition says that a matrix X whose each row has only
a finite number of non-zero coefficients is called row-finite. Note that a lower triangular
matrix is row-finite, and an upper triangular matrix is column-finite, as can be seen directly
from their definitions. We must keep these definitions in mind because we will benefit a lot

from them throughout this thesis.

3.2 A couple of properties of infinite matrices

Let (d;);ez+ and (0;);cz+ be diagonal matrices. Clearly, their product matrix is the diagonal
matrix (d;d;);ez+. Note that multiplication is commutative for diagonal matrices since we
have "d;0; = 0;d;" for each i € Z*. However, in general, products of matrices fails to satisfy

o0 o0
commutative law since (XY);x = Z x;;y,, may be different from (Y X ), = Z Yi; %, for
j=1 Jj=1
some 7, k € Z™, even if it is supposed that both series are convergent for any choice of 7 and

k. Even more interesting is that one may encounter matrices X, Y € M (F) such that XY

does not exist while Y X exists. As an example for this, consider

1 1 1 .. 1 00

1 1 1 .. 1 00
X = and Y =

1 1 1 .. 1 0 0

As can be seen easily, XY does not exist, whereas Y X = X exists.
Fortunately, there is no problem of existence on the addition of matrices. In other words,
their sum always exist. Also, infinite matrix addition is commutative and satisfy the associa-

tivity law, unlike multiplication:
X+Y=Y+X, X+Y)+Z=X+ Y +2)forall X,Y,Z € M (F).
It should also be noted that infinite matrices satisfy the distributive law
XY+2)=XY+XZ Y+2)X=YX+7ZX

in the sense that "if XY and X Z exist, then also X (Y + Z) exists and is equal to XY + X Z."
However, notice that X (Y + Z) may exist even though XY and X Z do not exist. One can

check that the following matrices constitute an example for such a case.
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111 .. -1 0 0 ... 1 00
111 .. -1 0 0 ... 100

X = Y = and Z =
111 .. -1 0 0 ... 1 00

Now, let D = (d;);ez+, A = (0;)iez+ and 3 = (¢;);ez+ be diagonal matrices in M, (F).

Using the above observations on diagonal matrices, it is a quick check to see that
(DA)(3) = D(A3).

In other words, the multiplication of diagonal matrices satisfy associativity law, and so the
subspace D, (F) of all diagonal matrices forms a ring in contrast to M. (F'). As we see, a
subspace of M, (F') may have the structure of a ring. Now, we shall determine whether this
can be extended to lower triangular matrices. Let X = (x;); jez+ and Y = (y;x);kez+ be

both lower triangular matrices. Then

Z;:k Ty 1>k
0 1< k

(XY )y =

Hence, the subspace of all infinite lower triangular matrices is closed under matrix multipli-

cation. Again, if Z is a third lower triangular matrix, then we have

(X(YZ))y = Z T ( i yjkz,d> and ((XY)Z); = Z ( Z xijyjk> 2

J=l k=l k=l N j=k

One can show that above sums are equal to each other for all ¢, /. Thus, associativity holds

for all lower triangular matrices. Also, note that row-finite and column-finite matrices also

meet associativity. (In Section 3.3, we present an easier method of deciding whether or not a
subset of M (F") satisfy associativity.)

However, associativity need not be satisfied on the multiplication of infinite matrices.

Let’s consider the following example :

111 1 -1 0 0 0 0

01 1 .. o 1 -1 ... -1 0 0
= Y = and Z =

0 01 0o 0 1 ... -1 -1 0
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Easy calculations show that
X=XYZ)#£(XY)Z="Z.

We have experienced that the products of infinite matrices may not be defined or may
not meet the associativity property. Daniel P. Bossaller and Sergio R. Lépez-Permouth con-
ducted a study addressing these issues in [4]. In the following two section, we will concen-

trate on this article.

3.3 Associativity

Firstly, we shall introduce some notation. We denote the subspace of all column (row) finite
matrices by M¢;(F) (respectively, Mgs(F')). The symbol Mg (F) also stands for the
space Mp(F') N Mc(F) of row and column finite matrices where each row and column
has a finite number of nonzero entries; however, note that a matrix X € Mg f(F ) has a
chance to include infinitely many nonzero entries. Finally, the subspace of finitely supported
matrices, i.e., those with only finitely many nonzero entries will be denoted by M/ (F).
Elements in M/ (F) are also known as finitary matrices.

The main goal of this section is to propose sufficient and necessary conditions for as-
sociativity. First, as you would appreciate, it should be clarified when the product of two
infinite matrices exists so that we can talk about associativity. Let’s take X, Y € M (F).

Then we can represent the product XY as the following array of formal sums:

o0 . . o0 . . o0 . .

Zj:1 L13Y51 Zj:l L15Y52 Zj:l L1953
[o.¢] . [o.¢] o0

Do T Do Tz Do T2Yjs
(o] o0 o0

Do T Djoq Tz Dojq T35l

XY =

In order for the product to be defined
(XY )i, = Z LijYjk
j=1

must converge for any choice of 7, k € Z*. To put it another way, the sums in each entry of
XY need to have finitely many nonzero elements. We present this crucial observation as a

definition for when a matrix product is "defined."
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Definition 3.3.1. Let X, Y € M (F). Then we will say that their product is defined if
{j | @iy, # 0} is finite for any choice of i, k € Z*.

Now, we shall give the proof of a well-known basic fact we use frequently in this thesis.

Lemma 3.3.2. If X € Mpgs(F) andY € Mc¢(F), then XZ and ZY are both defined for

any matrix Z € My (F).

Proof. Let i,k € Z". By above definition, we need to verify {j | z;;y;x # 0} is finite to
show that the product ZY exists. Clearly, { J |y # O} is finite as Y is column finite, and
this immediately implies that the set { J | iy # O} is also finite. Hence, we are done. In
a similar way, one can get definedness of X 7.

]

Before working on associativity, it would be good for us to talk about how important
associativity is in matrix algebra. One of the most critical problems that linear algebra deals
with is solving a linear equation system in several unknowns. Let’s remember how to find

the solution of a system of m linear equation in n unknowns:
1. Convert the given system to a matrix equation of the form
XY =17,

where X is an m X n matrix, Y and Z are columnn matrices with n and m entries,

respectively.

2. Reduce the matrix X to a row reduced echelon matrix X' by applying elementary row

operations &1, &, &3, ..., &,
3. After the previous step, we get a solvable system
(EX)Y =&Z7,

where £ is the product of the elemantary matrices above. (Notice that £ is invertible

since it is product of elemantary matrices.)

4. Let A be the solution of the solvable system

(EX)Y =EZ.

23



If we multiply this new system by P from the left, where P is the inverse of &£, we
obtain that

PEX)A = (PE)X\ = PEZ.

Accordingly, it must be X\ = Z. That, A is a solution of XY = Z.

The process mentioned above works since the product of finite matrices obeys the associativ-
ity law. As you guessed, this cannot be extended to infinite matrices since associativity may
not be satisfied there. Now, let us consider the following matrices, which we have already

observed in section 3.2 again:

0 0 0 1 -1 0 1 11

-1 0 0 o 1 -1 ... 011
X = , €= and P =

-1 -1 0 0 0 1 ... 0 01

Easy calculations give us that £X, P& are equal to identity matrix and £Z = O, where
Z 1s the infinite matrix whose all entries are "1." Of course, XY = Z has no solution
because X has a first row whose all elements are zero. Moreover, one can easily see that
(EX)Y = £Z has a solution, which is the zero vector A = O. As we see, even though the
zero vector is a solution of (£X)Y = £Z and PE = I, we have XO # Z. The reason for
this result to occur is that P(£X) # (PE)X. This observation is one of the main problems
we may encounter while working with infinite matrices because of associativity. In order
to avoid such obstacles, we need to know under what conditions associativity is satisfied.
In this section, we try to answer this crucial question. Let’s take three arbitrary matrices
X, Y, Z € My(F). All these examples we have seen so far showed us that it might be
(XY)Z # X(YZ)evenif XY, YX X(YZ), and (XY)Z are defined. Worse, the product
matrices XY and Y Z may not even be defined. Thus, to coin some terminology will be

useful for us to tackle that.

Definition 3.3.3. Let (X, Y, Z) be triple of infinite matrices. We call it associative triple or

associative family if it satisfies the followings:

1. XY and Y Z are defined,

2. X(YZ)and (XY)Z are defined, and
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3. X(YZ) = (XY)Z.

Remark 3.3.4. The above description may seem a little strange at first glance since the state-
ment "X (Y Z) = (XY')Z" naturally implies that the products XY, Y Z, X (Y Z) and (XY)Z
are all defined; namely, if the third condition is met, there is no need to check the others. We
give such a classification because we will talk about three vector spaces built on these re-

quirements.

Now, we observe the following triple of matrices which does not form a associative

family even though the first two condition is satisfied:

1 11 .. 0 1 0 ... 1 00

00 0 .. -1 0 1 ... 1 00
X = Y = and Z =

00 0 .. 0O -1 0 ... 1 00

Then one can easily compute that

-1 0 0 .. 1 00

0O 0 0 .. 00O
XY = and YZ =

0O 0 0 .. 00O

In addition to this, X (Y Z) and (XY)Z are also defined since XY and Y Z are both row and

column finite matrices. However,

100 .. ~1.0 0
000 .. 0 00
X(YZ) = 4+ (XY)Z =
000 .. 0 00

Let (X,Y, Z) be triple of matrices. As we have just said, our primary goal is to find out
under what conditions associativity is met; namely, (XY)Z = X (Y Z). In order to achieve
our goal, we take two different approaches. Firstly, we will focus on the properties of X and
Z, which enable this triple (X, Y, Z) to form an associative family. The following definitions

make our job easier in the first approach.
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Definition 3.3.5. Let X, Z € M (F). We call Y alink between X and Z if XY and Y Z
are both defined. We say that Y is a strong link between X and Z if Y is a link and X (Y Z)
and (XY')Z are defined. Also, a matrix Y is said to be associative link between X and 7 if
Y is a strong link and X (Y Z) = (XY)Z. The family of links, strong links and associative
links are shown by I's(X, Z), ['4(X, Z) and I'5 (X, Z), respectively.

It is not hard to see that I';(X, Z) has the structure of a vector subspace of M. (F’) for

each i €{2, 4, 5}. Moreover, from definitions of our families, it immediately follows that
F5<X7 Z) g F4(X7 Z) g F?(Xv Z)

Now, we shall examine the following matrices to show that both of the containments may be

proper: Let X and Z be the matrices in the previous example and put

0 1 0 .. 010

-1 0 1 .. 1 01
Y = and Y/ =

0O -1 0 .. 010

We have already observed that Y € T'y(X, Z) \ I's(X, Z). Moreover, it is a quick check to
conclude that Y’ € I'y (X, Z) \ I'4(X, Z).

Now, we shall introduce some propositions characterizing these subspaces.

Proposition 3.3.6. ﬂ I'y(X,Z) = Mpeys(F).

X,ZEMoo(F)
Proof. Let’s take two arbitrary elements X, Z € M (F). Using Lemma 3.3.2, one can
easily deduce that M e ¢(F') C I'y(X, Z). Now, in order to show the other direction assume
that Y ¢ Mpcs(F'). Then, the matrix Y has some row or column that has nonfinite support.
If we consider the matrix Z whose all entries are 1, then Y Z or ZY is not defined. This

shows that Y ¢ ﬂ ['y(X, Z). Thereby, the result follows. O
X,ZeMoo(F)

A similar phenomenon occurs with I';(X, 7).

Proposition 3.3.7. ﬂ Iy(X,2Z) = MI™(F).

X, ZeMoo(F)
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Proof. We can directly get one inclusion using Lemma 3.3.2: Let Y € M/ (F'). Then XY
and Y Z are both defined for any choice of X and Z. Besides, X (Y Z) and (XY')Z are also
defined since XY € Mps(F')and YZ € Mcs(F'). Hence, we obtain

MIMFYS () Tu(X,2)

X,ZeMoo(F)
For the other inclusion, let Y € T'y(X, Z) for all X, Z € M (F). From above proposition,

it directly follows that Y € Mpcr(F). Now, assume that Y fails to be finitely supported

matrix and consider the following two sets
J={j|Y.#0} and K = {k| Yt #0}.

Since Y € Mpgcs(F) and we assumed that Y ¢ M/ (F), at least one of the above sets
need to be infinite. Without loss of generality, let |.J| = co. This means that the matrix Y’
has infinite number of non-zero rows. Now, let Z be a matrix whose all entries are 1. Then,
Y 7 is defined since Y € Mpc f(F ); moreover, the first column of Y Z has infinitely many
nonzero entries due to construction of Z. However, one can easily see that X (Y Z) is not

defined in the case when
1 11

000
0 00

Of course, this is a contradiction because Y is taken from ﬂ I'4(X, Z). Hence, we

X, ZeEMoo(F)
are done. O]

Now, we shall give the following techniqual definition which will be used in the proof of

the next proposition.

Definition 3.3.8. Let X be a row finite matrix. The length of X;,, which is the i-th row of
X is the smallest number o; > 0 such that x;; = 0 for every j > o,. Likewise, the length of
the j-th column of a column finite matrix Y is the smallest number u; such that y;; = 0 for

every i > ;.
Proposition 3.3.9. If X € Mgy(F) and Z € Mcy(F), then it must be

T5(X, Z) = Moo (F).
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Proof. One inclusion is trivial, I's(X, Z) C M (F'). Now, all we have to do is show that
Y e I's(X, Z) forany Y € M (F'). From Lemma 3.3.2, we know that XY, Y Z, (XY)Z
and X (Y Z) are all defined for all Y € M. Now, we shall determine whether or not
X(YZ) = (XY)Z calculating arbitrary (i, )-th entry of both of those terms:

o

(X(YZ))u = ixij(gyﬂzko = ;xij(iyﬂzko

=1
uy (o]

=> (injyjk> 2 = ((XY)2)a,
=1 N k=1

where o; is the length of the i-th row of X and v, is the length of the [-th column of Z.
O

Corollary 3.3.10. Let Y € MI™(F). Then X (Y Z) = (XY)Z for any matrices X and Z.
In particular,

X,Ze M (F)

Proof. Since Y is a finitely supported matrix, one may divide Y into block matrices as

follows
Y| O
olo ]
where Y’ is an n X n matrix. Now, let’s write the matrices X and Z in terms of block matrices
similarly:
X, | X Z1 | Z
X = ! 2 and Z = s ,
X 3 X4 Z3 Z4

where X and Z; are n x n matrices. Then,

X(Y'2) | X\(Y'2)
Xo(Y'24) | Xo(Y'20)

(XY 72 | (X1Y')Zs
(XsY) 2 | (XsY') 2o

X(YZ)= and (XY)Z =

Since X1, X5 € Mps(F) and Zy, Zy € Mcy(F), itmust be X(YZ) = (XY)Z from the
previous proposition. Moreover, the second statement follows from Proposition 3.3.7 be-

cause of the fact

MIMF)S () TsX,2)c () Tu(X,2).

X,ZEMeoo(F) X,ZEMoo(F)
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In our second approach, we focus on the matrix Y in the statement X (Y 7) = (XY)Z.
We will investigate how it affects associativity. Here we should introduce the concept of

summability to understand the work to be done in the following subsection.

Definition 3.3.11. Let {V; |iel } be a family of vectors indexed by the set /. Then we
call this family {V; | i € I} summable if for every j € Z*, the set {i | V;(j) # 0} is finite,

where V;(7) is the j-th entry in the i-th vector.

One may wonder how to use this new concept in our study of infinite matrices: We can
extend this definition to the context of infinite matrices considering the columns (rows) of a

matrix as a vector. (Note that, in such a case, our index set will be Z*.)

3.3.1 Summability and Associativity

Let X,Z € My (F). One can easily deduce that Y is a link between them if and only
if for every k € Z* the family {X*jyjk | j € Z+} is summable and for every j € ZT,
{yijk* | k € Z+} is summable. At this point, we face a quite important question: Is 1t
enough to check summability of the family {X Uik Zis | 3,k € Z*} to determine whether
(X,Y, Z) is an associative triple or not? Unfortunately, the answer is "No!" The following
three matrices constitute a pretty good example of a triple which does not form an associative

family even though {X*jyijk* | 4,k € Z*} is summable. Now, put

011 .. 11 1 ... 000

00 0 .. 110 ... 1 00
X = ,Y = and Z =

00 0 .. 1 0 0 ... 1 00

Clearly, these matrices do not even satisfy the first condition to be an associative triple as X'V’
and Y Z do not exist. The surprising point here is that the family {X*jyijk* | j, k € Z*}
is summable. Let’s explain why:

Actually, all we have to do is multiply the columns and rows by the nonzero entries of Y
which lie in the first row, first column, and (2, 2) coordinate. First, we consider the y95. Then

we have
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1 1 00
0 0 00

XYoo Zoy = . ( 1 00 )
0 0 00

Secondly, let’s look at the matrix X. As can be seen, the first column of X is zero. Thus, the

family generated by any entry chosen from the first row of Y
{X*lylka* | ja k € Z+}

must be the singleton set {O}. In addition to this, a symmetric argument holds for the family
{X*jyjl Zie | Jok € Z*}, where y;; s chosen arbitrarily from the first column Y/, since the
entries of first row of Z are all zero. Consequently, the family {X*jyijk* | .k € Z*} is
summable since it has only one element which is different from zero, X,5y2025..

We couldn’t find what we expected, and even worse, we faced the fact that summability
of {X.;yjrZis | j,k € Z"} does not force XY and Y Z to be defined. On the other hand,
the summability of this family is a necessary condition for associativity as our next work
will show us. That is, we’re not done with it yet. Hence, from this point on we will call this
summability condition requirement (S) for convenience. By the way, we have one more
fact which is easy to see to talk about before we go into details: Let (X, Y, Z) be triple of
matrices in Moo (F'). Then the family { X, ;y;1Zk. | j, k € Z"} is summable if and only if
the set U = { gk € ZT | xiyinzm # 0}, which is the support of arbitrarily chosen (i, [)-th
entry is summable. Let us continue our discussion with the following result, which tells us
that if we add one more assumption, summability of the family { X,y Zk. | j, k € ZT}

implies associativity.

Theorem 3.3.12. Let X,Y and Z be matrices such that XY,Y Z are both defined and
{X.jyjrZis | j,k € ZT} is summable, then X (Y Z) = (XY') Z.

Proof. In order for the desired result to follows, we will try to show that the (4, [)-th entry of
X(YZ) and (XY)Z are equal for any choice of 4,1 € Z". In other words, if we write them

in terms of formal expressions, we would like to obtain the following equality

X0 2= Yo iy) =5 (S )= )20

k=1 N j=1
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By the definedness of Y Z, we know that the set {k | Yjkzm # O} is finite. Hence, for any

j € Z*, we have a smallest number ¢; satisfying

[e’e) 0 o) t; oot
(X(YZ2))y = Z Tij ( Z yjkzkz> = Z Tij ( Z yjk2k1> = Z Z TijYjkZki-
j=1 k=1 j=1 k=1 j=1 k=1

Moreover, each entry in the last summand above has finite support because requirement (S)

is satisfied by hypothesis. Hence, there is a smallest number ¢ such that
o U q tj
Z Z TijYjk2hl = Z Z LijYjk<ki-
j=1 k=1 j=1 k=1

Now, let’s define ¢ = Max{¢t; | 1 < j < ¢}. Then we obtain that

[e.e]

tj q 1 q t
E E xijyjkzklzg E 37ijyjk2kz:E E LijYjk2rl-

j=1 k=1 j=1 k=1 j=1 k=1

A symmetric argument holds for ((XY)Z);. The set {j | z;jy;x # 0} is finite since XY
is defined. Therefore, for any k& € Z*, there must exist a smallest number ¢, satisfying the

following:

077200= 5 (S =32 (S )= 33

k=1 = k=1 = k=1 j=1

Since {X*jyijk* | 7,k € Z*} is summable, one can find a number ¢’ such that

oo t 4
E E xz]yjkzkl—g E TijYjkki-

k=1 j=1 k=1 j=1

If we define ¢’ = Max{gj, | 1 < k < '}, then it must be

/

q;, qg
u—E E %ygkzkz—g E TijYjkkl = E E TijYikZkl-

k=1 j=1 k=1 j=1 =1 k=1
From here on all we need to do is check whether or not
q t q/ t
E E TijYjk=kl = E E TijYjkZkl- (*)
=1 k=1 j=1 k=1

Let’s assume that the above equality does not hold. Then we have the following eight cases,

one of which must occur:
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e ¢ >qandt' =t s g>q¢andt =1t

e ¢ =qgandt' >t eg=¢ andt >t
e ¢ >qgandt' >1 e g>¢andt >t
e g>¢andt' >t e ¢ >qgandt >t

Now, we shall observe these cases. Let’s start with the first case. If ¢ > ¢ and ¢’ = ¢,

then we have

!

t

q q t g v
E E TijYjk2rl + E E xijyjkzklzg E TijYjkZkl-

j=1 k=1 j=q+1 k=1 j=1 k=1
Notice that ;v 25 = 0 for all j > ¢ by construction of g. This forces the second summand
to be zero. Hence, the equation (%) holds in this case.

Second, if ¢ = g and ¢’ > t, then

/

q q

t q t t
E E %jyijkHLE E xijyjkzklzg E TijYjkZkl-

j=1 k=1 j=1 k=t+1 j=1 k=1
We know that ;21 = 0 for all & > ¢ by definition of ¢, and so the second summand is zero
again. Thereby, the equation () holds in this case too. Moreover, the third case, where
¢ > qand t' > t, immediately follows from the first two cases. Let’s continue with the
fourth case. One can write the following two equations which are equal to each other in the

case when ¢ > ¢’ and t' > ¢:

/

q

t q ¢ q +
E E TijYikerl + E E xijyjkzklzg E TijYjkZki

j=1 k=1 j=¢'+1 k=1 j=1 k=1
q t q t/ q t/

E E TijYjk2rl 1 E E TijYjkZrl = E E TijYjkZkl

=1 k=1 j=1 k=t+1 j=1 k=1

Recall that t = Max{tj |1 <5< q} and ¢’ = Max{q,’g |1 <k < t’}. Thus, we have
z;;y, = 0 forall j > ¢’ and y 2, = 0 for all k& > t. This forces the second summands of
each equation above to be zero. This gives us the desired equality (). Through a symmetric

process, one may prove the remaining cases. 0

Let’s make use of this crucial theorem. We continue with important consequences of it.

In fact, the first one is nothing more than Corollary 3.3.10 with an easier proof.
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Corollary 3.3.13. Let Y € M/™(F). Then for any X, 7 € My (F), it must be
X(YZ) = (XY)Z.

Proof. Clearly, the matrices XY and Y Z are both defined as Y € M/ (F). Besides, it is
not hard to see that family {X*jyijk* | j,k € Z*} i1s summable because Y consists of

finitely many nonzero elements. Hence, X (Y Z) = (XY)Z by the above theorem.
O

Corollary 3.3.14. If X,Y € My (F), then X(YZ) = (XY)Z for any Z € My (F).
Likewise, X(Y Z) = (XY)Z for any X € M (F) in the case when'Y and Z column-finite

matrices.

Proof. Let o; be the length of the ¢-th row of the matrix X, which is row-finite. Then it must
be x;;y;r, = 0 for every 7 > o;. Also, note that the rows Y}, have finitely many nonzero
elements since Y is also row-finite, and so we have only finitely many y;; # 0 for j < o;.
Therefore, the family { X.;y;xZy. | j,k € Z*} summable. Thus, (X,Y, Z) is an associative

triple by the theorem. The second statement also follows in a similar way. [
Finally, we close out this section with the following proposition:

Proposition 3.3.15. Let X, Y and Z be matrices such that Y Z is defined and X is row finite.
Then it mustbe X (Y 7Z) = (XY)Z.

Proof. One can immediately say that XY is defined as X is row finite. In order to see that
Y € I'5(X, Z), all we will do is determine whether requirement (S) is satisfied or not. Now,
let’s consider the set U = { gk € ZT | xiyjrnzm # 0}, which is the support of arbitrarily
chosen (i, 1)-th entry. It follows from the definedness of Y'Z that {k | y;x2 # 0} is finite
for any choice of j € Z". Besides, { J | @i # O} is also finite as X is row-finite, and so the
setU = {j,k € LT | xijyjnza # O} is finite. Hence, requirement (S) is satisfied. This

completes the proof. 0

33



Remark 3.3.16. As we mentioned, M, (F') is not a ring since it fails to satisfy associativity.
But, the subspaces Mc(F), Mps(F) and MI™(F) form an associative ring since the
requirement (S) satisfied in these subspaces. We should note here that the result also holds
in the case when the coefficients of matrices are taken from a ring with "1" instead of a field

of characteristic zero.

As we said before, in general, a variety of theorems in the context of finite matrices
cannot be generalized to infinite matrices by simply letting n tend to oo due to obstacles
such as convergence, associativity. For example, W.Hotubowski ([12]) showed that inverse
of an upper triangular matrix might be lower triangular, which is a case not in the finite-
matrix theory. We will deal with this article briefly to tell why we should be prepared for

differences and careful while working with infinite matrices.

3.4 A Little Warning

In this section, we shall take a look at a couple of examples that show us that fundamental
theorems on n X n matrices with real entries which play a key role in finite matrix theory
may not hold in the case of infinite matrices.

Let X and Z be two n X n matrices. Recall that if X7 = I,,, then we also have ZX = I,,.
However, the result fails to be satisfied in the case when our matrices are infinite. As an

example, put

0000 0100

1 000 0010

X=[0100 and Z=10 0 0 1

0010 0000

Then, easy calculations give
0000 1000
0100 0100
XZ=10010 and ZX =00 1 0 = I.

0001 0 001
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As can be seen above, X Z # [, although ZX = I,. Thus, this theorem does not work for

infinite matrices. We also know that

* If X = (24j)1<ij<n is an invertible lower (upper) triangular matrix, then its inverse

X ! must also be a lower (upper) triangular matrix.

* Let X be an triangular n x n matrix. Then it is invertible if and only if all its diagonal

entries are invertible.

Now, we shall try to find two matrices X', Y’ with entries in an infinite matrix ring to show

that these results also may not work for infinite matrices.

X
Let X' = be a 2 x 2 matrix with coefficients from the M pc¢(F'), where
O 7

X, Z are infinite matrices which we defined above and

1 000
0000
Y=[0000
0000
. Z 0 :
Now, we consider Y’/ = . One can easily compute that X'Y' = Y'X' = F,
Y X
Io 0 ). . .
where £ = is a unit matrix in My(Mpcs(F')). Thus, X’ and Y’ are both
0 Iy

invertible. To conclude, we see that inverse of the upper triangular matrix X’ that we defined
above is a lower triangular matrix, which is Y. Moreover, as can be seen easily, the diagonal

entries of X’ and Y are not invertible. This is exactly what we wanted to show.
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Chapter 4

Derivations of Rings of Infinite Matrices

4.1 Definitions and Statement of Results

Let R be an associative ring with 1. An additive map © of this ring R is called a derivation
of R if it satisfies the Leibniz Rule © (zy) = D (2)y + 2D(y) for all x,y € R. Also, if x is

any element of this ring, then the additive map

D,: R — R

Yy — TY—yx

defines a derivation. We call such a derivation inner. Characterizing all derivations of a ring
has always been of interest to many mathematicians studying algebra. Of course, one of
the first ring structures that come to mind are matrix rings. First, let us briefly summarize
what we know about derivations of the ring M,,(R) of all n x n matrices over R. Every
derivation of M,,(R) is an inner derivation in the case of R being a field (see [10]). What
one need to keep in mind is that this result does not have to work if R is not a field. We have

a practical way of constructing a derivation of M,,(R): Let € be a derivation of R. Then the

map Dep) : M,(R) — M,(R) whichis defined by
(Der)(X))ij = €(zi;) forall i,

turns out to be a derivation of M,,(R), called induced by €, or shortly induced. Namely, a
derivation of a ring R enable us to construct a new derivation of M,,(R).

Now, let us broaden our perspective. What can we say about derivations of infinite matri-
ces? As we mentioned in the previous chapter, the set M. (R) of all matrices over R, whose

rows and columns are indexed by Z* x Z™, has no structure of a ring due to some problems
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such as convergence, associativity. Thus, it would be better to consider its subsets which
form a ring such as the set M¢¢(R) (Mpgy(R)) of all column finite matrices (row finite ma-
trices). For example, Kolesnikov and Maltsev described all derivations of the ring M/ (R)
of all finitely supported matrices in [14]. They deduced that any derivation of MZ"(R) can
be written as a sum of an inner derivation © x for some X € M¢;(R) N Mpgs(R) and an
induced derivation D¢ (g). In [20], Slowik achieved a similar result for M¢ 7(R) and the ring
T (R) of all upper triangular matrices. Here we will discuss this article in detail. Through-
out this chapter, I? denotes an associative ring with identity. Before moving onto the next

section, let us state precisely what Slowik proved:

Theorem 4.1.1. Let ® be a derivation of Mc(R). Then there exist a matrix X € Mc(R)

and a derivation € of R such that
@(Y) = @)(<Y) + @@(R)<Y) fOl" all Y € Mcf(R)

The ring of infinite upper triangular matrices constitute a nice example of a subring of

M f(R). Same result moved here:

Theorem 4.1.2. Let ® be a derivation of Too(R). Then there exist a matrix X € T (R) and

a derivation € of R such that

DY) =Dx(Y)+Dewr)(Y) forall Y € To(R).

4.2 Some Techniqual Propositions

This section will propose some techniqual propositions that help us prove our main desired
results. Before working, let us introduce some notations and terminologies. As usual, we
show the matrix whose only nonzero entry is 1 in the (7, j) coordinate by ¢;;, regardless of
its dimension. As we know, these are known as matrix units. Also, the symbols /., and I,
stand for the identity matrices, infinite and n X n, respectively. We write M.,y (R) for the
ring of all matrices over R with n rows and infinite number of columns (indexed by Z™).
Likewise, the ring of all matrices over R with infinite number of rows (also indexed by Z™)
and n columns is shown by M.y, (R).

Finally, it is time to start work. Let ® be a derivation of ‘R, where R is one of the rings

M f(R) or To(R). Firstly, we focus on the properties of ©(Y") if Y is finitary.
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Proposition 4.2.1. If © is a derivation of R, then there exists Z € Mc¢(R) such that
DY) =D4Y)+D'(Y) forall Y € MI™(R)NR,
where for every i, j € Z and A € R one has ©'(\¢;;) = N'&;; for some N € R.

Proof. It will be more understandable if we give this proof step by step.
(1) Foranyi € Z' and A € R, all nonzero entries of D(\{;;) lie in the i-th row and in the

1-th column.
Writing A&;; as AE;.&i, we have D (AE;) = D(AE;.€;). Since D satisfies the Leibniz

rule, we obtain
D(Ai) = D(N&i)&ii + Aii® (&)

It is a quick check to see that D (\;;)&;; has nonzero coefficients only in the i-th column. On

the other hand, the nonzero coefficients of A;®(;;) lie in the i-th row. Hence, we are done.

(2) Leti € Z* and A € R. It must be

D(A&i) = A ( Z(@(&z‘))z‘j&j) + (Z(g(gii»ki&m’) A+ N

J#i ki
for some \ € R.

In the previous step, we observed that
D(A&ii) = D(A&ii)&i + A& D (&id)-
Using this, one can see that
D(A&ii) (1o — &ii) = A&iiD (&id)-

Thus, (D(A&:;))i; = (AD(&i))q; for all j # 4. Let’s take a different approach. Writing A¢;;

as &;.\&;, we obtain
D(Aii) = D (&) i + LD (Aii).-
It immediately follows from the above equality that

(oo = &i)D(A&ii) = D(&ii) M-
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Hence, (D (i) ki = (D (&) Ak for all k # i. Combining these results, we get

i-th column

0 0 D (&i)2iA 0

D(N\ii) = : ' : : :

MO (&ii)in - AD(&i)iicr D) AD(Ei)iigr - | ithrow
0 0 D (&ii)it1, 0

This proves our claim.

Now, we shall examine that symmetric arguments hold for any ©(\¢;;), where 4, j € Z+
and A € RR.
(3) Foranyi,j € Z* and A € R, all nonzero entries of ©(\&;;) lie in the i-th row and in
the j-th column.

If we write A&;; as A§;;.€;;, then D(AE;;) = D(AE;;.€j;). Since D satisfies the Leibniz
rule, we obtain

D(AGij-€15) = D(AE)&55 + AP (&5)-

Clearly, ®(\&;;)¢;; has nonzero coefficients only in the j-th column. On the other hand, the

nonzero coefficients of \;;D(¢;;) lie in the i-th row. Accordingly, our claim follows.

(4) Leti,j € Z" and A € R. Then there exist \' € R satisfying

D(A) = A ( Z(@(émmk) + (Z(@(émmj) A+ Ng;

k] Kt
for some \' € R.

In the previous step, we observed that
D(AGi;) = D(AE;)Ej5 + A&iD(E5)-
If we write \§;; as §;;.A;;, then we also have
D(A&ij) = D (&) AGij + EaD(Nij)-
Thereby, it must be

D(Aij)Ej5 + A&iD(E5i) = D (i) Aij + LD (Nij)-
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From the above equality, we find

(DAE))Eiiks = (D(Eii)Aij)ry for k #1i
and
(&iD(N&j))ik = (N&;D(&5))ir for k # 5.

Combining these results, one may write the matrix ©(\&;;) which has nonzero entries only

in the i-th row and in the j-th column as follows:

D(NE) = : : : : :
AD(Ejj)jn o AD(Elig-1 D(Aij)is  AD(Ejj)j5+1

This completes the proof of our claim.
(5) Foranyi# j € Z*, itmustbe (D(&;5))i; = —(D(&i))ij-

From additivity of ©, we have ©(0) = O. Also, &;;.§;; = O in the case when ¢ # j.
Accordingly, we get O = ©(0) = D(&;;.€55) = D(&i)&j; + €D (Ej;)- Clearly, this give us
desired result, (D(&j;))ij = —(D(&ii))ij-

(6) There exist a matrix Z such that forall 7,5 € Z* and A € R

@()\él]) = Z/\fzj — /\ijZ + )\,gij for some )\/ € R.

To prove this claim, consider the matrix below

0 (D(E22))12 (D(&33))13 (D (€a4))1a
(D(&11))21 0 (D(&33))23 (D (Eaa))2a
Z =3 ®E))uCi = | @En))s (D(2))s 0 (D (E44) )34
(D(&))a (D(&22))az (D(E33))13 0

For this Z, we have
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j-th column

0O ... 0 0 0 ... [ ithrow
0 0 g(fi,i)i-i-l,i)\ 0

As can be seen above, the matrix Z.)\§;; has nonzero coefficients only in the j-th column.
Furthermore, in step (5) we observed that (D(¢;;))i; = —(D(&;))i; forall i # j € ZT.
Thus, —Z = 3", —(D(§55))ii&i5 = 2252:(D (&) i5is»

0 (D(&i1))12 (D(&i1))is (D (&11))1a
(D(&22))1 0 (D(&22))23 (D(&22))2a
—Z =1 (D(3))an (D(Es3))32 0 (D(€14))34
(D(€aa))ar (D(Eaa))az (D(aa))as 0

Easy calculations give us that

j-th column
0 0 0 0
ISV 0 0 0
Ag(ﬁjj)jl Ag(gjj)j,j—l 0 )\@(fjj)j’]q_l ... | i-throw
0 0 0 0

As we can see, the matrix Z satisfies
D(\ij) = Z.\ij — i Z + NEy;

forall i, j € Z* and A € R. The claim also holds.
As aresult, since Y can be written as a finite sum of matrix units &;; for some ¢, j values

and ® is an additive map, we obtain that
DY)=2ZY -YZ+D'(Y) ,

where for every i, j € Z" and A € R, ®'(\¢;;) = N¢;; for some X € R. ]
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One may ask why we started by investigating ® (Y'), where Y € M/"(R). Let us explain
the basic idea here. We first show that finitary matrices satisfy what we want to show, then
we will extend this to whole ring M¢(R) (7o (R)) in a practical way as you will see. Our
next job is to describe the derivations of R mapping A(&;;)’s to N'E;;’s. Let’s continue with

the following remark that will help us in the proof of next proposition.

Remark 4.2.2. Suppose that ® is a derivation of R such that D (\¢;;) is of the form X'¢;; for
all 4, j € Z*. Then the maps

D, R — R
A= (D(A&))i

are derivations of R forall: € Z™.
Proof. Let A\, € Rand i € Z™. Then, using the additivity of ©
Di(A+7) = (DA +7)8i))ii = D(Ai)ii + D (Vi) = Di(A) + Di(7).
This means that 3, is additive. Let’s check whether or not ®; satisfies Leibniz rule:
@iO\’Y) = (33()\’7521))” = (@()\fu’yfu))u
= (D(A&i)v&ii + XD (Vi) )i
=0;(A\)y + ADi(7)
Hence, the result follows. L]

Proposition 4.2.3. Let © be a derivation of R such that D(A\;;) is of the form N'¢;;. Then

for all finitary matrices Y € R
D(Y) =2W(Y) +2?(Y),
where DU is an inner derivation and ©? is an induced derivation.

Proof. Firstly, we construct the maps
Dy R — R
A= (D),
Now, let i, j € Z* and A\ € R. We are given that D (\¢;;) has nonzero entry only in its (i, )
position, which is ©;;(). Thus, writing A§;; as A;;.€;;, we can see that
D(A&ij) = D(A&i-&ij) = D(A&i)&ij + AiD(&i5)
= Dii(N)&ij + A&D(&5)-
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Of course, \¢;; can also be written as ;;.\;;. Therefore,

D(Aij) = D(&ij Ajs) = D(Eij) A5 + i D(AE5)
= D(&ij) A5 + &P (N).

Combining above results, we find
Dii(N)&ij + AaiD (&) = D (&) A5 + 5D (N).

In particular,

ij

<©ii(/\)§ij + A&@(&j)) = (9(&]'))\5]’]' + &j@jj(/\))

ij

Now, let’s calculate (4, j)-th coordinate of those terms

]

. (Qn'()\)&j + )\fn'@(fij)> = Dii(A) + AD(&ij)is = Dis(N) + ADy5(1),

. (9(&3'))\5]';' + &a‘@jj()\)) =D;;(A) + D(&ij)ijA = Dj;(A) + Dy (LA

ij

The right-hand side of the above two equations yields that for any 7, j € Z*

D;i(A) = Dii(A) + AD45(1) = Dy (1A (%)
Now, we consider the diagonal matrix A = (9;);ez+ With 6; = —01;(1):
0 0 0 0
0 —Di(1) 0 0
A= Z ~D5;(1)& =| 0 0 —Du(1) 0
=2 0 0 0 —2u(1)

Let ©’ be an inner derivation implemented by A, i.e., ®'(Y) = AY — Y A. It is obvious that

D" :=® — D’ is a derivation of R as well. Now, let ; € Z* and A\ € R. Then we have
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The matrix A.)\; can be seen as below

i-th column
0 .. 0 oA O
0 ... 0 duX O

AN =
0O ... 0 Oii A 0 ... | ithrow
0 ... 0 YA O

Since 6,,; = 0 for all n # ¢ and §;; = —D;(1), it must be

i-th column
0 .. 0 0 0
0 .. 0 0 0
AN =
0 . 0 —=Du(DA 0 ... | ithrow
0 0 0 0

That is, the matrix A.\&; has non-zero entry only in its (4,4) position, which is —®;(1)\.

Now, let’s observe what the matrix A&;.A looks like:

i-th column
0 .. 0 0 0
0 .. 0 0 0
i A =
0 0 0 —MADy(1) 0 ... |ihrow
0 0 0 0

As can be seen above, the matrix \;;.A has non-zero entry only in its (¢, %) position, which

is —A®1;(1). Thus, we conclude that ©),(\) = —D1;(1)A+ AD,(1). Using this observation
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and equation (), we obtain

D5i(A) = Di(A) — D(N)
=9;i(A) = (=Du(D)A+ AD1;(1))
— Du(\) + Du(1)A = ADi(1)
=D1u(A)

Since i is chosen randomly, one can immediately deduce that D7;(\) = D7;(A) for all i, j
and A € R. This investigation will play an important role in the rest of our work. Also, it

should also be kept in mind that ®; is a derivation of R by the above remark.

Now, consider the map ©”: R — R which is defined as follows:

9'1/1(911) @'1'1(912) 9/1'1(1/13)

" " Q// (le) ©” <y22) QH (y23)
DY) =Y D)= | ) ) )

i,j 911@31) @11(y32) 911(3/32)

By the construction of ©", (C‘D”’(Y))ij = D, (y;;) for all 4, j, where D/, is a derivation of
R. That is, ©" is an induced derivation. Thus, ®V = ©” — ©" also defines a derivation of
‘R. Now, I would like to summarize what we have done so far. We constructed the derivations

D, 9", D" and DV of R such that
DY) =D(Y)+2"(Y)+DV(Y) forall Y € MI™(R).

We already know that ©’ is an inner derivation and ®" is induced by D". As you see, what
we need to do is to verify that " (Y") is an inner derivation to achieve our goal. So let’s
focus on DV. Take A € Rand i € Z* arbitrarily. Then D7/ (\) = (D" (\&;))i = D7, (A\) by
the definition of ©"’. We also determined that ©”1;(\) = ©”;;()). Therefore,

Dii (A) =D5(N) — D (A) = Dj(A) — D1, (A) = 0.

Since i € ZT and A € R are randomly chosen, we have DY(\) = 0 for all i € Z* and
A € R. Now, consideri, j € Z" and A € R.

45



1. Clearly, we can write \;; as \&;;.&;;. Then we get
DV(AEG;) = DV(N&i&ij)
= DV (N & + MDY (&)
= DV (N)&; + MDY (&)
2. Similarly, A§;; can be seen as &;;.\¢;;. Thus, we also have the following
DV(AE;) = DV (&5.7E5)
= DV(E)AE; + &PV ()
= DV (&N + DV (N
Since DY (\) =0 forall i and A € R, using (1) and (2) one can deduce that
(DY (&), = D (A) = MDY (1) = D (1)A.

Accordingly, ©;Y(1) is in the center of R for all pairs i, j.
NOW, let i,j, 1{7 - Z+. Using Dlv(ézk) = @IV(&jfjk) = @IV(gij)fjk + gijglv(fjk), we

obtain
\(le(é}k))ik = (D™ (&) + &PV (Er))
D (1) = D3 (1) + Dj(1)

Therefore, D]} are determined by ;Y (1) in the sense that

®l Z+k()\) - A@z z+k: - A(Zgwn z+n+l ) for k > 1.

Of course, in the case when R = M ¢(R) we have nonzero entries below the main diagonal
and so we should take this observation one step further. Using the fact that DY ()\) = 0 for

all 4, we can write D};_, () as below

R‘
>_.

DY (\) = —ADY, (1) = —A( O HnH(l)) for k> 1.

3
Il
=)

Consider now the diagonal matrix D = (d;);cz+ which is defined as

DY) 0 0 0
N 0 0 0 0
D = Zdifﬁ = 0 0 —2N(1) 0 U I
- 00 0 —©N1)-DN)
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where d; = D%(1), dy =0, d; = d;—y — DY, ;(1) for i>3.

One can check that
OY(Y)=DY —YD forall Y € MI"(R),

showing that D' is an inner derivation. This is what we wanted to get. By the way, the
above check may seem difficult at first glance but it is not. We got enough information about

D'V that make these calculations easier:

* ©}Y(1) is in the center of R for all pairs i, j and

* Q%Jrk()‘) = A©£z+k(1> = )‘(Zi;é Qﬁn,wnﬂ(l)) for k>1

* D (N = A9, (1) = _>‘<qu2;(1) gzvk+n,ik+n+1(1)> for k> 1

Consequently, if Y is finitary , then we have

"

DY) =D (V) +2" (V) +DV(Y) =3V - Y3+D"(Y),

where 3 = A + D and D" is an induced derivation. Hence, we are done. L]

Up to this point, we observed the properties of ©(Y') when Y € R is finitary. In the

following proposition, we will obverse what happens to D (Y) if Y ¢ M/™(R).
Proposition 4.2.4. Let ® be a derivation of R such that
DY) =D (Y)+D"(Y) forallfinitary Y € R,
where ®' is an inner derivation and ®" is an induced derivation. Then we have
DY)=D'Y)+D"(Y) forall Y € R.

Proof. Assume that ®’ is implemented by U and ®” is induced by €, which is a derivation
of R. Of course, we can make such an assumption since we are given that ®’ is an inner

derivation and ©” is an induced derivation. If we write 1 as 1.1, then

¢(1) = €(1).1 + 1¢(1)
(1) +€(1)

&
N
I
c
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(In a similar way, we have (/) = O.) Since €(1) = 0 and ©” is induced by €, it must be

(42)-

Dividing U into block matrices as below

U, | U,
, where U; € M, (R),
Us | Uy

we obtain that

(Ge) = () = ()

Also, from

el (55)<((52)
((52)-(55)

Now, let Y € R. We divide it as follows

Yi Y,
Y = , where Y; € M, (R).
Y| Yy

it follows that

From here on we turn our attention to the block matrices Y1 € M, (R),Ys € M, x(R),
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Vs € M (R)and Y, € Mcj(R). Let’s start with Y. We can write that
vilvi\ _o((olm ) _of(0) (o© v
Vil 0|0 @) ‘ @) O ‘ @)
O‘—Ug O‘Yg N I, | O Vi|vy
Uy 0 0|0 olo )\ vwlv
0l 0\, (Vi v
O | UsY, @) @)
Vil v,
0| UsY, |
On the other side, we have
(o)) 0|1, | 0| o NEECAIAY
olo 0|0 0| I o v
Accordingly, it must be

) ()

It follows from the above that

() - EEE) (== ()
D = || | = + 1 (® -9
0 ; olo))). 0 ;
O|Y,
= 9| |—— + (D = D) ((Y2)i5i5))ij
O| O .
O|Y,
= || | — + €((Y2)ij)
O| O y

for all 7, j. As a result of that, for all Y5 € M, (R), we obtain

((65)) = ((55) = (%))
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Now, we consider Y; € M, (R),Y; € M!™ (R). From our hypothesis, we already have
Yi| O Y1 | O Y110
D =9 + D" :
Y3 | O Y3 | O Y| O
The additivity of © implies
Y | Ys Y | Ys Y | Ys
D 1| Yo _ o 1| Yo Y 1] Y2 .
Y3 | O Y3 | O Y; | O
Finally, let’s observe Y, € M¢¢(R). From
wilwg\ (oo 0|0
wr | wr olv, 0|V
0 |, wr | wy
U] 0 0\5/4 0\1 wr | wr
O | UY,
= +
O| O Wi | W,
O | UxY,
wilowi )
it follows that W] = O. Thus, for any i, j, we get
Yy | Yo Y1 | Ys OO0
D L — o= + (D
Y | Yy g Y;| O g O|Y, y
i v v

Y1 | Y,
=12  m + 0.
Y3 | O g
ij

Fortunately, it is time to get the result. Let 7, j € Z*. We just deduced that

LGN, )= ().

It is also easy to see that

() ) = (E)),
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Thanks to these observations, we get

of (¥l Ao (2 Lo [ (27 |
Y3 | Yy 3 Y3 | Yy Y3 | Yy g
i )
showing that ©(Y) = ©'(Y) + ©”(Y) forall Y € R. O

With these lemmas in hand we are now ready to prove our main results.

4.3 Proofs of the Main Results

Proof. Let ® be a derivation of R. From Proposition 4.2.1, it immediately follows that
DY) = Dz(Y)+D'(Y) forall Y € ML N'R, where for all 4,5 € Z* and A € R
we have ©'(\; ;) = N¢; ; for some X' € R. Moreover, from Proposition 4.2.3, it must be
D'(Y) =D3(Y)+Der)(Y) forall Y € MI"NR, where € is a derivation of R. Therefore,
DY) =Dx(Y)+Der)(Y) forall Y € MI"NR, where X = Z + 3. Finally, Proposition

4.2.4 gives the desired result
DY) =Dx(Y)+Dem(Y) forall Y € R.

Of course, we also need to verify that X € R to complete the proof. In the case of
R = Mcy(R), the result is trivial since the matrices Z, 3 are both in M¢(R), and so their
sum must be column finite as well. Now, consider the case of R = T, (R). Assume that

X ¢ Too(R). Then there exist 7, j € Z* with ¢ > j such that x;; # 0. In such a case,

(D) = Ox(&i)y; + (Pew (1)),
= (Dx(&j))y; + €(&s)is)
= (Dx(&;5));; +0
(Dx(&55))

This means that ©(&;;) ¢ T (R), which is a contradiction. Hence, we get X € To(R). O
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Chapter 5

Derivations of Infinite Niltriangular Lie

Matrix Algebras

Let R be a commutative ring with identity. We have already observed that the set of all nil-
triangular n X n matrices over R whose entries are all zeros on and below the main diagonal
forms an R-algebra shown by N'T,,(R). As discussed earlier, many mathematicians have
been interested in derivations and automorphisms of this algebra. Let’s take a quick look at
a few studies on this subject to understand how important the work to be done in this chap-
ter is. The problem of describing automorphisms of the algebra N'T,,(R) was investigated
by Dubish and Perlis when R is a field (see [8]). Later, Cao and Wang also addressed this
algebra in their work. What they did was describe the automorphism group of N'T;,(R) (see
[5]). Moreover, Wang, Ou and Yao gave derivations of N'T},(R) as a Lie algebra (see [17]).

We now consider the set 7., (R) of all infinite Z*x Z* upper triangular matrices over R.
It is no wonder that 7., (R) constructs an associative algebra with respect to usual matrix
addition, scalar multiplication and matrix multiplication. This algebra 7., (R) was investi-
gated by Sushkevich (see [21]) when R = C is a field of complex numbers. As you may
recall, we observed that an associative algebra always forms a Lie algebra. In particular, our
algebra 7., (R) is a Lie algebra with [ X, Y] = XY — Y X. Throughout this chapter, we will
concentrate on its Lie subalgebra of strictly upper triangular matrices, which is denoted by
NT.(R). Now, let us talk about what we will do. All derivations of N7, (R) were de-
scribed by W.Hotubowski, I.Kashuba and S.Zurek in [11]. They proved that any derivation
of NT(R) can be expressed as the sum of an inner derivation and a diagonal derivation.

The purpose of this chapter is to discuss this article in detail.
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5.1 Notations, Some Definitions and Basic Facts

We have already discussed what matrix units are, but it is better to talk about them once

again since they play a vital role in this chapter.

Definition 5.1.1. An infinite matrix §;; whose only nonzero entry is 1 in the (, j)-th entry is

called matrix unit.

Regarding these matrices, we have the following fact than can be proved easily
i Era] = O — Oy,

where ¢ is the Kronecker delta. As you know, it was mentioned in the second chapter that
matrix units form a basis for the vector space M, (F') of all n x n matrices over a field
F. Well, do you think we can say the same thing for N'T,(R)? (Note that our Lie algebra
NT,(R) is an uncountable dimensional vector space in the case of R being a field.) I can
just hear you saying, "Of course not." Let us explain why this cannot happen. Consider the
set {&; | 1 <i < j}, which consists of all matrix units in N7 (R). Of course, we have no
doubt that this set is linearly independent. On the other hand, one can easily find a matrix
X € NT,(R) which can not be written as a finite linear combination matrix units. As an

example, consider

01 1111
001111
00 0O0O0O0
X = e NT(R).
00 0O0O0O
00 0O0O0O0

Nevertheless, the fact that matrix units do not form a basis of N'T,,(R) does not prevent us

from writing a matrix X € N'T,.(R) as
X = Z ;-
1<i<j

As you may recall, we examined the lower central series of the Lie algebra N5 (F') of strictly

upper triangular 5 X 5 matrices over a field /. Now, we move the discussion we had in the
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second chapter here. Let’s see what similarities or differences are there. Denote the lower

central series of N7 (R) by

O = NToo(R

)

Qs = [, NTw(R)]

Q, = {anlaNTOO<R)]'

One can easily see thatif X,Y € NT,(R), then

0 0 213

00 O

00 0
XY -YX=7=

00 0

00 O

214 215

224 295

0 235
0 O
0 O

Since Qy = [NTo(R), NT(R)] = [Q21, 4] is defined to be the linear span of elements of
the form [X,Y] = XY — Y X, where X,Y € NT,(R), we obtain

QfﬂmJM:{ZeNTAM|Z:

o o o o

o o o O

213 214 <15
0 204 295
0 0 235
0 0 O

}cgl.

You may have noticed that Q, C N'T,,(R) consists of matrices whose entries one above the

main diagonal are all zeros. As we will see soon, a symmetric discussion holds for all €2,,.

We now focus on €23. Let X € Oy and Y € NT(R). Then we have

0 0O 214 215

0 00 0 295

000 0 O
XY -YX=7=

000 0 O

000 0 O
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That is why

0 0 0 z14 215

0 00 0 =2z ..
93:[92,91]:{ZGNT00(R)|Z: 000 0 0 .. }CQQ.

000 0 0 ..

Now, we shall generalize the results we obtained above. Let X € Q,, 1 and Y € NT(R).

Then easy calculations give us

000 0 Zin4l Zint2 Z1nt3
0 00O 0 0 Zon+2  Z2n43
XY-YX=Z=1]10 0 0 0 0 0 23 n+3
0 0O 0 0 0 0
Thus, it must be
000 0 Zint1 Zin+2 21,043
000 0 0 22n4+2 R2n+3 .- -
Q, = {Z ENTLR)|Z=] 0 0 0 0 0 0 2z3n43 }

0 00 0 0 0 0

Thereby, we proved the following result:

Proposition 5.1.2. Foranyn > 1,

Q, = {X = (ij)ijert € NToo(R) | iy =0 if j < i +”}-
Corollary 5.1.3. ﬂ Q, ={0}.
n=1

Proof. Clearly, O € Q,, foralln > 1. So O C () €,. For the other inclusion, assume that

n=1

Q, # {0}. Then, it follows that there exist a matrix O # X = (x;;); jcz+ € ),,. This
J 7]

n=1 n=1
means that z;; # 0 for some 4, j € Z". For this 4, j € Z", we can immediately find n € Z*
such that j < i 4+ n. Of course, in such a case X ¢ €, by Proposition 5.1.2. Hence, it must

be X ¢ [ ,, and this contradicts our assumption. Thereby, the result follows. [

n=1
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There is one more thing we want to talk about the lower central series of N1, (R).

Proposition 5.1.4. [Q2,, Q.| = Qo foralln,m > 0.

Pl’OOf Let X € Qn, Y € Qm and Z = (Zij)i,jEZ+ = XYV, where Zij = Z.’L’Zkyk] NOW,
k=1

assume that j < ¢ +n + m. If 25, = 0, then z;,y; = 0. Otherwise, it must be k > 7 +n

because X € (1, and this forces j to be less than k 4+ m. Of course, this means that y;; = 0

since Y € (Q,,. Consequently, forall j < i+ n+m

Zij = Z$zkykj = ZO =0
k=1 k=1

Hence, Z = (2ij)i jez+ = XY € (1, by above proposition. Accordingly, we find that
[Qna Qm] g Qn—i—m-
For the other inclusion, we shall show that €2,,.,,, = [2,,, Y], where
Y = (yij)ijes+ =
0 otherwise.
Let us represent the matrix Y as the following rectangular array to have a better understand-

ing of what our process is:

0 0 Yimt+1 0 0 0
0 0 0 Y2.m+2 0 0

Y=1]0 0 0 0 Y3.m+3 0 with y; s = 1 for all <.
0 0 0 0 0 Ya m+4

As can be seen clearly, Y € €),,,. Now, let’s take an arbitrary matrix U € §2,,,,,. In order to
achieve our goal, it is enough to show that equation XY — Y X = U has a solution X € 2,,.

Evaluating (7, 7)-th entry of the expression on the left, we get that

k=1 k=1

If j > m, then inkykj = T j—m aS Yim4i = 1 for i > 1. Otherwise, inkykj = 0.

k=1 k=1
o0

Moreover, Z YikTkj = Titm,; due to construction of Y. So in other words, we obtain the
k=1
following system of equations
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e Ifj > m,

{CCZ‘J'm — Tigm,j = Uij 1 < 1 < 0.

e If j < m,

{

— Tigm,j = Uiy 1 S 7 S 0.

In view of the above observations, we now consider the matrix X, which is defined as below

X = (2ij)ijez+ =

\

Tij = Ti—m,j—m — Wi—m,j 1>m andj >m

25 =0 t>mand ) <m

Observing how we defined the matrix X, one can check that X € €2,,. Moreover, it is not

hard to see that X is a solution of the above system of equations. Therefore, it must be

Qpim C [, Q). This completes proof. O

Remark 5.1.5. The Corollary 5.1.3 also provides us with important information about the

structure of the sets {2,,. Since the intersection of all members of the lower central series of

NT,(R) is trivial, N'T,,, (R) is residually nilpotent and has a trivial center Z(N T, (R)).

In order to carry out our primary work in a more understandable way, it is better for us

to recall the definitions and examples we mentioned earlier concentrating on the Lie algebra

NTo(R).

Definition 5.1.6. An R-linear map ¢ : N'T(R) — NT(R) satisfying

o([X,Y]) = [e(X), Y]+ [X,0(Y)] forall X,Y € NT,(R)

is called a derivation of N'T,(R).

We denote the set of all derivations of N'T,(R) by Der(NT(R)). It can be easily

shown that it forms a Lie algebra under operations

(o +¢)(X) = o(X) +9(X),

([, ¥1)(X) = p(P(X)) = P (p(X)).

While we’re on this subject, let’s examine the behaviour of the sets {2,,n > 2 under a

derivation of N'T,.(R).
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Lemma 5.1.7. For eachn, Q, = {X = (2ij)ijer+r € NTouo(R) | zij = 0 forall j < i—l—n}

is invariant under any derivation o of N'Tn,(R).

Proof. We give a proof by induction on n. Clearly, ¢(£2;) C €; by definition. Then

©(Qir1) = ©([, ]) = [(%), ] + [, (1))
C 0(Q2:) U — Qp(§%) + Qi) — 0(21)8.
C Q0 — Q1 + Q2,91 — Q9 (by the induction hypothesis)

C Qip1 — Qi1 + Qipr — Qi1 S Qi

]

Inner derivations will be an essential part here as it has been up to now. Now, we take a

look at them.

Definition 5.1.8. Let X € N'T(R). Then the mapping
adX : NT(R) — NT(R)
Y — adX(Y) =[X,Y]
turns out to be a derivation of our Lie algebra N'T,,(R), called inner derivation induced by

X.

The set of all inner derivations of N'T,,(R) is a Lie subalgebra of Der(NT,(R)). We
will denote it by I Der(NT(R)). Now, consider the following map

¢: NT,o(R) — IDer(NTy(R))
X — adX

Clearly, ¢ preserves addition and scalar multiplication. Let X € N'T,(R), then we have

B(X, Y])(Z) = 6(XY — Y X)(2)
=(XYZ-YXZ)—- (ZXY - ZY X)
=adX(adY (7)) — adY (adX (2))
— (6(X), 6(0"))(2).

As a result of that, ¢ defines a Lie algebra homomorphism. Also, it is easy to see that ¢ is a

58



surjective map and

By using First Isomorphism Theorem, we get
IDer(NToo(R)) = NTwl(B) [ 2N, (R)) = NTwc(R).

Definition 5.1.9. Let D € D (R), where D, (R) is the Lie subalgebra of diagonal matrices.
Then the mapping defined as

adD: NTx(R) — NTx(R)
X = [D,X]

constitute another classical derivation of N'T,(R). It is known as diagonal derivation.

In the next section, we propose some technical lemmas that will make our job easier.

5.2 Auxiliary Lemmas

Firstly, we consider the following subsets of N'T,.(R):

b = {Zxkjfkj\xkj ER}, k=1,2,3,...

k<j

Let’s see what we have when k& = 1:

0 =12 713 T
0 O 0 0 ..
blz{ziljfu’wleR}Z{X ENT(R)|X=[0 0 0 o0 .. }
< 00 0 0

Lemma 5.2.1. The subset by is an ideal of N'T.(R) and it is invariant under the action of
any derivation of NTy(R).
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Proof. Let X = (2i;)ijez+ € b1 and Z = (z)ijez+ € NTw(R). Then, we can easily
compute that ZX = O and

0 0 (35122’23) (5512224 + 95132’34) 2?22 L1245 Z?ZQ T1j%j6

0 0 0 0 0 0
XZ=100 0 0 0 0

0 0 0 0 0 0

It follows from the above observations that [Z, X| = ZX — XZ = —XZ € by, and so b
is an ideal of N'T,(R). Now, we shall try to get second statement. Let ¢ be a derivation of
NT,(R). The first thing we will do is show that p(;2) € b;. Since ¢(£12) € N T (R), we

can write ©(&12) as below

P(&ia) = Y w365

1<i<j

Obviously, ¢(O) = O by the additivity of ¢ and the Lie product [{;9, & x+1] = O for any

k > 2. Combining these investigations,

©(0) = o([&12: Errr1]) = [9(612)s Erra] + [§12, 0 (Eper1)]
O = 0(&12)&k k1 — Ekrr19(&12) + E120(Erpr1) — P(Erpr1)Er2

O = ¢(&12)&k k11 — Erpr19(&12) + E1290(Epir1) — 0 (since &1 € by) (%)

Let’s find out what the matrix ¢(&12)&k k11 looks like. Easy calculations give us that

(k+1)-th column

0 ... 0 @(flg)ug 0

0 ... 0 W(£12)2k 0
©(€12)Ek k1 =

0 0 30(512)].3]6 =0 0 ..| kthrow

0 ... 0 0 0
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‘We focus now on the matrix

(k+2)-th column

0O 0 O 0 0

Gepnp(€) =[O 0 0 0 0
0 0 90(512)k+1,k+2 90(512)k+1,k+3 oo | k-throw
0O .. 0 0 0

In view of the above observations, the equation (x) can be written as follows

O = 0(&12)8k k11 — Errr19(612) + E120(Ekhr1)
k—1 o)
O = Z Tii k1 — Z Tht1,5Ek5 + 1290 (k1)
i=1 j=k+2
From the fact that £15¢(&x k1) € b1 and ¢(&12)Ek k+1 has no nonzero entry in its k-th row, it

follows that Z‘;‘;HQ ap+1,;€k; = O. Accordingly, it must be ¢(&12)Ek k11 = —&12 ©(Ekkt1)
and s0 ©(&12)&k k+1 € b1. This means that x;;, = 0 for any £ > 3,1 < ¢ < k. Hence, we get

©(&12) € b1

Now consider the set b} which is defined as below

0 0 713 x4
00 0 0 ..

by = [b1,bs] = {X ENTL(R)|X=]00 0 0 .. } C Q.
00 0 0 ..

Since b is an ideal of AT (R), we can immediately say that R.&;5 + b, C b;. Actually,

what is more crucial is that the reverse inclusion also holds. Let’s take an arbitrary matrix

Z = (2ij)ijez+ €

0 212 213 214 215
0 0 0 0 O
Z=10 0 0 0 0
0 0 0 0 0
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and put

01000 00 0 0 0
00000 0 0 23 214 215
X=]100000 €bhpand Y= 00 0 0 0 .. [€bh
00000 00 0 0 0

Then Z = 215615+ XY, and so h; C R& o + h/1- In addition to this, from the fact that a matrix
T # O € RE;, has nonzero entry (only) in the (1, 2) position, we have R¢, N b, = {O}.
Consequently, h; is a direct sum of these two subset, h; = R&5 + b’l. Therefore, we get
©(h1) = Rp(&12) + ¢(b)). Indeed, the idea of writing b as a direct sum of b} and R,
will ease things along. We have just seen that ¢(&12) € by, and so Rp(&12) C by. Hence,
from here on all we only need to do is obtain that ¢(h;) C b;. To do this, we first show that

©(h}) C by + by. By the construction of b/, we have

w(51) = @([b1,ha]) € ©(h1)h2 — ha(h1) + hro(ha) — w(h2)by.

Since b, = [h1, ha] C Qs and €, is invariant under ¢, we deduce that

p(b1)h2 = (Rp(&12) + @(b)))ba = Rep(&12)ba + @(h))be
C hibha + Q2bhy C hy + {O} = by.

Thus,

e(h1) € (h1)b2 — haw(h1) + bre(h2) — (h2)b1 € by — by + by — {O} C by + bo.

We are now ready to conclude that <p(f)/1) C by, which will complete our proof as we said

before. For any X € b}, we have

O = ¢(0) = ¢([€12, X])
O = 0(£12) X — Xp(&12) + E120(X) — (X))
0=0—0+&p(X) =0 = &r0(X).

Since X is an arbitrary element of b, we obtain that &500(h}) = {O}. To put it another way,
the equality tell us that (X )s; = 0 for all j. Hence, it must be (h;) C b, from the fact that
©(h}) C by + hy. Consequently, the desired result follows. O

62



Remark 5.2.2. In the previous lemma, we observe that b; is an ideal of N'T,,,(R). However,

by, is not an ideal of N'T,.(R) for k > 2 since h; N by, is trivial.

The following lemma is key here. It will form the basis of the proof of the main result.

Lemma 5.2.3. Any derivation ¢ of N'Ty(R) can be decomposed into the sum of a diagonal

derivation, an inner derivation and a derivation 1) such that (1) = {O}.

Proof. From Lemma 5.1.7 and Lemma 5.2.1, it follows that ¢(&1x) € by N Q1 for any

derivation ¢ and k > 2. Thus, one may write ©(&;) as follows

00 0 xlfk xlf,kﬂ x]f,k+2 $If7k+3
0 0 0 O 0 0 0
plen)=> af&=10 0 0 0 0 0 T )
7= 0 0 0 0 0 0 0

Now, let’s take an arbitrary Y = (y;;); jez+ = Z y1;€1; € by Then,
j=2
j .
p(Y); = > yual, for j =2,3,4...

1=2

If we are going to represent (Y') in array format:

0 (yi27%y) (Y1225 + v132%3)  (Yra7ly + Y1327y + Yraiy)
0 0 0 0
0 0 0 0
p(Y) = (1)
0 0 0 0
0 0 0 0
Now, consider the matrices

0 0 0 0 o0 0 0 0
0 22, 0 0 0 0 a2 22, 23

D=10 0 =z}, 0 and X =0 0 0 =3 i
0 00 0 0 i
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Clearly, D € D, (R) and X € NT,(R). Since Y € by, it must be
adX(Y)=XY —YX =YX and adD(Y)=DY —YD = —YD.

Easy calculations give us that

00 (91295%3) (?/12$%4 + 913575?4)

00 0 0
adX(YV)=-YX=-]100 0 0 . (2)
00 0 0
0 ylzﬁz y1337:f3 y1493‘114
0 0 0 0
adD(Y)=-YD=-] 0 0 0 0o .. |- (3)
0 0 0 0

From the equations (1), (2) and (3), we obtain that
(p —adX —adD)(Y) =0forany Y € b;.
In order to complete proof, say v = ¢ —adX — adD. Accordingly,
¢ =1 +adX +adD with ¥(h) ={0}.
]

Lemma 5.2.4. Let v be a derivation of N'Tx(R) with ¢(h,) = {O}. Then (X)) € b, for
any X € NT(R).

Proof. Let X € b1, Y € Q) = NT(R). Of course, Y X = 0 since X € h;. Thus, it must be
[X,Y] = XY —YX = XY. Also, [X,Y] = XY € b; because b, is an ideal of NT(R).
Thereby, it follows from hypothesis that ¢([X, Y]) = O. Hence:

(X, Y]) = [0(X), Y]+ [X,9(Y)] = [0, Y] + [X, (V)]
O =0+[X,¢(Y)]
O = Xy(Y) = ¢(YV)X,
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As can be seen above, we get the following equality

It also follows from X € b, that p(Y)X = 0, and so X¢(Y) = 0. As X and Y are chosen
randomly, we deduce that 14 (2;) = {O}. We are now ready to prove our lemma thanks to
these critical examinations.

Let X € NT,(R). We just observed that h1(2;) = {O}. Thus, Y(X) = 0 for any
Y € b;. Of course, (X)) = (u); jez+ € NTo(R) can be written as

0 w2 wiz uia
0 0 ‘ug wumy
PX)=[0 0 0 us
0 0 0 O

Now, as a motivating example, observe the matrices Y5 € h; and Y5 € b, which are defined

as
0100 0010
0000 0000
Yo=100 00 , Y3=100 0 0
0000 0000
It is easy to compute that
0 0 uog Uy 0 0 0 wusy wuss
00 0 O 000 0 O
oo(X)=( 00 0o o .. | ad Yso(X)=| 000 0 0
00 0 O 000 0 O

As you see, ug, = 0 for any k£ > 3 because Y21 (X) = O. Similarly, Y31 (X) = O implies
that us, = 0 for any £ > 4. In fact, through similar arguments one can generalize these
results. Let’s consider the matrices Y}, € h; defined as below for k& > 2:

pj=1 if j=k

=0 it j#k
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Then, we have

0 0 0 Upp41 Ukgto Uk ks

0 0 0 0 0 0
Vig(X)=0=1 0 0 0 0 0 0

0 0 0 0 0 0

As a result, we find that all coefficients of ¢(X) in the k-th row are zero for £ > 2, which

means ¢(X) € b. ]

Lemma 5.2.5. If 1) is a derivation of our Lie algebra N'T,(R) such that (1) = {O}, then

there must exist Y € by such that ) = adY.

Proof. Since 1(h;) = {O}, by the above lemma it must be ¢)(&,,,,) € by for any & > 2 with

m > k. Thus, one can write (&, ,,) as

Yim Yim Yhm Yim
0O 0 0 0
0O 0 0 0
0O 0 0 0

(Ehm) = D Yhmbrj =

j>2

o o o O

For any | # k — 1, m note that [k 1, &u11] = O. S0, ¥ ([Ekm, &141]) = O by the linearity of
Y. Also, & 1410 (Ekm) = O = Lm0 (&i+1) as Y(Egm) and 9(&14+1) are both in ;. Thus,

V([Erms Ei1]) = [V ([Erm)s Erisa] + [Ekmy Y (Eir1)]
O - ¢(§k,m)§l,l+1 - ¢(fl,l+1)fk,m

0= <Z yim§1j> i1 — V(&i+1)Ekm

j=2

Now, let’s take a look at the matrices in the last equation above.

0 0 0 211 O
0 0 0 0 0

X = (ij)ijezt = V(Em)€ar1 =1 0 0 0 0 0 :
0 0 0 0 0
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where 2141 = ¥(Em )1 = Y, and

00 .. 0 2z 0
0 0 0 0 0

Z = (zij)ijez+ = V(&41)8km =1 0 0 0 0 0 ,
0 0 0 0 O

where 21, = ¥(&41)1k- Since X — Z = 0, we find that y},, = 0if [ + 1 # m. Of course,
we must examine what happens if m = [ + 1. In such a case, it must be [ # k — 2 by our
assumption. (At the beginning of this investigation, we assumed that [ # k£ — 1, m.) Here,
the thing making us happy is that 4, = 0 even though [ = m + 1. Don’t worry about how
we can prove it. That can also be shown easily using the fact that [, ., & 142] = 0. In short,

what we obtain is

yi. = 0forany [ # k — 1,m.

Now, let us assume that [ # k — 2, m. Then, [k, &1442] = 0 for any I # & — 2, m. With an

approach similar to the above, one can conclude that
yi. = 0forany [ # k — 2, m.
Accordingly, yt = 0if [ # m. (That is, we don’t care what  is.) Therefore,

Y(Ekm) = ylZ?mglm = Yk,m&1,m- (*)

Moreover, for every m # k + 1

V(Ekm) = V([Erkr15 Ebr1m]) = [V (Errr1)s Errrim] + [Errt, Y(Errim)]
¢(§km) = ¢(5k,k+1)§k+1,m - ¢(§k+1,m)§k,k+1
V(&em) = V(Ert1)Ek+1,m = Yrk+1E1m- ()

Combining the equations (*) and (*x*), we get an extremely important relationship between
ykm’s
Yiit1 = Yii+2 = Yii+3 = Yii+a = Yiits-.. forany > 2.
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This result will make things easier as you will now see. Now, put

0 Y23 Y34 Yas
N 00 0 o0

Y= geenb=[0 0 0 0 .. |€bh.
= 00 0 0

As you guess, from now on, our goal is to show that v in an inner derivation induced by Y.

Let Z = (%’j)i,jeZ* = Z Zz‘jfij S NTOO(R), then

1<i<j
j—1
V(Z)1y = 2ij(&j)1; for j =3,4,5..
=2
To be more precise,
0 O 293Y23 2o4¥ou + 234Ys4  225Y25 + 235Y35 + 245Y45
0 0 0 0 0
W(Z)=100 0 0 0
0 0 0 0 0

Now, let’s find out what adY (Z) equals. Clearly,
adY (Z2) =Y, Z|=YZ —-ZY =YZ (sinceY € b;.)

The matrix Y Z also can be computed easily

0 0 yo3223 (Y23224 + Y34234) (Y3205 + Y4235 + Yas2as)
0 0 0 0 0

YZ=|0 0 0 0 0
0 0 0 0 0

00 j—1
YZ = Z (Z Zijyi,i—‘rl) flj-
j=3 2

Now, it is time to make the final push. Using the fact that "y; ;11 = Yi 12 = Yii+3 = ..." for

any ¢ > 2, one can easily see that
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0 0 293y23 (224Y23 + 234Y34) (225Y03 + 23534 + 2a5045)
0 0 0 0 0
vZ)y=100 o0 0 0
00 0 0 0
=adY (Z2).
Because Z was taken arbitrarily, we are done. O]

With these lemmas in hand we are now ready to prove our main result.

5.3 Proof of the Main Result
Theorem 5.3.1. Let ¢ be a derivation of NT(R). Then it can be written as
p=adZ + adD,

where Z € NTy(R) and D € D (R). The derivation adZ is determined uniquely and ad D

is determined uniquely up to scalar matrix.

Proof. From Lemma 5.2.3, we can express ¢ as
¢ =adD + adX + 9,

where ¥(h1) = {O}. Then, Lemma 5.2.5 implies that ¢ = adY” for some Y € h;. Thus, we

obtain

¢ =adD + adZ,

where Z = X + Y. Of course, in order for such an expression to make any sense, it must be
unique. Now, let us check "uniqueness." Suppose that there are matrices D’ € D, (R) and

Z' € NT,(R) satisfying

¢ =adD +adZ = adD' +adZ .
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For any £ > 1,

k-th column k-th column
0 0 dy; 0 0 0 dyr, 0
0 0 0 0 0 0 0 0
D=1 0 0 0 and CueD =1 0 0 0
0 0 0 0 0 0 0 0
Thus,
k-th column
0 0 dyy—die O
0 0 0 0
adD(&w) =| g 0 0 0
0 0 0 0
Also, easy calculations show that
0 0 0 Vik41 Viksgo
0 0 0 0 0
§inZ = (Vij)ijezr = | 0 0 0 0 0 with vy gy = 2 pya, @ > 1
0 0 0 0 0

Clearly, adZ (&1x,) = —&ikZ since Z&y, = 0. So, we get (&) = X = (245)i jez+, Where
Z1, = di1 — dgg, and x1; = —z; for j > k. Moreover, from our assumption it must be
T1y = dyy - dyy,, and 715 = —z,; for j > k. Accordingly, we find that 2;; = 2; for k > 1
and j > k. For j <k, it is clear that we have z;; = 0 = 2,’. Thus, 2z;; = z;w- for all j and
k > 1. There is only one thing left for us to see the equality of Z and Z’. Let’s compare the
first rows of these two matrices: For & > 1, one can easily check that ©(&; x4+1) = Y, where
Y1.k+1 = 21k = 21;,- By the way, of course, 217 = 0 = 2{,. Hence, we get 2, = 2}, for all k.
Consequently, Z = Z'.

The other statement comes from the fact that d/11 - d;f x = di1-dyy. Using this, we can directly
write d'll -dyp as d}ck — dyx, which implies that D — D' = M., where A € R. Hence, we are

done. O]
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Chapter 6

CONCLUSION

In this thesis, some infinite matrix rings and algebras have been examined, and description of
derivations of these matrix rings and algebras have been presented by compiling papers [20]
and [11]. We’re not limited to just that. It has also been demonstrated with striking examples
that the idea of extending many basic theorems in the theory of finite matrices to infinite
matrices is exceptionally wrong. In doing so, we benefited from the articles [4] and [12].

As previously mentioned, studies on the context of infinite matrices are ongoing, and
there are still too many unanswered questions in the literature. The exciting thing here is
that we had contact with one of them. The ring N'T,(R) of all infinite (upper) niltriangular
matrices, whose rows and colums are indexed by Z X Z, over a commutative ring R with
identity provides an excellent example of reasonable open problems in the sense that its Lie
automorphisms and Jordan automorphisms are not yet known.

You appreciate knowing all derivations and automorphisms of a mathematical object
helps us understand its structure, and that way we can reach our goal more easily. In this
sense, we think that the topics we have compiled in this thesis will be a guiding resource for
those studying infinite matrix rings and algebras. This is exactly why we dedicate our thesis

to them.
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