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ABSTRACT

DERIVATIONS AND AUTOMORPHISMS OF SOME INFINITE MATRIX

ALGEBRAS

Tunahan YILMAZ

Master of Science, Department of Mathematics

Supervisor: Prof. Dr. Feride KUZUCUOĞLU

(June) 2021, 75 pages

Let R be a commutative ring with identity andMn(R) be the algebra (ring) of all n× n

matrices over R. Note that an additive map D of a ring R into itself is said to be a derivation

ofR if D(xy) = D(x)y+xD(y) for all x, y ∈ R. Studies on automorphisms and derivations

of matrix algebras and matrix rings have been actively continuing since the 1950s. In the first

study on this subject, in the case of R being a field, Skolem-Noether showed that each au-

tomorphism of the matrix algebraMn(R) is an inner automorphism ([10, Theorem 4.3.1]).

It has also been shown that every derivation of Mn(R) is inner in the case when R is a

field (see [10, Proposition(p100)]). Later on, these studies were extended to the subalgebras

(subrings) of the matrix algebra (ring)Mn(R).

Since the 2000s, studies on Lie and Jordan automorphisms and Lie and Jordan derivations

ofMn(R) matrix algebras (rings) and subalgebras (subrings) have been started to appear in

the literature. This thesis aims to bring automorphism and derivation problems to infinite

matrix algebras and rings. The first chapter of this thesis, which consists of five chapters,

contains the historical development of the subject of this thesis and relevant information.

Second chapter covers some basic definitions and theorems which will help us better un-

derstand the work to be done in the following chapters. In the third chapter, infinite matrix

algebras and rings are introduced, and some of their basic properties are observed. In the

fourth chapter, derivations of column finite matrix rings are discussed. In the last chapter, all

Lie derivations of (upper) niltriangular infinite matrix algebras are described.

Keywords: Automorphism, Derivation, Lie derivation, Infinite matrix algebras, Ring of

column-finite matrices, Niltriangular matrix.
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ÖZET

BAZI SONSUZ MATRİS CEBİRLERİNİN TÜREVLERİ VE

OTOMORFİZMALARI

Tunahan YILMAZ

Yüksek Lisans, Matematik Bölümü

Tez Danışmanı: Prof. Dr. Feride KUZUCUOĞLU

Haziran 2021, 75 sayfa

R birimli ve değişmeli bir halka veMn(R) kümesi R üzerinde tanımlı n × n tipindeki

bütün matrislerin oluşturduğu cebir (halka) olsun. D dönüşümü, R halkası üzerinde tanımlı

toplamsal bir dönüşüm olmak üzere eğer her x, y ∈ R için D(xy) = D(x)y + xD(y) ko-

şulunu sağlıyorsa bu dönüşüme R halkasının bir türev dönüşümü denir. Matris cebirleri ve

matris halkalarının otomorfizmaları ve türevleri üzerine çalışmalar 1950 yıllarından beri aktif

olarak devam etmektedir. Bu konudaki ilk çalışmada, R yerine F cismi alındığındaMn(F )

matris cebirinin her otomorfizmasının bir iç otomorfizma olduğu Skolem-Noether tarafından

gösterilmiştir ([10, Theorem 4.3.1]). Bununla birlikte, yine R yerine F cismi alındığında,

Mn(F ) matris cebirinin her türev dönüşümünün ise bir iç türev dönüşümü olduğu kanıt-

lanmıştır (bkz. [10, Proposition(p100)]). Daha sonra bu çalışmalarMn(R) matris cebirinin

(halkasının) alt cebirlerine (halkalarına) taşınmıştır.

2000’li yıllardan itibaren iseMn(R) matris cebirlerinin (halkalarının) ve alt cebirlerinin

(alt halkalarının) Lie ve Jordan otomorfizmaları ile Lie ve Jordan türevleri üzerine çalışmalar

literatürde yer almaya başlamıştır. Bu tezin amacı otomorfizma ve türev problemlerini son-

suz matris cebirlerine ve halkalarına taşımaktır. Beş bölümden oluşan bu tezin ilk bölümü,

tez konusun tarihsel gelişimi ve ilgili bilgilerden oluşmaktadır. İkinci bölüm sonraki bölüm-

lerde yapılacak çalışmaların daha iyi anlaşılmasında yardımcı olacak bazı temel tanım ve

teoremleri içermektedir. Üçüncü bölümde sonsuz matris cebirleri ve halkaları tanıtılmış ve

bunların bazı temel özellikleri incelenmiştir. Dördüncü bölümde sütun sonlu matris halka-

larının türevleri ele alınmıştır. Son bölümde ise (üst) nilüçgensel sonsuz matris cebirlerinin

Lie türevlerinin karakterizasyonu verilmiştir.

Anahtar Kelimeler: Otomorfizma, Türev, Lie türev, Sonsuz matris cebirleri, Sütun sonlu

matris halkası, Nilüçgensel matris.
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visor, Prof. Dr. Feride Kuzucuoğlu, for her patience, motivation, help, and understanding.

This thesis would not have been possible without her insightful comments and suggestions.

Besides my supervisor, I would like to thank the rest of my thesis committee: Prof. Dr.
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Chapter 1

INTRODUCTION

In this chapter, as we mentioned in the abstract part, we focus on the historical development

of the issues we will cover in this thesis. There is no doubt that knowing what has been done

in the past will help us grasp the importance of our work. In this sense, this chapter will

guide us throughout our thesis. By the way, here we introduce a few necessary definitions

and concepts to understand what is being discussed. (Of course, the definitions and theorems

required in the next chapters are discussed more broadly in the following chapter.)

Definition 1.0.1. For any unit element x of a ring R, the mapping

αx : R → R

y → xyx−1

defines an automorphism. It will be called the inner automorphism of R.

Definition 1.0.2. Let x be an arbitrary element of a ring R, then the additive map

Dx : R → R

y → xy − yx

turns out to be a derivation, called inner.

Before going into details, let us make a little briefing about the notations. Unless specif-

ically stated otherwise, from here on the notations R and F denote a commutative ring with

identity and a field, respectively. We are now ready to get down to the heart of the matter. In

1950, a study that inspired many mathematicians was carried out. It was shown that each au-

tomorphism of the matrix algebraMn(F ) of all n×nmatrices with coefficients in F is inner

automorphism (see [10]). Of course, this study made many researchers wonder if a similar
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result can be extended to some subalgebras ofMn(F ) too. Dubisch and Perlis were one of

them. What they did in 1951 was describe the automorphisms of the subalgebra NTn(F )

of all n × n matrices with zero on and below the main diagonal (see [8]). Also, in 1987,

S.Jondrup ([13]) determined the automorphisms of the ring of upper triangular matrices with

entries in F. Now, before making the following definitions, we would like to mention some

studies on the ring NTn(R) of all n × n (upper) niltriangular matrices over R, where R is

an associative ring with identity. In 1983, Levchuk showed that every automorphism of the

ringNTn(R) is equal to the product of diagonal, inner and central automorphisms (see [16]).

And besides, in 2006, Chun and Park proved that every derivation of NTn(R) is a sum of a

certain diagonal, ring and a strongly nilpotent derivation (see [6]).

Definition 1.0.3. An R-linear map ϕ of a Lie algebra L satisfying

ϕ([κ, ρ]) = [ϕ(κ), ρ] + [κ, ϕ(ρ)] for all κ, ρ ∈ L

is called a Lie derivation of L.

Definition 1.0.4. An additive map d of a ring R is called a Jordan derivation if it satisfies

d(r ◦ s) = d(rs+ sr) = d(r)s+ sd(r) + rd(s) + d(s)r

for arbitrary elements r, s ∈ R, where r ◦ s = rs+ sr.

Of course, the problem of classifying Lie and Jordan derivations (automorphisms) of

matrix algebras and their subalgebras has also attracted the attention of many people. S.Ou,

D.Wang and R.Yao described all Lie derivations of NTn(R) in 2007 (see [17]). Jordan

derivations of the ringNTn(R) were also characterized by F.Kuzucuoğlu in 2011 (see [15]).

Now, let us consider the setM∞(F ) of all square matrices over F indexed by Z+× Z+.

That is,

M∞(F ) =

{
X = (xij)i,j∈Z+ | xij ∈ F and i, j ∈ Z+

}
.

This set forms a vector space with respect to usual matrix addition and scalar multiplication.

In the light of the product of finite matrices, let’s define

(XY )ik =
∞∑
j=1

xijyjk

where X , Y ∈ M∞(F ). Clearly, in order for the product matrix XY to exist, the set{
j | xijyjk 6= 0

}
must be finite for all i, k ∈ Z+. By the way, even if the matrix multi-

plication is defined on this set, the associativity may not hold. This is exactly what we will

2



discuss in the third chapter. Of course, in order to extend the studies on finite matrix algebra

to the context of infinite matrices, we need some subsets of M∞(F ) which has the struc-

ture of a ring (algebra). So, it is important for those working on this to know when infinite

matrices are defined and obey associativity law.

ByMCf (R), we denote the set of all Z+× Z+ matrices with a finite number of nonzero

entries in each column. Such matrices will be called column finite. It should be noted

that MCf (F ) is an uncountable dimensional vector space and there is a one-to-one corre-

spondence between column finite matrices and linear endomorphisms of the vector space

F Z+ with respect to canonical basis. Besides, what makes this set valuable is that it has a

ring structure. To be more precise, we can talk about the derivations and automorphisms of

MCf (R). For example, R.Slowik ([20]) characterized the derivations of the ringMCf (R)

in 2015 in the case of R being an associative ring with 1. In the fourth section, we discuss

this article in detail.

Finally, we write T∞(R) to denote the set of all Z+× Z+ upper triangular matrices over

R. This set forms a Lie algebra with [X, Y ] = XY − Y X where X, Y ∈ T∞(R). More

interestingly, it has a subset worth studying. What W.Hołubowski, I.Kashuba and S.Zurek

did in 2007 was determine all derivations of its Lie subalgebraNT∞(R) of all strictly upper

triangular matrices (see [11]). In the last section, we concentrate on this article.

3



Chapter 2

PRELIMINARIES

In this chapter, basic definitions and related theorems required in later chapters will be dis-

cussed. Firstly, we focus on what a Lie algebra is.

2.1 Lie Algebras

We start off this section with definition of a ring in which the associativity need not be

satisfied.

Definition 2.1.1. A Lie ring L is defined as a nonassociative ring such that its multiplication

"." satisfies the following conditions

1. x.x = 0 for all x ∈ L (anti-commutativity)

2. (x.y). z + (y .z).x+ (z .x). y = 0 for all x, y, z ∈ L (the Jacobi identity).

Example 2.1.2. The set NTn(R) of all (upper) niltriangular n× n matrices over any asso-

ciative ring R with identity forms a Lie ring if multiplication is defined as "x.y = xy− yx."

This operation is called commutation. Actually, what is even more interesting is that we can

extend this to all associative rings. In other words, any associative ring has the structure of

a Lie ring under commutation.

Of course, a Lie ring may fail to form a ring:

Example 2.1.3. Consider the set P =
{
XT = −X | X ∈ Mn(F )

}
of all n × n skew

matrices over a field F. It can be easily shown that P is a Lie ring under commutation;

however, it is not a ring with usual matrix multiplication.
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Definition 2.1.4. Let F be a field. A set A (6= ∅) is said to be an F -algebra if

• There is an operation "+" such that (A,+) is an abelian group,

• There is a function
F ×A → A

(λ, x) → λx

(that is, there is a multiplication by scalar) such that A forms a vector space over F

with respect to "+" and multiplication by scalars,

• There is a multiplication "."

. : A×A → A

(x, y) → xy

which is F -bilinear, i.e.,

(x+ y)z = xz + yz and x(y + z) = xy + xz for all x, y, z ∈ A,

λ(xy) = (λx)y = x(λy) for all x, y ∈ A, λ ∈ F.

Definition 2.1.5. Let A be an F -algebra. We call it associative if

(xy)z = x(yz) for all x, y, z ∈ A.

Also, A is said to be unital if there exists 1A ∈ A such that 1Ax = x = x1A for all x ∈ A.

Example 2.1.6. One can easily see that Mn(F ) - the vector space of all n × n matrices

over a field F - forms a unital associative algebra with respect to matrix multiplication.

Obviously, the identity matrix is the identity element in this algebra.

This much information about Lie rings and algebras is enough for us. Now, we are ready

to talk about what Lie algebra is. You will soon see why we have given these algebra and

Lie ring definitions beforehand.

Definition 2.1.7. Let F be a field. A F -vector space L together with a F -bilinear map

[−,−] : L × L → L

(κ, ρ) → [κ, ρ],

which is called the Lie bracket or commutator is said to be Lie algebra if
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• (L1) Anti-commutativity : [κ, κ] = 0 for all κ ∈ L, and

• (L2) The Jacobi Identity : [κ, [ρ, z]] + [ρ, [z, κ]] + [z, [κ, ρ]] = 0 for all κ, ρ, z ∈ L.

Using bilinearity of the Lie bracket [−,−], one can see that

0 = [κ+ ρ, κ+ ρ] = [κ, κ] + [κ, ρ] + [ρ, κ] + [ρ, ρ] = [κ, ρ] + [ρ, κ].

Therefore, due to condition (L1), it must be

[κ, ρ] = −[ρ, κ] for all κ, ρ ∈ L.

In fact, we can interpret the definition of Lie algebra in two ways:

• A Lie algebra is nothing but than an algebra satisfying L1 and L2 with "[κ, ρ] = κρ."

• A Lie ring that also has the structure of an algebra is a Lie algebra.

Let’s take a look at a couple of Lie algebras. In all of the examples below, F will denote an

arbitrary field.

1. Let gl(V ) be the vector space of all linear maps from V to V , where V is a finite-

dimensional F -vector space. Then, it forms a Lie algebra if the Lie bracket defined

by

[κ, ρ] = κ ◦ ρ− ρ ◦ κ for κ, ρ ∈ gl(V ).

We will call it general linear algebra. ( "◦" stands for the composition of maps.)

2. Now, we are going to introduce "matrix version" of the above example. Mn(F ) also

has the structure of a Lie algebra with the Lie bracket defined by

[κ, ρ] = κρ− ρκ,

where κρ is the usual matrix multiplication.

I would like to talk about one more thing about this Lie algebra because it will guide

us in the following chapters: Let ξij be an n × n matrix which has a "1" in the ij-th

entry and all other entries are 0. It will be called matrix unit. What is crucial here

is that these matrix units form a basis for the vector spaceMn(F ). To put it another

way, the set {
ξij | 1 ≤ i, j ≤ n

}
6



is a basis forMn(F ). It is also useful to know that

[ξij, ξkl] = δjkξil − δilξkj,

where δ is the Kronecker delta. This formula will make calculations easier inMn(F ).

3. Recall that a matrix κ ∈ Mn(F ) is called upper triangular if κij = 0 for all i > j.

Write Tn(F ) for the vector subspace of all upper triangular matrices inMn(F ). It also

becomes a Lie algebra with the same bracket inMn(F ).

4. Likewise, the subspace of all strictly upper triangular n × n matrices is a Lie algebra

if the Lie bracket defined as inMn(F ). (Recall that we call a matrix κ strictly upper

triangular if κij = 0 for all i ≥ j.) This Lie algebra is shown by NTn(F ).

5. If A is an associative algebra over F , then A becomes a Lie algebra with

[x, y] = xy − yx for all x, y ∈ A.

Actually, in the light of examples (3) and (4), one can realize that subset of a Lie algebra L

may also form a Lie algebra. In the next section, we will focus on subalgebras and ideals of

a Lie algebra.

2.2 Subalgebras and Ideals

Let L be a Lie algebra over a field F.

Definition 2.2.1. A vector subspaceW ⊂ L is called a Lie subalgebra of L if

[κ, ρ] ∈ W for all κ, ρ ∈ W .

Now, we shall give the definition of an ideal of a Lie algebra.

Definition 2.2.2. A vector subspace U ⊂ L is called an ideal of L if

[κ, ρ] ∈ U for all κ ∈ L, ρ ∈ U .

Any Lie algebra L has at least two ideals: the trivial ideal {0} and L itself. Note that a

subalgebra may fail to be an ideal; however, an ideal is always a subalgebra. One can easily

7



show that Tn(F ) constitute an example of a subalgebra of Mn(F ) which is not an ideal.

Now, consider the centre of L defined as follows:

Z(L) =
{
κ ∈ L | [κ, ρ] = 0 for all ρ ∈ L

}
.

It is a quick check to see that Z(L) is an ideal of L. What is important here is that L = Z(L)

if and only if L is abelian. We must keep this fact in mind. Also, note that finding the center

of a Lie algebra L is not as easy as it seems; it may take time to determine what Z(L) is. In

the Chapter 5, we will face such a case.

Let U and V be ideals of a Lie algebra L. We will close out this section with discussing

how to construct new ideals from U and V . In fact, we can do this in many ways:

• Firstly, we shall observe that the subspace U ∩ V is an ideal of L. Let κ ∈ L and

ρ ∈ U ∩ V . Then, it must be [κ, ρ] ∈ U ∩ V since U and V are ideals. This is why

U ∩ V forms an ideal of L.

• Now, consider the following set

U + V =
{
κ+ ρ | κ ∈ U , ρ ∈ V

}
.

It is not hard to see that this set is an ideal of L.

• The above examples suggest that we might define a product of ideals. Let’s consider

the subspace

[U ,V ] = Span
{

[κ, ρ] | κ ∈ U , ρ ∈ V
}
.

We shall show that [U ,V ] is also an ideal of L. Now, let κ ∈ U , ρ ∈ V , and z ∈ L.

Then, using the Jacobi identity we have

[z, [κ, ρ]] = [κ, [z, ρ]] + [[z, κ], ρ].

Of course, [z, ρ] ∈ V as V is an ideal. Hence, [κ, [z, ρ]] ∈ [U ,V ]. Likewise, one can

directly see that [[z, κ], ρ] ∈ [U ,V ]. Accordingly, [z, [κ, ρ]] ∈ [U ,V ]. Now, all we will

do is check whether or not [z, x] ∈ [U ,V ] in the case when z ∈ L and x ∈ [U ,V ]: By

construction of [U ,V ], it must be x =
∑
λi[κi, ρi], where λi are scalars and κi ∈ I

and ρi ∈ J. Since the Lie bracket is bilinear,

[z, x] = [z,
∑

λi[κi, ρi]] =
∑

λi[z, [κi, ρi]].

8



As discussed above, each [z, [κi, ρi] ∈ [U ,V ]. Hence, [z, x] ∈ [U ,V ]. The result

follows.

Maps that are structure preserving help us understand the structure of a mathematical object

such as a vector space, group, or ring. For example, linear maps are helpful to understand

how different vector spaces related to each other. In the following sections, our purpose is to

extend this view to Lie algebras.

2.3 Homomorphisms

Let L, L1 and L2 be Lie algebras over a field F.

Definition 2.3.1. A linear map φ : L1 → L2 is called homomorphism if

φ([κ, ρ]) = [φ(κ), φ(ρ)] for all κ, ρ ∈ L1.

Definition 2.3.2. We say that a homomorphism φ : L → L is an automorphism if φ is

bijective.

Now, we are going to introduce a significantly important homomorphism: Let κ ∈ L.

Consider the following map

ad : L → gl(L)

κ → adκ

defined by adκ(ρ) = [κ, ρ] for all ρ ∈ L.

The bilinearity of the commutator implies that κ→ adκ is linear. It can be easily shown

that ad is a homomorphism between L and gl(L). We call it adjoint homomorphism. It is

important to note that the kernel of ad is the centre of L.

2.4 Derivations

Let A be an F -algebra, where F is a field. An F -linear map D : A → A is called a

derivation of A if

D(xy) = D(x)y + xD(y) for all x, y ∈ A.

The adjoint homomorphism discussed above provides a "nice" example of a derivation. Let

L be a Lie algebra and κ ∈ L. It follows from the Jacobi identity that the map adκ : L → L
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satisfies the necessary condition to be a derivation:

adκ([ρ, z]) = [κ, [ρ, z]] = [[κ, ρ], z] + [ρ, [κ, z]] = [adκ(ρ), z] + [ρ, adκ(z)]

for all ρ, z ∈ L. We call such a derivation inner derivation.

Now, let’s write DerA for the set of derivations of A. This set is a vector subspace of

gl(A) since it is closed under addition and scalar multiplication and contains the zero map.

As you guessed, there is another reason why we are talking about this set besides being a

vector subspace of gl(A). DerA also has the structure of a Lie subalgebra of gl(A). (One

can deduce that if D and C are derivations of an algebra, then [D,C] = DC − CD is a

derivation as well.)

We have just seen that Lie algebras are nothing more than algebras satisfying (L1) and

(L2). Now, we shall take this critical result as a definition:

Definition 2.4.1. An F -linear map ϕ of a Lie algebra L satisfying

ϕ([κ, ρ]) = [ϕ(κ), ρ] + [κ, ϕ(ρ)] for all κ, ρ ∈ L

is called a lie derivation of L.

2.5 Quotient Algebras and Isomorphism Theorems

Let U be an ideal of the Lie algebra L. Of course, U has the structure of a vector subspace

of L, and so one may consider the cosets z + U =
{
z + ρ | ρ ∈ U

}
where z ∈ L and the

quotient vector subspace

L /U =
{
z + U | z ∈ L

}
.

Now, we are going to see that this quotient vector subspace also forms a Lie algebra. In the

light of our "undergraduate abstract algebra" knowledge, we may define a Lie bracket on

L /U as follows

[κ+ U , z + U ] = [κ, z] + U for κ, z ∈ L.

Of course, the bracket on the right-hand side is the Lie bracket defined on L. Now, we check

if the bracket on L /U is well-defined. Let κ+U , z+U , κ′+U , z′+U ∈ L /U and suppose

κ+ U = κ′ + U and z + U = z′ + U . Then κ− κ′ ∈ U and z − z′ ∈ U . All we have to do is

show that [κ′, z′] +U = [κ, z] +U . It follows from the bilinearity of the Lie bracket in L that

[κ′, z′] = [κ+ (κ− κ′), z′ + (z − z′)]

= [κ, z] + [κ− κ′, z′] + [κ′, z − z′] + [κ− κ′, z − z′].

10



Obviously, the final three summands must belong to U since U is an ideal. Thus, it must be

[κ′ + U , z′ + U ] = [ρ, z] + U .

This is exactly what we wanted to show. Also, one can check that the Lie bracket on L /U
is bilinear and satisfies the conditions (L1) and (L2). That is, L /U has the structure of a Lie

algebra with this bracket.

As expected, we have isomorphism theorems for Lie algebras as in vector spaces and

groups. Let us state them:

Theorem 2.5.1. (Isomorphism Theorems) Let L,L1 and L2 be Lie algebras over a field F.

1. (First Isomorphism Theorem) If φ : L1 → L2 is a homomorphism between L1 and

L2 , then kerφ and imφ are ideals of L1 and L2, respectively. Also,

L1
/
kerφ ∼= imφ.

2. (Second Isomorphism Theorem) Let U and V be ideals of our Lie algebra L. Then

(U + V) /V ∼= U /U ∩ V .

3. (Third Isomorphism Theorem) If U and V are ideals of L such that U ⊆ V , then

V /U is an ideal of L /U and

L /U
/
V /U ∼= L /V

Before moving onto the next section let’s do a couple of examples:

Example 2.5.2. The trace of a square matrix κ, denoted tr(κ), is defined to be the sum of its

diagonal elements. Let’s consider the following linear map

φ : Mn(F ) → F

κ → tr(κ)

, where F is a field. Now

φ([κ, ρ]) = φ(κρ− ρκ) = tr(κρ− ρκ)

= tr(κρ)− tr(ρκ)

= [tr(κ), tr(ρ)]

= [φ(κ), φ(ρ)] = 0

11



for all κ, ρ ∈Mn(F ), showing that φ is a Lie algebra homomorphism. Clearly, φ is surjec-

tive and its kernel is Sn(F ), which is the Lie subalgebra of matrices whose traces are zero.

Therefore, it follows from the first isomorphism theorem that

Mn(F )
/
Sn(F ) ∼= F.

Example 2.5.3. Let L be a Lie algebra over a field F. The set of all inner derivations of L

is a Lie subalgebra of Der(L). We will denote it by IDer(L). Now, let’s define a map

φ : L → IDer(L)

κ → adκ

Clearly, φ preserves addition and scalar multiplication. Now

φ([κ, ρ])(z) = [[κ, ρ], z]

= [κ, [ρ, z]]− [ρ, [κ, z] (by Jacobi identity)

= ([φ(κ), φ(ρ)])(z)

for all κ, ρ, z ∈ L, proving that φ is a Lie algebra homomorphism. It is also easy to see that

φ is a surjective map and

Kerφ =

{
κ ∈ L | φ(κ) = adκ = 0

}

=

{
κ ∈ L | [κ, ρ] = 0 for all ρ ∈ L

}

=

{
κ ∈ L | κ ∈ Z(L)

}
= Z(L).

Consequently, by the first isomorphism theorem

IDer(L) ∼= L
/
Z(L) .

Remark 2.5.4. As it happens, all mathematical objects and concepts which we dealt with so

far were constructed over a field F. However, it should be kept in mind that we can carry all

these works to a commutative ring with slight differences. For example, an algebra A over

a commutative ring R is nothing more than an R-module with an R-bilinear multiplication

map "."

. : A×A → A

(x, y) → xy.

In the last chapter we will describe all derivations of a Lie algebra over a commutative ring

with identity.

12



We have already discussed thatMn(F )-the vector space of all n×nmatrices over a field

F - becomes an unital associative F -algebra with respect to usual matrix multiplication. As

we all know, matrices play a significant role in algebra. Therefore, the need to classify all

derivations and automorphisms of this algebra has become inevitable. This is precisely what

we will talk about in the following section.

2.6 Automorphisms and Derivations of The Matrix AlgebraMn(F )

Throughout this section, as in others, F will be a field. Let’s start off this section with the

definition below:

Definition 2.6.1. A finite dimensional associative F -algebraA is said to be a central simple

algebra if

• A is simple,

• Center of A is precisely F.

Example 2.6.2. The matrix algebra Mn(F ) provides a good example of a central simple

algebra.

In this section, our goal is to characterize automorphisms and derivations ofMn(F ). To

do this, we first state the Skolem-Noether theorem, which characterizes the automorphisms

of simple rings and guides those studying central simple algebras.

Theorem 2.6.3. [10, Theorem 4.3.1](Skolem-Noether) Every automorphism of a finite di-

mensional central simple algebra is inner.

It immediately follows from the Skolem-Noether theorem that every automorphism of the

algebraMn(F ) is inner. It takes a long time to give proof of the Noether-Skolem theorem

to deduce this fact. Instead, we present the simplest proof of this very crucial fact.

Theorem 2.6.4. [19, Theorem 1.1] Suppose that φ is a bijective linear map ofMn(F ) such

that φ(XY ) = φ(X)φ(Y ) for all X, Y ∈ Mn(F ). Then there must be an invertible matrix

P ∈Mn(F ) with φ(X) = PXP−1 for every X ∈Mn(F ).

Proof. Let φ : Mn(F ) → Mn(F ) be a linear map satisfying above hypotheses. Take two

column vectors which are different from zero υ, ω ∈ F n. Then, of course, one can find an

13



element z ∈ F n such that φ(υωT )z 6= 0. Now, let’s construct a map P : F n → F n which

maps x to φ(xωt)z. Obviously, the linearity of φ implies P is a linear map. Also, P is

nonzero as Pυ is nonzero. Now observe that

PXy = φ(XyωT )z

= φ(X)φ(yωT )z

= φ(X)Py

for any choice of y ∈ F n and X ∈ Mn(F ), giving us that PX = φ(X)P. As you guessed,

the last job we will do is to see that the P is invertible. Now, let u ∈ F n.Using the surjectivity

of φ one can find Y ∈ Mn(F ) such that φ(Y )Pυ = u = PY υ. This implies that P is

surjective, and so invertible. The result follows.

Theorem 2.6.5. [10, Proposition(p100)] Let A be a simple algebra finite dimensional over

its center F. Then any derivation of A is inner.

Proof. Let D be a derivation of A. First, consider A2 which is the ring of all 2× 2 matrices

over A. Of course, A2 also has the structure of a central simple algebra. Now, put

B =


x D(x)

0 x

 : x ∈ A

 and C =


x 0

0 x

 : x ∈ A

 .

(Clearly, D(λ) = 0 for λ ∈ F.) Then, the mapping φ : C → B defined by

φ

x 0

0 x

 =

x D(x)

0 x


is an isomorphism between C and B leaving F elementwise fixed. Also C ≈ A. From the

Noether-Skolem Theorem there must be an invertible matrix

u y

z v

 ∈ A2

such that

x D(x)

0 x

u y

z v

 =

u y

z v

x 0

0 x

 .
14



Therefore:

xu+ D(x)z = ux

xy + D(x)v = yx

xz = zx

xv = vx,

for all x ∈ A. Clearly, it must be v, z ∈ F. Besides, invertibility of

u y

z v

 forces one of

these scalars, say z, to be nonzero. Now, put t = uz−1. Then D(x) = tx− xt for all x ∈ A.

Consequently, D is inner.

As a straight consequence of above theorem, we have:

Corollary 2.6.6. Let F be a field. Then any derivation of the matrix algebra Mn(F ) is

inner.

We have discussed how to define product of ideals U ,V of a Lie algebra L. Now, we

make use of this construction in the next section by considering the ideals

[L,L], [L, [L,L]], [L, [L, [L,L]]], ...

2.7 Nilpotent Lie Algebras

The lower central series (or descending central series) of a Lie algebra L is defined as:

Ω1 = L and Ωi = [L,Ωi−1] for i ≥ 2.

Then "Ω1 ⊇ Ω2 ⊇ Ω3 ⊇ ...". It should be noted that Ωi is an ideal of L (and not just an ideal

of Ωi−1) for each i ∈ N since the product of ideals is an ideal. The reason of why we call

this series "lower central series" is that

Ωi

/
Ωi+1

⊆ Z
(

Ω
/

Ωi+1

)
for any i ∈ N.

Definition 2.7.1. Let L be a Lie algebra. We call it nilpotent if Ωn = 0 for some n ≥ 1.

Now, we shall determine if the Lie algebra N5(F ) of strictly upper triangular 5 × 5

matrices over a field F is nilpotent. To do this, we shall observe the lower central series
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of N5(F ). This observation also helps us better understand the subject we will discuss in

Chapter 5.

Let X , Y ∈ N5(F ). One can easily compute that

XY − Y X = Z =



0 0 z13 z14 z15

0 0 0 z24 z25

0 0 0 0 z35

0 0 0 0 0

0 0 0 0 0


.

Since Ω2 = [N5(F ),N5(F )] = [Ω1,Ω1] is defined to be the linear span of elements of the

form [X, Y ] = XY − Y X , where X , Y ∈ N (5, F ), we have

Ω2 = [Ω1,Ω1] =

{
Z ∈ N5(F ) | Z =



0 0 z13 z14 z15

0 0 0 z24 z25

0 0 0 0 z35

0 0 0 0 0

0 0 0 0 0


}
.

In other words, Ω2 ⊂ N5(F ) consists of matrices whose entries one above the main diagonal

are all zeros. Similarly, in the case when X ∈ Ω2 and Y ∈ N5(F ), we obtain

XY − Y X = Z =



0 0 0 z14 z15

0 0 0 0 z25

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

Hence :

Ω3 = [Ω2,Ω1] =

{
Z ∈ N5(F ) | Z =



0 0 0 z14 z15

0 0 0 0 z25

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


}
⊂ Ω2.
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Using similar arguments, one can see that

Ω4 = [Ω3,Ω1] =

{
Z ∈ N5(F ) | Z =



0 0 0 0 z15

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


}
⊂ Ω3

and

Ω5 = [Ω4,Ω1] = {O}.

Hence, the Lie algebra N5(F ) of strictly upper triangular 5 × 5 matrices over a field F is

nilpotent.

Now we are going to propose another interesting feature of the sets Ωi we observed

above.

Lemma 2.7.2. The sets Ωi, i ≥ 1 are invariant under any derivation ϕ of the Lie algebra

N (5, F ).

Proof. As mentioned in the previous section, the sets Ωi are ideals ofN (5, F ). Now, we will

show that ϕ(Ωi) ⊆ Ωi for any derivation ϕ of N (5, F ).

Let ϕ be any derivation of N (5, F ). By definition, ϕ(Ω1) ⊆ Ω1. It is also clear that the

set Ωi are invariant under ϕ for i ≥ 5 as Ωi = [Ωi−1,Ω1] = {0} for i ≥ 5. Hence, all we have

to do is determine whether the sets Ω2,Ω3 and Ω4 are invariant under ϕ. Let i = 2. Then

ϕ(Ω2) = ϕ([Ω1,Ω1]) = [ϕ(Ω1),Ω1] + [Ω1, ϕ(Ω1)]

⊆ ϕ(Ω1)Ω1 − Ω1ϕ(Ω1) + Ω1ϕ(Ω1)− ϕ(Ω1)Ω1.

⊆ Ω1Ω1 − Ω1Ω1 + Ω1Ω1 − Ω1Ω1

Of course, Ω1Ω1 ⊆ Ω2. Hence,

ϕ(Ω2) ⊆ Ω2 − Ω2 + Ω2 − Ω2 ⊆ Ω2.

Through a similar process, one can easily see that ϕ(Ω3) ⊆ Ω3 and ϕ(Ω4) ⊆ Ω4. Thereby,

the result follows.
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Chapter 3

Infinite Matrices

A matrix X = (xij) which has infinite number of columns or rows (or both) is called an

infinite matrix. In this chapter, we will deal with infinite matrices whose rows and columns

are indexed by Z+× Z+ with entries in the field F of characteristic zero. We define addition

and scalar multiplication on infinite matrices as follows:

X + Y = (xij + yij)i,j∈Z+ and λX = (λxij)i,j∈Z+ ,where λ ∈ F.

We denote this vector space of infinite matrices byM∞(F ). As expected, infinite matrices

differs significantly from finite matrices in many ways. Let’s take a look at a few reasons

lead to this:

• As we all know, the concept of determinant has a pretty important place in the finite

matrix theory and the role determinants play cannot be ignored; however, there is no

corresponding phenomenon for infinite matrices.

• Consider the ringMn(F ) of all n × n matrices over a field F. Let X = (xij)1≤i,j≤n

and Y = (yjk)1≤j,k≤n ∈Mn(F ). Recall that their product is defined as

XY =
( n∑
j=1

xijyjk
)
1≤i,k≤n

However, when we move this definition to infinity case, we run into a big problem.

To be more precise, the multiplication of two infinite matrices X = (xij)i,j∈Z+ and

Y = (yjk)j,k∈Z+

XY =
( ∞∑
j=1

xijyjk
)
i,k∈Z+

may not exist because the above sum may diverge for some values of i, k ∈ Z+.
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• Moreover, one may expect a variety of fundamental theorems in the theory of finite

matrices to be valid in the case of infinite matrices. It is possible that we may obtain

corresponding theorems for infinite matrices, but this is very unlikely to happen due to

convergence and other difficulties to be discussed in this chapter.

Richard G.Cooke introduced some basic definitions and mentioned a couple of characteristic

properties of infinite matrices in [7]. We will talk about them in the following two sections.

3.1 Some Fundamental Definitions

An infinite matrix I∞ ∈M∞(F ) defined as

(I∞)i,j∈Z+ =

1 i = j

0 i 6= j

is called the identity matrix. Also, the matrix O whose all entries are zero is called the zero

matrix. Clearly, OX = XO = O for any choice of X = (xij)i,j∈Z+; however, it is not

necessary that X or Y must be the zero matrix so that their product is zero.

A matrix D = (dij)i,j∈Z+ ∈M∞(F ) such that dij = 0 in the case when i 6= j is called a

diagonal matrix. We will use the notation (di)i∈Z+ to denote a diagonal matrix

D =


d1 0 0 ...

0 d2 0 ...

0 0 d3 ...
...

...
... . . .

 .

A diagonal matrix X is said to be a scalar matrix if

X = λI∞ =


λ 0 0 ...

0 λ 0 ...

0 0 λ ...
...

...
... . . .

 , where λ ∈ F.

Let X be a matrix in M∞(F ) such that xij = 0 when j > i. Such a matrix is called

lower triangular matrix. Also, a matrix X is said to be an upper triangular matrix if

xij = 0 when j < i.
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We call a matrix X column- finite if each column of X consists of finite number of

non-zero elements. The symmetric definition says that a matrix X whose each row has only

a finite number of non-zero coefficients is called row-finite. Note that a lower triangular

matrix is row-finite, and an upper triangular matrix is column-finite, as can be seen directly

from their definitions. We must keep these definitions in mind because we will benefit a lot

from them throughout this thesis.

3.2 A couple of properties of infinite matrices

Let (di)i∈Z+ and (δi)i∈Z+ be diagonal matrices. Clearly, their product matrix is the diagonal

matrix (diδi)i∈Z+ . Note that multiplication is commutative for diagonal matrices since we

have "diδi = δidi" for each i ∈ Z+. However, in general, products of matrices fails to satisfy

commutative law since (XY )ik =
∞∑
j=1

xijyjk may be different from (Y X)ik =
∞∑
j=1

yijxjk for

some i, k ∈ Z+, even if it is supposed that both series are convergent for any choice of i and

k. Even more interesting is that one may encounter matrices X, Y ∈M∞(F ) such that XY

does not exist while Y X exists. As an example for this, consider

X =


1 1 1 ...

1 1 1 ...

1 1 1 ...
...

...
... . . .

 and Y =


1 0 0 . . .

1 0 0 . . .

1 0 0 . . .
...

...
... . . .

 .

As can be seen easily, XY does not exist, whereas Y X = X exists.

Fortunately, there is no problem of existence on the addition of matrices. In other words,

their sum always exist. Also, infinite matrix addition is commutative and satisfy the associa-

tivity law, unlike multiplication:

X + Y = Y +X, (X + Y ) + Z = X + (Y + Z) for all X, Y, Z ∈M∞(F ).

It should also be noted that infinite matrices satisfy the distributive law

X(Y + Z) = XY +XZ, (Y + Z)X = Y X + ZX

in the sense that "ifXY andXZ exist, then alsoX(Y +Z) exists and is equal toXY +XZ."

However, notice that X(Y + Z) may exist even though XY and XZ do not exist. One can

check that the following matrices constitute an example for such a case.
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X =


1 1 1 ...

1 1 1 ...

1 1 1 ...
...

...
... . . .

 , Y =


−1 0 0 . . .

−1 0 0 . . .

−1 0 0 . . .
...

...
... . . .

 and Z =


1 0 0 . . .

1 0 0 . . .

1 0 0 . . .
...

...
... . . .

 .

Now, let D = (di)i∈Z+ ,∆ = (δi)i∈Z+ and Z = (ci)i∈Z+ be diagonal matrices inM∞(F ).

Using the above observations on diagonal matrices, it is a quick check to see that

(D∆)(Z) = D(∆Z).

In other words, the multiplication of diagonal matrices satisfy associativity law, and so the

subspace D∞(F ) of all diagonal matrices forms a ring in contrast toM∞(F ). As we see, a

subspace ofM∞(F ) may have the structure of a ring. Now, we shall determine whether this

can be extended to lower triangular matrices. Let X = (xij)i,j∈Z+ and Y = (yjk)j,k∈Z+ be

both lower triangular matrices. Then

(XY )ik =


∑i

j=k xijyjk i ≥ k

0 i < k

Hence, the subspace of all infinite lower triangular matrices is closed under matrix multipli-

cation. Again, if Z is a third lower triangular matrix, then we have

(X(Y Z))il =
i∑
j=l

xij

( j∑
k=l

yjkzkl

)
and ((XY )Z)il =

i∑
k=l

( i∑
j=k

xijyjk

)
zkl

One can show that above sums are equal to each other for all i, l. Thus, associativity holds

for all lower triangular matrices. Also, note that row-finite and column-finite matrices also

meet associativity. (In Section 3.3, we present an easier method of deciding whether or not a

subset ofM∞(F ) satisfy associativity.)

However, associativity need not be satisfied on the multiplication of infinite matrices.

Let’s consider the following example :

X =


1 1 1 ...

0 1 1 ...

0 0 1 ...
...

...
... . . .

 , Y =


1 −1 0 . . .

0 1 −1 . . .

0 0 1 . . .
...

...
... . . .

 and Z =


0 0 0 . . .

−1 0 0 . . .

−1 −1 0 . . .
...

...
... . . .

 .
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Easy calculations show that

X = X(Y Z) 6= (XY )Z = Z.

We have experienced that the products of infinite matrices may not be defined or may

not meet the associativity property. Daniel P. Bossaller and Sergio R. López-Permouth con-

ducted a study addressing these issues in [4]. In the following two section, we will concen-

trate on this article.

3.3 Associativity

Firstly, we shall introduce some notation. We denote the subspace of all column (row) finite

matrices by MCf (F ) (respectively, MRf (F )). The symbol MRCf (F ) also stands for the

spaceMRf (F ) ∩MCf (F ) of row and column finite matrices where each row and column

has a finite number of nonzero entries; however, note that a matrix X ∈ MRCf (F ) has a

chance to include infinitely many nonzero entries. Finally, the subspace of finitely supported

matrices, i.e., those with only finitely many nonzero entries will be denoted by Mfin
∞ (F ).

Elements inMfin
∞ (F ) are also known as finitary matrices.

The main goal of this section is to propose sufficient and necessary conditions for as-

sociativity. First, as you would appreciate, it should be clarified when the product of two

infinite matrices exists so that we can talk about associativity. Let’s take X, Y ∈ M∞(F ).

Then we can represent the product XY as the following array of formal sums:

XY =



∑∞
j=1 x1jyj1

∑∞
j=1 x1jyj2

∑∞
j=1 x1jyj3 ...∑∞

j=1 x2jyj1
∑∞

j=1 x2jyj2
∑∞

j=1 x2jyj3 ...∑∞
j=1 x3jyj1

∑∞
j=1 x3jyj2

∑∞
j=1 x3jyj3 ...

...
...

... . . .

 .

In order for the product to be defined

(XY )ik =
∞∑
j=1

xijyjk

must converge for any choice of i, k ∈ Z+. To put it another way, the sums in each entry of

XY need to have finitely many nonzero elements. We present this crucial observation as a

definition for when a matrix product is "defined."
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Definition 3.3.1. Let X, Y ∈ M∞(F ). Then we will say that their product is defined if{
j | xijyjk 6= 0

}
is finite for any choice of i, k ∈ Z+.

Now, we shall give the proof of a well-known basic fact we use frequently in this thesis.

Lemma 3.3.2. If X ∈MRf (F ) and Y ∈MCf (F ), then XZ and ZY are both defined for

any matrix Z ∈M∞(F ).

Proof. Let i, k ∈ Z+. By above definition, we need to verify
{
j | xijyjk 6= 0

}
is finite to

show that the product ZY exists. Clearly,
{
j | yjk 6= 0

}
is finite as Y is column finite, and

this immediately implies that the set
{
j | xijyjk 6= 0

}
is also finite. Hence, we are done. In

a similar way, one can get definedness of XZ.

Before working on associativity, it would be good for us to talk about how important

associativity is in matrix algebra. One of the most critical problems that linear algebra deals

with is solving a linear equation system in several unknowns. Let’s remember how to find

the solution of a system of m linear equation in n unknowns:

1. Convert the given system to a matrix equation of the form

XY = Z,

where X is an m × n matrix, Y and Z are columnn matrices with n and m entries,

respectively.

2. Reduce the matrix X to a row reduced echelon matrix X ′ by applying elementary row

operations E1, E2, E3, ..., Er.

3. After the previous step, we get a solvable system

(EX)Y = EZ,

where E is the product of the elemantary matrices above. (Notice that E is invertible

since it is product of elemantary matrices.)

4. Let λ be the solution of the solvable system

(EX)Y = EZ.
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If we multiply this new system by P from the left, where P is the inverse of E , we

obtain that

P(EX)λ = (PE)Xλ = PEZ.

Accordingly, it must be Xλ = Z. That, λ is a solution of XY = Z.

The process mentioned above works since the product of finite matrices obeys the associativ-

ity law. As you guessed, this cannot be extended to infinite matrices since associativity may

not be satisfied there. Now, let us consider the following matrices, which we have already

observed in section 3.2 again:

X =


0 0 0 ...

−1 0 0 ...

−1 −1 0 ...
...

...
... . . .

 , E =


1 −1 0 . . .

0 1 −1 . . .

0 0 1 . . .
...

...
... . . .

 and P =


1 1 1 . . .

0 1 1 . . .

0 0 1 . . .
...

...
... . . .

 .

Easy calculations give us that EX , PE are equal to identity matrix and EZ = O, where

Z is the infinite matrix whose all entries are "1." Of course, XY = Z has no solution

because X has a first row whose all elements are zero. Moreover, one can easily see that

(EX)Y = EZ has a solution, which is the zero vector λ = O. As we see, even though the

zero vector is a solution of (EX)Y = EZ and PE = I∞, we have XO 6= Z. The reason for

this result to occur is that P(EX) 6= (PE)X. This observation is one of the main problems

we may encounter while working with infinite matrices because of associativity. In order

to avoid such obstacles, we need to know under what conditions associativity is satisfied.

In this section, we try to answer this crucial question. Let’s take three arbitrary matrices

X, Y, Z ∈ M∞(F ). All these examples we have seen so far showed us that it might be

(XY )Z 6= X(Y Z) even if XY, Y X,X(Y Z), and (XY )Z are defined. Worse, the product

matrices XY and Y Z may not even be defined. Thus, to coin some terminology will be

useful for us to tackle that.

Definition 3.3.3. Let (X, Y, Z) be triple of infinite matrices. We call it associative triple or

associative family if it satisfies the followings:

1. XY and Y Z are defined,

2. X(Y Z) and (XY )Z are defined, and
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3. X(Y Z) = (XY )Z.

Remark 3.3.4. The above description may seem a little strange at first glance since the state-

ment "X(Y Z) = (XY )Z" naturally implies that the productsXY, Y Z,X(Y Z) and (XY )Z

are all defined; namely, if the third condition is met, there is no need to check the others. We

give such a classification because we will talk about three vector spaces built on these re-

quirements.

Now, we observe the following triple of matrices which does not form a associative

family even though the first two condition is satisfied:

X =


1 1 1 ...

0 0 0 ...

0 0 0 ...
...

...
... . . .

 , Y =


0 1 0 . . .

−1 0 1 . . .

0 −1 0 . . .
...

...
... . . .

 and Z =


1 0 0 . . .

1 0 0 . . .

1 0 0 . . .
...

...
... . . .

 .

Then one can easily compute that

XY =


−1 0 0 ...

0 0 0 ...

0 0 0 ...
...

...
... . . .

 and Y Z =


1 0 0 . . .

0 0 0 . . .

0 0 0 . . .
...

...
... . . .

 .

In addition to this, X(Y Z) and (XY )Z are also defined since XY and Y Z are both row and

column finite matrices. However,

X(Y Z) =


1 0 0 ...

0 0 0 ...

0 0 0 ...
...

...
... . . .

 6= (XY )Z =


−1 0 0 . . .

0 0 0 . . .

0 0 0 . . .
...

...
... . . .

 .

Let (X, Y, Z) be triple of matrices. As we have just said, our primary goal is to find out

under what conditions associativity is met; namely, (XY )Z = X(Y Z). In order to achieve

our goal, we take two different approaches. Firstly, we will focus on the properties of X and

Z, which enable this triple (X, Y, Z) to form an associative family. The following definitions

make our job easier in the first approach.
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Definition 3.3.5. Let X,Z ∈ M∞(F ). We call Y a link between X and Z if XY and Y Z

are both defined. We say that Y is a strong link between X and Z if Y is a link and X(Y Z)

and (XY )Z are defined. Also, a matrix Y is said to be associative link between X and Z if

Y is a strong link and X(Y Z) = (XY )Z. The family of links, strong links and associative

links are shown by Γ2(X,Z), Γ4(X,Z) and Γ5(X,Z), respectively.

It is not hard to see that Γi(X,Z) has the structure of a vector subspace ofM∞(F ) for

each i ∈{2, 4, 5}. Moreover, from definitions of our families, it immediately follows that

Γ5(X,Z) ⊆ Γ4(X,Z) ⊆ Γ2(X,Z).

Now, we shall examine the following matrices to show that both of the containments may be

proper: Let X and Z be the matrices in the previous example and put

Y =


0 1 0 ...

−1 0 1 ...

0 −1 0 ...
...

...
... . . .

 and Y ′ =


0 1 0 . . .

1 0 1 . . .

0 1 0 . . .
...

...
... . . .

 .

We have already observed that Y ∈ Γ4(X,Z) \ Γ5(X,Z). Moreover, it is a quick check to

conclude that Y ′ ∈ Γ2(X,Z) \ Γ4(X,Z).

Now, we shall introduce some propositions characterizing these subspaces.

Proposition 3.3.6.
⋂

X,Z∈M∞(F )

Γ2(X,Z) =MRCf (F ).

Proof. Let’s take two arbitrary elements X,Z ∈ M∞(F ). Using Lemma 3.3.2, one can

easily deduce thatMRCf (F ) ⊆ Γ2(X,Z). Now, in order to show the other direction assume

that Y /∈MRCf (F ). Then, the matrix Y has some row or column that has nonfinite support.

If we consider the matrix Z whose all entries are 1, then Y Z or ZY is not defined. This

shows that Y /∈
⋂

X,Z∈M∞(F )

Γ2(X,Z). Thereby, the result follows.

A similar phenomenon occurs with Γ4(X,Z).

Proposition 3.3.7.
⋂

X,Z∈M∞(F )

Γ4(X,Z) =Mfin
∞ (F ).

26



Proof. We can directly get one inclusion using Lemma 3.3.2: Let Y ∈Mfin
∞ (F ). Then XY

and Y Z are both defined for any choice of X and Z. Besides, X(Y Z) and (XY )Z are also

defined since XY ∈MRf (F ) and Y Z ∈MCf (F ). Hence, we obtain

Mfin
∞ (F ) ⊆

⋂
X,Z∈M∞(F )

Γ4(X,Z).

For the other inclusion, let Y ∈ Γ4(X,Z) for all X,Z ∈ M∞(F ). From above proposition,

it directly follows that Y ∈ MRCf (F ). Now, assume that Y fails to be finitely supported

matrix and consider the following two sets

J =
{
j | Yj∗ 6= 0

}
and K =

{
k | Y∗k 6= 0

}
.

Since Y ∈ MRCf (F ) and we assumed that Y /∈ Mfin
∞ (F ), at least one of the above sets

need to be infinite. Without loss of generality, let |J | = ∞. This means that the matrix Y

has infinite number of non-zero rows. Now, let Z be a matrix whose all entries are 1. Then,

Y Z is defined since Y ∈ MRCf (F ); moreover, the first column of Y Z has infinitely many

nonzero entries due to construction of Z. However, one can easily see that X(Y Z) is not

defined in the case when

X =


1 1 1 ...

0 0 0 ...

0 0 0 ...
...

...
... . . .


Of course, this is a contradiction because Y is taken from

⋂
X,Z∈M∞(F )

Γ4(X,Z). Hence, we

are done.

Now, we shall give the following techniqual definition which will be used in the proof of

the next proposition.

Definition 3.3.8. Let X be a row finite matrix. The length of Xi∗, which is the i-th row of

X is the smallest number σi ≥ 0 such that xij = 0 for every j > σi. Likewise, the length of

the j-th column of a column finite matrix Y is the smallest number uj such that yij = 0 for

every i > uj.

Proposition 3.3.9. If X ∈MRf (F ) and Z ∈MCf (F ), then it must be

Γ5(X,Z) =M∞(F ).
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Proof. One inclusion is trivial, Γ5(X,Z) ⊆ M∞(F ). Now, all we have to do is show that

Y ∈ Γ5(X,Z) for any Y ∈M∞(F ). From Lemma 3.3.2, we know that XY , Y Z, (XY )Z

and X(Y Z) are all defined for all Y ∈ M∞. Now, we shall determine whether or not

X(Y Z) = (XY )Z calculating arbitrary (i, l)-th entry of both of those terms:

(X(Y Z))il =
∞∑
j=1

xij

( ∞∑
k=1

yjkzkl

)
=

σi∑
j=1

xij

( ul∑
k=1

yjkzkl

)

=

ul∑
j=1

( σi∑
k=1

xijyjk

)
zkl = ((XY )Z)il,

where σi is the length of the i-th row of X and ul is the length of the l-th column of Z.

Corollary 3.3.10. Let Y ∈ Mfin
∞ (F ). Then X(Y Z) = (XY )Z for any matrices X and Z.

In particular, ⋂
X,Z∈M∞(F )

Γ5(X,Z) =Mfin
∞ (F ).

Proof. Since Y is a finitely supported matrix, one may divide Y into block matrices as

follows

Y =

 Y ′ O

O O

 ,

where Y ′ is an n×nmatrix. Now, let’s write the matricesX and Z in terms of block matrices

similarly:

X =

 X1 X2

X3 X4

 and Z =

 Z1 Z2

Z3 Z4

 ,

where X1 and Z1 are n× n matrices. Then,

X(Y Z) =

 X1(Y
′Z1) X1(Y

′Z2)

X3(Y
′Z1) X3(Y

′Z2)

 and (XY )Z =

 (X1Y
′)Z1 (X1Y

′)Z2

(X3Y
′)Z1 (X3Y

′)Z2

 .

Since X1, X3 ∈ MRf (F ) and Z1, Z2 ∈ MCf (F ), it must be X(Y Z) = (XY )Z from the

previous proposition. Moreover, the second statement follows from Proposition 3.3.7 be-

cause of the fact

Mfin
∞ (F ) ⊆

⋂
X,Z∈M∞(F )

Γ5(X,Z) ⊆
⋂

X,Z∈M∞(F )

Γ4(X,Z).
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In our second approach, we focus on the matrix Y in the statement X(Y Z) = (XY )Z.

We will investigate how it affects associativity. Here we should introduce the concept of

summability to understand the work to be done in the following subsection.

Definition 3.3.11. Let
{
Vi | i ∈ I

}
be a family of vectors indexed by the set I . Then we

call this family
{
Vi | i ∈ I

}
summable if for every j ∈ Z+, the set

{
i | Vi(j) 6= 0

}
is finite,

where Vi(j) is the j-th entry in the i-th vector.

One may wonder how to use this new concept in our study of infinite matrices: We can

extend this definition to the context of infinite matrices considering the columns (rows) of a

matrix as a vector. (Note that, in such a case, our index set will be Z+.)

3.3.1 Summability and Associativity

Let X,Z ∈ M∞(F ). One can easily deduce that Y is a link between them if and only

if for every k ∈ Z+ the family
{
X∗jyjk | j ∈ Z+

}
is summable and for every j ∈ Z+,{

yjkZk∗ | k ∈ Z+
}

is summable. At this point, we face a quite important question: Is ıt

enough to check summability of the family
{
X∗jyjkZk∗ | j, k ∈ Z+

}
to determine whether

(X, Y, Z) is an associative triple or not? Unfortunately, the answer is "No!" The following

three matrices constitute a pretty good example of a triple which does not form an associative

family even though
{
X∗jyjkZk∗ | j, k ∈ Z+

}
is summable. Now, put

X =


0 1 1 ...

0 0 0 ...

0 0 0 ...
...

...
... . . .

 , Y =


1 1 1 . . .

1 1 0 . . .

1 0 0 . . .
...

...
... . . .

 and Z =


0 0 0 . . .

1 0 0 . . .

1 0 0 . . .
...

...
... . . .

 .

Clearly, these matrices do not even satisfy the first condition to be an associative triple asXY

and Y Z do not exist. The surprising point here is that the family
{
X∗jyjkZk∗ | j, k ∈ Z+

}
is summable. Let’s explain why:

Actually, all we have to do is multiply the columns and rows by the nonzero entries of Y

which lie in the first row, first column, and (2, 2) coordinate. First, we consider the y22. Then

we have
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X∗2y22Z2∗ =


1

0

0
...

 .
(

1 0 0 . . .
)

=


1 0 0 . . .

0 0 0 . . .

0 0 0 . . .
...

...
... . . .

 6= O.

Secondly, let’s look at the matrix X. As can be seen, the first column of X is zero. Thus, the

family generated by any entry chosen from the first row of Y

{
X∗1y1kZk∗ | j, k ∈ Z+

}
must be the singleton set {O}. In addition to this, a symmetric argument holds for the family{
X∗jyj1Z1∗ | j, k ∈ Z+

}
, where yj1 is chosen arbitrarily from the first column Y, since the

entries of first row of Z are all zero. Consequently, the family
{
X∗jyjkZk∗ | j, k ∈ Z+

}
is

summable since it has only one element which is different from zero, X∗2y22Z2∗.

We couldn’t find what we expected, and even worse, we faced the fact that summability

of
{
X∗jyjkZk∗ | j, k ∈ Z+

}
does not force XY and Y Z to be defined. On the other hand,

the summability of this family is a necessary condition for associativity as our next work

will show us. That is, we’re not done with it yet. Hence, from this point on we will call this

summability condition requirement (S) for convenience. By the way, we have one more

fact which is easy to see to talk about before we go into details: Let (X, Y, Z) be triple of

matrices inM∞(F ). Then the family
{
X∗jyjkZk∗ | j, k ∈ Z+

}
is summable if and only if

the set U =
{
j, k ∈ Z+ | xijyjkzkl 6= 0

}
, which is the support of arbitrarily chosen (i, l)-th

entry is summable. Let us continue our discussion with the following result, which tells us

that if we add one more assumption, summability of the family
{
X∗jyjkZk∗ | j, k ∈ Z+

}
implies associativity.

Theorem 3.3.12. Let X, Y and Z be matrices such that XY, Y Z are both defined and{
X∗jyjkZk∗ | j, k ∈ Z+

}
is summable, then X(Y Z) = (XY )Z.

Proof. In order for the desired result to follows, we will try to show that the (i, l)-th entry of

X(Y Z) and (XY )Z are equal for any choice of i, l ∈ Z+. In other words, if we write them

in terms of formal expressions, we would like to obtain the following equality

(X(Y Z))il =
∞∑
j=1

xij

( ∞∑
k=1

yjkzkl

)
=
∞∑
k=1

( ∞∑
j=1

xijyjk

)
zkl = ((XY )Z)il.
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By the definedness of Y Z, we know that the set
{
k | yjkzkl 6= 0

}
is finite. Hence, for any

j ∈ Z+, we have a smallest number tj satisfying

(X(Y Z))il =
∞∑
j=1

xij

( ∞∑
k=1

yjkzkl

)
=
∞∑
j=1

xij

( tj∑
k=1

yjkzkl

)
=
∞∑
j=1

tj∑
k=1

xijyjkzkl.

Moreover, each entry in the last summand above has finite support because requirement (S)

is satisfied by hypothesis. Hence, there is a smallest number q such that

∞∑
j=1

tj∑
k=1

xijyjkzkl =

q∑
j=1

tj∑
k=1

xijyjkzkl.

Now, let’s define t = Max
{
tj | 1 ≤ j ≤ q

}
. Then we obtain that

∞∑
j=1

tj∑
k=1

xijyjkzkl =

q∑
j=1

tj∑
k=1

xijyjkzkl =

q∑
j=1

t∑
k=1

xijyjkzkl.

A symmetric argument holds for ((XY )Z)il. The set
{
j | xijyjk 6= 0

}
is finite since XY

is defined. Therefore, for any k ∈ Z+, there must exist a smallest number q′k satisfying the

following:

((XY )Z)il =
∞∑
k=1

( ∞∑
j=1

xijyjk

)
zkl =

∞∑
k=1

( q′k∑
j=1

xijyjk

)
zkl =

∞∑
k=1

q′k∑
j=1

xijyjkzkl

Since
{
X∗jyjkZk∗ | j, k ∈ Z+

}
is summable, one can find a number t′ such that

∞∑
k=1

q′k∑
j=1

xijyjkzkl =
t′∑
k=1

q′k∑
j=1

xijyjkzkl.

If we define q′ = Max
{
q′k | 1 ≤ k ≤ t′

}
, then it must be

((XY )Z)il =
t′∑
k=1

q′k∑
j=1

xijyjkzkl =
t′∑
k=1

q′∑
j=1

xijyjkzkl =

q′∑
j=1

t′∑
k=1

xijyjkzkl.

From here on all we need to do is check whether or not

q∑
j=1

t∑
k=1

xijyjkzkl =

q′∑
j=1

t′∑
k=1

xijyjkzkl. (∗)

Let’s assume that the above equality does not hold. Then we have the following eight cases,

one of which must occur:
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• q′ > q and t′ = t

• q′ = q and t′ > t

• q′ > q and t′ > t

• q > q′ and t′ > t

• q > q′ and t = t′

• q = q′ and t > t′

• q > q′ and t > t′

• q′ > q and t > t′

Now, we shall observe these cases. Let’s start with the first case. If q′ > q and t′ = t,

then we have
q∑
j=1

t∑
k=1

xijyjkzkl +

q′∑
j=q+1

t∑
k=1

xijyjkzkl =

q′∑
j=1

t′∑
k=1

xijyjkzkl.

Notice that xijyjkzkl = 0 for all j > q by construction of q. This forces the second summand

to be zero. Hence, the equation (∗) holds in this case.

Second, if q′ = q and t′ > t, then
q∑
j=1

t∑
k=1

xijyjkzkl +

q∑
j=1

t′∑
k=t+1

xijyjkzkl =

q′∑
j=1

t′∑
k=1

xijyjkzkl.

We know that yjkzkl = 0 for all k > t by definition of t, and so the second summand is zero

again. Thereby, the equation (∗) holds in this case too. Moreover, the third case, where

q′ > q and t′ > t, immediately follows from the first two cases. Let’s continue with the

fourth case. One can write the following two equations which are equal to each other in the

case when q > q′ and t′ > t:

q′∑
j=1

t′∑
k=1

xijyjkzkl +

q∑
j=q′+1

t′∑
k=1

xijyjkzkl =

q∑
j=1

t′∑
k=1

xijyjkzkl

q∑
j=1

t∑
k=1

xijyjkzkl +

q∑
j=1

t′∑
k=t+1

xijyjkzkl =

q∑
j=1

t′∑
k=1

xijyjkzkl

Recall that t = Max
{
tj | 1 ≤ j ≤ q

}
and q′ = Max

{
q′k | 1 ≤ k ≤ t′

}
. Thus, we have

xijyjk = 0 for all j > q′ and yjkzkl = 0 for all k > t. This forces the second summands of

each equation above to be zero. This gives us the desired equality (∗). Through a symmetric

process, one may prove the remaining cases.

Let’s make use of this crucial theorem. We continue with important consequences of it.

In fact, the first one is nothing more than Corollary 3.3.10 with an easier proof.
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Corollary 3.3.13. Let Y ∈Mfin
∞ (F ). Then for any X,Z ∈M∞(F ), it must be

X(Y Z) = (XY )Z.

Proof. Clearly, the matrices XY and Y Z are both defined as Y ∈ Mfin
∞ (F ). Besides, it is

not hard to see that family
{
X∗jyjkZk∗ | j, k ∈ Z+

}
is summable because Y consists of

finitely many nonzero elements. Hence, X(Y Z) = (XY )Z by the above theorem.

Corollary 3.3.14. If X, Y ∈ MRf (F ), then X(Y Z) = (XY )Z for any Z ∈ M∞(F ).

Likewise, X(Y Z) = (XY )Z for any X ∈M∞(F ) in the case when Y and Z column-finite

matrices.

Proof. Let σi be the length of the i-th row of the matrix X, which is row-finite. Then it must

be xijyjk = 0 for every j > σi. Also, note that the rows Yj∗ have finitely many nonzero

elements since Y is also row-finite, and so we have only finitely many yjk 6= 0 for j ≤ σi.

Therefore, the family
{
X∗jyjkZk∗ | j, k ∈ Z+

}
summable. Thus, (X, Y, Z) is an associative

triple by the theorem. The second statement also follows in a similar way.

Finally, we close out this section with the following proposition:

Proposition 3.3.15. LetX, Y and Z be matrices such that Y Z is defined andX is row finite.

Then it must be X(Y Z) = (XY )Z.

Proof. One can immediately say that XY is defined as X is row finite. In order to see that

Y ∈ Γ5(X,Z), all we will do is determine whether requirement (S) is satisfied or not. Now,

let’s consider the set U =
{
j, k ∈ Z+ | xijyjkzkl 6= 0

}
, which is the support of arbitrarily

chosen (i, l)-th entry. It follows from the definedness of Y Z that
{
k | yjkzkl 6= 0

}
is finite

for any choice of j ∈ Z+. Besides,
{
j | xij 6= 0

}
is also finite as X is row-finite, and so the

set U =
{
j, k ∈ Z+ | xijyjkzkl 6= 0

}
is finite. Hence, requirement (S) is satisfied. This

completes the proof.
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Remark 3.3.16. As we mentioned,M∞(F ) is not a ring since it fails to satisfy associativity.

But, the subspaces MCf (F ), MRf (F ) and Mfin
∞ (F ) form an associative ring since the

requirement (S) satisfied in these subspaces. We should note here that the result also holds

in the case when the coefficients of matrices are taken from a ring with "1" instead of a field

of characteristic zero.

As we said before, in general, a variety of theorems in the context of finite matrices

cannot be generalized to infinite matrices by simply letting n tend to ∞ due to obstacles

such as convergence, associativity. For example, W.Hołubowski ([12]) showed that inverse

of an upper triangular matrix might be lower triangular, which is a case not in the finite-

matrix theory. We will deal with this article briefly to tell why we should be prepared for

differences and careful while working with infinite matrices.

3.4 A Little Warning

In this section, we shall take a look at a couple of examples that show us that fundamental

theorems on n × n matrices with real entries which play a key role in finite matrix theory

may not hold in the case of infinite matrices.

LetX and Z be two n×nmatrices. Recall that ifXZ = In, then we also have ZX = In.

However, the result fails to be satisfied in the case when our matrices are infinite. As an

example, put

X =



0 0 0 0 ...

1 0 0 0 ...

0 1 0 0 ...

0 0 1 0 ...
...

...
...

... . . .


and Z =



0 1 0 0 ...

0 0 1 0 . . .

0 0 0 1 ...

0 0 0 0 . . .
...

...
...

... . . .


.

Then, easy calculations give

XZ =



0 0 0 0 ...

0 1 0 0 ...

0 0 1 0 ...

0 0 0 1 ...
...

...
...

... . . .


and ZX =



1 0 0 0 ...

0 1 0 0 . . .

0 0 1 0 ...

0 0 0 1 . . .
...

...
...

... . . .


= I∞.
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As can be seen above, XZ 6= I∞ although ZX = I∞. Thus, this theorem does not work for

infinite matrices. We also know that

• If X = (xij)1≤i,j≤n is an invertible lower (upper) triangular matrix, then its inverse

X−1 must also be a lower (upper) triangular matrix.

• Let X be an triangular n× n matrix. Then it is invertible if and only if all its diagonal

entries are invertible.

Now, we shall try to find two matrices X ′, Y ′ with entries in an infinite matrix ring to show

that these results also may not work for infinite matrices.

Let X ′ =

 X Y

O Z

 be a 2 × 2 matrix with coefficients from theMRCf (F ), where

X,Z are infinite matrices which we defined above and

Y =



1 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...
...

...
...

...
...


.

Now, we consider Y ′ =

 Z O

Y X

 . One can easily compute that X ′Y ′ = Y ′X ′ = E,

where E =

 I∞ 0

0 I∞

 is a unit matrix in M2(MRCf (F )). Thus, X ′ and Y ′ are both

invertible. To conclude, we see that inverse of the upper triangular matrix X ′ that we defined

above is a lower triangular matrix, which is Y ′. Moreover, as can be seen easily, the diagonal

entries of X ′ and Y ′ are not invertible. This is exactly what we wanted to show.
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Chapter 4

Derivations of Rings of Infinite Matrices

4.1 Definitions and Statement of Results

Let R be an associative ring with 1. An additive map D of this ring R is called a derivation

of R if it satisfies the Leibniz Rule D(xy) = D(x)y + xD(y) for all x, y ∈ R. Also, if x is

any element of this ring, then the additive map

Dx : R → R

y → xy − yx

defines a derivation. We call such a derivation inner. Characterizing all derivations of a ring

has always been of interest to many mathematicians studying algebra. Of course, one of

the first ring structures that come to mind are matrix rings. First, let us briefly summarize

what we know about derivations of the ring Mn(R) of all n × n matrices over R. Every

derivation ofMn(R) is an inner derivation in the case of R being a field (see [10]). What

one need to keep in mind is that this result does not have to work if R is not a field. We have

a practical way of constructing a derivation ofMn(R): Let C be a derivation of R. Then the

map DC(R) : Mn(R) → Mn(R) which is defined by

(DC(R)(X))ij = C(xij) for all i, j

turns out to be a derivation ofMn(R), called induced by C, or shortly induced. Namely, a

derivation of a ring R enable us to construct a new derivation ofMn(R).

Now, let us broaden our perspective. What can we say about derivations of infinite matri-

ces? As we mentioned in the previous chapter, the setM∞(R) of all matrices overR, whose

rows and columns are indexed by Z+× Z+, has no structure of a ring due to some problems
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such as convergence, associativity. Thus, it would be better to consider its subsets which

form a ring such as the setMCf (R) (MRf (R)) of all column finite matrices (row finite ma-

trices). For example, Kolesnikov and Maltsev described all derivations of the ringMfin
∞ (R)

of all finitely supported matrices in [14]. They deduced that any derivation ofMfin
∞ (R) can

be written as a sum of an inner derivation DX for some X ∈ MCf (R) ∩MRf (R) and an

induced derivation DC(R). In [20], Slowik achieved a similar result forMCf (R) and the ring

T∞(R) of all upper triangular matrices. Here we will discuss this article in detail. Through-

out this chapter, R denotes an associative ring with identity. Before moving onto the next

section, let us state precisely what Slowik proved:

Theorem 4.1.1. Let D be a derivation ofMCf (R). Then there exist a matrix X ∈MCf (R)

and a derivation C of R such that

D(Y ) = DX(Y ) + DC(R)(Y ) for all Y ∈MCf (R).

The ring of infinite upper triangular matrices constitute a nice example of a subring of

MCf (R). Same result moved here:

Theorem 4.1.2. Let D be a derivation of T∞(R). Then there exist a matrix X ∈ T∞(R) and

a derivation C of R such that

D(Y ) = DX(Y ) + DC(R)(Y ) for all Y ∈ T∞(R).

4.2 Some Techniqual Propositions

This section will propose some techniqual propositions that help us prove our main desired

results. Before working, let us introduce some notations and terminologies. As usual, we

show the matrix whose only nonzero entry is 1 in the (i, j) coordinate by ξij , regardless of

its dimension. As we know, these are known as matrix units. Also, the symbols I∞ and In

stand for the identity matrices, infinite and n× n, respectively. We writeMn×∞(R) for the

ring of all matrices over R with n rows and infinite number of columns (indexed by Z+).

Likewise, the ring of all matrices over R with infinite number of rows (also indexed by Z+)

and n columns is shown byM∞×n(R).

Finally, it is time to start work. Let D be a derivation of R, where R is one of the rings

MCf (R) or T∞(R). Firstly, we focus on the properties of D(Y ) if Y is finitary.
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Proposition 4.2.1. If D is a derivation ofR, then there exists Z ∈MCf (R) such that

D(Y ) = DZ(Y ) + D′(Y ) for all Y ∈Mfin
∞ (R) ∩R,

where for every i, j ∈ Z+ and λ ∈ R one has D′(λξij) = λ′ξij for some λ′ ∈ R.

Proof. It will be more understandable if we give this proof step by step.

(1) For any i ∈ Z+ and λ ∈ R, all nonzero entries of D(λξii) lie in the i-th row and in the

i-th column.

Writing λξii as λξii.ξii, we have D(λξii) = D(λξii.ξii). Since D satisfies the Leibniz

rule, we obtain

D(λξii) = D(λξii)ξii + λξiiD(ξii).

It is a quick check to see that D(λξii)ξii has nonzero coefficients only in the i-th column. On

the other hand, the nonzero coefficients of λξiiD(ξii) lie in the i-th row. Hence, we are done.

(2) Let i ∈ Z+ and λ ∈ R. It must be

D(λξii) = λ

(∑
j 6=i

(D(ξii))ijξij

)
+

(∑
k 6=i

(D(ξii))kiξki

)
λ+ λ′ξii

for some λ′ ∈ R.

In the previous step, we observed that

D(λξii) = D(λξii)ξii + λξiiD(ξii).

Using this, one can see that

D(λξii)(I∞ − ξii) = λξiiD(ξii).

Thus, (D(λξii))ij = (λD(ξii))ij for all j 6= i. Let’s take a different approach. Writing λξii

as ξii.λξii, we obtain

D(λξii) = D(ξii)λξii + ξiiD(λξii).

It immediately follows from the above equality that

(I∞ − ξii)D(λξii) = D(ξii)λξii.
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Hence, (D(λξii))ki = (D(ξii)λ)ki for all k 6= i. Combining these results, we get

D(λξii) =

i-th column



0 ... 0 D(ξii)1iλ 0 ...

0 ... 0 D(ξii)2iλ 0 ...
...

...
...

...
...

...

λD(ξii)i1 ... λD(ξii)i,i−1 D(λξii)ii λD(ξii)i,i+1 ... i-th row

0 ... 0 D(ξii)i+1,i 0 ...
...

...
...

...
...

...

This proves our claim.

Now, we shall examine that symmetric arguments hold for any D(λξij), where i, j ∈ Z+

and λ ∈ R.

(3) For any i, j ∈ Z+ and λ ∈ R, all nonzero entries of D(λξij) lie in the i-th row and in

the j-th column.

If we write λξij as λξij.ξjj, then D(λξij) = D(λξij.ξjj). Since D satisfies the Leibniz

rule, we obtain

D(λξij.ξjj) = D(λξij)ξjj + λξijD(ξjj).

Clearly, D(λξij)ξjj has nonzero coefficients only in the j-th column. On the other hand, the

nonzero coefficients of λξijD(ξjj) lie in the i-th row. Accordingly, our claim follows.

(4) Let i, j ∈ Z+ and λ ∈ R. Then there exist λ′ ∈ R satisfying

D(λξij) = λ

(∑
k 6=j

(D(ξjj))jkξik

)
+

(∑
k 6=i

(D(ξii))kiξkj

)
λ+ λ′ξij

for some λ′ ∈ R.

In the previous step, we observed that

D(λξij) = D(λξij)ξjj + λξijD(ξjj).

If we write λξij as ξii.λξij, then we also have

D(λξij) = D(ξii)λξij + ξiiD(λξij).

Thereby, it must be

D(λξij)ξjj + λξijD(ξjj) = D(ξii)λξij + ξiiD(λξij).
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From the above equality, we find

(D(λξij)ξjj)kj = (D(ξii)λξij)kj for k 6= i

and

(ξiiD(λξij))ik = (λξijD(ξjj))ik for k 6= j.

Combining these results, one may write the matrix D(λξij) which has nonzero entries only

in the i-th row and in the j-th column as follows:

D(λξij) =





0 ... 0 D(ξii)1iλ 0 ...

0 ... 0 D(ξii)2iλ 0 ...
...

...
...

...
...

...

λD(ξjj)j1 ... λD(ξjj)j,j−1 D(λξij)ij λD(ξjj)j,j+1 ...

0 ... 0 D(ξii)i+1,iλ 0 ...
...

...
...

...
...

...

This completes the proof of our claim.

(5) For any i 6= j ∈ Z+, it must be (D(ξjj))ij = −(D(ξii))ij.

From additivity of D, we have D(O) = O. Also, ξii.ξjj = O in the case when i 6= j.

Accordingly, we get O = D(O) = D(ξii.ξjj) = D(ξii)ξjj + ξiiD(ξjj). Clearly, this give us

desired result, (D(ξjj))ij = −(D(ξii))ij.

(6) There exist a matrix Z such that for all i, j ∈ Z+ and λ ∈ R

D(λξij) = Z.λξij − λξij.Z + λ′ξij for some λ′ ∈ R.

To prove this claim, consider the matrix below

Z =
∑

j 6=i(D(ξjj))ijξij =



0 (D(ξ22))12 (D(ξ33))13 (D(ξ44))14 ...

(D(ξ11))21 0 (D(ξ33))23 (D(ξ44))24 ...

(D(ξ11))31 (D(ξ22))32 0 (D(ξ44))34 ...

(D(ξ11))41 (D(ξ22))42 (D(ξ33))43 0 ...
...

...
...

... . . .


.

For this Z, we have
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Z.λξij =

j-th column



0 ... 0 D(ξii)1iλ 0 ...
...

...
...

...
...

...

0 ... 0 D(ξii)i−1,iλ 0 ...

0 ... 0 0 0 ... i-th row

0 ... 0 D(ξi,i)i+1,iλ 0 ...
...

...
...

...
...

...

As can be seen above, the matrix Z.λξij has nonzero coefficients only in the j-th column.

Furthermore, in step (5) we observed that (D(ξjj))ij = −(D(ξii))ij for all i 6= j ∈ Z+.

Thus, −Z =
∑

j 6=i−(D(ξjj))ijξij =
∑

j 6=i(D(ξii))ijξij ,

−Z =



0 (D(ξ11))12 (D(ξ11))13 (D(ξ11))14 ...

(D(ξ22))21 0 (D(ξ22))23 (D(ξ22))24 ...

(D(ξ33))31 (D(ξ33))32 0 (D(ξ44))34 ...

(D(ξ44))41 (D(ξ44))42 (D(ξ44))43 0 ...
...

...
...

... . . .


.

Easy calculations give us that

−λξij.Z =

j-th column



0 ... 0 0 0 ...
...

...
...

...
...

...

0 ... 0 0 0 ...

λD(ξjj)j1 ... λD(ξjj)j,j−1 0 λD(ξjj)j,j+1 ... i-th row

0 ... 0 0 0 ...
...

...
...

...
...

...

As we can see, the matrix Z satisfies

D(λξij) = Z.λξij − λξij.Z + λ′ξij

for all i, j ∈ Z+ and λ ∈ R. The claim also holds.

As a result, since Y can be written as a finite sum of matrix units ξij for some i, j values

and D is an additive map, we obtain that

D(Y ) = ZY − Y Z + D′(Y ) ,

where for every i, j ∈ Z+ and λ ∈ R, D′(λξij) = λ′ξij for some λ′ ∈ R.
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One may ask why we started by investigating D(Y ), where Y ∈Mfin
∞ (R). Let us explain

the basic idea here. We first show that finitary matrices satisfy what we want to show, then

we will extend this to whole ringMCf (R) (T∞(R)) in a practical way as you will see. Our

next job is to describe the derivations of R mapping λ(ξij)’s to λ′ξij’s. Let’s continue with

the following remark that will help us in the proof of next proposition.

Remark 4.2.2. Suppose that D is a derivation ofR such that D(λξij) is of the form λ′ξij for

all i, j ∈ Z+. Then the maps

Di : R → R

λ → (D(λξii))ii

are derivations of R for all i ∈ Z+.

Proof. Let λ, γ ∈ R and i ∈ Z+. Then, using the additivity of D

Di(λ+ γ) = (D((λ+ γ)ξii))ii = D(λξii)ii + D(γξii)ii = Di(λ) + Di(γ).

This means that Di is additive. Let’s check whether or not Di satisfies Leibniz rule:

Di(λγ) = (D(λγξii))ii = (D(λξii.γξii))ii

= (D(λξii)γξii + λξiiD(γξii))ii

= Di(λ)γ + λDi(γ)

Hence, the result follows.

Proposition 4.2.3. Let D be a derivation of R such that D(λξij) is of the form λ′ξij. Then

for all finitary matrices Y ∈ R

D(Y ) = D(1)(Y ) + D(2)(Y ),

where D(1) is an inner derivation and D(2) is an induced derivation.

Proof. Firstly, we construct the maps

Dij : R → R

λ →
(
D(λξij)

)
ij

Now, let i, j ∈ Z+ and λ ∈ R. We are given that D(λξii) has nonzero entry only in its (i, i)

position, which is Dii(λ). Thus, writing λξij as λξii.ξij , we can see that

D(λξij) = D(λξii.ξij) = D(λξii)ξij + λξiiD(ξij)

= Dii(λ)ξij + λξiiD(ξij).
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Of course, λξij can also be written as ξij.λξjj. Therefore,

D(λξij) = D(ξij.λξjj) = D(ξij)λξjj + ξijD(λξjj)

= D(ξij)λξjj + ξijDjj(λ).

Combining above results, we find

Dii(λ)ξij + λξiiD(ξij) = D(ξij)λξjj + ξijDjj(λ).

In particular,

(
Dii(λ)ξij + λξiiD(ξij)

)
ij

=

(
D(ξij)λξjj + ξijDjj(λ)

)
ij

Now, let’s calculate (i, j)-th coordinate of those terms

•

(
Dii(λ)ξij + λξiiD(ξij)

)
ij

= Dii(λ) + λD(ξij)ij = Dii(λ) + λDij(1),

•

(
D(ξij)λξjj + ξijDjj(λ)

)
ij

= Djj(λ) + D(ξij)ijλ = Djj(λ) + Dij(1)λ.

The right-hand side of the above two equations yields that for any i, j ∈ Z+

Djj(λ) = Dii(λ) + λDij(1)−Dij(1)λ. (∗)

Now, we consider the diagonal matrix ∆ = (δi)i∈Z+ with δi = −D1i(1):

∆ =
∞∑
i=2

−D1i(1)ξii =





0 0 0 0 ...

0 −D12(1) 0 0 ...

0 0 −D13(1) 0 ...

0 0 0 −D14(1) ...
...

...
...

... . . .

.

Let D′ be an inner derivation implemented by ∆, i.e., D′(Y ) = ∆Y −Y∆. It is obvious that

D′′ := D−D′ is a derivation ofR as well. Now, let i ∈ Z+ and λ ∈ R. Then we have

D′ii(λ) = (D′(λξii))ii = (∆.λξii − λξii.∆)ii = (∆.λξii)ii − (λξii.∆)ii.
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The matrix ∆.λξii can be seen as below

∆.λξii =

i-th column



0 ... 0 δ1iλ 0 ...

0 ... 0 δ2iλ 0 ...
...

...
...

...
...

...

0 ... 0 δiiλ 0 ... i-th row

0 ... 0 δi+1,iλ 0 ...
...

...
...

...
...

...

Since δni = 0 for all n 6= i and δii = −D1i(1), it must be

∆.λξii =

i-th column



0 ... 0 0 0 ...

0 ... 0 0 0 ...
...

...
...

...
...

...

0 ... 0 −D1i(1)λ 0 ... i-th row

0 ... 0 0 0 ...
...

...
...

...
...

...

That is, the matrix ∆.λξii has non-zero entry only in its (i, i) position, which is −D1i(1)λ.

Now, let’s observe what the matrix λξii.∆ looks like:

λξii.∆ =

i-th column



0 ... 0 0 0 ...

0 ... 0 0 0 ...
...

...
...

...
...

...

0 0 0 −λD1i(1) 0 ... i-th row

0 ... 0 0 0 ...
...

...
...

...
...

...

As can be seen above, the matrix λξii.∆ has non-zero entry only in its (i, i) position, which

is−λD1i(1). Thus, we conclude that D′ii(λ) = −D1i(1)λ+λD1i(1). Using this observation
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and equation (∗), we obtain

D′′ii(λ) = Dii(λ)−D′ii(λ)

= Dii(λ)− (−D1i(1)λ+ λD1i(1))

= Dii(λ) + D1i(1)λ− λD1i(1)

= D11(λ)

Since i is chosen randomly, one can immediately deduce that D′′ii(λ) = D′′jj(λ) for all i, j

and λ ∈ R. This investigation will play an important role in the rest of our work. Also, it

should also be kept in mind that D′′ii is a derivation of R by the above remark.

Now, consider the map D′′′ : R → R which is defined as follows:

D′′′(Y ) =
∑
i,j

D′′11(yij)ξij =


D′′11(y11) D′′11(y12) D′′11(y13) ...

D′′11(y21) D′′11(y22) D′′11(y23) ...

D′′11(y31) D′′11(y32) D′′11(y32) ...
...

...
... . . .

 .

By the construction of D′′′,
(
D′′′(Y )

)
ij

= D′′11(yij) for all i, j, where D′′11 is a derivation of

R. That is, D′′′ is an induced derivation. Thus, DIV = D′′ −D′′′ also defines a derivation of

R. Now, I would like to summarize what we have done so far. We constructed the derivations

D′, D′′ , D′′′ and DIV ofR such that

D(Y ) = D′(Y ) + D′′′(Y ) + DIV(Y ) for all Y ∈Mfin
∞ (R).

We already know that D′ is an inner derivation and D
′′′ is induced by D

′′
. As you see, what

we need to do is to verify that DIV(Y ) is an inner derivation to achieve our goal. So let’s

focus on DIV. Take λ ∈ R and i ∈ Z+ arbitrarily. Then D′′′ii (λ) = (D′′′(λξii))ii = D′′11(λ) by

the definition of D′′′. We also determined that D′′11(λ) = D′′ii(λ). Therefore,

DIV
ii (λ) = D′′ii(λ)−D′′′ii (λ) = D′′ii(λ)−D′′11(λ) = 0.

Since i ∈ Z+ and λ ∈ R are randomly chosen, we have DIV
ii (λ) = 0 for all i ∈ Z+ and

λ ∈ R. Now, consider i, j ∈ Z+ and λ ∈ R.
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1. Clearly, we can write λξij as λξii.ξij. Then we get

DIV(λξij) = DIV(λξii.ξij)

= DIV(λξii).ξij + λξiiD
IV(ξij)

= DIV
ii (λ)ξij + λξiiD

IV(ξij)

2. Similarly, λξij can be seen as ξij.λξjj. Thus, we also have the following

DIV(λξij) = DIV(ξij.λξjj)

= DIV(ξij)λξjj + ξijD
IV(λξjj)

= DIV(ξij)λξjj + ξijD
IV
jj (λ)

Since DIV
ii (λ) = 0 for all i and λ ∈ R, using (1) and (2) one can deduce that(

DIV(λξij)
)
ij

= DIV
ij (λ) = λDIV

ij (1) = DIV
ij (1)λ.

Accordingly, DIV
ij (1) is in the center of R for all pairs i, j.

Now, let i, j, k ∈ Z+. Using DIV(ξik) = DIV(ξij.ξjk) = DIV(ξij)ξjk + ξijD
IV(ξjk), we

obtain (
DIV(ξik)

)
ik

=
(
DIV(ξij)ξjk + ξijD

IV(ξjk)
)
ik︸ ︷︷ ︸

DIV
ik (1) = DIV

ij (1) + DIV
jk(1)

Therefore, DIV
ij are determined by DIV

i,i+1(1) in the sense that

DIV
i,i+k(λ) = λDIV

i,i+k(1) = λ

( k−1∑
n=0

DIV
i+n,i+n+1(1)

)
for k ≥ 1.

Of course, in the case whenR =MCf (R) we have nonzero entries below the main diagonal

and so we should take this observation one step further. Using the fact that DIV
ii (λ) = 0 for

all i, we can write DIV
i,i−k(λ) as below

DIV
i,i−k(λ) = −λDIV

i−k,i(1) = −λ
( k−1∑

n=0

DIV
i−k+n,i−k+n+1(1)

)
for k ≥ 1.

Consider now the diagonal matrix D = (di)i∈Z+ which is defined as

D =
∞∑
i=1

diξii =



DIV
12(1) 0 0 0 ...

0 0 0 0 ...

0 0 −DIV
23(1) 0 ...

0 0 0 −DIV
23(1)−DIV

34(1) ...
...

...
...

... . . .


,
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where d1 = DIV
12(1), d2 = 0, di = di−1 −DIV

i−1,i(1) for i ≥ 3.

One can check that

DIV(Y ) = DY − Y D for all Y ∈Mfin
∞ (R),

showing that DIV is an inner derivation. This is what we wanted to get. By the way, the

above check may seem difficult at first glance but it is not. We got enough information about

DIV that make these calculations easier:

• DIV
ij (1) is in the center of R for all pairs i, j and

• DIV
i,i+k(λ) = λDIV

i,i+k(1) = λ

(∑k−1
n=0D

IV
i+n,i+n+1(1)

)
for k ≥ 1

• DIV
i,i−k(λ) = −λDIV

i−k,i(1) = −λ
(∑k−1

n=0D
IV
i−k+n,i−k+n+1(1)

)
for k ≥ 1

Consequently, if Y is finitary , then we have

D(Y ) = D
′
(Y ) + D

′′′
(Y ) + DIV(Y ) = ZY − Y Z + D

′′′
(Y ),

where Z = ∆ +D and D
′′′ is an induced derivation. Hence, we are done.

Up to this point, we observed the properties of D(Y ) when Y ∈ R is finitary. In the

following proposition, we will obverse what happens to D(Y ) if Y /∈Mfin
∞ (R).

Proposition 4.2.4. Let D be a derivation ofR such that

D(Y ) = D
′
(Y ) + D

′′
(Y ) for all finitary Y ∈ R,

where D
′

is an inner derivation and D
′′

is an induced derivation. Then we have

D(Y ) = D
′
(Y ) + D

′′
(Y ) for all Y ∈ R.

Proof. Assume that D′ is implemented by U and D′′ is induced by C, which is a derivation

of R. Of course, we can make such an assumption since we are given that D′ is an inner

derivation and D′′ is an induced derivation. If we write 1 as 1.1, then

C(1) = C(1).1 + 1C(1)

C(1) = C(1) + C(1)

C(1) = 0
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(In a similar way, we have D(I∞) = O.) Since C(1) = 0 and D′′ is induced by C, it must be

D′′

 In O

O O

 = O

Dividing U into block matrices as below

 U1 U2

U3 U4

 , where U1 ∈Mn(R),

we obtain that

D

 In O

O O

 = D′

 In O

O O

+ D′′

 In O

O O


=

 U1 U2

U3 U4

 .

 In O

O O

−
 In O

O O

 .

 U1 U2

U3 U4

+O

=

 O −U2

U3 O


Also, from

O = D(I∞) = D

 In O

O O

+ D

 O O

O I∞

 ,

it follows that

D

 O O

O I∞

 =

 O U2

−U3 O

 .

Now, let Y ∈ R. We divide it as follows

Y =

 Y1 Y2

Y3 Y4

 , where Y1 ∈Mn(R).

From here on we turn our attention to the block matrices Y1 ∈ Mn(R), Y2 ∈ Mn×∞(R),

48



Y3 ∈Mfin
∞×n(R) and Y4 ∈MCf (R). Let’s start with Y2. We can write that V ′1 V ′2

V ′3 V ′4

 = D

 O Y2

O O

 = D

 In O

O O

 .

 O Y2

O O


=

 O −U2

U3 O

 O Y2

O O

+

 In O

O O

 V ′1 V ′2

V ′3 V ′4


=

 O O

O U3Y2

+

 InV
′
1 InV

′
2

O O


=

 V ′1 V ′2

O U3Y2

 .

On the other side, we have

D

 O Y2

O O

 = D

 O Y2

O O

 .

 O O

O I∞

 =

 −Y2U3 V ′2

O V ′4

 .

Accordingly, it must be −Y2U3 V ′2

O U3Y2

 = D

 O Y2

O O


= U

 O Y2

O O

−
 O Y2

O O

U +

 O V ′′2

O O

 .

It follows from the above thatD

 O Y2

O O


ij

=

D′

 O Y2

O O


ij

+

(D−D′)

 O Y2

O O


ij

=

D′

 O Y2

O O


ij

+ ((D−D′)((Y2)ijξij))ij

=

D′

 O Y2

O O


ij

+ C((Y2)ij)

for all i, j. As a result of that, for all Y2 ∈Mn×∞(R), we obtain

D

 O Y2

O O

 = D′

 O Y2

O O

+ D′′

 O Y2

O O

 .
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Now, we consider Y1 ∈Mn(R), Y3 ∈Mfin
∞×n(R). From our hypothesis, we already have

D

 Y1 O

Y3 O

 = D′

 Y1 O

Y3 O

+ D′′

 Y1 O

Y3 O

 .

The additivity of D implies

D

 Y1 Y2

Y3 O

 = D′

 Y1 Y2

Y3 O

+ D′′

 Y1 Y2

Y3 O

 .

Finally, let’s observe Y4 ∈MCf (R). From W ′
1 W ′

2

W ′
3 W ′

4

 = D

 O O

O Y4

 = D

 O O

O I∞

 .

 O O

O Y4


=

 O U2

−U3 O

 O O

O Y4

+

 O O

O I∞

 W ′
1 W ′

2

W ′
3 W ′

4


=

 O U2Y4

O O

+

 O O

W ′
3 W ′

4


=

 O U2Y4

W ′
3 W ′

4

 ,

it follows that W ′
1 = O. Thus, for any i, j, we get

D

 Y1 Y2

Y3 Y4


ij

=

D

 Y1 Y2

Y3 O


ij

+

D

 O O

O Y4


ij

=

D

 Y1 Y2

Y3 O


ij

+O.

Fortunately, it is time to get the result. Let i, j ∈ Z+. We just deduced thatD

 Y1 Y2

Y3 O


ij

=

D′

 Y1 Y2

Y3 O

+ D′′

 Y1 Y2

Y3 O


ij

.

It is also easy to see thatD

 O O

O Y4


ij

= O =

D′

 O O

O Y4

+ D′′

 O O

O Y4


ij
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Thanks to these observations, we getD

 Y1 Y2

Y3 Y4


ij

=

D′

 Y1 Y2

Y3 Y4

+ D′′

 Y1 Y2

Y3 Y4


ij

,

showing that D(Y ) = D′(Y ) + D′′(Y ) for all Y ∈ R.

With these lemmas in hand we are now ready to prove our main results.

4.3 Proofs of the Main Results

Proof. Let D be a derivation of R. From Proposition 4.2.1, it immediately follows that

D(Y ) = DZ(Y ) + D′(Y ) for all Y ∈ Mfin
∞ ∩ R, where for all i, j ∈ Z+ and λ ∈ R

we have D′(λξi,j) = λ′ξi,j for some λ′ ∈ R. Moreover, from Proposition 4.2.3, it must be

D′(Y ) = DZ(Y )+DC(R)(Y ) for all Y ∈Mfin
∞ ∩R, where C is a derivation ofR. Therefore,

D(Y ) = DX(Y )+DC(R)(Y ) for all Y ∈Mfin
∞ ∩R, where X = Z+Z. Finally, Proposition

4.2.4 gives the desired result

D(Y ) = DX(Y ) + DC(R)(Y ) for all Y ∈ R.

Of course, we also need to verify that X ∈ R to complete the proof. In the case of

R =MCf (R), the result is trivial since the matrices Z,Z are both inMCf (R), and so their

sum must be column finite as well. Now, consider the case of R = T∞(R). Assume that

X /∈ T∞(R). Then there exist i, j ∈ Z+ with i > j such that xij 6= 0. In such a case,

(D(ξjj))ij = (DX(ξjj))ij +
(
DC(R)(ξjj)

)
ij

= (DX(ξjj))ij + C((ξjj)ij)

= (DX(ξjj))ij + 0

= (DX(ξjj))ij = xij 6= 0.

This means that D(ξjj) /∈ T∞(R), which is a contradiction. Hence, we get X ∈ T∞(R).

51



Chapter 5

Derivations of Infinite Niltriangular Lie

Matrix Algebras

Let R be a commutative ring with identity. We have already observed that the set of all nil-

triangular n× n matrices over R whose entries are all zeros on and below the main diagonal

forms an R-algebra shown by NTn(R). As discussed earlier, many mathematicians have

been interested in derivations and automorphisms of this algebra. Let’s take a quick look at

a few studies on this subject to understand how important the work to be done in this chap-

ter is. The problem of describing automorphisms of the algebra NTn(R) was investigated

by Dubish and Perlis when R is a field (see [8]). Later, Cao and Wang also addressed this

algebra in their work. What they did was describe the automorphism group of NTn(R) (see

[5]). Moreover, Wang, Ou and Yao gave derivations of NTn(R) as a Lie algebra (see [17]).

We now consider the set T∞(R) of all infinite Z+×Z+ upper triangular matrices over R.

It is no wonder that T∞(R) constructs an associative algebra with respect to usual matrix

addition, scalar multiplication and matrix multiplication. This algebra T∞(R) was investi-

gated by Sushkevich (see [21]) when R = C is a field of complex numbers. As you may

recall, we observed that an associative algebra always forms a Lie algebra. In particular, our

algebra T∞(R) is a Lie algebra with [X, Y ] = XY − Y X. Throughout this chapter, we will

concentrate on its Lie subalgebra of strictly upper triangular matrices, which is denoted by

NT∞(R). Now, let us talk about what we will do. All derivations of NT∞(R) were de-

scribed by W.Hołubowski, I.Kashuba and S.Zurek in [11]. They proved that any derivation

of NT∞(R) can be expressed as the sum of an inner derivation and a diagonal derivation.

The purpose of this chapter is to discuss this article in detail.
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5.1 Notations, Some Definitions and Basic Facts

We have already discussed what matrix units are, but it is better to talk about them once

again since they play a vital role in this chapter.

Definition 5.1.1. An infinite matrix ξij whose only nonzero entry is 1 in the (i, j)-th entry is

called matrix unit.

Regarding these matrices, we have the following fact than can be proved easily

[ξij, ξkl] = δjkξil − δliξkj,

where δ is the Kronecker delta. As you know, it was mentioned in the second chapter that

matrix units form a basis for the vector space Mn(F ) of all n × n matrices over a field

F. Well, do you think we can say the same thing for NT∞(R)? (Note that our Lie algebra

NT∞(R) is an uncountable dimensional vector space in the case of R being a field.) I can

just hear you saying, "Of course not." Let us explain why this cannot happen. Consider the

set
{
ξij | 1 ≤ i < j

}
, which consists of all matrix units in NT∞(R). Of course, we have no

doubt that this set is linearly independent. On the other hand, one can easily find a matrix

X ∈ NT∞(R) which can not be written as a finite linear combination matrix units. As an

example, consider

X =



0 1 1 1 1 1 . . .

0 0 1 1 1 1 . . .

0 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .
...

...
...

...
...

... . . .


∈ NT∞(R).

Nevertheless, the fact that matrix units do not form a basis of NT∞(R) does not prevent us

from writing a matrix X ∈ NT∞(R) as

X =
∑
1≤i<j

xijξij.

As you may recall, we examined the lower central series of the Lie algebraN5(F ) of strictly

upper triangular 5 × 5 matrices over a field F. Now, we move the discussion we had in the
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second chapter here. Let’s see what similarities or differences are there. Denote the lower

central series of NT∞(R) by

Ω1 = NT∞(R)

Ω2 = [Ω1,NT∞(R)]

...

Ωn = [Ωn−1,NT∞(R)].

One can easily see that if X, Y ∈ NT∞(R), then

XY − Y X = Z =



0 0 z13 z14 z15 . . .

0 0 0 z24 z25 . . .

0 0 0 0 z35 . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .
...

...
...

...
... . . .


.

Since Ω2 = [NT∞(R),NT∞(R)] = [Ω1,Ω1] is defined to be the linear span of elements of

the form [X, Y ] = XY − Y X, where X, Y ∈ NT∞(R), we obtain

Ω2 = [Ω1,Ω1] =

{
Z ∈ NT∞(R) | Z =



0 0 z13 z14 z15 ...

0 0 0 z24 z25 ...

0 0 0 0 z35 ...

0 0 0 0 0 ...
...

...
...

...
...

...


}
⊂ Ω1.

You may have noticed that Ω2 ⊂ NT∞(R) consists of matrices whose entries one above the

main diagonal are all zeros. As we will see soon, a symmetric discussion holds for all Ωn.

We now focus on Ω3. Let X ∈ Ω2 and Y ∈ NT∞(R). Then we have

XY − Y X = Z =



0 0 0 z14 z15 . . .

0 0 0 0 z25 . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .
...

...
...

...
... . . .


.
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That is why

Ω3 = [Ω2,Ω1] =

{
Z ∈ NT∞(R) | Z =



0 0 0 z14 z15 ...

0 0 0 0 z25 ...

0 0 0 0 0 ...

0 0 0 0 0 ...
...

...
...

...
... . . .


}
⊂ Ω2.

Now, we shall generalize the results we obtained above. Let X ∈ Ωn−1 and Y ∈ NT∞(R).

Then easy calculations give us

XY − Y X = Z =



0 0 0 . . . 0 z1,n+1 z1,n+2 z1,n+3 . . .

0 0 0 . . . 0 0 z2,n+2 z2,n+3 . . .

0 0 0 . . . 0 0 0 z3,n+3 . . .

0 0 0 . . . 0 0 0 0 . . .
...

...
...

...
...

...
...

... . . .


.

Thus, it must be

Ωn =

{
Z ∈ NT∞(R) | Z =



0 0 0 . . . 0 z1,n+1 z1,n+2 z1,n+3 . . .

0 0 0 . . . 0 0 z2,n+2 z2,n+3 . . .

0 0 0 . . . 0 0 0 z3,n+3 . . .

0 0 0 . . . 0 0 0 0 . . .
...

...
...

...
...

...
...

... . . .


}
.

Thereby, we proved the following result:

Proposition 5.1.2. For any n ≥ 1,

Ωn =

{
X = (xij)i,j∈Z+ ∈ NT∞(R) | xij = 0 if j < i+ n

}
.

Corollary 5.1.3.
∞⋂
n=1

Ωn = {O}.

Proof. Clearly, O ∈ Ωn for all n ≥ 1. So O ⊆
∞⋂
n=1

Ωn. For the other inclusion, assume that
∞⋂
n=1

Ωn 6= {0}. Then, it follows that there exist a matrix O 6= X = (xij)i,j∈Z+ ∈
∞⋂
n=1

Ωn. This

means that xij 6= 0 for some i, j ∈ Z+. For this i, j ∈ Z+, we can immediately find n ∈ Z+

such that j < i + n. Of course, in such a case X /∈ Ωn by Proposition 5.1.2. Hence, it must

be X /∈
∞⋂
n=1

Ωn, and this contradicts our assumption. Thereby, the result follows.
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There is one more thing we want to talk about the lower central series of NT∞(R).

Proposition 5.1.4. [Ωn,Ωm] = Ωn+m for all n,m ≥ 0.

Proof. Let X ∈ Ωn, Y ∈ Ωm and Z = (zij)i,j∈Z+ = XY, where zij =
∞∑
k=1

xikykj. Now,

assume that j < i + n + m. If xik = 0, then xikykj = 0. Otherwise, it must be k ≥ i + n

because X ∈ Ωn, and this forces j to be less than k +m. Of course, this means that ykj = 0

since Y ∈ Ωm. Consequently, for all j < i+ n+m

zij =
∞∑
k=1

xikykj =
∞∑
k=1

0 = 0.

Hence, Z = (zij)i,j∈Z+ = XY ∈ Ωn+m by above proposition. Accordingly, we find that

[Ωn,Ωm] ⊆ Ωn+m.

For the other inclusion, we shall show that Ωn+m = [Ωn, Y ], where

Y = (yij)i,j∈Z+ =

yij = 1 if i = m+ i

0 otherwise.

Let us represent the matrix Y as the following rectangular array to have a better understand-

ing of what our process is:

Y =



0 ... 0 y1,m+1 0 0 0 ...

0 ... 0 0 y2,m+2 0 0 ...

0 ... 0 0 0 y3,m+3 0 ...

0 ... 0 0 0 0 y4,m+4 ...
...

...
...

...
...

...
... . . .


with yi,m+i = 1 for all i.

As can be seen clearly, Y ∈ Ωm. Now, let’s take an arbitrary matrix U ∈ Ωn+m. In order to

achieve our goal, it is enough to show that equation XY − Y X = U has a solution X ∈ Ωn.

Evaluating (i, j)-th entry of the expression on the left, we get that

XY − Y X = U ⇒ (XY )ij − (Y X)ij = Uij ⇒
∞∑
k=1

xikykj −
∞∑
k=1

yikxkj = Uij.

If j > m, then
∞∑
k=1

xikykj = xi,j−m as yi,m+i = 1 for i ≥ 1. Otherwise,
∞∑
k=1

xikykj = 0.

Moreover,
∞∑
k=1

yikxkj = xi+m,j due to construction of Y. So in other words, we obtain the

following system of equations
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• If j > m, {
xi,j−m − xi+m,j = uij 1 ≤ i ≤ ∞.

• If j ≤ m, {
− xi+m,j = uij 1 ≤ i ≤ ∞.

In view of the above observations, we now consider the matrix X, which is defined as below

X = (xij)i,j∈Z+ =


xij = 0 i ≤ m

xij = xi−m,j−m − ui−m,j i > m and j > m

xij = 0 i > m and j ≤ m

Observing how we defined the matrix X , one can check that X ∈ Ωn. Moreover, it is not

hard to see that X is a solution of the above system of equations. Therefore, it must be

Ωn+m ⊆ [Ωn,Ωn]. This completes proof.

Remark 5.1.5. The Corollary 5.1.3 also provides us with important information about the

structure of the sets Ωn. Since the intersection of all members of the lower central series of

NT∞(R) is trivial, NT∞(R) is residually nilpotent and has a trivial center Z(NT∞(R)).

In order to carry out our primary work in a more understandable way, it is better for us

to recall the definitions and examples we mentioned earlier concentrating on the Lie algebra

NT∞(R).

Definition 5.1.6. An R-linear map ϕ : NT∞(R)→ NT∞(R) satisfying

ϕ([X, Y ]) = [ϕ(X), Y ] + [X,ϕ(Y )] for all X, Y ∈ NT∞(R)

is called a derivation of NT∞(R).

We denote the set of all derivations of NT∞(R) by Der(NT∞(R)). It can be easily

shown that it forms a Lie algebra under operations

(ϕ+ ψ)(X) = ϕ(X) + ψ(X),

(λ.ϕ)(X) = λ.ϕ(X),

([ϕ, ψ])(X) = ϕ(ψ(X))− ψ(ϕ(X)).

While we’re on this subject, let’s examine the behaviour of the sets Ωn, n ≥ 2 under a

derivation of NT∞(R).
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Lemma 5.1.7. For each n, Ωn =
{
X = (xij)i,j∈Z+ ∈ NT∞(R) | xij = 0 for all j < i+n

}
is invariant under any derivation ϕ of NT∞(R).

Proof. We give a proof by induction on n. Clearly, ϕ(Ω1) ⊆ Ω1 by definition. Then

ϕ(Ωi+1) = ϕ([Ωi,Ω1]) = [ϕ(Ωi),Ω1] + [Ωi, ϕ(Ω1)]

⊆ ϕ(Ωi)Ω1 − Ω1ϕ(Ωi) + Ωiϕ(Ω1)− ϕ(Ω1)Ωi.

⊆ ΩiΩ1 − Ω1Ωi + ΩiΩ1 − Ω1Ωi (by the induction hypothesis)

⊆ Ωi+1 − Ωi+1 + Ωi+1 − Ωi+1 ⊆ Ωi+1.

Inner derivations will be an essential part here as it has been up to now. Now, we take a

look at them.

Definition 5.1.8. Let X ∈ NT∞(R). Then the mapping

adX : NT∞(R) → NT∞(R)

Y → adX(Y ) = [X, Y ]

turns out to be a derivation of our Lie algebraNT∞(R), called inner derivation induced by

X.

The set of all inner derivations of NT∞(R) is a Lie subalgebra of Der(NT∞(R)). We

will denote it by IDer(NT∞(R)). Now, consider the following map

φ : NT∞(R) → IDer(NT∞(R))

X → adX

Clearly, φ preserves addition and scalar multiplication. Let X ∈ NT∞(R), then we have

φ([X, Y ])(Z) = φ(XY − Y X)(Z)

= (XY Z − Y XZ)− (ZXY − ZY X)

= adX(adY (Z))− adY (adX(Z))

= ([φ(X), φ(Y )])(Z).

As a result of that, φ defines a Lie algebra homomorphism. Also, it is easy to see that φ is a
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surjective map and

Kerφ =

{
X ∈ NT∞(R) | φ(X) = adX = 0

}

=

{
X ∈ NT∞(R) | XY − Y X = 0 for all Y ∈ NT∞(R)

}

=

{
X ∈ NT∞(R) | X ∈ Z(NT∞(R))

}
= Z(NT∞(R)).

By using First Isomorphism Theorem, we get

IDer(NT∞(R)) ∼= NT∞(R)
/
Z(NT∞(R)) ∼= NT∞(R).

Definition 5.1.9. LetD ∈ D∞(R),whereD∞(R) is the Lie subalgebra of diagonal matrices.

Then the mapping defined as

adD : NT∞(R) → NT∞(R)

X → [D,X]

constitute another classical derivation of NT∞(R). It is known as diagonal derivation.

In the next section, we propose some technical lemmas that will make our job easier.

5.2 Auxiliary Lemmas

Firstly, we consider the following subsets of NT∞(R):

hk =

{∑
k<j

xkjξkj | xkj ∈ R

}
, k = 1, 2, 3, . . .

Let’s see what we have when k = 1:

h1 =

{∑
1<j

x1jξ1j | x1j ∈ R

}
=

{
X ∈ NT∞(R) | X =



0 x12 x13 x14 ...

0 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...
...

...
...

... . . .


}
.

Lemma 5.2.1. The subset h1 is an ideal of NT∞(R) and it is invariant under the action of

any derivation of NT∞(R).
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Proof. Let X = (xij)i,j∈Z+ ∈ h1 and Z = (zij)i,j∈Z+ ∈ NT∞(R). Then, we can easily

compute that ZX = O and

XZ =



0 0 (x12z23) (x12z24 + x13z34)
∑4

j=2 x1jzj5
∑5

j=2 x1jzj6 ...

0 0 0 0 0 0 ...

0 0 0 0 0 0 ...

0 0 0 0 0 0 ...
...

...
...

...
...

...
...


.

It follows from the above observations that [Z,X] = ZX − XZ = −XZ ∈ h1, and so h1

is an ideal of NT∞(R). Now, we shall try to get second statement. Let ϕ be a derivation of

NT∞(R). The first thing we will do is show that ϕ(ξ12) ∈ h1. Since ϕ(ξ12) ∈ NT∞(R), we

can write ϕ(ξ12) as below

ϕ(ξ12) =
∑
1≤i<j

xijξij.

Obviously, ϕ(O) = O by the additivity of ϕ and the Lie product [ξ12, ξk,k+1] = 0 for any

k > 2. Combining these investigations,

ϕ(O) = ϕ([ξ12, ξk,k+1]) = [ϕ(ξ12), ξk,k+1] + [ξ12, ϕ(ξk,k+1)]

O = ϕ(ξ12)ξk,k+1 − ξk,k+1ϕ(ξ12) + ξ12ϕ(ξk,k+1)− ϕ(ξk,k+1)ξ12

O = ϕ(ξ12)ξk,k+1 − ξk,k+1ϕ(ξ12) + ξ12ϕ(ξk,k+1)− 0 (since ξ12 ∈ h1) (∗)

Let’s find out what the matrix ϕ(ξ12)ξk,k+1 looks like. Easy calculations give us that

ϕ(ξ12)ξk,k+1 =

(k+1)-th column



0 ... 0 ϕ(ξ12)1k 0 ...

0 ... 0 ϕ(ξ12)2k 0 ...
...

...
...

...
...

...

0 ... 0 ϕ(ξ12)kk = 0 0 ... k-th row

0 ... 0 0 0 ...
...

...
...

...
...

...
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We focus now on the matrix

ξk,k+1ϕ(ξ12) =

(k+2)-th column



0 0 0 0 0 ...
...

...
...

...
...

...

0 0 0 0 0 ...

0 . . . 0 ϕ(ξ12)k+1,k+2 ϕ(ξ12)k+1,k+3 ... k-th row

0 ... 0 0 0 ...
...

...
...

...
...

...

In view of the above observations, the equation (∗) can be written as follows

O = ϕ(ξ12)ξk,k+1 − ξk,k+1ϕ(ξ12) + ξ12ϕ(ξk,k+1)

O =
k−1∑
i=1

xikξi,k+1 −
∞∑

j=k+2

xk+1,jξkj + ξ12ϕ(ξk,k+1)

From the fact that ξ12ϕ(ξk,k+1) ∈ h1 and ϕ(ξ12)ξk,k+1 has no nonzero entry in its k-th row, it

follows that
∑∞

j=k+2 ak+1,jξkj = O. Accordingly, it must be ϕ(ξ12)ξk,k+1 = −ξ12 ϕ(ξk,k+1),

and so ϕ(ξ12)ξk,k+1 ∈ h1. This means that xik = 0 for any k ≥ 3, 1 < i < k. Hence, we get

ϕ(ξ12) ∈ h1.

Now consider the set h′1 which is defined as below

h
′

1 = [h1, h2] =

{
X ∈ NT∞(R) | X =



0 0 x13 x14 ...

0 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...
...

...
...

...
...


}
⊂ Ω2.

Since h1 is an ideal of NT∞(R), we can immediately say that R.ξ12 + h
′
1 ⊆ h1. Actually,

what is more crucial is that the reverse inclusion also holds. Let’s take an arbitrary matrix

Z = (zij)i,j∈Z+ ∈ h1

Z =



0 z12 z13 z14 z15 ...

0 0 0 0 0 ...

0 0 0 0 0 ...

0 0 0 0 0 ...
...

...
...

...
...

...


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and put

X =



0 1 0 0 0 ...

0 0 0 0 0 ...

0 0 0 0 0 ...

0 0 0 0 0 ...
...

...
...

...
...

...


∈ h1 and Y =



0 0 0 0 0 ...

0 0 z13 z14 z15 . . .

0 0 0 0 0 ...

0 0 0 0 0 . . .
...

...
...

...
...

...


∈ h2.

Then Z = z12ξ12 +XY, and so h1 ⊆Rξ12 + h
′
1. In addition to this, from the fact that a matrix

T 6= O ∈ Rξ12 has nonzero entry (only) in the (1, 2) position, we have Rξ12 ∩ h
′
1 = {O}.

Consequently, h1 is a direct sum of these two subset, h1 = Rξ12 + h
′
1. Therefore, we get

ϕ(h1) = Rϕ(ξ12) + ϕ(h
′
1). Indeed, the idea of writing h1 as a direct sum of h′1 and Rξ12

will ease things along. We have just seen that ϕ(ξ12) ∈ h1, and so Rϕ(ξ12) ⊆ h1. Hence,

from here on all we only need to do is obtain that ϕ(h
′
1) ⊆ h1. To do this, we first show that

ϕ(h
′
1) ⊆ h1 + h2. By the construction of h′1, we have

ϕ(h
′

1) = ϕ([h1, h2]) ⊆ ϕ(h1)h2 − h2ϕ(h1) + h1ϕ(h2)− ϕ(h2)h1.

Since h
′
1 = [h1, h2] ⊆ Ω2 and Ω2 is invariant under ϕ, we deduce that

ϕ(h1)h2 = (Rϕ(ξ12) + ϕ(h
′

1))h2 = Rϕ(ξ12)h2 + ϕ(h
′

1)h2

⊆ h1h2 + Ω2h2 ⊆ h1 + {O} = h1.

Thus,

ϕ(h
′

1) ⊆ ϕ(h1)h2 − h2ϕ(h1) + h1ϕ(h2)− ϕ(h2)h1 ⊆ h1 − h2 + h1 − {O} ⊆ h1 + h2.

We are now ready to conclude that ϕ(h
′
1) ⊆ h1, which will complete our proof as we said

before. For any X ∈ h
′
1, we have

O = ϕ(O) = ϕ([ξ12, X])

O = ϕ(ξ12)X −Xϕ(ξ12) + ξ12ϕ(X)− ϕ(X)ξ12

O = O −O + ξ12ϕ(X)−O = ξ12ϕ(X).

Since X is an arbitrary element of h′1, we obtain that ξ12ϕ(h
′
1) = {O}. To put it another way,

the equality tell us that ϕ(X)2j = 0 for all j. Hence, it must be ϕ(h
′
1) ⊆ h1 from the fact that

ϕ(h
′
1) ⊆ h1 + h2. Consequently, the desired result follows.
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Remark 5.2.2. In the previous lemma, we observe that h1 is an ideal of NT∞(R). However,

hk is not an ideal of NT∞(R) for k ≥ 2 since h1 ∩ hk is trivial.

The following lemma is key here. It will form the basis of the proof of the main result.

Lemma 5.2.3. Any derivation ϕ ofNT∞(R) can be decomposed into the sum of a diagonal

derivation, an inner derivation and a derivation ψ such that ψ(h1) = {O}.

Proof. From Lemma 5.1.7 and Lemma 5.2.1, it follows that ϕ(ξ1k) ∈ h1 ∩ Ωk−1 for any

derivation ϕ and k ≥ 2. Thus, one may write ϕ(ξ1k) as follows

ϕ(ξ1k) =
∑
j≥k

xk1jξ1j =



0 0 . . . 0 xk1,k xk1,k+1 xk1,k+2 xk1,k+3 . . .

0 0 . . . 0 0 0 0 0 . . .

0 0 . . . 0 0 0 0 0 . . .

0 0 . . . 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
...


, k ≥ 2.

Now, let’s take an arbitrary Y = (yij)i,j∈Z+ =
∞∑
j=2

y1jξ1j ∈ h1. Then,

ϕ(Y )1j =

j∑
i=2

y1ix
i
1j for j = 2, 3, 4...

If we are going to represent ϕ(Y ) in array format:

ϕ(Y ) =



0 (y12x
2
12) (y12x

2
13 + y13x

3
13) (y12x

2
14 + y13x

3
14 + y14x

4
14) . . .

0 0 0 0 . . .

0 0 0 0 . . .

0 0 0 0 . . .

0 0 0 0 . . .
...

...
...

...
...


(1)

Now, consider the matrices

D =



0 0 0 0 ...

0 x212 0 0 ...

0 0 x313 0 ...

0 0 0 x414 ...
...

...
...

... . . .


and X =



0 0 0 0 0 ...

0 0 x213 x214 x215 . . .

0 0 0 x314 x315 ...

0 0 0 0 x415 . . .
...

...
...

...
...

...


.

63



Clearly, D ∈ D∞(R) and X ∈ NT∞(R). Since Y ∈ h1, it must be

adX(Y ) = XY − Y X = −Y X and adD(Y ) = DY − Y D = −Y D.

Easy calculations give us that

adX(Y ) = −Y X = −



0 0 (y12x
2
13) (y12x

2
14 + y13x

3
14) ...

0 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...
...

...
...

...
...


, (2)

adD(Y ) = −Y D = −



0 y12x
2
12 y13x

3
13 y14x

4
14 ...

0 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...
...

...
...

...
...


. (3)

From the equations (1), (2) and (3), we obtain that

(ϕ− adX − adD)(Y ) = 0 for any Y ∈ h1.

In order to complete proof, say ψ = ϕ− adX − adD. Accordingly,

ϕ = ψ + adX + adD with ψ(h1) = {O}.

Lemma 5.2.4. Let ψ be a derivation of NT∞(R) with ψ(h1) = {O}. Then ψ(X) ∈ h1 for

any X ∈ NT∞(R).

Proof. LetX ∈ h1, Y ∈ Ω1 = NT∞(R).Of course, Y X = 0 sinceX ∈ h1. Thus, it must be

[X, Y ] = XY − Y X = XY. Also, [X, Y ] = XY ∈ h1 because h1 is an ideal of NT∞(R).

Thereby, it follows from hypothesis that ψ([X, Y ]) = O. Hence:

ψ([X, Y ]) = [ψ(X), Y ] + [X,ψ(Y )] = [O, Y ] + [X,ψ(Y )]

O = O + [X,ψ(Y )]

O = Xψ(Y )− ψ(Y )X.
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As can be seen above, we get the following equality

Xψ(Y ) = ψ(Y )X.

It also follows from X ∈ h1 that ϕ(Y )X = 0, and so Xψ(Y ) = 0. As X and Y are chosen

randomly, we deduce that h1ψ(Ω1) = {O}. We are now ready to prove our lemma thanks to

these critical examinations.

Let X ∈ NT∞(R). We just observed that h1ψ(Ω1) = {O}. Thus, Y ψ(X) = 0 for any

Y ∈ h1. Of course, ψ(X) = (u)i,j∈Z+ ∈ NT∞(R) can be written as

ψ(X) =



0 u12 u13 u14 ...

0 0 u23 u24 ...

0 0 0 u34 ...

0 0 0 0 ...
...

...
...

... . . .


.

Now, as a motivating example, observe the matrices Y2 ∈ h1 and Y3 ∈ h1, which are defined

as

Y2 =



0 1 0 0 ...

0 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...
...

...
...

... . . .


, Y3 =



0 0 1 0 ...

0 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...
...

...
...

... . . .


.

It is easy to compute that

Y2ψ(X) =



0 0 u23 u24 ...

0 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...
...

...
...

... . . .


and Y3ψ(X) =



0 0 0 u34 u35 ...

0 0 0 0 0 ...

0 0 0 0 0 ...

0 0 0 0 0 ...
...

...
...

...
...

...


.

As you see, u2k = 0 for any k ≥ 3 because Y2ψ(X) = O. Similarly, Y3ψ(X) = O implies

that u3k = 0 for any k ≥ 4. In fact, through similar arguments one can generalize these

results. Let’s consider the matrices Yk ∈ h1 defined as below for k ≥ 2:

Yk =

 y1j = 1 if j = k

y1j = 0 if j 6= k
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Then, we have

Ykψ(X) = O =



0 0 ... 0 uk,k+1 uk,k+2 uk,k+3 ...

0 0 ... 0 0 0 0 ...

0 0 ... 0 0 0 0 ...

0 0 ... 0 0 0 0 ...
...

...
...

...
...

...
...

...


.

As a result, we find that all coefficients of ψ(X) in the k-th row are zero for k ≥ 2, which

means ψ(X) ∈ h1.

Lemma 5.2.5. If ψ is a derivation of our Lie algebraNT∞(R) such that ψ(h1) = {O}, then

there must exist Y ∈ h1 such that ψ = adY.

Proof. Since ψ(h1) = {O}, by the above lemma it must be ψ(ξk,m) ∈ h1 for any k ≥ 2 with

m > k. Thus, one can write ψ(ξk,m) as

ψ(ξk,m) =
∑
j≥2

yjkmξ1j =



0 y2km y3km y4km y5km . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .
...

...
...

...
... . . .


.

For any l 6= k − 1,m note that [ξk,m, ξl,l+1] = O. So, ψ([ξk,m, ξl,l+1]) = O by the linearity of

ψ. Also, ξl,l+1ψ(ξk,m) = O = ξk,mψ(ξl,l+1) as ψ(ξk,m) and ψ(ξl,l+1) are both in h1. Thus,

ψ([ξk,m, ξl,l+1]) = [ψ([ξk,m), ξl,l+1] + [ξk,m, ψ(ξl,l+1)]

O = ψ(ξk,m)ξl,l+1 − ψ(ξl,l+1)ξk,m

O =

(∑
j≥2

yjkmξ1j

)
ξl,l+1 − ψ(ξl,l+1)ξk,m

Now, let’s take a look at the matrices in the last equation above.

X = (xij)i,j∈Z+ = ψ(ξk,m)ξl,l+1 =



0 0 ... 0 x1,l+1 0 ...

0 0 ... 0 0 0 ...

0 0 ... 0 0 0 ...

0 0 ... 0 0 0 ...
...

...
...

...
...

...
...


,
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where x1,l+1 = ψ(ξkm)1l = ylkm and

Z = (zij)i,j∈Z+ = ψ(ξl,l+1)ξk,m =



0 0 ... 0 z1,m 0 ...

0 0 ... 0 0 0 ...

0 0 ... 0 0 0 ...

0 0 ... 0 0 0 ...
...

...
...

...
...

...
...


,

where z1,m = ψ(ξl,l+1)1k. Since X − Z = 0, we find that ylkm = 0 if l + 1 6= m. Of course,

we must examine what happens if m = l + 1. In such a case, it must be l 6= k − 2 by our

assumption. (At the beginning of this investigation, we assumed that l 6= k − 1,m.) Here,

the thing making us happy is that ylkm = 0 even though l = m+ 1 . Don’t worry about how

we can prove it. That can also be shown easily using the fact that [ξk,m, ξl,l+2] = 0. In short,

what we obtain is

ylkm = 0 for any l 6= k − 1,m.

Now, let us assume that l 6= k − 2,m. Then, [ξk,m, ξl,l+2] = 0 for any l 6= k − 2, m. With an

approach similar to the above, one can conclude that

ylkm = 0 for any l 6= k − 2,m.

Accordingly, ylkm = 0 if l 6= m. (That is, we don’t care what k is.) Therefore,

ψ(ξk,m) = ymk,mξ1m = yk,mξ1,m. (∗)

Moreover, for every m 6= k + 1

ψ(ξkm) = ψ([ξk,k+1, ξk+1,m]) = [ψ(ξk,k+1), ξk+1,m] + [ξk,k+1, ψ(ξk+1,m)]

ψ(ξkm) = ψ(ξk,k+1)ξk+1,m − ψ(ξk+1,m)ξk,k+1

ψ(ξkm) = ψ(ξk,k+1)ξk+1,m = yk,k+1ξ1m. (∗∗)

Combining the equations (∗) and (∗∗), we get an extremely important relationship between

ykm’s

yi,i+1 = yi,i+2 = yi,i+3 = yi,i+4 = yi,i+5... for any i ≥ 2.
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This result will make things easier as you will now see. Now, put

Y =
∞∑
k=2

yk,k+1ξ1k =



0 y23 y34 y45 ...

0 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...
...

...
...

... . . .


∈ h1.

As you guess, from now on, our goal is to show that ψ in an inner derivation induced by Y.

Let Z = (zij)i,j∈Z+ =
∑
1≤i<j

zijξij ∈ NT∞(R), then

ψ(Z)1j =

j−1∑
i=2

zijψ(ξij)1j for j = 3, 4, 5...

To be more precise,

ψ(Z) =



0 0 z23y23 z24y24 + z34y34 z25y25 + z35y35 + z45y45

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
...

...
...

...
...


.

Now, let’s find out what adY (Z) equals. Clearly,

adY (Z) = [Y, Z] = Y Z − ZY = Y Z (since Y ∈ h1.)

The matrix Y Z also can be computed easily

Y Z =



0 0 y23z23 (y23z24 + y34z34) (y23z25 + y34z35 + y45z45) . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .
...

...
...

...
... . . .


Y Z =

∞∑
j=3

(
j−1∑
i=2

zijyi,i+1

)
ξ1j.

Now, it is time to make the final push. Using the fact that "yi,i+1 = yi,i+2 = yi,i+3 = . . ." for

any i ≥ 2, one can easily see that

68



ψ(Z) =



0 0 z23y23 (z24y23 + z34y34) (z25y23 + z35y34 + z45b45) . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .
...

...
...

...
...


= adY (Z).

Because Z was taken arbitrarily, we are done.

With these lemmas in hand we are now ready to prove our main result.

5.3 Proof of the Main Result

Theorem 5.3.1. Let ϕ be a derivation of NT∞(R). Then it can be written as

ϕ = adZ + adD,

where Z ∈ NT∞(R) and D ∈ D∞(R). The derivation adZ is determined uniquely and adD

is determined uniquely up to scalar matrix.

Proof. From Lemma 5.2.3, we can express ϕ as

ϕ = adD + adX + ψ,

where ψ(h1) = {O}. Then, Lemma 5.2.5 implies that ψ = adY for some Y ∈ h1. Thus, we

obtain

ϕ = adD + adZ,

where Z = X + Y. Of course, in order for such an expression to make any sense, it must be

unique. Now, let us check "uniqueness." Suppose that there are matrices D′ ∈ D∞(R) and

Z ′ ∈ NT∞(R) satisfying

ϕ = adD + adZ = adD
′
+ adZ

′
.
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For any k > 1,

Dξ1k =

k-th column



0 ... 0 d11 0 ...

0 ... 0 0 0 ...

0 ... 0 0 0 ...

0 ... 0 0 0 ...
...

...
...

...
...

...

and ξ1kD =

k-th column



0 ... 0 dkk 0 ...

0 ... 0 0 0 ...

0 ... 0 0 0 ...

0 ... 0 0 0 ...
...

...
...

...
...

...

.

Thus,

adD(ξ1k) =

k-th column



0 ... 0 d11 − dkk 0 ...

0 ... 0 0 0 ...

0 ... 0 0 0 ...

0 ... 0 0 0 ...
...

...
...

...
...

...

.

Also, easy calculations show that

ξ1kZ = (vij)i,j∈Z+ =



0 0 ... 0 v1,k+1 v1,k+2 ...

0 0 ... 0 0 0 ...

0 0 ... 0 0 0 ...

0 0 ... 0 0 0 ...
...

...
...

...
...

...
...


with v1,k+i = zk,k+i, i ≥ 1.

Clearly, adZ(ξ1k) = −ξ1kZ since Zξ1k = 0. So, we get ϕ(ξ1k) = X = (xij)i,j∈Z+ , where

x1k = d11 − dkk, and x1j = −zkj for j > k. Moreover, from our assumption it must be

x1k = d
′
11 - d′kk, and x1j = −z′kj for j > k. Accordingly, we find that zkj = z′kj for k > 1

and j > k. For j ≤ k, it is clear that we have zkj = 0 = zkj
′. Thus, zkj = z′kj for all j and

k > 1. There is only one thing left for us to see the equality of Z and Z ′. Let’s compare the

first rows of these two matrices: For k > 1, one can easily check that ϕ(ξk,k+1) = Y, where

y1,k+1 = z1k = z′1k. By the way, of course, z11 = 0 = z′11. Hence, we get z1k = z′1k for all k.

Consequently, Z = Z
′
.

The other statement comes from the fact that d′11−d
′

kk = d11-dkk. Using this, we can directly

write d′11 - d11 as d′kk− dkk, which implies that D−D′ = λI∞, where λ ∈ R. Hence, we are

done.
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Chapter 6

CONCLUSION

In this thesis, some infinite matrix rings and algebras have been examined, and description of

derivations of these matrix rings and algebras have been presented by compiling papers [20]

and [11]. We’re not limited to just that. It has also been demonstrated with striking examples

that the idea of extending many basic theorems in the theory of finite matrices to infinite

matrices is exceptionally wrong. In doing so, we benefited from the articles [4] and [12].

As previously mentioned, studies on the context of infinite matrices are ongoing, and

there are still too many unanswered questions in the literature. The exciting thing here is

that we had contact with one of them. The ring NT∞(R) of all infinite (upper) niltriangular

matrices, whose rows and colums are indexed by Z × Z, over a commutative ring R with

identity provides an excellent example of reasonable open problems in the sense that its Lie

automorphisms and Jordan automorphisms are not yet known.

You appreciate knowing all derivations and automorphisms of a mathematical object

helps us understand its structure, and that way we can reach our goal more easily. In this

sense, we think that the topics we have compiled in this thesis will be a guiding resource for

those studying infinite matrix rings and algebras. This is exactly why we dedicate our thesis

to them.

71



Bibliography

[1] Benkart, G.M., Osborne, J.M., Derivations and automorphisms of non-associative ma-

trix algebras, Trans. Am. Math. Soc., 263, 411-430, 1981.

[2] Benkovic, D., Lie derivations of triangular matrices, Linear Multilinear Algebra, 55,

619–626, 2007.

[3] Benkovic, D., Lie triple derivations of unital algebras with idempotents, Linear Multi-

linear Algebra, 63, 141-165, 2015.

[4] Bossaller, D.P., López-Permouth, S.R., On the Associativity of Infinite Matrix Multi-

plication, The American Mathematical Monthly, 126:1, 41-52, 2019.

[5] Cao, Y., Wang, J., A note on algebra automorphisms of strictly upper triangular matri-

ces over commutative rings, Linear Algebra and its Applications, 311, 187–193, 2000.

[6] Chun, J.H, Park, J.W., Derivations on subrings of matrix rings, Bulletin-Korean Math-

ematical Society, 43, 635-644, 2006.

[7] Cooke, R.G., Infinite Matrices and Sequence Spaces, New York: Dover Publications,

1966.

[8] Dubisch, R., Perlis, S., On total nilpotent algebras, American Journal of Mathematics,

73, 439-452, 1951.

[9] Erdmann, K., Wildon, M.J, Introduction to Lie Algebras, Springer-Verlag London,

2006.

[10] Herstein, I.N., Noncommutative Rings, The Mathematical Association of America,

1968.

72
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