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ABSTRACT

EEG-BASED ASSESSMENT OF CYBERSICKNESS IN A VR
ENVIRONMENT AND ADJUSTING STEREOSCOPIC PARAMETERS

ACCORDING TO LEVEL OF SICKNESS TO PRESENT A
COMFORTABLE VISION

Ufuk UYAN

Master of Science,Computer Engineering Department
Supervisor: Asst. Prof. Dr. Ufuk ÇELİKCAN

December 2020, 69 pages

Virtual reality (VR) is an increasingly widespread technology that provides a more real-

istic and fully immersive experience by using head-mounted displays (HMDs). However,

this medium comes with some side effects. Users immersed in a virtual environment (VE)

experience motion sickness like discomfort, which is named visually induced motion sick-

ness(VIMS) or, more commonly, cybersickness. In an effort to overcome cybersickness

experienced with stereoscopic displays, we propose a novel real-time system to detect cy-

bersickness from the incoming electroencephalogram (EEG) feedback and to mitigate it by

updating the cue parameters as per the feedback from the proposed model. The VE used in

the study was generated procedurally by tuning levels of 3 different types of cues (navigation

speed, scene complexity, and stereoscopic rendering parameters) to induce cybersickness in

a varying range of severity. In the first phase of the study, we trained a two-stage shallow

convolutional neural network with the EEG data collected from the users while immersed in

the VE. The proposed two-stage model was utilized to detect cybersickness and to classify

factors causing cybersickness, respectively. The performance of the cybersickness detection

i



model reached an overall accuracy of 76.26%, while the factor type classification model

achieved 81.01% overall accuracy. To assess the performance of the proposed cybersickness

detection and mitigation system, an experiment consisting of two control sessions, and one

models-in-the-loop session (MIL) was conducted in the second phase of the study with a

different user sample. The differences in the Simulator Sickness Questionnaire (SSQ) re-

sponses collected before and after each session, and the time-dependent changes in the cue

parameters showed that the participants felt less cybersickness during the MIL session in

which the proposed cybersickness detection and mitigation system (CDMS) was utilized.

Keywords: Cybersickness, Virtual Reality, Visually Induced Motion Sickness, EEG-based

Cybersickness Detection, Deep Learning, Cybersickness Mitigation
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ÖZET

SANAL GERÇEKLİK RAHATSIZLIKLARININ EEG SİNYALLERİ
KULLANILARAK BELİRLENMESİ VE RAHATSIZLIK SEVİYESİNE

GÖRE KONFORLU BİR SEYİR İÇİN İYİLEŞTİRMELERİN
YAPILMASI

Ufuk UYAN

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Dr. Öğretim Üyesi Ufuk ÇELİKCAN

Aralık 2020, 69 sayfa

Sanal gerçeklik (VR), başa takılan ekranların (HMD) kullanılmasıyla daha gerçekçi ve sürükleyici

bir deneyim sağlayan, giderek yaygınlaşan bir teknolojidir. Fakat, bu teknolojik gelişim bazı

yan etkileri beraberinde getirmektedir. Sanal bir ortamı deneyimleyen kullanıcılar hareket

tutması rahatsızlığına benzer rahatsızlık yaşarlar. Sanal ortamlara maruziyet sonrasında

deneyimlenen bu rahatsızlık gerçek bir fiziksel hareketin olmaması nedeniyle sanal gerçeklik

tutması (cybersickness) olarak adlandırılmıştır. Bu çalışmada amacımız sanal ortamlarda

deneyimlenen sanal gerçeklik tutması rahatsızlığını tespit etmek, sınıflandırmak ve bu ra-

hatsızlığı hafifletmek için ilgili sahne parametrelerini güncellemektir. Sunulan sanal or-

tamda kullanıcıların rahatsızlığa maruz kalabilmeleri için sanal ortamlar oluşturulurken navi-

gasyon hızı, sahne karmaşıklığı ve stereoskopik sahne oluşturma parametreleri kullanılmıştır.

Sunulan sanal ortamı deneyimleyen katılımcılardan eşzamanlı olarak toplanan elektroense-

falogram (EEG) verileri, Filtre Bankası Ortak Mekansal Patern (FBCSP) algoritmasına dayanan

iki aşamalı sığ evrişimli sinir ağını (Shallow Convolutional Neural Network) eğitmek için
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kullanılmıştır. Önerilen iki aşamalı model, sanal gerçeklik tutması rahatsızlığını tespit et-

mek ve bu rahatsızlığa neden olan faktörü sınıflandırmak için kullanılmıştır. Önerilen mod-

elde rahatsızlığın tespit performansı %76.26’lik doğruluğa ulaşırken, rahatsızlığa neden olan

faktörün sınıflandırıldığı modelde %81.01’lik doğruluk performansı elde edilmiştir. Önerilen

sistemin gerçek zamanlı performansını değerlendirmek için, farklı katılımcılar ile iki kontrol

oturumundan ve bir modellerin döngüde olduğu oturumdan oluşan bir deney gerçekleştirilmiştir.

Her bir oturumun başında ve sonunda uygulanan Simülatör Rahatsızlığı Anketi (SSQ) puan-

larındaki farklar ve sahne parametrelerindeki zamana bağlı değişimler, katılımcıların önerilen

sanal gerçeklik tutması tespit ve azaltma sisteminin (CDMS) kullanıldığı oturumda daha az

rahatsızlık deneyimlediklerini göstermiştir.

Anahtar Kelimeler: Sanal Gerçeklik Tutması, Sanal Gerçeklik, EEG Tabanlı Rahatsızlık

Tespiti, Sanal Gerçeklik Tutması Hafifletme, Derin Öğrenme
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Chapter 1.

INTRODUCTION

Virtual reality (VR) technologies, which were first used in military simulation and training

applications, have been employed in many fields, especially education, entertainment, health,

and games, as a result of enriched virtual contents and affordable prices. All the digital and

physical elements that enable users to feel and interact as if they are really in a virtual world

are called VR.

Various display technologies are employed in modern VR systems, including the head-

mounted display (HMD), reality theater, and computer-assisted VE (CAVE). Today, the

HMD-based setups are the most commonly used ones since they are more affordable, meet

high mobility requirement, and provide participants with a full immersion experience in

which a user is wholly detached from the reality.

Despite the recent breakthroughs in VR technologies, users immersed in virtual environ-

ments (VEs) with modern VR setups are still prone to experience cybersickness. According

to the prior studies, 30% [6] to 80% [7] of users immersed in a VE are affected by this

ailment. Its symptoms, including nausea, cold sweats, dizziness, headache, increased sali-

vation, and fatigue, are similar to those of motion sickness. Identifying cybersickness is not

straightforward, as it contains many symptoms, and these symptoms vary from person to

person. Hardware limitations, such as lag, tracking accuracy, and flicker, were once consid-

ered the primary sources of discomfort felt in VEs [8]. Even though these hardware-related

limitations have been reduced considerably, the sickness experienced remains to be the most

notorious aspect associated with VR [9].
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While there is no consensus on the biological causes of cybersickness [10], hypotheses have

been proposed, and experiments have been conducted about the factors that may trigger its

onset. The visual-vestibular conflict (VVC) is widely seen as the leading cause of cybersick-

ness based on the assumption that the external stimulus is perceived differently with visual

and vestibular senses [11]. Cybersickness is mainly induced when translational and rota-

tional movement in a VE are exaggerated and the resulting perceived motion is not felt by

the viewer’s vestibular system. Furthermore, visual motion perception in a VE is affected by

scene complexity [12].

Another prevailing cause is the vergence accommodation conflict (VAC). This conflict oc-

curs when there is a mismatch between the perceived depth of a virtual 3D object and the

focusing distance of the eyes [13]. In stereoscopic VR headsets, a focused virtual object is

displayed on the head-mounted-display (HMD), which is at a fixed depth away from eyes,

but the perceived depth of the object varies with scene content [14]. In real life, the depth for

accommodation and vergence are same. Although people have a degree of tolerance against

this conflict, it can contribute to focusing problems, visual fatigue, and eyestrain with long

term use, especially if the depth perception is exaggerated.

There are three commonly used methods to detect and grade cybersickness. The primary

method is using questionnaires. Since cybersickness has similar symptoms with motion and

simulator sickness, the Simulator Sickness Questionnaire (SSQ), which was proposed by

Kennedy et al [15], is utilized in cybersickness studies. It takes a long time to complete the

SSQ, and it is considered that the discomfort to be measured may decrease during the filling

out period. Therefore, in this study, a single-question discomfort query, which takes less

time, was used for grading the general discomfort level during exposure to a VE. Another

method used to detect cybersickness is measuring postural instability. The assumption that

cybersickness causes postural imbalance is taken into consideration in this method. Unlike

the questionnaire method, immersion is not interrupted, and the user is not disturbed for

measurement. Generally, sensors connected to the body or systems containing more than

one camera are utilized to measure postural instability. Lastly, the severity of visual discom-

fort is graded using bio-signals collected from participants. Thanks to the developing sensor

technologies, the physiological state of the body can be easily measured using a variety of

bio-signals. Bio-signals such as an electrocardiogram (ECG), blood pressure, electrogastro-

gram (EGG), respiration (RSP), electroencephalograms (EEG), skin temperature are used to
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detect cybersickness experienced in VEs. In this study, EEG signals were used to measure

the cybersickness.

Electroencephalography (EEG) is a method used to evaluate electrical activities and func-

tions in the brain. The EEG signals collected through the electrodes that come into contact

with the scalp have to be preprocessed before use because they have a low signal to noise

ratio (SNR), vary from person to person and are non-stationary which may cause the trained

model to predict different results even when the model is tested in the user to whom the

model is trained. Preprocessed EEG signals are generally represented by a few relevant fea-

tures which describe the task-related information by proper feature extraction method. Pre-

processing and feature extraction methods require expertise as they differ according to the

application. Deep learning algorithms have achieved cutting-edge performance in areas such

as computer vision and natural language processing (NLP), thereby significantly reducing

the need for manual feature extraction.

Current approaches to detecting and mitigating cybersickness generally do not go beyond

the scope of binary classification of cybersickness experienced in a virtual environment and

post-processing of the scenes presented in line with the results obtained. There is no study in

which cybersickness is detected and mitigated in real time, except for the study in which the

field of view(FOV) is narrowed and the user is given a voice command to reduce the naviga-

tion speed [16]. In line with the increasing demand for an objective cybersickness evaluation

and a real-time mitigation technology, we explore the factors of navigation speed, scene com-

plexity, and stereoscopic rendering parameters, which are (camera) inter-axial distance and

(camera) convergence distance, to gain greater insight into cybersickness experienced in a

VE. For a more objective cybersickness assessment, we utilize electroencephalogram (EEG)

signals collected from the users.

Our main contributions in this study include:

• simulating various levels of the navigation speed, scene complexity, and stereoscopic

rendering parameters by isolating from each other to induce cybersickness,

• a neural network model for detecting and classifying factors causing cybersickness

with EEG data collected from user,

• a real-time, online mitigation of experienced cybersickness by tuning the cue parame-

ters following the feedback from the proposed model,
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• satisfactory performance without the need for individual calibration.

The remainder of this dissertation proceeds as follows. Chapter 2 gives an overview of the

related works and introduces the basic principles and terminologies used in this study. Chap-

ter 3 describes our methodology, where experimental setup and the architecture of neural

network models are detailed. Chapter 4 presents the results for the both model training and

feedback phase experiment. Finally, a discussion of the results and a conclusion are given in

Chapter 5.
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Chapter 2.

RELATED WORKS AND
BACKGROUND

2.1. Related Works

The detection of cybersickness experienced in a virtual environment (VE) with electroen-

cephalogram data using deep learning algorithms is a subject that has recently been investi-

gated. Since there are not enough studies in the literature about this topic, we carried out the

literature review under four subtitles within the context of this study. Firstly, we reviewed

studies on cybersickness and examined the factors that caused visual discomfort. Afterward,

we examined studies in which cybersickness was detected with traditional approaches using

bio-signals and investigated the features used in the detection. Moreover, studies in which

task-related information was decoded through deep learning algorithms using EEG data were

reviewed. The relationship between the architectures of the deep learning algorithms and the

activity intended to be detected was investigated. Besides, before feeding on proposed algo-

rithms, the preprocessing steps applied to the time-series EEG data were examined. Lastly,

we investigated studies in which the EEG signals were decoded to detect cybersickness ex-

perienced in a VE by using deep learning algorithms.

Cybersickness research has gained more importance in recent years as the use of virtual and

augmented reality systems has shifted from experienced users to general users. Rebenitsch
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et al. [10] published a comprehensive review of cybersickness. In this review, possible fac-

tors considered to cause cybersickness were compared and measurement methods used to

determine the severity of symptoms were investigated. Kolasinski et al. [17] proposed over

40 possible cybersickness factors, which were categorized as simulator, task, and individual

factors. Individual factors include all personal factors, especially age, gender, physical and

mental characteristics, and VR experiences. Arns et al. [18] investigated that younger partic-

ipants(under the age of 15) were less likely to experience cybersickness than older ones. The

study of Park et al. [19] supported this finding by showing that the withdrawal rates of the

young participants during the experiments were lower than the old participants. Numerous

studies have been conducted to investigate the correlation between visual discomfort induced

in VEs and gender. Although some studies have shown that females are more susceptible to

cybersickness than males, in some studies, there was no statistical correlation between gen-

der and cybersickness [20]. Hill et al. [21] demonstrated that the severity of the symptoms of

cybersickness decreased through habituation. However, there is no consensus on how long

this habituation effect will last. Howarth et al. [22] conducted an experiment including ten

sessions, one week between each session, and half of the participants showed no symptoms

at the end of the experiment. Another critical factor investigated in cybersickness studies

is the immersion duration in a VE. Stanney et al. [23] showed that an increase in exposure

time caused an increase in the severity of cybersickness related symptoms. In the experiment

carried out, 20% of the participants could not complete the 60-minutes session. Half of these

participants withdrew before the first 20 minutes of the experiment.

Several studies focused on the effects of hardware configuration and rendering techniques

related factors on cybersickness. Sharples et al. [24] compared the effect of display types

on the severity of experienced cybersickness. According to the reported results, the head-

mounted display causes a higher SSQ-Nausea score than other types of display. Yildirim [25]

investigated the effect of the display type on severity of cybersickness and reported that while

HMDs induce significantly more discomfort than flat displays during gameplay. Somrak et

al. [26] examined the effect of various HMDs and a 2D TV on cybersickness and found

similar results, that is, HMDs induced more discomfort than the 2D TV. The broader field of

view in VEs increases the sense of presence. Many studies have been conducted to ascertain

the correlation between the visual field of view and cybersickness severity. Seay et al. [27]

and Duh et al. [28] immersed participants in VEs with various fields of view and reported

that the increase in the field of view caused an increase in visual discomfort.

6



A large part of the research regarding cybersickness is on the effects of software and simu-

lation related factors. Cybersickness is a form of motion sickness that is triggered by visual

stimuli in immersive virtual environments. The correlation between the navigation speed in

a VE and the severity of cybersickness related symptoms is extensively investigated. So et

al. [29] reported that an increasing navigation speed consistently increases the severity of mo-

tion sickness. The navigation speed in a VE correlated with cybersickness, but its limits have

not been firmly defined. The blur effect that occurs when navigation reaches high speeds

is considered to reduce the cybersickness experienced. Wibirama et al. [30] examined the

effect of fixation points on cybersickness and reported higher intensity of cybersickness with

the higher speed footage of a real roller coaster rather than the slower computer-generated

path. Keshavarz et al. [31] reported that the intensity of vection on users was connected to

their speed and also affected by the crowdedness of the scene. Scene content may also affect

cybersickness, but the correlation between scene content and cybersickness is less certain.

Welch et al. [32] claimed that increased visual realism in the VE strengthens the sense of

presence. However, Jaeger et al. [33] pointed out that an increase in the detail level of the

scene content caused an increase in SSQ scores. So et al. [29] conducted an experiment in

which participants were immersed in a VE at three different complexity levels achieved by

changing the texture of the mappings. The results unveiled that an increase in the level of

details caused an increase in total SSQ scores. Terenzi et al. [34] investigated user reactions

to different particle fields with varying acceleration and optic flow type and found that there

are different thresholds of discomfort relating to different flow fields.

Mom-Williams et al. [9] investigated the effect of the stereoscopic depth in a virtual environ-

ment on the visual discomfort and reported that shifting convergence distance may increase

heterophoria. The camera separation directly affects the amount of depth perceived in a VE

and should be aligned with the user’s interpupillary distance. Kolasinski et al. [35] investi-

gated that cybersickness related symptoms become more severe when participant’s eyes sep-

aration, and the spacing between the virtual cameras differs more. Howarth et al. [36] tested

the sesitivity of heterophoria to the inter-axial distance and reported that the experienced cy-

bersickness was mitigated by the alignment between the user’s interpupillary distance and

camera inter-axial distance. It has been revealed in the cited articles [29, 31, 33] that naviga-

tion speed, scene complexity and stereoscopic rendering parameters have a direct effect on

cybersickness. In the light of these findings, the factors mentioned were isolated from each

other and used to induce cybersickness.
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The detection of cybersickness using bio-signals has been studied thoroughly. Kim et al. [7]

investigated the correlation between exposure duration in a VE and cybersickness by using

bio-signals of EEG, eye blink rate, heart rate, gastric tachyarrhythmia, skin conductance,

and respiration rate. The results confirmed that cybersickness had a significant correlation

with gastric tachyarrhythmia, eye blink rate, heart period, and EEG delta and beta waves.

In another study, Kim et al. [16] proposed a real-time and artificial neural network based

cybersickness detection system whose inputs were bio-signals collected from participants

exposed to a VE. Electrocardiogram, electrooculogram, skin conductance, skin temperature,

photoplethysmogram, electrogastrogram, respiration, and electroencephalogram (EEG) sig-

nals were utilized to detect cybersickness during immersion. The proposed system provided

a narrow field of view and voice feedback suggesting to reduce navigation speed after the de-

tection of visual discomfort. Results indicated that SSQ scores significantly decreased with

the help of the proposed cybersickness relief system. Chang et al. [37] found that alpha and

beta band power attenuated when participants were exposed to a VE. Chen et al. [38] inves-

tigated the effect of motion sickness with the EEG signals using a car simulator and found

that alpha power attenuated in the parietal and motor areas while theta and delta band power

augmented in the occipital area. Kang et al. [39] suggested a wellness platform to classify vi-

sual discomfort induced in a stereoscopic 3D environment by using a support vector machine

algorithm. Participants were immersed in five different VEs created with random-dot stere-

ogram (RDS), where a similar object was presented at different depth levels. As a result,

the overall average log spectra of EEG data attenuated following the increase in disparity

level within binocular fusion limit of participants. This study formed the basis for our work

on real-time detection and mitigation of cybersickness using EEG signals. However, since

cybersickness is triggered by multiple factors in current HMD-based stereoscopic environ-

ments, this study is insufficient to meet the needs. Kevric et al. [40] compared the empirical

mode, the discrete wavelet transform, and the wavelet packet signal decomposition methods

in terms of classification performance of two classes motor imagery task with EEG data.

The results unveiled that the wavelet packet decomposition method with applying multiscale

Principal Component Analysis (PCA) for the noise elimination algorithm reached up to an

accuracy of 92.8%. Considering the price, safety, mobility, and the need for not disturbing

the vision, EEG emerges as one of the most promising types of bio-feedback to evaluate

cybersickness objectively in the light of recent technological advances.

Deep learning algorithms show superior performance in the classification of numerous com-

plex data, especially in computer vision and natural language processing, due to its robust
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feature extraction capability. BBecause EEG data has a low signal to noise ratio and the

reaction of brain to stimuli may be different, it is necessary to apply proper preprocessing

actions and to extract the explanatory features in order to decode the task-related informa-

tion. Deep learning algorithms make it possible to learn from raw time-series EEG data by

extracting the multiple levels of features necessary for accurate classification without being

an expert in EEG signal processing. Kuang et al. [41] proposed a deep belief network for

the classification of motor imagery tasks with raw EEG data. The classification accuracy

of the proposed algorithm exhibited better performance than the support vector machine ap-

proach. Rezaeitabar et al. [42] investigated the classification performance of motor imagery

tasks with convolutional neural networks (CNN), stacked auto-encoders (SAE), and com-

bined CNN-SAE. The combined CNN-SAE method provided better performance over state

of the art approaches in the dataset IIb from BCI Competition IV and the dataset II from BCI

Competition II. Wilaiprasitporn et al. [43] proposed cascaded CNN-LSTM and CNN-GRU

networks to extract both spatial and temporal information from raw EEG data for person

identification. The person recognition performances of both proposed methods were ana-

lyzed for EEG signals collected from 32 electrodes on the entire scalp. While both methods

achieved higher accuracy compared to SVM, CNN-GRU performed better than CNN-LSTM

in terms of short training time and accuracy performance.

Yang et al. [44] suggested a CNN to classify emotional state. The experimental results

showed that the proposed method reached up to 90.24% and 89.45% classification accu-

racies for arousal and valence states, respectively. Schirrmeister et al. [5] proposed neural

networks in architectures with different number of convolution layers to classify motor im-

agery by using time series EEG signals as input. The first architecture is a shallow network

with two convolution layers and structurally models the Filter Bank Common Spatial Pattern

(FBCSP) algorithm, the winner of the BCI competition IV 2a and 2b [45]. To extract a va-

riety of task-related features, another deep learning architecture with five convolution layers

was also proposed. The performances of the proposed models were measured by compar-

ing them with the actual FBCSP algorithm. The results unveiled that both models provided

better classification accuracy in the motor imagery task than FBCSP. Zhang et al. [46] in-

troduced parallel and cascaded recurrent CNN architectures. The time-series EEG data was

first converted into a 2-dimensional form, which is mapped according to the position of the

electrodes, and fed into the proposed models by taking the time sampling with the sliding

window method. The results demonstrated that both of the proposed methods performed

better than the state-of-art methods in decoding the task-related information. Bashivan et
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al. [47] proposed a novel deep learning approach to classify cognitive load. In the suggested

model, it is aimed to extract the temporal, spatial, and spectral features by using CNN and

LSTM networks in combination. EEG data is divided into equal chunks for each trial before

being used as an input. Afterward, spectral power was calculated in theta, alpha, and beta

bands for each channel. The topology-preserving azimuthal equidistant projection was ap-

plied to transform the location of the electrodes on the scalp to a 2D image. The classification

error of 15.3%, which achieved in the state of art method, was reduced to 8.9%. Lawhern

et al. [4] introduced a single CNN architecture to classify both event related potential (ERP)

and oscillatory-based brain computer interfaces (BCI) named EEGNet. The classification

performance of the proposed CNN architecture was evaluated on the EEG datasets from four

widely used BCI paradigms. The results demonstrated that EEGNet performs better than

classical approaches when a limited number of training data is available.

Jeong et al. [48] investigated the cybersickness classification performances of the CNN and

DNN. The CNN provided better performance over DNN, but DNN was better concerning

the computational cost. Kim et al. [49] proposed a novel two-stage cybersickness level pre-

dictor. In the first stage, CNN based EEG spectrogram encoder was utilized to estimate the

cognitive state. The estimated cognitive state was combined with the extracted features of the

second stage, which consists of a combined CNN-RNN based VR video sequence encoder

to predict cybersickness level. The proposed model was tested using the ETRI-VR database,

and accuracy of 89% was achieved.

Current approaches for detecting and mitigating cybersickness generally do not go beyond

the scope of binary classification of cybersickness experienced in a VE and post-processing

of the scenes presented in line with the results obtained. There is no study in which cy-

bersickness is detected and mitigated in real-time, except for the study in which FOV is

narrowed and the user is given a voice command to reduce the navigation speed [16].

2.2. Background

In this section, I summarize the basic information about virtual reality, stereoscopic vision,

cybersickness, and EEG signals.
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2.2.1 Virtual Reality

Technically, the term virtual reality is used for computer-based 3D environments where in-

dividuals experience the feeling of presence. Although the virtual reality technologies have

become more popular with the invention of head-mounted displays (HMD), studies in this

area go back decades. The first modern virtual reality application is a multi-sensor simulator

called ”Sensorama” developed by Morton Heiling in 1962. With this prototype, a motorcycle

experience in New York city is simulated as if it were in the real world. Later, virtual reality

applications started to be developed for military purposes and were used by the USA as a

training tool to increase soldiers’ operational experience. Nowadays, the size of VR devices

has decreased, and VR devices become more usable and portable. The price has reached a

reasonable range due to easily accessible parts and technology. This technology, which is

being applied in more fields thanks to developments in hardware and software technologies,

is one of the influential factors that will affect our future.

Virtual reality systems are divided into three categories in the literature as fully immersive,

partially immersive, and non-immersive. Systems that surround a participant consist of de-

vices that create a high level of reality feeling such as Head-Mounted Displays (HMD) and

Computer Assisted Virtual Environment (CAVE). The partially immersive systems allow

more than one user to have simultaneous experiences compared to other systems with high-

resolution widescreen screens, creating a feeling of immersion in users. In desktop virtual

reality systems, users are involved in virtual activities through only one monitor. However,

they cannot feel wholly involved in a virtual environment.

In our study, the virtual environment was presented using the HTC Vive HMD to provide

participants with a more realistic and fully immersive experience. Body movements can

be detected through the integrated gyroscope of the Htc Vive headset, and thus, users are

provided with a more interactive virtual experience. The Htc Vive HMD system consists of

two base stations, VR glass, and controllers, as shown in Figure 2.1.. The Htc Vive head

mounted display includes two AMOLED displays. Displays are located behind the lens

which can be manually controlled on the headset itself to move the lenses in and out. This

provides an adjustable interpupillary distance (IPD) (61mm to 72mm) and allows a perfect

viewing experience for a wide range of users. The Htc Vive HMD accommodates a total of

2160 x 1200 pixels, 1080 x 1200 pixels per eye. The HTC Vive headset has a refresh rate of

90 Hz and a 110-degree field of view.
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FIGURE 2.1. HTC Vive head mounted display

2.2.2 Stereoscopic Vision

The human visual system (HVS) involves an extended range of depth cues. These depth

cues are classified into two main categories: visual and physiological cues. Visual cues can

be divided into the two subgroups, namely monocular and binocular depth cues, whereas

the physiological depth cues, also called oculomotor, include accommodation, vergence, and

pupil size control such as constriction or dilation.

2.2.2.1 Oculomotor Depth Cues

The movements of eyes, contraction, and relaxation of eye muscles create a perception of

depth, based on the point of view of the pupils to the object. Convergence cues include

the movements of the eyes inward while looking at a nearby object. The accommodation

cues, on the other hand, when the eye is looking at a distant object, sensing system works by

moving eyes away from each other and focusing on the object. When the eyes move inward

to focus on the nearby object, the eye muscles tighten to hold the eye lenses. When looking

at a distant object, the eye muscles relax because the eyes will move away from each other.

The vision system perceives the depth of objects with these movements in the eyes.
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2.2.2.2 Visual Depth Cues

In daily life, we always live in a three-dimensional world. This situation requires us to

continually evaluate the distance between objects and how much objects occupy the space.

We use various cues to determine the depth of space and the distance between objects. Some

of these cues are based on a single eye (monocular), and some are based on a double eye

(binocular) cues.

• Monocular Depth Cues: Some cues on depth can also be provided with a single

eye view. Monocular depth cues consist of pictorial and motion-based cues. Pictorial

cues include factors of occlusion, cast shadow, shading, linear perspective, relative

dimension, texture gradient. Motion-based cues provide us with a perception of depth

information during the motion of objects or observers.

• Binocular Depth Cues: The eyes are located horizontally on the face, which causes

the visual areas of the two eyes to overlap to a certain point. In this way, the resulting

stereoscopic vision provides the integration of two retinal images to make the percep-

tion of distance and depth more accurate. Human eyes are about 6 cm apart from each

other. In this regard, each eye sees the world a little different from each other. This

image mismatch between the horizontal positions of our two eyes is called a retinal

difference. The amount of difference depends on the relative distance of the objects,

giving us a clue about depth. With two eyes open, most of the objects seen stimu-

late different locations on the two retinas. If the difference between the images in the

retinas is small enough, the visual perception system treats them without depth. In

other words, the visual perception system produces a perception of the depth of the

three-dimensional world by evaluating the horizontal disparity between images.

2.2.3 Stereoscopic Image Generation

In stereoscopic image generation, the most crucial step is the accurate adjustment of the

stereoscopic camera parameters. There are two principal parameters for controlling disparity

between images in a stereoscopic vision: (camera) interaxial distance and (camera) con-

vergence distance. The disparity is used to perceive the absolute depth information of the

observed scene.
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FIGURE 2.2. The vergence–accommodation conflict in stereoscopic displays

In stereoscopic systems, two cameras are placed horizontally in slightly different positions.

These cameras are used to represent the left and right eyes. The distance between the cam-

eras is called interaxial separation. The convergence distance corresponds to the distance

between the plane where a focused object is located and midpoint between the two cameras.

In traditional stereoscopic displays, the scene is physically located on the display screen;

however, scene items are displayed around the display screen due to the perception of depth

provided. Thus the disparity cue drives the eyes to converge towards scene elements on the

perceived depth, while the light coming from the display forced the eyes to focus on the

display plane, causing the vergence accommodation conflict as shown in Figure 2.2.. Al-

though people have a degree of tolerance against this conflict, it can contribute to focusing

problems, visual fatigue, and eyestrain with long term use, especially if the depth perception

is exaggerated.

2.2.4 Cybersickness

Users immersed in a virtual environment (VE) experience motion sickness like discomfort.

Symptoms observed in participants exposed to virtual environments, which include nau-

sea, pale skin, cold sweats, vomiting, dizziness, headache, increased salivation, and fatigue,

are similar to motion sickness symptoms. However, due to the absence of a real physical

movement, this discomfort was evaluated separately from motion sickness and named as

cybersickness or visually induced motion sickness in the literature.
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Sensory mismatch is widely seen as the leading cause based on the assumption that the exter-

nal stimulus is perceived differently with different senses. Cybersickness is mainly induced

when the perceived movements in a VE are not felt by the vestibular system [11]. Another

common reason for the cybersickness experienced in VR environment is the vergence ac-

commodation conflict (VAC). In this complication, the discomfort arises from the conflict

between the vergence distance, the distance where the eyes meet on the object of interest,

and the accommodation, the distance the eye lenses are adjusted to focus on. In real life, this

is not an issue as the vergence distance matches the accommodation. However, in VEs using

stereoscopic vision, the objects can be rendered behind or in front of the screen, causing the

vergence distance to be on the object while the accommodation is set on the screen. The

conflicting information creates a feedback loop which induces discomfort and contributes to

cybersickness.

Cybersickness has been widely researched since Kolasinski’s work in 1995 [17] where it

was mentioned as simulator sickness. Rebenitsch et al. [10]. categorized cybersickness

factors as hardware, software, and individual-related factors. In this study, we focus on

cybersickness caused by software factors. The review lists many factors possibly contributing

to cybersickness and the proposed ways of detection.

Navigation speed, altitude above the terrain, degree of control, vection, screen luminance,

contrast, visual background, scene complexity, and stereoscopic rendering parameters in the

virtual environment has been investigated in several studies as software cybersickness fac-

tors. In this study, we investigated effects of the navigation speed, scene complexity, and

stereoscopic rendering parameters on the experienced cybersickness. So et al. [29] found

that speed of movement inside a VE had a significant effect on the score of SSQ-O that is re-

lated to eye and vision related symptoms. Welch et al. [32] pointed out that increased visual

realism in the VE strengthens the sense of presence. However, Jaeger et al. [33] investigated

that an increase in the detail level of the scene content caused an increase in SSQ scores.

Kolasinski et al. [35] investigated that cybersickness related symptoms become more severe

when participant’s eyes separation, and the spacing between the virtual cameras differs more.

2.2.5 Electroencephalography (EEG) signals

Human brain is filled with neurons. Every time we feel, think, or intended to move, neuro-

cells are communicating with each other to convey a message. This message is carried out by
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FIGURE 2.3. Different perspectives of the International 10-20 Standard System of electrodes

biochemical and electric signals. Electroencephalography (EEG) is an electrophysiological

monitoring method that observes electrical activity of neurons. Although invasive electrodes

are sometimes used, as in electrocorticography, mostly electrodes are placed across the scalp

and are not invasive. EEG measures the voltage fluctuations from the ionic current inside the

brain’s neurons. Since EEG signals are collected through electrodes placed on scalp, areas

where sensors are placed are of great importance for the analysis of signals and repeatability

of experiments, which has led to the need to standardize the positioning of electrodes. EEG

electrodes are localized according to the 10-20 system. The 10-20 standard is an interna-

tionally accepted method to describe the location of electrodes on the scalp. The numbers

in the standard name correspond to the percentage ratio of the distance between adjacent

electrodes to the total anterior-posterior or right-left distance of the skull. The location of

each electrode in the 10-20 system is identified with a letter and a number that correspond to

the lobe and the hemisphere location, respectively, as shown in Figure 2.3.. Even numbers

used in identifying localization indicate that the electrode is in the right hemisphere, and odd

numbers are in the left hemisphere.

There are three primary sources of information in EEG signals [50]. Spatial information
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FIGURE 2.4. Frequency Band of EEG Signals

corresponds to the spatial source of the measured signals. Another set of information con-

tained in EEG signals is temporal information. The temporal information describes changes

in signals over time. It is mainly used in the The Event-Related Potential (ERP) studies.

ERP is the effect of low-frequency response seen after a certain time as a result of a given

stimulus. The ERP type activities are easy to detect due to characteristics of the signal and

response to a given stimulus within a certain time. Lastly, spectral information means power

changes in the selected frequency bands. It is used in BCI studies based on oscillatory activ-

ities. Oscillatory activities cause the waves in specific frequency bandwidth to dominate the

EEG recordings. EEG signals are generally analyzed based on five frequency bandwidths, as

shown in Figure 2.4.. Delta waves occur in deep sleep states, unconsciousness, or when brain

activities are deficient. It is prominent in the frontal region in adults and the occipital region

in children. Theta waves occur when the brain activities such as deep relaxation, well-being,

pensiveness, and emotional tension in adults are still at a level that can be called low. Alpha

waves appear in relaxation, meditation, non-arousal, and awake without any concentration

state. Beta waves occur in stressful, irritable situations, during repetitive headaches when

focus and concentration cannot be achieved. Gamma waves occur in the case of high-level

information processing, active learning, concentration, consciousness, and cognitive func-

tioning.
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EEG signals have a low signal-to-noise ratio (SNR), and task-related responses may be sup-

pressed by noises and artifacts. Cross-subject variability and poor spatial resolution are the

main obstacles in BCI applications. Nunez et al. [51] demonstrated that about half the con-

tribution to a single electrode potential comes from sources within a 3 cm radius of the cor-

responding electrode. Besides, EEG signals are non-stationary, which may cause the trained

model to predict different results even when the model is tested in the user to whom the

model is trained.
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Chapter 3.

METHODOLOGY

This study consists of two phases, namely the training phase and the feedback phase. Firstly,

participants were immersed in a VE consisting of three repeating sessions. In each session,

participants go through cues generated with different levels of navigation speed, scene com-

plexity, and stereoscopic rendering parameters. The EEG data collected in the first phase

was used as training data for the proposed cybersickness detection and mitigation system

(CDMS). The CDMS consists of two consecutive models. In the first model, cybersickness

was detected using time-series EEG data. Then, if the result of the first model indicates

uncomfortable condition, the factor type that causes cybersickness was classified by per-

forming multi-class classification in the second model. In the second phase of the study,

we conducted an experiment using different participants to evaluate the performance of the

CDMS. The following sections provide detailed information about the experimental setups,

model architectures, participants’ information, and the VEs for both the training and the

feedback phases. Teaser of this study is shown in Figure 3.1..

3.1. Training Phase Experiment

3.1.1 Participants

A total of 40 participants voluntarily attended the training phase experiment. Due to the

hardware and software related faults that occurred during the experiment, data with sufficient
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FIGURE 3.1. Plot illustrating the model training (top half) and the feedback (bottom half)
phases of the proposed cybersickness detection and mitigation system. In the model train-
ing phase, cybersickness factors of navigation speed, scene complexity, and stereoscopic
rendering parameters were simulated separately in the virtual environment (VE). EEG data
and general discomfort scores were collected during the sessions to train a two-stage shal-
low CNN model to detect cybersickness and to classify factor type. In the feedback phase,
the trained models are used in the loop to detect and mitigate cybersickness in real-time by

updating the VE generator simultaneously to adjust the identified factor.

qualification could not be collected from 5 out of 40 participants. Besides, the data collected

from two participants were not included in the training data as they reported that they did not

feel cybersickness in any of the cues. Our final sample consisted of 33 people aged between

18 and 42 (mean = 23.8). Seven participants were female, and 26 of them were male. The

participants had an average MSSQ percentile of 29.7. Overall they had little experience with

VR (0.9 average on a 0-4 scale(0: Not at all familiar, 4: Extremely familiar)) and moderate

game habits (2.1 average on a 0-4 scale(0: Never, 4: Always)).

3.1.2 Procedure for the Model Training Phase

The training phase experiment was conducted in three repeating sessions. Each session

started with a baseline cue that is stationary and does not have any external stimulus. The

baseline cue is applied to receive EEG data in the steady-state of brain waves. After the
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FIGURE 3.4. Flowchart of the experiment and model training steps for the training phase

baseline cue, participants were immersed in a VE consisting of three types of cues in each

session. Cues that were created using ten levels of navigation speed, seven levels of scene

complexity, and ten different stereoscopic rendering parameters sets presented to the partic-

ipants in a random order, with 30 seconds rest period between them to avoid cybersickness

accumulation. The baseline and each cue level takes ten seconds. At the end of each cue,

users were asked to rate the severity of experienced cybersickness on a scale ranging from

1(”none”) to 7(”extreme”). The participants were given a 3-minute rest period before pro-

ceeding to the next session. Flowchart of the experiment and model training steps for the

training phase is shown in Figure 3.4..

Experiments were carried out in a silent and external stimulus-free environment where a

participant sits on a fixed seat. In this way, probable noise and artifacts were reduced, and a

safer test environment was offered to the participants during the experiment. The overview of
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the experimental procedure of the training phase is given in Figure 3.2.. The training phase

experiment was comprised the following steps:

• Participants were subjected to a stereo-blindness test where they were shown a random-

dot stereogram to confirm that they do not have any stereoscopic vision disability

before the experiment. It was also confirmed that participants had not experienced

epilepsy seizures before to avoid the risks that may occur during the experiment. Each

participant was informed about the experiment, and they were asked to fill out the

consent form.

• In order to identify possible outlier data more efficiently, participants’ game habits,

VR experiences, and demographic information were asked, and the MSSQ (Motion

Sickness Susceptibility Questionnaire) was applied to measure their susceptibility to

motion sickness.

• The HMD equipment and EEG electrodes were fitted onto the participant’s head. The

Emotiv Cortex API was utilized to ensure the reliable signal quality for each channel.

• Each training session started with a baseline cue. Then, participants were immersed

in factor sets containing different levels, with a 30-second rest period between each.

Participants were asked to rate the severity of experienced cybersickness on a scale

ranging from 1(”none”) to 7(”extreme”) at the end of each level.

• When a session ended, participants were given a no less than 3-minute rest period

before proceeding to the next session. The rest period was extended for the participants

who did not feel well after this period.

• EEG data and labels, including factor types and the general discomfort scores partic-

ipants rated after corresponding cue in the training phase experiment, were recorded

for use in the model training.

The software infrastructure used in the model training experiment was designed, as shown in

Figure 3.5.. The virtual environment created by using the Unity Game Engine is presented

to users via the HTC Vive VR headset by using SteamVR. The raw EEG data collected

simultaneously from users are recorded in the Emotiv cloud storage by the Emotiv Cortex

API. The username, session name, markers indicating factor type, start and stop recording

commands required for saving EEG data are sent from Unity game engine to the Emotiv

23



FIGURE 3.5. The software infrastructure for the training phase

Cortex API over TCP-IP. Besides, general discomfort evaluation scores collected from users

after each cue are stored on the local disk.

3.1.3 Virtual Environment for the Training Phase

The virtual environment used in the study was created using the Unity Game Engine and

the SteamVR. The participants were immersed in the VE with an HTC Vive HMD headset,

which runs at 1080x1200px resolution per eye and 90 Hz refresh rate. In both phases of

the experiments, the participants moved along a dark corridor environment generated with

different navigation speed, scene complexity, and stereoscopic rendering parameters. Partic-

ipants were asked to follow a focus object, a blue glowing octahedron, with their eyes and/or

their head. The object to be tracked oscillated to the left and right while moving equivalent

to the navigation speed of a participant. Sample frames for each factor type were given in

Figure 3.2..

The most crucial step in creating a stereoscopic image is the correct adjustment of the stereo-

scopic camera parameters. Convergence distance is the parameter used to define the distance

between the camera plane and the focus plane. Another stereoscopic parameter is the inter-

axial distance, which is defined as the distance between the cameras. The perceived depth

can be modified in the stereoscopic vision by adjusting these parameters. In the training
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phase experiment, only one of the stereoscopic rendering parameters was changed between

consecutive levels. The stereoscopic cue started with a moderate inter-axial distance and a

short convergence distance. An increase in the convergence distance was followed by an in-

crease in the inter-axial distance after the convergence distance reaching its maximum value.

After the inter-axial distance reached its maximum value, the convergence distance value was

decreased between consecutive levels. The smaller clones identical with the focused object

were scattered with randomized colors in the background to increase the number of depth

cues. They were kept smaller as not to take focus away from the main object. Each of the

stereoscopic rendering levels takes ten seconds.

To investigate the effect of navigation speed, a parameter set was constructed with 10 differ-

ent navigation speed levels, which starts from 1.2 meters/sec, increases between consecutive

levels, and reaches 76meters/sec at the highest level. The increase in navigation speed starts

exponentially in the first half, and the latter half proceeds linearly. Since the participants were

less disturbed at low and very high speeds, fewer samples were taken at low speeds, and more

samples were taken at medium and higher speeds. In order not to induce a complexity-related

cybersickness and to invoke the sense of vection, only the object to be followed and bright

red arrows on the surrounding walls and floor were included in the VE. An emission shader

is applied to the red arrows that allows them to be seen independently from the focus object

position as it is the only light source in the environment. Each of the navigation speed levels

takes ten seconds.

We also evaluated the impact of scene content on cybersickness by generating cues with

seven levels of complexity. At the first level, there was only the object to be followed in the

presented scene. At the second level, clones identical to the followed object were positioned

towards the outside of the corridor environment and oscillating vertically in a sinusoidal

pattern. At the following level, the copies of the focused object were distributed randomly

throughout the VE, with more than the second level. At the fourth level, the scene contents

were identical to those in the third level, but they were randomly colored as red, green, or

blue. Particle emitters attached to the clones at the fifth level. At the sixth level, the particles

are given HDR texture to make them brighter, and a particle force field was used to propel the

particles further into the participant’s view. At the final level, the amount and brightness of

emitted particles were maximized to induce more cybersickness. The scene contents of other

factors were kept as minimal as possible in order to isolate the effects of manipulating scene

complexity cue to this factor scene only. Each of the complexity levels takes ten seconds.

25



3.2. Feedback Phase Experiment

3.2.1 Participants

In the feedback phase, 22 participants voluntarily took part in the experiment. One par-

ticipant wanted to withdraw from the experiment after the Control 1 session because he

experienced severe cybersickness. On the other hand, one participant was not included in

the experiment because he failed in the stereo blindness test. All procedures applied to par-

ticipants before the training phase experiment were applied at this stage as well. Contrary

to the training phase, participants asked to fill out the SSQ at the beginning and at the end

of each session in addition to the single-question general discomfort query. The age of the

participants varied between 22 and 33, with an average of 28.1. All participants were male.

The average MSSQ percentile of the participants was 29.05. They had little experience with

VR (0.85 average on a 0-4 scale(0: Not at all familiar, 4: Extremely familiar)) and moderate

game habits (1.1 average on a 0-4 scale(0: Never, 4: Always)).

3.2.2 Procedure for the Feedback Phase

In the feedback phase, we aim to classify the type of cue causing cybersickness with the

models trained in the model training phase and to mitigate cybersickness by updating the rel-

evant cue parameters to provide a more comfortable vision. The feedback phase experiment

consists of three consecutive sessions. In control 1 and control 2 sessions, participants were

immersed in a VE in which the cue parameters were updated following specific templates as

shown in Figure 4.9.. However, in models in the loop session(MIL), the cue parameters were

updated simultaneously following the feedback from the cybersickness detection and factor

type classification models. The sessions were presented to the participants in a random order

and the participants did not know in which session the cybersickness mitigation model was

activated. Participants asked to fill out the SSQ at the beginning and the end of each session

to evaluate the performance of the cybersickness detection and mitigation system (CDMS).

Moreover, participants were requested to rate the severity of experienced cybersickness with

the single-question discomfort query on a scale ranging from 1(”none”) to 7(”extreme”) at

the end of each session. The overview of the experimental procedure of the feedback phase

is given in Figure 3.3..
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FIGURE 3.6. The software infrastructure for the feedback phase

The feedback phase experiment was comprised the following steps:

• Participants were subjected to similar procedures in the training phase experiment, and

the experiment is initiated after the participant has been confirmed to be suitable for

the experiment.

• Participants filled the MSSQ, game habits, VR experiences, and demographic ques-

tionnaires.

• The HMD equipment and EEG electrodes were fitted onto the participant’s head. The

Emotiv Cortex API was utilized to ensure the reliable signal quality for each channel.

• Participants asked to fill out the SSQ at the beginning and the end of each session.

• Participants were immersed in two control and MIL sessions, which were presented in

random order with a minimum of 3 minutes of rest period between them.

• After each session, participants were requested to rate the severity of experienced cy-

bersickness with the single-question discomfort query on a scale ranging from 1(”none”)

to 7(”extreme”).

The software infrastructure used in the online experiment was designed, as shown in Fig-

ure 3.6.. The virtual environment created using the Unity Game Engine is presented to users
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with the HTC Vive VR headset using SteamVR. The raw EEG data collected from the users

are simultaneously transferred to the cybersickness detection and classification models devel-

oped in the Python environment by using the Lab Streaming Layer communication protocol

by the Emotiv Cortex API. At the same time, all EEG data is stored on a local disk in CSV

format to create a comprehensive EEG database. The username, session name, start, and

stop recording commands required to save EEG data are sent from the Unity game engine to

the Emotiv Cortex API over TCP-IP. Finally, the factor type feedback that causes cybersick-

ness classified by the proposed model is transmitted to the Unity game engine to perform the

necessary parameter updates over TCP-IP.

3.2.3 Virtual Environment for the Feedback Phase

FIGURE 3.7. Time-dependent changes in
the cue parameters of the control 1 ses-

sion

FIGURE 3.8. Time-dependent changes in
the cue parameters of the control 2 ses-

sion

In the feedback phase, we conducted an online experiment that consists of two different

control sessions and one models-in-the-loop (MIL) session. The number of rendered objects

and the number of particles released from each object parameters were used to control scene

complexity. Similarly, inter-axial distance and convergence distance parameters were utilized
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as stereoscopic rendering parameters to induce different levels of cybersickness. Sample

frames for each factor type were given in Figure 3.3..

In the control 1 session, the virtual scene started with a moderate level of speed, complex-

ity, and stereoscopic rendering parameters. Afterward, speed, complexity, and stereoscopic

rendering parameters were shifted according to a specific template as shown in Figure 3.7..

Before the parameters of each factor were shifted, the previously shifted parameters were

reverted to the initial state, and then five seconds would pass. Cue parameters were fitted to

specific functions to make the transition smooth and hence not to lose the feeling of presence.

In the control 2 session, the virtual scene was created similar to the control 1 session. The

only difference was that the shifted parameters remain at a level that induces the maxi-

mum level of cybersickness until the end of the session. The time-dependent changes in

the speed, complexity parameters, and stereoscopic rendering parameters for control 2 ses-

sion are shown in Figure 3.8.. The MIL session was created based on the template of control

2 session. From the moment the MIL session started, the corresponding cue parameters were

updated by a fixed step following the feedback from the classification model. However, each

parameter was shifted by a fixed amount starting from the last level of the corresponding

parameter at the time step that it needs to be shifted in accordance with the template of the

control 2 session.

3.3. Data Acquisition

We use the Emotiv Epoc+ EEG measurement headset in this study. The Emotiv Epoc+

headset has been widely used equipment in BCI experiments since it meets the needs for low

cost and high mobility. The Emotiv Epoc+ headset has 14 saline-based electrodes plus two

reference electrodes, an inertial gyroscope, and an accelerometer to measure head movement

during the experiment. Thanks to wireless connection, it is suitable for studies requiring high

mobility [1]. All the features of the Emotiv Epoc+ headset are shown in Table 3.1..

EEG electrodes are positioned according to the 10-20 system, as shown in Figure 3.9.. The

10-20 standard is an internationally recognized method to describe the location of electrodes

on a scalp. This system was accepted as a standard to maintain standardized testing methods
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FIGURE 3.9. Electrode locations of the Emotiv EPOC+ headset. The upper part shows the
front of the head. Adapted from [1]

that allow collected data to be compiled, effectively analyzed, and compared with data col-

lected from different subjects using the scientific method. We utilize the Emotiv Cortex API

to evaluate the signal quality for each channel. The signal quality rank on scale of 1 (”no

signal”) to 4 (”good”) indicates the accuracy of receiving data for each channel.

EEG data are collected at 2048 Hz internally. However, it is transmitted as 128 or 256 Hz

according to the user’s preference. In our study, EEG signal was collected with a sampling

rate of 256 Hz. A bandpass filter is applied to the raw EEG data to collect data covering the

frequency bands of theta (4 to 8Hz), alpha (8 to 12Hz), beta (12 to 25Hz), and gamma (25

or more). Delta (0.2 to 4Hz) frequency band is excluded in this study because delta waves

occur in deep sleep states, unconsciousness, or when brain activities are deficient. We do

not need to apply the notch filters, because 50Hz-60Hz notch filters are implemented in the

hardware internally.

During the training phase, raw time-series EEG data and markers indicating factor type

within each session were recorded simultaneously using the Emotiv Cortex API with the

edf extension. Three edf files, one for each session, were obtained per participant. We used

the EEGLAB toolbox [52] in Matlab computational software for data preprocessing and par-

titioning the data recorded in batches per session by factor type. The partitioned EEG data

were labeled according to the participants’ general discomfort score and the corresponding

factor type.

30



FIGURE 3.10. Flowcart for the Cybersickness Detection and Mitigation System(CDMS)

In the feedback phase, EEG signals are fed to the cybersickness detection model first after

being preprocessed using the Lab Streaming Layer interface via Emotiv Cortex API, which

was triggered as soon as the scene starts in the VE. If cybersickness is not detected, there

will be no update in the cue parameters, and the same scene continues to be presented. If

the cybersickness detection model detects cybersickness, the same preprocessed data are fed

to the second model as well. Relevant cue parameters are updated in line with the model’s

feedback, which indicates the type of cue causing cybersickness. The main flow diagram of

the CDMS is shown in Figure 3.10.. EEG data collected during both control sessions and

the MIL session were logged with the csv extension to create a comprehensive cybersickness

EEG database.

3.4. Cybersickness Detection and Factor Type Classifica-

tion Using Deep Learning Approaches

EEG is a method that monitors the electrical activity occurs as a result of interaction between

neurons in a brain. EEG waves differ in amplitude, frequency, and shape according to the

brain’s (physiological or psychological) state. Cross-subject variability and poor spatial res-

olution due to volume conduction are the main obstacles in EEG applications. Besides, EEG

signals have a low signal-to-noise ratio (SNR), and task-related responses may be suppressed
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TABLE 3.1. Specification of the Emotiv EPOC+ headset

Number of Channels
14 (plus CMS/DRL references,
P3/P4 locations)

Channel names
(International
10-20 locations)

AF3, F7, F3, FC5, T7, P7, O1, O2,
P8, T8, FC6, F4, F8, AF4

Sampling Method Sequential sampling. Single ADC
Sampling Rate 128 SPS / 256 SPS (2048 Hz internal)

EEG Resolution
14 bits 1 LSB = 0.51uV (16 bit ADC,
2 bits instrumental noise floor is discarded),
settings can be changed to 16-bit

Bandwidth
0.2 - 45Hz, digital notch filters at
50Hz and 60Hz

Filtering Built-in digital 5th order Sinc filter

Connectivity
Proprietary 2.4GHz wireless, BLE
and USB (Extender only)

Impedance
Measurement

Real-time contact quality using patented
system

Gyroscope 3-axis +/- 500 dps
Motion Sampling 32 / 64 / 128 Hz (User Defined)
Sensor Material Ag/AgCl + Felt + Saline

by noises and muscle activity-related artifacts. Therefore, to reveal the task-related informa-

tion in EEG studies, it is necessary to remove noise and artifacts caused by eye and muscle

movements. However, these preprocessing steps are not feasible for use in studies conducted

online in terms of computation costs. Artificial neural network approaches provide higher

generalization skills and adaptive applications. The popularity of neural network approaches

has been increasing in recent years thanks to its ability to handle complex data. This makes

it possible not to perform preprocessing, artifact removing, and feature extraction processes,

which require high computation power and expertise in the EEG signal processing.

The first step of developing a brain-computer interface application using EEG signals is to

know what kind of effect the activity desired to detect has on the brain. These effects are

commonly divided into two categories. The Event-Related Potential (ERP) is the effect of

high amplitude and low-frequency response seen after a certain time as a result of a given

stimulus. The ERP type activities are easy to detect due to characteristics of the signal and

response to a given stimulus within a certain time. However, oscillatory activities are not

easy to detect because they are associated with power changes in the specific frequency
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band, asynchronous, and have a poor spatial resolution due to volume conduction. Cyber-

sickness is not a momentary response but a cumulative effect that occurs after a certain time

of exposure. Therefore, we used the Shallow Convolutional Network based on the FBCSP

algorithm to detect cybersickness, which is considered as oscillatory activity. The Shallow

ConvNet architecture based on the FBCSP was proposed by Schirrmeister et al. [5] and

showed outstanding performance on oscillatory signal classification.

At the beginning of our study, we aimed to rate the cybersickness using regression approaches

in line with general discomfort assessments scores collected from users. However, since the

number of participants is limited and the distribution of the general discomfort scores col-

lected from the users for different levels of each factor strengthens the cybersickness rating

by regression, we decided to do the disturbance detection with a classification approach. The

proposed cybersickness detection and mitigation system consists of two consecutive mod-

els. In the first model, cybersickness experienced in a VE is classified as binary. The first

model was trained according to whether the users feel visual discomfort or not, by using all

recorded EEG data. The second model was trained to classify factor type that caused cyber-

sickness by using the data that corresponds to cybersickness condition. We first wanted to

classify the proposed two-stage cybersikness detection and factor type classification models

using a combined multiple classification approach. However, the classification accuracies

we obtained revealed that the combined approach performed worse than the separate model

approach.

3.4.1 Spatial Filtering

The brain-computer interface (BCI) aims to classify the mental states of users using the col-

lected EEG data. There are three primary sources of information in BCI studies [50]. Spatial

information corresponds to the spatial source of the measured signals. To utilize this infor-

mation, it is necessary to know which parts of a brain are sensitive to the task to be decoded.

The visual information is first processed in the occipital lobe, and then depending on its pur-

pose, visual information follows a ventral or dorsal stream, as shown in Figure 3.11. [53] [2].

The P7, P8, O1, and O2 channels of the Emotive Epoc+ headset are located on the corre-

sponding scalp area. However, due to the volume conduction between electrodes and using

deep learning in the classification of cybersickness in this study, we decided to use raw EEG

signals from all electrodes.
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FIGURE 3.11. Two-streams hypothesis of the neural processing of human vision. Adapted
from [2]

Another set of information used in brain-computer interface studies is temporal information.

The temporal information describes changes in signals over time. It is mainly used in studies

where a time-dependent response is expected a certain time after a given stimulus. Lastly,

spectral information means power changes in the selected frequency bands. It is used in BCI

studies based on oscillatory activities. In most of the studies in the literature, cybersickness

is correlated with band power. Information about these studies was detailed in the literature

review section. An increase in the EEG signal power in a given frequency band is called the

Event-Related Synchronisation (ERS), whereas a decrease in the EEG signal power is called

an Event-Related Desynchronisation (ERD). In oscillatory based BCI studies, changes in

specific frequency bands are monitored by the specified region of a brain. Therefore, spatial

information is needed to be utilized in spectral-domain studies.

The EEG signals have a poor spatial resolution due to volume conduction. Nunez et al.

demonstrated that about half the contribution to a single electrode potential comes from

sources within a 3 cm radius of the corresponding electrode [51]. The Common Spatial Pat-

terns (CSP), which was designed by Ramoser et al., is frequently used in BCI studies because

it enhances the task-related information in the EEG signal while suppressing undesirable ac-

tivities [54]. The CSP can be implemented easily and is computationally efficient. The

performance of the CSP algorithm depends on the operational frequency band. Therefore it

provides low accuracy when EEG data is unfiltered, filtered inadequately, or filtered in an

inappropriate frequency band. Also, the CSP algorithm tends to overfit if there is not enough

training data. To address these problems, Ang et al. proposed a machine learning approach

called the Filter Bank Common Spatial Pattern (FBCSP) for processing EEG measurements

in motor imagery-based BCI [3]. The FBCSP algorithm is widely used in the EEG signal
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FIGURE 3.12. Architecture of the FBCSP algorithm. Adapted from [3]

classification and has won many EEG classification competitions such as BCI Competition

IV 2a and 2b [55].

3.4.1.1 Filter Bank Common Spatial Pattern

The main flow of the FBCSP approach is illustrated in Figure 3.12.. Technically, the FBCSP

algorithm computes linear combinations of EEG channels to extract particular band power

features. In the FBCSP approach, before applying the CSP algorithm, the EEG signals are

separated into multiple frequency bands using bandpass filters. The CSP algorithm is then

applied separately for each band. A feature extraction algorithm is employed to extract

discriminating features for each frequency band. Finally, a proper classification algorithm is

performed for classification by using the extracted features.

3.4.2 Architecture of the Shallow Convolutional Neural Network

Schirrmeister et al. [5] designed the Shallow ConvNet architecture inspired by the FBCSP

algorithm to classify oscillatory activities. The architecture of the shallow convolutional net-

work consists of two convolutional layers: one for temporal and one for spatial convolution

to deal with variations in spatial and spectral domains. The bandpass and the CSP filtering

steps of the FBCSP algorithm are performed as a temporal and spatial convolution in this

architecture. Convolutions were utilized to generate an EEG-specific model that extracts
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discriminative EEG features. After two convolutional layers, batch normalization is used

to standardize values in the hidden layers of the network. A squaring activation function, a

mean pooling, and a logarithmic activation function are applied following batch normaliza-

tion step to extract log band power features. The dropout technique is used to prevent an

over-fitting problem. Lastly, a dense softmax layer is utilized for classification.

We trained both models with the Adam optimization algorithm, which is designed to work

well with high-dimensional parameters with a learning rate of 6x10−4 [56]. The training

was carried out by minimizing the categorical cross-entropy loss function. We ran 1000

epochs with setting the batch size to 64 and save the model weights, which produced the

highest validation accuracy. Architectures of the shallow convolutional networks are shown

in Figure 3.13. and Figure 3.14. respectively for the cybersickness detection and the factor

type classification models. In the first model in which cybersickness was detected, we set

the number of filters used in the first and second convolution layers to 40 with kernel size of

1x25 and 14x1 respectively. On the other hand, in the model in which the factor type was

classified, we set the number of filters used in the first and second convolution layers to 50

with kernel size of 1x25 and 14x1 respectively. All models were trained in Tensorflow [57],

using the Keras API [58].

We also compare the performance of the Shallow Convolutional Neural Network to that of

the Deep ConvNet and EEGNet approaches. The EEGNet architecture consists of a temporal

convolution and a depth-wise convolution to perform the bandpass and the CSP filtering steps

of the FBCSP algorithm, respectively. A separable convolution and a point-wise convolution

are applied following depth-wise convolution to extract temporal features. The architecture

of the EEGNet algorithm is visualized in Figure 3.15.. In this way, the EEGNet approach

effectively generalizes to both ERP and oscillatory type EEG classification [4].

The Deep ConvNet architecture is developed by Schirrmeister et al. [5] to be a general

purpose approaches for both ERP and oscillatory based task classification. The architectureof

the Deep ConvNet consists of five convolutional layers and a softmax classification layer.

Similar to the EEGNet approach, the bandpass and spatial filters steps are simulated in the

first two convolution layers. The architecture of the Deep ConvNet algorithm is demonstrated

in Figure 3.16.. Since both approaches are designed for general purpose to cover both the

ERP and oscillatory type EEG decomposition, temporal information is extracted from the

EEG signal in addition to extracting features related to log band-power.
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FIGURE 3.15. The architecture of EEGNet algorithm. Adapted from [4]

3.4.3 Data Preparation for the Proposed Models

The raw time-series EEG data from 33 participants were recorded simultaneously in the three

repeating sessions of the training phase experiment, including baseline cues at the beginning

of each session. EEG data of ten seconds were collected from the participants for each

level of cues. At the end of each cue, participants were asked to evaluate the experienced

cybersickness severity by using a single-question discomfort query. Label values to be used

in the cybersickness detection model were determined by assuming that the discomfort rating

scores of two and above indicate cybersickness condition. Data tagged as cybersickness in

the first model were also labeled as speed, complexity, and stereoscopic, depending on the

corresponding type of cue presented during the recording process.

In order to use multi-channel time-series raw EEG signals as input in the artificial neural

network-based classification algorithm, EEG data were subjected to certain preprocessing.

Initially, bandpass filtering was applied with a causal third-order Butterworth filter. Then, ten

seconds of data recorded during each cue were cut to eight seconds by trimming one-second

portions from the beginning and the end. In this way, possible synchronization problems and

delays were eliminated. Then, eight seconds of data were divided into pieces in one second

using the sliding window, as shown in Figure 3.17.. The partitioned one-second data were
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FIGURE 3.16. The architecture of Deep ConvNet algorithm. Adapted from [5]
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FIGURE 3.17. Preparation of time-series EEG Data input for the proposed models

tagged with the label of the main data. The VE created using the factors of navigation speed,

scene complexity, and stereoscopic rendering parameters induced cybersickness in different

severity. For example, most of the participants did not experience cybersickness in most of

the navigation speed levels, except for very high speeds. In contrast, most of the participants

experienced cybersickness in the majority of the scenes created using different stereoscopic

rendering parameters. This makes it inevitable to augment the data in case of class imbalance

to make a proper classification. Therefore, 50% overlap is preferred between the consecutive

steps of the sliding window, while the data corresponding to the cybersickness condition are

divided into pieces. On the other hand, training data were partitioned without overlapping

in stereoscopic rendering parameters originated cybersickness data, 75% of overlap in speed

originated cybersickness data, 25% of overlap in complexity originated cybersickness data in

the factor type classification model. Finally, partitioned, augmented, and labeled data were

scaled by the min-max of the current chunk.
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Chapter 4.

Results

The decoding performances of the cybersickness detection and factor type classification

models were shared first. In the second part, the performance of the proposed cybersick-

ness mitigation system was evaluated by analyzing the time-dependent changes in the cue

parameters, general discomfort scores filled out after each session, and the SSQ score differ-

ences filled out before and after each session in the feedback phase experiment.

4.1. Training Results of the Cybersickness Detection and

the Factor Type Classification Models

The participants were presented with cues to induce different levels of cybersickness, and

then the corresponding EEG data were labeled according to general discomfort scores col-

lected from participants after each cue. Two Shallow ConvNet models based on the FBCSP

algorithm were trained with labeled data collected in the training phase. The Shallow Con-

vNet architecture shows outstanding performance on the oscillatory signal classification. The

classification accuracy of the Shallow ConvNet architecture evaluated against the EEGNet

and the DeepConvNet algorithms, which yielded state-of-art decoding accuracy, especially

for the motor imaginary task classification.

For performance analysis, we use five-fold cross-validation, where 20% of the total data were

used as the test set, 10% of the remaining data as the validation set, and the remaining data as
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TABLE 4.1. Decoding accuracies of the cybersickness detection models. Accuracy was
calculated by averaging the overall accuracies obtained with 5-fold cross validation training.

EEGNET4.2 EEGNET8.2
Deep
ConvNet

Shallow
ConvNet

Accuracy 63.9% 64.8% 69.01% 76.26%

TABLE 4.2. Decoding accuracies of the factor type classification models. Convention as in
Table 4.1.

EEGNET4.2 EEGNET8.2
Deep
ConvNet

Shallow
ConvNet

Accuracy 53.5% 64.5% 72.8% 81.01%

TABLE 4.3. Statistical report for the cybersickness detection model. Metrics were calculated
by averaging the all results obtained with 5-fold cross validation training.

precision recall f1-score
Comfortable 0.77 0.67 0.72
Uncomfortable 0.76 0.84 0.80
Overall
Accuracy 76.26

the training set. The average performances of the models were evaluated based on precision,

recall, and F-measures metrics. Precision is defined as the metric that indicates success in a

situation estimated positively. Recall shows how successfully positive states are predicted.

F-measure is the harmonic average of the precision and recall metrics.

The classification accuracies of the cybersickness detection and the factor type classification

models across all mentioned algorithms are shown in Table 4.1. and Table 4.2., respectively.

The comparison results clearly show that the Shallow ConvNet architecture outperforms all

others in both models. Although this approach has a shallow architecture compared to other

models, the reason it exhibited an outstanding performance is that it was designed specifically

to extract log band power features.

The classification performances of both models averaged over five folds are shown in Ta-

ble 4.3. and Table 4.4. in terms of precision, recall, and F-measures metrics. The confusion

matrices are shown in Figure 4.1. and Figure 4.2. which show the percentage of correct and

incorrect estimates of classification model as a table. The cybersickness detection model’s

performance reached an overall accuracy of 76.26%, while the factor type classification

model achieved 81.01% overall accuracy. The classification precision of each factor type
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FIGURE 4.1. Confusion Matrix for the Cybersickness Detection Model

FIGURE 4.2. Confusion Matrix for the Factor Type Classification Model
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TABLE 4.4. Statistical report for the factor type classification model. Convention as in
Table 4.3.

precision recall f1-score
Complexity 0.77 0.70 0.73
Stereo 0.86 0.84 0.85
Speed 0.75 0.87 0.80
Overall
Accuracy 81.01

FIGURE 4.3. Plot illustrating precision of the factor type classification model for each class.
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FIGURE 4.4. Decoding accuracies of the cybersickness detection model trained with EEG
data excluding and including the gamma band

in the factor type classification model for each fold is given in Figure 4.3.. The results re-

veal that the precision of stereo class is superior to other classes in factor type classification.

This situation is considered to be due to class imbalance that cannot be wholly eliminated

even though we have used different rates of overlap between consecutive steps of the sliding

window for each class.

One of the most critical steps in the classification of oscillatory EEG signals is to deter-

mine the operational frequency band based on the activity to be detected. Chuang et al.

demonstrated that reported levels of motion sickness were positively correlated with gamma

and alpha bands’ activation [59]. Khaitami et al. investigated the relationship between

cybersickness and gamma-band deviation [60]. The results showed an increase in gamma

deviation in the EEG signal compared to the baseline when participants immersed in a VE.

The raw EEG data used in the training of the proposed models were filtered to include the
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FIGURE 4.5. Decoding accuracies of the factor type classification model trained with EEG
data excluding and including the gamma band

gamma band. The models were re-trained, excluding the gamma band, and classification

performances of both cases were compared to show the correlation between cybersickness

and the gamma band. The results revealed that the inclusion of the gamma band in the model

input enables better EEG decoding accuracy consistent with the results unveiled in the refer-

enced articles [59, 60]. The decoding accuracies of the cybersickness detection model trained

with EEG data excluding and including the gamma band are shown in Figure 4.4.. The cy-

bersickness detection model trained with EEG data, including the gamma band, performed

better decoding accuracies in each fold and overall average results. A similar phenomenon

is valid for the multi-class model in which the type of cue that causes cybersickness is clas-

sified. The model in which the gamma band was included in the input set achieved better

performance than the model in which it was not included, as shown in Figure 4.5..
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TABLE 4.5. The table present average of the changes in SSQ subscores and GDS score per
session along with the RMANOVA test results

Control 1 Session
(M ± SD)

Control 2 Session
(M ± SD)

MIL Session
(M ± SD) Significance

Change in SSQ-N
Score 25.2 ± 8.8 46 ± 8.4 19.6 ± 6.2

F2,32 = 125.209
p < .001

Change is SSQ-O
Score 42.3 ± 21.2 78.4 ± 18.7 32.5 ± 6.9

F2,32 = 82.447
p < .001

Change in SSQ-D
Score 35.2 ± 17.1 67.1 ± 21.5 19.6 ± 9.9

F2,32 = 56.485
p < .001

Change in SSQ-T
Score 40.2 ± 13.1 74.8 ± 16.1 29 ± 5.6

F2,32 = 111.331
p < .001

General
Discomfort
Score

3.8 ± 0.8 5.3 ± 1.1 3 ± 0.7
F2,32 = 97.567
p < .001

4.2. Online Test Results

In the feedback phase, an experiment consisting of two control sessions, and one models-

in-the-loop session was conducted with different participants to evaluate the performance of

the proposed cybersickness detection and mitigation system. Performance of the proposed

system was evaluated by using the differences of SSQ scores filled out at the beginning and

the end of each session, the overall discomfort level scores rated after each session, and

time-dependent changes in the cue parameters that were recorded in the session in which the

proposed models were in-the-loop. Three of the participants did not experience cybersick-

ness in any of the sessions, as shown in Figure 4.6.. Therefore, the results of the participants

who did not experience cybersickness were analyzed separately from other participants to

evaluate the performance of the proposed system in case the cybersickness is not experi-

enced.

The statistical analyses of the feedback phase experiment were performed using the JASP

tool [61] to evaluate the performance of the proposed cybersickness detection and mitiga-

tion system. Changes in the SSQ scores were taken into account to compare experienced

cybersickness level between sessions. This approach aims to eliminate different initial states

of participants as much as possible and isolate the effect of the stimulus shown. The SSQ

response gives out a total SSQ score (SSQ-T) in addition to three different sub-scores in

nausea (SSQ-N), disorientation (SSQ-D), and oculomotor discomfort (SSQ-O). The average

values for change in SSQ scores and general discomfort level scores for each session are
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TABLE 4.6. The table present the results of the Holm post hoc test, which allows to discover
which specific session differed.

Post Hoc Tests
t pholm

SSQ-N
Control 1 Session
(M=25.2, SD=8.9)

Control 2 Session -11.824 .001
Models-in-the-loop Session 3.196 0.003

Control 2 Session
(M=46, SD=8.4)

Models-in-the-loop Session
(M= 19.6, SD=6.3) 15.020 .001

SSQ-O
Control 1 Session
(M=42.4, SD=12.3)

Control 2 Session -9.588 .001
Models-in-the-loop Session 2.604 0.014

Control 2 Session
(M=78.5, SD=18.8)

Models-in-the-loop Session
(M= 32.6, SD=6.9) 12.192 .001

SSQ-D
Control 1 Session
(M=35.2, SD=17.1)

Control 2 Session -7.009 .001
Models-in-the-loop Session 3.415 0.002

Control 2 Session
(M=67.1, SD=21.6)

Models-in-the-loop Session
(M= 19.6, SD=9.9) 10.424 .001

SSQ-T
Control 1 Session
(M=40.2, SD=13.2)

Control 2 Session -10.805 .001
Models-in-the-loop Session 3.510 0.001

Control 2 Session
(M=74.8, SD=16.2)

Models-in-the-loop Session
(M= 29, SD=5.7) 14.315 .001

General
Discomfort
Score

Control 1 Session
(M=3.8, SD=0.8)

Control 2 Session -9.145 .001
Models-in-the-loop Session 4.572 .001

Control 2 Session
(M=5.3, SD=1.1)

Models-in-the-loop Session
(M=3.1, SD=0.8) 13.717 .001

shown in Figure 4.7.. The average scores indicate that more cybersickness was induced to

the participants in the control 2 session as expected. Besides, in the session in which the pro-

posed cybersickness detection and mitigation system was utilized, the participants felt less

cybersickness than both control sessions. To investigate results further, changes in all SSQ

scores and general discomfort level scores were subject to a one way repeated measures anal-

ysis of variance (RMANOVA) test. A one-way repeated measures ANOVA was conducted

to compare the level of experienced cybersickness for the control 1, control 2, and the MIL

sessions. The RMANOVA rejected the null hypothesis for all scores, as shown in Table 4.5.,

which means that there is a significant difference between three sessions for all scores, but

the results do not inform which of the various pairs of session the difference is significant.

Therefore, a post hoc test was applied to investigate pairwise comparisons between the three

sessions using the Holm correction for all scores. The results of the post hoc pairwise com-

parisons using the Holm correction are shown in Table 4.6.. A post hoc pairwise comparison
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using the Holm correction revealed:

• Post Hoc Test Results for SSQ-N

– There was a significant difference between the Control 1 Session (M=25.2, SD=8.9)

and the Control 2 Session (M=46, SD=8.4); t=-11.824, p<.001.

– There was a significant difference between the Control 1 Session and the Models-

in-the-loop Session (M= 19.6, SD=6.3); t=3.196, p=0.003.

– There was a significant difference between the Control 2 Session and the Models-

in-the-loop Session; t=15.020, p<.001.

• Post Hoc Test Results for SSQ-O

– There was a significant difference between the Control 1 Session (M=42.4, SD=12.3)

and the Control 2 Session (M=78.5, SD=18.8); t=-9.588, p<.001.

– There was a significant difference between the Control 1 Session and the Models-

in-the-loop Session (M= 32.6, SD=6.9); t=2.604, p=0.014.

– There was a significant difference between the Control 2 Session and the Models-

in-the-loop Session; t=12.192, p<.001.

• Post Hoc Test Results for SSQ-D

– There was a significant difference between the Control 1 Session (M=35.2, SD=17.1)

and the Control 2 Session (M=67.1, SD=21.6); t=-7.009, p<.001.

– There was a significant difference between the Control 1 Session and the Models-

in-the-loop Session (M= 19.6, SD=9.9); t=3.415, p=0.002.

– There was a significant difference between the Control 2 Session and the Models-

in-the-loop Session; t=10.424, p<.001.

• Post Hoc Test Results for SSQ-T

– There was a significant difference between the Control 1 Session (M=40.2, SD=13.2)

and the Control 2 Session (M=74.8, SD=16.2); t=-10.805, p<.001.

– There was a significant difference between the Control 1 Session and the Models-

in-the-loop Session (M= 29, SD=5.7); t=3.510, p=0.001.
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– There was a significant difference between the Control 2 Session and the Models-

in-the-loop Session; t=14.315, p<.001.

• Post Hoc Test Results for GDS

– There was a significant difference between the Control 1 Session (M=3.8, SD=0.8)

and the Control 2 Session (M=5.3, SD=1.1); t=-9.145, p<.001.

– There was a significant difference between the Control 1 Session and the Models-

in-the-loop Session (M= 3.1, SD=0.8); t=4.572, p<.001.

– There was a significant difference between the Control 2 Session and the Models-

in-the-loop Session; t=13.717, p<.001.

In addition to questionnaire scores, time-dependent changes in the cue parameters were

recorded for all users in the models-in-the-loop session. The time-dependent changes in

the cue parameters used to create the virtual scene is shown in Figure 4.8. for each partici-

pant separately. The individual results of the time-dependent changes in the cue parameters

revealed that the levels of experienced cybersickness and the factors caused discomfort dif-

fered significantly among the participants, and performing analyzes on personal results may

not give an inclusive implication. Therefore, averages of time-series cue parameters over

participants who experienced cybersickness were taken under consideration to evaluate the

overall performance of the CDMS. The time-dependent changes in averaged cue parameters

over participants who experienced cybersickness are shown in Figure 4.9.. The results re-

vealed that updates were mostly made in the stereoscopic rendering parameters and at least in

the navigation speed parameter following the feedback from the proposed mitigation system.

This also means that experienced cybersickness was mostly caused by stereoscopic render-

ing parameters and at least the navigation speed. The cue parameters were initiated to induce

a moderate level of cybersickness in all sessions. Therefore, some participants began to ex-

perience cybersickness after the session started, and the proposed mitigation system started

to update the relevant parameters for a more comfortable vision. This situation caused the

complexity and stereoscopic rendering parameters not to reach the levels to induce the most

severe cybersickness, unlike the control 1 and control 2 sessions. These results are consistent

with the findings of the lowest severe cybersickness experienced in the MIL session, which

was revealed in the analysis of change in SSQ and general discomfort level scores.

The SSQ scores of participants, who did not feel cybersickness in any of the sessions, are

zero, and the general discomfort levels are 1 out of 7. The time-dependent changes in the
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FIGURE 4.8. Plots showing the change in the cue parameters for each participants who
experience cybersickness
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FIGURE 4.9. Plots showing the change in the cue parameters averaged over participants
who experience cybersickness
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FIGURE 4.10. Plots showing the change in the cue parameters for each participants who
didn’t experience cybersickness
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FIGURE 4.11. Plots showing the change in the cue parameters averaged over participants
who didn’t experience cybersickness
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cue parameters used to create the virtual scene is shown in Figure 4.10. for each participant

separately. The averages of the time-series cue parameters over these participants are shown

in Figure 4.11.. Changes in the cue parameters reveal that despite the few stages of updates

that may be neglected, the parameters were not significantly interfered with. This shows that

the proposed model preserves the presented scene by making the correct classification even

when cybersickness is not experienced.
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Chapter 5.

Discussion and Conclusion

5.1. Discussion

Various factors that cause cybersickness have been investigated in the literature. In this study,

navigation speed, scene complexity, and stereoscopic rendering parameters were examined

as cybersickness factors. In the first phase of the study, the two-stage models were trained

to detect cybersickness and to classify the factor type, causing cybersickness. EEG data

fed to the proposed models were collected from participants immersed in the VE where the

specified factors were simulated. In the second phase, the performance of the cybersick-

ness detection and mitigation system was evaluated by conducting an experiment with the

participants who did not participate in the first phase experiment.

The cybersickness experienced in a VE is in the type of oscillatory activities. These are

observed as asynchronous power changes in the specific frequency band after a cumulative

effect, as opposed to the activities in which the response is seen after a certain time as a

result of a given stimulus. Therefore, in this study, the Shallow ConvNet model based on

the FBCSP algorithm, which shows outstanding performance in the detection of oscillatory

activities, was used to detect cybersickness and to classify the factor causing cybersickness.

We reached the decoding accuracy of 76.26% in the cybersickness detection model. We

showed that the inclusion of the gamma band in the training data increases accuracy from

66.52% to 76.26%. Besides, the classification accuracy of the cybersickness detection model
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was evaluated against the EEGNet and the DeepConvNet algorithms. The cybersickness de-

tection model performed significantly better than specified algorithms. The factor type clas-

sification model with similar architecture was trained using data collected only in situations

in which cybersickness was experienced. The performance of the factor type classification

model reached up to an overall accuracy of 81.01%. The proposed model outperformed all

specified alternatives by a significant margin. Similar to the first model, the inclusion of

the gamma band in the input set had significantly increased the decoding performance of

the factor type classification model. The factor type classification model’s precision results

revealed that the stereo class’s precision outperforms all others in each fold result. This is

considered to be due to the class imbalance that cannot be eliminated completely, although

different rates of overlap were used for each class data between consecutive steps of sliding

window.

The cybersickness detection and mitigation system’s performance was evaluated by an online

experiment consisting of three consecutive sessions. The online experiment was carried

out with 20 participants who did not participate in the experiment carried out in the first

phase. The participants had similar VR experience, age average, game habit, and the MMSQ

percentile with the participants of the feedback phase experiment. In the online experiment,

the participants were immersed in the VE where the cue parameters shifted according to

specific templates in control 1 and control 2 sessions. In the session in which the trained

models were in the loop, the cue parameters were updated according to feedback from the

factor type classification model. The changes in the SSQ scores collected at the beginning

and the end of each session and the general discomfort level scores rated after all sessions

revealed that, on average, users experienced the most severe cybersickness in the control 2

session, and the least discomfort in the session in which the proposed models were utilized.

The changes in the SSQ scores and general discomfort scores were subject to a one way

repeated measures analysis of variance (RMANOVA) test. The RMANOVA rejected the null

hypothesis for all SSQ subscores, SSQ total score, and general discomfort score. Post hoc

tests using the Holm correction revealed that there is a significant difference between the

three sessions for all scores.

Time-dependent changes in the cue parameters showed that cybersickness caused by com-

plexity predominated in some users, while in others, the cybersickness was caused by stereo-

scopic rendering parameters. It was also revealed that the participants experienced navigation
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speed-related cybersickness less than other factors-related discomforts. The results were ex-

pected to vary across users due to different individual tolerances to the cybersickness and

non-stationary characteristics of the measured EEG data. Therefore, it is more accurate to

make the performance evaluation of the CDMS according to the changes in the cue parame-

ters averaged over all participants. The average results showed that the cue parameters were

updated by the CDMS so that the complexity and stereoscopic rendering parameters did

not reach the most severe cybersickness induction levels, and at the end of the session, they

reached moderate levels similar to those of the control 1 session. There was little intervention

in the navigation speed parameter before reaching the level where it would induce maximum

cybersickness, and then it was gradually reduced in line with the feedback received. These

results are consistent with the findings revealed in the comparison of the SSQ and general

discomfort scores between sessions that the least cybersickness was experienced in the MIL

session. Besides, the averages of the time-dependent changes in the cue parameters over

the participants who did not experience cybersickness in any session showed that the CDMS

made the cybersickness detection with high accuracy and without offsetting cybersickness

condition.

The correlation between the MSSQ percentiles, change in the SSQ-T score, general dis-

comfort scores, and averaged cue parameters over the MIL session are demonstrated in Fig-

ure 5.1. for all participants. The cue parameters were updated following the discomfort

experienced by the participants. The low value of the convergence distance parameter and

the high values of the remaining cue parameters indicate that the user experienced less cy-

bersickness, and therefore, the cue parameters were less modified. In other words, the cue

parameters of users with low SSQ-T score changes remain at higher value since they are

updated less frequently. This is consistent with the finding that change in the SSQ-T score

shows a positive correlation with convergence distance and negative correlation with inter-

axial distance, particle rate over time, and rendered objects parameters. Besides, the low

correlation between change in the SSQ-T score and the navigation speed is consistent with

the finding of the training phase that the participants experienced less speed-related cyber-

sickness. The high negative correlation between the MSSQ score and the navigation speed

showed that the MSSQ is a suitable measurement method for the evaluation of navigation

speed-related cybersickness experienced in a VE. Lastly, a high positive correlation between

change in the SSQ-T score and the single-question general disturbance query score shows

that single-question surveys, in which the user was less disturbed during the filling out pe-

riod, are an efficient measure for assessing cybersickness severity.
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5.2. Conclusion

In this study, we propose a novel system that enables the simultaneous detection and miti-

gation of the cybersickness experienced by users immersed in a VE. Cybersickness can be

caused by various factors, which are generally categorized as an individual, hardware, and

software-related factors. In this study, we simulated navigation speed, scene complexity,

and stereoscopic rendering parameters as software-related factors, which are widely used in

cybersickness studies and whose effect has been confirmed. Two Shallow ConvNet models

based on the FBCSP algorithm were trained using the EEG data collected from 33 partic-

ipants in the training phase. In the first model, experienced cybersickness is detected, and

in the second model, the factor causing cybersickness is classified. The experiment con-

ducted in the feedback phase consists of three consecutive sessions. The participants were

subjected to two control sessions to evaluate the performance of the CDMS, along with the

session in which the proposed cybersickness detection and mitigation system was utilized.

To evaluate the performance of the CDMS on different users without individual calibration,

20 users who did not participate in the training phase were included in the feedback phase

experiment. The findings revealed in the comparison of SSQ, and general discomfort scores

between sessions and the time-dependent changes in cue parameters in the MIL session show

the outstanding performance of the CDMS despite the challenge of cross-subject variability

in the experiment.
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