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Abstract
Constrained optimization are naturally arises in many real-life appli-
cations, and is therefore gaining a constantly growing attention of the
researchers.Evolutionary algorithms are not directly applied on con-
strained optimization problems. However, different constraint-handling
techniques are incorporated in their framework to adopt it for dealing
with constrained environments. This paper suggests an hybrid con-
strained evolutionary algorithm (HCEA) that employs two penalty
functions simultaneously. The suggested HCEA has two versions
namely HCEA-static and HCEA-adaptive. The performance of the
HCEA-static and HCEA-adaptive algorithms are examined upon the
constrained benchmark functions that are recently designed for the spe-
cial session of the 2006 IEEE Conference of Evolutionary Computation
(IEEE-CEC’06). The experimental results of the suggested algorithms
are much promising as compared to one of the recent constrained ver-
sion of the JADE. The converging behaviour of the both suggested
algorithms on each benchmark function is encouraging and promising
in most cases.
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1. Introduction
In the last two decades and so, numerical optimization has become an emerging area

of research because of their wide application in different discipline of sciences and engi-
neering [12, 11]. The optimization problems have many types including multi-quadratic
programming, bilinear and biconvex, generalized geometric programming, general con-
strained nonlinear optimization, bilevel optimization, complementarity, semidefinite pro-
gramming, mixed-integer nonlinear optimization, combinatorial optimization and opti-
mal control problems [19]. Generally these problems can be categorized into constrained
and unconstrained optimization problems. In this paper, we are interested in solving op-
timization problems with continuous variables. In this paper, we are interested in solving
the constrained optimization problems that can generally formulated as follow [14]:

(1.1)
Minimize f(x), x ∈ S
subject to gi(x) ≤ 0, i = 1, 2, 3, ....., p;

hj(x) = 0, j = 1, 2, 3, ......, q,

where S denotes the whole search space, p is the number of inequality constraints and q
is the number of equality constraints. If a problem at hand has some equality constraints,
they can transform into inequalities as follow:

(1.2) hj − ϵ ≤ 0

where ϵ is the tolerance rate. The inequality constraints that satisfy gi(x) = 0 are called
active constraints, it is also to be noted that equality constraints are always active.

In the last two decades and so, very many optimization methods developed in the
form of deterministic and stochastic natures. Deterministic approaches involve no ran-
domness to perform their search process. Interval optimization [13], branch-and-bound
[27, 55] and algebraic techniques [54] are commonly used deterministic methods.On the
other hand, stochastic nature based algorithms evolve their set of solutions with random-
ness. Simulated annealing (SA) [23, 22], Monte Carlo sampling [15], stochastic tunneling
[32],parallel tempering [34], Genetic Algorithm (GA) [17], Evolutionary Strategies (ES)
[43], Evolutionary Programming (EP) [20, 21, 7], Particle Swarm Optimization (PSO)
[25, 67], Ant Colony Optimization (ACO) [60], differential evolution (DE) [52], Krill herd
algorithm based on cuckoo search [2, 62],Elephant Herding Optimization (EHO)[8, 58],
Moth search algorithm [56], Monarch Butterfly Optimization (MBO)[57], Earthworm
Optimization Algorithm (EWA)[59], Plant Prorogation Algorithm (PPA)[49, 50, 51, 44]
and hybrid EAs [28, 47, 18] are well-known stochastic methods. Evolutionary compu-
tation is the collective name used for population base evolutionary algorithms. These
algorithm are mainly inspired by biological process of evolution, such as natural selection
and genetic inheritance [16].

In general, evolutionary algorithms employ penalty functions and other constraint
handling techniques to maintain a reasonable ratio among feasible and infeasible solu-
tions for dealing with constrained optimization problems [33, 64, 63, 65, 9, 36]. Penalty
functions are very common and popular approaches while adopting unconstrained EAs
to constrained one. Most of the Researchers prefer adaptive penalty methods in order
to develop constrained EAs to handle complex COPs. Recently, hybrid evolutionary
algorithms have got much attention due to their high potentialities and capabilities to
solve problems with high complexity, noisy environment, imprecision, uncertainty and
vagueness [35, 1]. In this paper, We have combined two popular EAs including the PSO
and differential evolution (DE) and developed hybrid constrained evolutionary algorithm
to handle test problems designed for the special session of the 2006 IEEE-congress on
evolutionary computation (IEEE-CEC’06) [31]. The suggested hybrid constrained EA
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utilizes two penalty functions simultaneously.The suggested algorithms have tackled most
of used test problems an affective manner.

The rest of the paper is organized as follows. Section 2 presents the framework of the
proposed hybrid constrained evolutionary algorithm. Section 3 demonstrates experimen-
tal results. Section 4 concludes this research paper with future plan and directions.

2. Hybrid Constrained Evolutionary Algorithm
Evolutionary algorithms (EAs) have gained popularity and much attention of the

researchers in academia and industrial applications. They have tackled various opti-
mization and search problems comprising various complexities like noisy environments,
imprecision, uncertainty and vagueness in their mathematical structures. EAs operate on
set of solutions called population and ultimately they provide a set of optimal solutions
in single simulation run. They do not require any derivative information regarding the
objective function as well as constraint functions of the problems at hand. They use
various intrinsic evolutionary operators like reproduction, mutation, recombination and
selection to perform their search process.

In the last two decades and so, hybrid evolutionary algorithms(EAs) have got much at-
tention for dealing with optimization problems with high complexity, noisy environment,
imprecision, uncertainty and vagueness [1, 6, 42, 37, 38, 39, 40, 4, 5, 61, 3, 41, 26, 45, 46].In
this paper, We have developed an efficient constrained hybrid constrained EAs by in-
corporating some existing penalty functions with static and self-adaptive procedures.
The suggested HCEAs employs Differential evolution (DE) [52] and Particle Swarm
Optimization(PSO)[25] as constituent search operators to perform their search process.
The suggested algorithm also employs the penalty functions to improve the qaulity of
feasible solutions. The penalty functions as given in equation 2.1 adopted with static
and penalty function as explained in 2.2-2.8 are employed adaptive procedure in the
framework of the Algorithm (1).

2.1. Penalty Functions. In the last decades, various Penalty Functions developed and
found in the existing literature of the evolutionary computing [35, 33, 64, 63, 65, 9, 36].
These penalty functions are used to penalize the candidate solutions that violate the
constraint functions of the problem 1.1. The first penalty function which was proposed
in [24] that defines different levels of violation keeping in view the magnitude of violation
of the constraint functions. Penalty Function works as follow:

• Define l levels of violation for each constraint,
• Generate penalty coefficient Rij , where i = 1, . . . , l and j = 1, . . . ,m for each

level of violation and each constraint. The bigger coefficients are given to the
bigger violation levels.

• Generate a random population using both feasible and unfeasible individuals.
• Evaluate these individuals by using following formula

eval(x) = f(x) +
∑m

j=1 Rijmax[0, gi(x)]
2(2.1)

where Ri,j denoted the penalty coefficient with respect to jth constraint and ith violation
level and m is the number of constraints. Homaifar et al. [24] transformed equality
constraints to inequality constraints according to |hj(X)| − ϵ ≤ 0, where ϵ is a small
positive number. Adjustment of large number of parameters settings such as m(2l + 1)
is one of the main issue with static penalty functions proposed in [24]. For example,
if m = 5 and l = 4 levels of violation then one has to adjust t 45 parameters at same
time. Although, complexity of this strategy is very high but still quite useful strategy
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Algorithm 1 Framework of the Hybrid Constrained Evolutionary Algorithm
1: N = Population Size.
2: n = Dimension of the Serach Space.
3: X = {x1, . . . , xN}T ← Initialize-Population(N,n)
4: F = {f(x1), . . . , f(xN )} ← Evaluate({x1, . . . , xN}T )
5: G = {g(x1), . . . , g(xN )} ← Evaluate({x1, . . . , xN}T )
6: Apply the penalty % (i.e, For Static Penalty Function referred to algorithm (2),

or for Adaptive Penalty Function referred to algorithm (3)).
7: for i← 1 : N do
8: if rand < 0.15 then
9: Select xi, xr1 , xr2 at random from X such that xi ̸= xr1 ̸= xr2

10: ui = xi + F (xr1 − xr2)
11: Apply the penalty % (i.e, For Static Penalty Function referred to algorithm

(2), or for Adaptive Penalty Function referred to algorithm (3)).
12: for j ← 1 : n do

13: yi
j =

{
ui
j , Ifrand ≤ 0.5

xi
j , otherwise

14: end for
15: FC(i) = {f(y1), . . . , f(yN )} ← Evaluate({y1, . . . , yN}T )
16: Gc(i) = {g(y1), . . . , g(yN )} ← Evaluate({y1, . . . , yN}T )
17: else
18: νi = ωνi + a1r

1(pbesti − xi) + a2r
2(nbesti − xi)

19: yi = xi + νi

20: Apply the penalty % (i.e, For Static Penalty Function referred to algorithm
(2), or for Adaptive Penalty Function referred to algorithm (3)).

21: if G(yi) = 0 then
22: if f(yi) < f(xi) then
23: xi=yi

24: else
25: xi = xi

26: end if
27: end if
28: if G(yi) ̸= 0 then
29: v(yi) < v(xi)
30: xi=yi

31: else
32: v(xi) < v(yi)
33: yi = xi

34: end if
35: end if
36: end for

while developing the constrained EAs. The algorithm (2) explains the procedure of the
suggested static penalty function.

2.2. Adaptive Penalty Functions. Static penalty functions are adjusted based on
error-trial procedure. They are characterised by repeated, varied and continued attempts
until success not achieved [61]. In general, these strategies are problem-dependent and
the users have facing difficulties to settle down the parameters involved at different levels
of constraints violation. This tedious and difficult task can overcome with the strategy
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Algorithm 2 Procedure for Penalty Function in HCEA with Static Strategy
1: Input=N, v
2: Output=f(x)
3: N :Number of constraints;
4: v:Constrained function value;
5: l:Number of violation level;
6: f(x):Penalized Constrained function value;
7: vm = mean(v)
8: for i← 1 : N do
9: vmax = max(v);

10: vl1 = if((v > 0) & (v ≤ 0.1 ∗ vm))
11: R1 = 0.1 ∗ vm
12: v(vl1) = R1 ∗ v(vl1)
13: vl2 = if(v > 0.1 ∗ vm) & (v ≤ 0.2 ∗ vm)
14: R2 = 0.2 ∗ vm
15: v(vl2) = R2 ∗ v(vl2)
16: vl3 = if(v > 0.2 ∗ vm) & (v ≤ vm)
17: R3 = vm
18: v(vl3) = R3 ∗ v(vl3)
19: vl4 = if(v > vm) & (v ≤ vmax)
20: R4 = vmax

21: v(vl4) = R4 ∗ v(vl4)
22: end for
23: Return(f(x));

of adaptive penalty functions procedures [22, 9, 36]. The adaptive approaches utilize
previous information in order to adjust the coefficient of the penalty functions. The
suggested algorithm employ adaptively the following Penalty functions.

(2.2) F (x) = d(x) + p(x)

Where p(x) is the penalty value. In equation (2.2), the distance value d(x) is computed
as follow:

d(x) =

{
ν(x), if rf = 0√

f(x)′′2 + ν(x)2, otherwise(2.3)

(2.4) rf =
Number of feasible solution

population size
Where ν(x) is the overall constrain violation.

(2.5) f(x)′′ =
f(x)− fmin

fmax − fmin

Where fmax and fmin are maximum and minimum value of objective function. The
penalty value is defined as follow

(2.6) p(x) = (1− rf )M(x) + rfN(x)

Where M(x) and N(x) are given by

M(x) =

{
0, if rf = 0

ν(x), otherwise(2.7)



936

N(x) =

{
0, if x is feasible solution.
f(x)′′, if x is an infeasible solution.(2.8)

Algorithmic procedure for the adaptive penalty function used in suggested algorithm is
given in the algorithm 3.

Algorithm 3 Procedure for Adaptive Penalty Function in the Framework HCEA
1: Input=F,G,N
2: Output=f2
3: F :Fitness function value;
4: G:Constrained function value;
5: N :Population size;
6: xf :Number of feasible solution;
7: f2:Penalized Constrained function value;
8: G = (G > 0) ∗G
9: gmax = max(G)

10: w = find(gmax ̸= 0)
11: if w = ϕ then
12: v = 0
13: else
14: ν(x) =

∑m
i=1 ωi(Gi(x))∑m

i=1 ωi

15: end if
16: if fmax = fmin then
17: f(x)′′ = 1
18: else
19: f(x)′′ = f(x)−fmin

fmax−fmin

20: end if
21: xf = find(v = 0)
22: rf =

xf

N

23: if rf = 0 then
24: X = 0
25: d = v
26: else
27: X = v
28: d =

√
(f(x)′′2 + v2)

29: end if
30: Y = f(x)′′

31: Y (xf ) = xf

32: p = (1− rf ) ∗X + (rf ∗ Y )
33: f2 = d+ p

3. Discussion on Experimental Results
All experiments were carried out in the following platform and parameter settings:
• Operating system: Windows XP Professional;
• Programming language of the algorithms: Matlab;
• CPU: Core i3 Quad 1.8 GHz;
• RAM: 4 GB DDR2 500 GB;
• Execution: 25 times each algorithm with different random seeds.
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Table 1. Classification and Properties of the used Benchmark Functions [28].

Problem n Type of Function ρ LI NI LE NE a Known Optimal
g01 13 Quadratic 0.0111% 9 0 0 0 6 −15.000000000000
g02 20 Nonlinear 99.9971% 0 2 0 0 1 −0.803619000000
g03 10 Polynomial 0.0000% 0 0 0 1 1 −1.000000000000
g04 5 Quadratic 52.1230% 0 6 0 0 2 −30665.539000000001
g05 4 Cubic 0.0000% 2 0 0 3 3 5126.498100000000

g06 2 Cubic 0.0066% 0 2 0 0 2 −6961.813880000000
g07 10 Quadratic 0.0003% 3 5 0 0 6 24.306000000000

g08 2 Nonlinear 0.8560% 0 2 0 0 0 −0.095825000000
g09 7 Polynomial 0.5121% 0 4 0 0 2 680.630057300000

g10 8 Linear 0.0010% 3 3 0 0 6 7049.248000000000

g11 2 Quadratic 0.0000% 0 0 0 1 1 0.750000000000

g12 3 Quadratic 4.7713% 0 1 0 0 0 −1.000000000000
g13 5 Nonlinear 0.0000% 0 0 0 3 3 0.053949800000

g14 10 Nonlinear 0.0000% 0 0 3 0 3 −47.764888459500
g15 3 Quadratic 0.0000% 0 0 1 1 2 961.715022289900

g16 5 Nonlinear 0.0204% 4 34 0 0 4 −1.905155258600
g17 6 Nonlinear 0.0000% 0 0 0 4 4 8853.533874806501

g18 9 Quadratic 0.0000% 0 13 0 0 6 −0.866025403800
g19 15 Nonlinear 33.4761% 0 5 0 0 0 32.655592950200

g20 24 Linear 0.0000% 0 6 2 12 16 0.2049794002

g21 7 Linear 0.0000% 0 1 0 5 6 193.724510070000

g22 22 Linear 0.0000% 0 1 8 11 19 236.4309755040

g23 9 Linear 0.0000% 0 2 3 1 6 −400.055100000000
g24 2 Linear 79 : 6556% 0 2 0 0 2 −5.508013271600

Experiments were conducted with following parameter settings.
• The sized of population, N = 60;
• The tolerance value ϵ for the equality constraints is set to 0.0001
• The Parameters of PSO were settled as ω = 1;
• Differential Evolution (DE) has used with F = 0.7 and CR = 1.0;
• The maximum number of function evaluations 300, 000;
• The tolerance value ∆ = 0.0001 for the problems consisting equality constraints.
• The maximum of generations is set to 2500.

Due largely to the nature of evolutionary algorithms (EAs), their behaviors and perfor-
mances are mainly experimentally analyzed over different kinds of test suites of optimiza-
tion and search problems. Several continuous test functions are already proposed for EC
community over the last few years. These test functions played crucial role in developing
and in studying the algorithmic behavior of particular evolutionary algorithm.

In this paper, we have used 24 benchmark functions that were designed for the special
session of the IEEE Congress of Evolutionary Computation (CEC’2006). This CEC’2006
test suit consist of 24 benchmark functions comprising different characteristics like linear,
nonlinear, polynomial, quadratic and cubic of objective functions with high dimensional-
ity and wide range of linear inequalities (LI), nonlinear inequalities (NI), linear equalities
(LE), and nonlinear equalities (NE) and number of other constraints [28]. The charac-
teristics of the used Benchmark Functions are summarized in the Table 1.

Table 1 provides the features of the used 24 benchmark CEC′06 problems, where n

is the number of decision variables, ρ = |F |
|S| is the estimated ratio between the feasible

region and the search space, LI denotes is the number of linear inequality constraints,
NI stand fir the number of nonlinear inequality constraints, LE is the number of linear
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Table 2. Comparative Analysis of the a) HEA-static and b) HEA-
adaptive versus c) CJADE-D [53].

Problem Method Minimum Mean Median
a -15.000000000000 -15.000000000000 -15.000000000000

g01 b −14.999843000000 −14.999843000000 −14.999843000000
c −14.999339 −12.969465 −14.664120
a -0.803619000000 -0.803619000000 -0.803619000000

g02 b −0.783840000000 −0.783840000000 −0.782222000000
c −0.802628 −0.801371 −0.801388
a −1.000500000000 −1.000500000000 −1.000500000000

g03 b −0.562186000000 −0.562186000000 −0.562186000000
c -99675.835134 -99689.240788 -99690.148408
a −30665.538671999999 −30665.538672000162 −30665.538671999999

g04 b −30664.917622000001 −30664.917621999986 −30664.917622000001
c -32196.152588 -32192.275678 -32192.360668
a 5126.496714000000 5126.496713999783 5126.496714000000

g05 b 5126.659844000000 5126.659843999903 5126.659844000000
c 1362.819559 1081.791600 1074.561136
a −6961.813876000000 −6961.813875999722 −6961.813876000000

g06 b −6961.781377000000 −6961.781377000246 −6961.781377000000
c −7962.000000 −7944.403151 −7943.279110
a 24.306209000000 24.306209000001 24.306209000000

g07 b 25.857273000000 25.857273000001 25.857273000000
c 24.306209 24.321855 24.306209

equality constraints and NE is the number of nonlinear equality constraints and a is the
number of active constraints [28].

Tables 2-3-4 provide the experimental results of the suggested algorithms, namely,
HCEA-static and HCEA-adaptive in comparison with recently developed constrained
version of JADE aestivated as CJADE [53]. Tables 2-3-4 clearly show that the minimum
functions values are much closer to known global optimal values of the test problems.
Furthermore, Table 2-3-4 clearly indicated that the suggested HEA-static has found
promising results in terms of better convergence toward the know optimal values while
solving the g01, g02, g13, g18 and g21 problems. Similarly HCEA-static has tackled
the problems g01, g02, g07, g13, g18, g19 and g21 with better mean functions values.
The same is the case with median values for g01, g02, g13, g18 and g21 problems. It is
also important to noted here that HCEA-static has performed better than our HCEA-
adaptive and existing sate-of-the-art CJADE. The better performance could be attributed
to better choice of efficient penalty functions and the combined use of DE [52] and PSO
[25] in the framework of the proposed algorithm.

3.1. Graphical Result of HCEA-static. Figures 1-2-3 demonstrate the graphical
results displayed by HCEA-static penalty functions for CEC’2006 benchmark functions.
The figure 1 represents the evolution in minimum function values of the benchmark func-
tions,g1,g2,g3,g4, g6 and g7 provided by HCEA-static algorithm in 25 independent runs
of simulations with different random seeds.Simliary, figure 2 shows the convergence be-
haviour of the HCEA-static over g8,g9,g10,g11,g12 and g14 benchmark functions. Figure
3 display the convergence speed of the suggested HEA-static over g15,g16,g18,g19,g23
and g24 of the IEEE-CEC06 benchmark functions.
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Figure 1. Convergence Graph of HCEA-static for CEC’06 Benchmark
Functions.
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Figure 2. Convergence Graph of HCEA-static for the CEC’06 Bench-
mark Functions.
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Figure 3. Convergence Graph of HCEA-static for the CEC’06 Bench-
mark Functions.
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Figure 4. Convergence Graph of HCEA-adaptive for theCEC’06
Benchmark Functions.
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Figure 5. Convergence Graph of HCEA-adaptive for the CEC’06
Benchmark Functions.
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Figure 6. Convergence Graph of the HCEA-adaptive for the CEC’06
Benchmark Functions.
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Table 3. Comparative Analysis of the a) HEA-static, b) HEA-
adaptive and c) CJADE-D [53].

Problem Method Minimum Mean Median
a −0.095825000000 −0.095825000000 −0.095825000000

g08 b −0.095825000000 −0.095825000000 −0.095825000000
c -1296.806712 -1348.735625 -1346.209597
a 680.630057000000 680.630057000022 680.630057000000

g09 b 680.813616000000 680.813616000044 680.813616000000
c 680.630057 680.630057 680.630057

a 7049.248021000000 7049.248020999572 7049.248021000000
g10 b 7362.948704000000 7362.948704000238 7362.948704000000

c 2131.846129 2140.683593 2140.014032
a 0.749900000000 0.749900000000 0.749900000000

g11 b 0.749985000000 0.749985000000 0.749999000000
c 0.443553 1.834e-003 0.440157
a −1.000000000000 −1.000000000000 −1.000000000000

g12 b −1.000000000000 −1.000000000000 −1.000000000000
c −1.000000 −1.000000 −1.000000
a 0.062460000000 0.075469168400 0.484833000000

g13 b 0.086195000000 0.086195000000 0.086195000000
c 1.201125 1.837891 1.775458

a −47.764888000000 −47.764888000002 −47.764888000000
g14 b −44.836489000000 −44.836488999998 −44.836489000000

c -1420.022548 -1561.624708 -1570.929559
a 961.715022000000 961.715022000016 961.715022000000

g15 b 961.718600000000 961.718599999989 961.721756000000
c 771.641627 709.556725 709.110988

3.2. Graphical Result of HCEA-adaptive for Benchmark Functions. Figures
1-2-3) demonstrate the convergence graph of the each CEC’06 test function displayed by
HEA-static algorithm in single run of simulation. These figures clearly demonstrate that
HEA-static have obtained approximate optimal solutions for g01, g04, g05, g07, g08, g09,
g10, g11, g12, g14, g15, g16, g19 and g24 in almost 500 generations. For the test problems
denoted by g02, g03 and g18, HEA-static have obtained optimal solution in almost 1000
generations. These sort of convergence behaviors of the HEA-static stamped their fast
convergence speed.

The Figures 4-5-6) depicts the convergence graph of the CPSO-Adaptive. These fig-
ures show that CPSO-Adaptive have figured out the problem g06, g07, g08, g10, g11,
g12, g16, g19 and g24 in 500 generations to reach near the know optimal values of these
problems. Similarly, the approximated optimal of problems g01, g02, g04, g15 and g18
are hereby obtained by HEA-Adaptive in almost in 1000 generations while for the g03,
g05, g09 g13 and g17 the optimal values are almost obtained 2000 generations.

From the above discussion, one can conclude that the convergence behavior of the
HCEA-static is much better than HEA-adaptive for the most of the used test problems.
This better performance of the HCEA-static can be attributed to the fact to wise adjust-
ment of the intrinsic parameters of the HCEA-static keeping in view the mathematical
formulations demand of the IEEE-CEC’06 test problems [31].
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Table 4. Comparative Analysis of the a) HCEA-static, b) HCEA-
adaptive and c) CJADE [53].

Problem Method Minimum Mean Median
a −1.905155000000 −1.905155000000 −1.905155000000

g16 b −1.904886000000 −1.904886000000 −1.904867000000
c −1.905155 −1.905155 −1.905155
a 8862.697056999999 8862.697057000150 8862.697056999999

g17 b 8875.006079999999 8876.330849559627 8904.658104000000
c 453.620550 1475.586258 1506.524787
a -0.866025000000 -0.866025000000 -0.866025000000

g18 b −0.756597000000 −0.753730160400 −0.747876000000
c 32.185920 87.105215 90.087847

a 32.655593000000 32.655593000002 32.655594000000
g19 b 41.652554000000 41.652554000000 41.652554000000

c 32.655593 33.110947 32.655593
a 193.724510000000 193.724509999987 193.724510000000

g21 b 194.219392000000 194.219391999999 194.219392000000
c 475.884809 345.569134 345.311741

a −400.055100000000 −400.055099999998 −400.055100000000
g23 b −373.588630000000 −373.588630000011 −373.588630000000

c -3022.665686 -2458.257132 -2439.892090
a −5.508013000000 −5.508013000000 −5.508013000000

g24 b −5.507999000000 −5.507999000000 −5.507999000000
c −5.508013 -5.628632 -5.631511

4. Conclusion
In general, classical optimization methods are usually unable to solve the problems

having complicated objective functions and concave feasible regions with very small part
of the whole search space. In the recent few years evolutionary algorithms (EAs)have
become a research interest to different domain of researchers for solving complex prob-
lems in science, engineering, management and financial real applications due to their
population-based nature. They don’t demand for any derivative information regarding
the problems at hand. They provide a set of optimal solutions in single simulation unlike
traditional optimization techniques.

Over the last two decades, several bio-inspired techniques have been developed based
on nature collection, intelligence movement, thinking behaviors of social insects such as
Ant, Honey Bees, Buffalos, Birds, Particles, Fishes etc. Particle swarm optimization
(PSO) and differential evolution are two well known and the most effective EAs for
engineering optimization problems. In this paper, we have combined both PSO and
DE by employing two penalty functions with static manner and adaptive manner. The
suggested algorithms have two versions called HCEA-adaptive and HCEA-static. The
suggested algorithms have tackled most of the benchmark functions that were designed
in 2006 IEEE-Congress on evolutionary computation (CEC’06). The simulation results
offered by proposed algorithms are highly promising. Out of 24 benchmark function,
22 functions are solved by the suggested hybrid constrained EAs with good convergence
speed as compared to the recent constrained version of JADE [53].
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In near future, we intend to improve further the algorithmic structure of the suggested
algorithms by employing some other novel and specialized constraint-handling techniques
to cope with IEEE-CEC test instances [29, 10, 30].
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