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Abstract: Kalman Filters (KF) is a recursive estimation algorithm, a special case of Bayesian estimators 

under Gaussian, linear and quadratic conditions. For non-linear systems, Extended Kalman Filter (EKF) 

and Unscented Kalman Filter (UKF) provide first and higher order linearization approximations. Particle 

Filters (PF), on the other hand, are sequential Monte Carlo methods to provide estimations for non-linear 

non-Gaussian problems. For complex systems, Kalman or Particle Filter based single model filters may 

not be sufficient to model the system behaviour. Multiple Model (MM) Filters achieve more reliable 

estimates by using more than one filter with different models in parallel and the outputs of each filter are 

fused by assigning a probability to each filter. The most common methods used in the literature for 

multiple model estimation are Multiple Model Adaptive Estimation (MMAE) and Interacting Multiple 

Model (IMM). This paper presents an overview of the recent research on multiple model filters. 
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1. INTRODUCTION 

Kalman Filter (KF) (Kalman (1960), also known as Linear 

Quadratic Estimator (LQE), predicts the future state of a 

system based on previous state. KF can be used to estimate 

the system parameters (even under noise) when the 

parameters cannot be measured directly. It aims at 

minimizing the error, inaccuracy and noise during estimation. 

KF consists of some mathematical equations used for 

recursive estimation and it minimizes the error covariance 

under specific conditions (Bishop and Welch (2001)). KF is a 

special case of Bayesian filtering under linear, quadratic and 

Gaussian conditions (Ho and Lee (1964)). 

2. KALMAN AND PARTICLE FILTERS 

2.1. Why Is The Kalman Filter Used? 

KF has made it possible to estimate the future values of 

system parameters and the parameters that cannot be 

measured directly. Mohinder and Angus (2001) claim that it 

is possibly the greatest discovery in the twentieth century. 

One of the earliest use of KF was the navigation and control 

system of Apollo space shuttle developed at NASA Ames 

Research Center in the early 1960s (Mcgee and Schmidt 

(1985)). KF provides a fast and efficient solution to the 

problem of processing noisy data combined with errors and 

inaccuracies. As KF needs to keep history of only the 

previous state, it is fast and requires small memory which 

makes it useful for real-time estimation. 

 

2.2. How Does The Kalman Filter Work? 

State Dynamics (Process Model): 

                                (1) 

Output Equation (Measurement Model): 

                                                                (2) 

KF is mainly defined by (1) and (2). System is modelled by 

the linear functions of the state parameters where state is the 

combination of parameters that describe the system model at 

a specific time. Current state is affected by the combination 

of previous state, control inputs and noise and the 

measurements are affected by the state parameters and noise. 

The dependence between the state parameters are given in a 

covariance matrix , which describes the correlation between 

the parameters. The variable definitions are given in Table 1. 

For the prediction of state parameters at time t; 

                                               (3) 

State covariance matrix is obtained as: 

                                              (4) 

After the predictions of state and covariance using the values 

from previous estimates, Kalman Gain  is calculated as  

                                               (5) 

State prediction is then corrected using the Kalman Gain  

and the error ( ) as: 

                                                 (6) 

Finally, the covariance matrix is updated as: 

                                                           (7) 

Where  is the identity matrix. 
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Table 1. Kalman Filter Variable Definitions 

Symbol Variable Definition 

 

State Parameters of interest (e.g., position, velocity) 

 

Output Measurements from sensors (e.g., acceleration) 

 

Control Input Inputs that are affecting the state (e.g., force 
applied by throttle or brake) 

 

Process Noise Random errors with zero mean multivariate 

normal distribution 

 

Measurement 
Noise 

Zero mean Gaussian white noise  

 

State Transition 

Matrix 

Effect of state parameters at time t-1 on 

parameters at time t 

 

Control Input 
Matrix 

Effect of control inputs on state parameters 

 

Observation Matrix Transforms state parameters to measurement 

domain 

 
State Covariance 
Matrix 

Describes the correlation between the state 
parameters 

 

Process Noise 

Covariance 

  

 

Measurement 
Noise Covariance 

  

2.3. Kalman Filter Types 

2.3.1. Extended Kalman Filter (EKF) 

Extended Kalman Filter (EKF) is the modified version of KF 

for use in non-linear systems. The non-linear system is 

defined as differentiable functions and linearized by using 

Taylor Series expansion. After linearization, KF is applied to 

this linearized model for estimation. Usually, the first order 

EKF is used but higher order EKF can be obtained by using 

higher order terms of Taylor series expansion. 

2.3.2. Unscented Kalman Filter (UKF) 

Unscented Kalman Filter is an improvement over EKF. Since 

the nonlinear system model is approximated using Jacobian 

matrices in the EKF, calculation may be costly and it may not 

be easy to obtain accurate results for the highly nonlinear 

systems due to linearization. Mcgee and Schmidt (1985) 

claims that approximation of a probability distribution is 

easier than approximation of an arbitrary nonlinear function 

and states that UKF is based on this principle. According to 

LaViola (2003), UKF captures the mean and covariance 

estimates with a deterministic sampling approach instead of 

linearization of Jacobian matrices. Therefore, UKF is 

considered more robust and more accurate (Mageswari et al. 

(2012)). 

2.3.3.Robust Kalman Filters (RKF) 

Robust Kalman Filter (RKF) (Xie et al. (1994)) addresses 

uncertain discrete-time systems. RKF tries to solve the 

parameter uncertainties in state and output matrices by 

providing an upper-bound guarantee for the variance of 

filtering error. Riccati equation or linear matrix inequality 

based methods provide an upper bound for error covariance 

for linear and nonlinear systems (Xiong et al. (2012)). 

2.3.4.Cubature Kalman Filter (CKF) 

Cubature Kalman Filter (CKF) (Arasaratnam and Haykin 

(2009)) is defined as an approximate Bayesian filter for 

discrete-time nonlinear filtering problems. Spherical-radial 

cubature rule is used for computation of multivariate moment 

integrals encountered in the nonlinear Bayesian filter and to 

provide a systematic solution to high-dimensional nonlinear 

filtering problems. CKF is better in terms of divergence and 

dimensionality compared to EKF, UKF, and Quadrature 

Kalman Filter. Being derivative-free, CKF is advantageous in 

cost calculation and 3rd-degree CKF is claimed to be optimal. 

2.4. Particle Filters (PF) 

Similar to KF, Particle Filters (PF) are also Bayesian. PF use 

sequential Monte Carlo method for state estimation. In PF, 

continuous distributions are approximated (López-Salcedo et 

al. (2014)) and the posterior probability is updated using 

random variables (particles) (Chen (2013), Wang et al. 

(2012)). There is no need for a functional approximation or 

linearization when using PF method; in contrast to this 

advantage, PFs require more computational power (Doucet 

and Johansen (2009)). PF is considered as an effective 

algorithm for solving nonlinear and non-Gaussian state space 

problems and it is advantageous in overcoming the 

shortcomings of easy divergence, low tracking accuracy and 

large error in conventional linearized methods such as EKF 

and UKF (Fei et al. (2008)). PFs rely on importance sampling 

and, as a result, require the design of proposal distributions 

that can approximate the posterior distribution reasonably 

well (Van Der Merwe et al. (2001)). 

3. MULTIPLE MODEL FILTERS 

In cases where the system is complex and it is not easy to 

model the system behaviour, multiple filters (each with a 

different system model) can run in parallel. The outputs of 

each filter are then fused to obtain more reliable estimates. 

Commonly used multiple model estimation methods in the 

literature are multiple model adaptive estimation (MMAE) 

(Hanlon and Maybeck (2000)) and interacting multiple model 

(IMM) (Seah and Hwang (2009)). The basic block diagrams 

of MMAE and IMM are presented in Fig. 1 and Fig. 2 

respectively. Besides some differences, these methods rely on 

fusing the state estimation results of multiple filters by 

assigning a probability to each. 

Unknown System

KF 1

KF 2

KF N

Hypothesis 

Testing 

(Likelihood 

Function)

Π

Π

Π

Σ 

 : Estimate
 : Input
 : Measurements
 : Residual
 : Residual Covariance
 : Posterior Probability

.

.
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Fig. 1. MMAE Process (Martins (2006)) 
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Fig. 1. MMAE Process (Martins (2006)) 

2019 IFAC LSS
Delft, The Netherlands, May 26-28, 2019

74

 

 

     

 

Mixing 

Probability 

Calculation

Mixing

Mode Probability 

Calculation

KF-1

KF-2

KF-N

Output Estimate 

Calculation

Previous

parameters

Current

parameters

Overall estimates 

and covariance

: estimate

: covariance

: probabilities

: measurements

 

Fig. 2. IMM Process (Orguner (2013)) 

3.1.Multiple Model Adaptive Estimation (MMAE) 

3.1.1. Kalman Filter Based MMAE 

Kang-hua et al. (2007) use Multiple Model Adaptive 

Estimation (MMAE) method for MEMS-IMU/GPS 

Integrated Navigation System. Multiple KFs are run in 

parallel using different dynamic or stochastic models. To 

overcome the problem of converging to using only one of the 

filters, Tang et al. propose a modified version of MMAE 

(generalized residual Multiple Model Kalman Filter) which 

uses two sub-filters; fırst to estimate attitude and gyro errors, 

whereas the second for the position and velocity errors as 

well as the accelerometer biases. Authors claim that proposed 

method obtains a position accuracy <5m, velocity accuracy 

<0.1m/s and attitude error <0.5deg. Comparing the 

performance of proposed method with the classical KF, they 

claim to have improved the performance of classical KF.  

Li et al. (2014) criticize MMAE for the excessive 

competition behaviour. Authors state that, because of 

excessive competition behaviour of MMAE among parallel 

models (filters), weight of the model closest to the true model 

increases to 1 rapidly, leaving the weight of other filters as 0 

and approximating the multiple model to a single model. To 

overcome this behaviour, authors propose modifying MMAE 

with an exponential decay item introduced in the probability 

density function (PDF). A time-varying penalty value with an 

exponential decay item is introduced in the PDF. Tri-axial 

position and velocity error are estimated using both MMAE 

and modified MMAE and the 100m position and 5m/s 

velocity errors are improved as 20m and 2m/s respectively. 

Xiong et al. (2015) introduce Robust Multiple Model 

Adaptive Estimation (RMMAE) method. To minimize 

parameter identification, authors use robust filtering method, 

stating that “robust filtering approach guarantees an upper 

bound to the estimation error covariance” (Xiong et al. 

(2015)). Robust Kalman Filter (RKF) is used as sub-filter. It 

is claimed that computational cost of RKF is roughly same as 

the EKF. For performance comparison, position and velocity 

of a spacecraft are estimated using EKF, UKF, RKF, MMAE 

and RMMAE. Position accuracy of RMMAE is reported to 

be ~x4 better compared to EKF and UKF, ~50% better 

compared to RKF and ~10% better compared to MMAE. 

Although the processing time is ~x20-x22 slower than EKF, 

UKF and RKF, it is almost the same as MMAE. Since the 

performance of RKF is similar to RMMAE, authors perform 

another test and compare the angular position accuracy of 

RMMAE with RKF. It is observed that the accuracy of RKF 

is dependent on the uncertainty and RMMAE angular 

accuracy is ~x2 better than RKF. Authors conclude that 

RMMAE performance is superior to EKF, UKF, RKF, 

MMAE and it is more stable.  

Kottath et al. (2015) propose an alternative MMAE method 

(MMAE with Filter Stripping (SMMAE)). The key idea of 

SMMAE is to start with a large number of models, assigning 

equal weights to each model, later iteratively updating the 

model weights and eliminating the ones with a low weight 

factor. This way, the proposed method initially benefits the 

advantage of having many models which increases the 

accuracy, and finally the most effective models would be 

chosen among all models. Attitude measurement is 

performed to test the performance of SMMAE and a ~25% 

improvement is reported in comparison to classical MMAE.  

Another modified MMAE method by Kottath et al. (2016) is 

Window based MMAE (WMMAE). This time, authors 

suggest using Innovation Adaptive Estimation (IAE) blocks 

instead of EKF in the MMAE scheme. IAE uses EKF but 

“with an inbuilt framework to adapt process and 

measurement noise covariance parameters (Q and R) on the 

basis of the innovation or the residual sequence” (Kottath et 

al. (2016)). Overall performance of MMAE is improved by 

improving the performance of each model using IAE instead 

of EKF and adding window size as an unknown parameter 

for noise covariance calculation. Weights of several IAE 

models which have different window sizes are adjusted by 

the proposed scheme. Performance of WMMAE is tested 

using attitude measurement and on average x5 improvement 

in error is reported compared to classical MMAE. 

3.1.2.Particle Filter Based MMAE 

Zhao et al. (2017) introduce Multiple Model Unscented 

Particle Filter (MMUPF). Proposed method replaces UKF 

inside MMAE with Unscented Particle Filter (UPF) to 

improve the accuracy. Performance comparisons among 

UKF, MMUKF, UPF, and MMUPF are performed and best 

results in terms of accuracy (~10% improvement over 

MMUKF) and highest calculation cost are obtained with 

MMUPF among these methods.  

3.2. Interacting Multiple Model (IMM) 

3.2.1. Kalman Filter Based IMM 

Gao et al. (2017) propose fusing Adaptive Fading UKF 

(AFUKF) and Robust UKF (RUKF). The fusing scheme used 
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for the proposed method is Interacting Multiple Model 

Estimation-Based Adaptive Robust UKF (IMM-ARUKF). 

Markov chain is used for probability transition between 

AFUKF and RUKF. Comparing the algorithm’s Root Mean 

Squared Error (RMSE) with classical UKF, AFUKF and 

RUKF, IMM-ARUKF is claimed to have a strong ability to 

inhibit the disturbances on filtering due to system model 

uncertainties (Gao et al. (2017)). Position error performance 

of the proposed method is claimed to be significantly better 

compared to classical UKF, AFUKF and RUKF.  

Taking the linear KF based scalar-weight IMM (SIMM) and 

matrix-weight IMM (MIMM) proposed in Fu et al. (2010) as 

a reference, Gao et al. (2012) propose improving these filters 

for nonlinear systems by using EKF and UKF. Gao et. al 

(2012) introduce EKF-SIMM, EKF-MIMM, UKF-SIMM and 

UKF-MIMM as the improved IMM algorithms and compare 

their performance. UKF-MIMM is reported to provide the 

lowest position and velocity errors with the highest 

computational cost among other introduced algorithms. 

Wan et al. (2010) propose using Cubature Kalman Filter 

(CKF) instead of UKF in the IMM algorithm. Their 

experiments in estimating the position and velocity shows 

that IMMCKF has slightly better accuracy compared to 

IMMUKF with a small improvement over computation time. 

Sun and Shen (2014) propose Optimal Mode Transition 

Matrix IMM (OMTM-IMM) algorithm. The main idea of this 

work is to derive optimal mode transition probabilities so that 

the accuracy of initial state and state transition increases. The 

authors report better position and velocity accuracy compared 

to IMM and around 20% increase in computational cost.  

Zhu et al. (2016) use fifth-degree CKF (5CKF) (Jia et al. 

(2013)) in an IMM and introduce Interacting Multiple 

Models Five Degree Cubature Kalman Filter (IMM5CKF). In 

order to improve accuracy and response time, the authors add 

5CKF after IMM. The authors compare the position and 

velocity errors with previous algorithms (IMMUKF, 

IMMCKF, 5CKF and OMTM-IMM) and claim to improve 

the performance of the closest alternative (IMMCKF) by 

~45% in velocity errors. The position error performance of 

IMM5CKF is similar to that of IMMCKF. Nearly 100% 

increase is observed in the computation cost.  

Liu and Wu (2017) improve IMM5CKF further and introduce 

Interacting Multiple Model Fifth-Degree Spherical Simplex-

Radial Cubature Filter (IMM5thSSRCKF). Fifth-degree 

spherical simplex-radial rule is used for improving the 

filtering accuracy. Performance of the proposed algorithm is 

compared to IMMUKF, IMMCKF, and IMM5CKF. Position 

accuracy, velocity accuracy and computation time are 

improved by around 5% compared to IMM5CKF. 

3.2.2. Particle Filter Based IMM 

Zhai et al. describe the advantage of PF based MMPF over 

KF based IMM as follows: “The IMM method only 

approximates the target model distribution (usually a 

Gaussian mixture) with a single Gaussian distribution in the 

merging step. However, the MMPF framework directly 

approximates the true target model distribution and 

generates particles from this distribution.” (Zhai et al. 

(2015)). Wang et al. (2012) propose combining IMM with PF 

in order to obtain more robust method (IMMPF) for 3D target 

tracking for underwater wireless sensor network. The authors 

argue that the state of a dynamic system with several modes 

that switch from one to another can be estimated using mode 

likelihoods and mode transition probabilities provided by the 

IMM. In addition to this argument, Guo et al. (2008) state 

that although the standard IMM filters are useful for target 

tracking with weak non-linearity, they are not capable of 

tracking strongly non-linear and non-Gaussian targets; thus, 

IMM in combination with PFs are suggested. 

Wang et al. (2012) use three different target motion models, 

constant velocity (CV), constant acceleration (CA), and 

coordinated turn (CT) in order to model the moving patterns 

of the underwater target. Each model is filtered separately 

and the estimates are combined through probability update 

for an overall state estimation. In order to evaluate the 

performance of the proposed IMMPF algorithm, authors 

present the results of PF, EKF and UKF on a predefined 

simulation scenario using only CV model first. It is observed 

that PF estimates for position are more accurate compared to 

EKF and UKF. Secondly, a combined trajectory is simulated 

using the combination of CV, CT and CA and this time, the 

performances of PF and the proposed algorithm (IMMPF) are 

compared, again, in terms of position errors in each axis and 

combined position error. The results indicate that IMMPF 

yields higher tracking precision. However, since the 

simulation scenario sequentially combines the target motion 

models (CV, CT, CA), the performance of the algorithm 

under a more realistic and highly non-linear scenario where 

CV, CT, CA are added upon is unknown. In addition, there is 

no data on the performance comparison with other multiple 

model estimation methods like MMAE and IMM alone. 

The method proposed in by Guo et al. (2008) is similar to 

IMMPF, but instead of using standard PF, UKF based 

Unscented Particle Filter (UPF) is used. Authors implement 

the proposed Interacting Multiple Model Unscented Particle 

Filter (IMMUPF) method on a ground tracking problem. The 

performance of IMMUPF is compared with IMMPF, 

IMMEKF and IMMUKF in terms of root mean square errors 

(RMSEs) of position, velocity and acceleration in x and y 

axes. The simulation scenario combines CA and CV modes. 

Results indicate that IMMUPF achieves lower error rates, 

whereas the computation duration is substantially higher. 

Hong-tao and Feng-ju (2015) propose Least Square 

Interacting Multiple Model Unscented Particle Filter 

(LSIMMUPF) algorithm. Authors use Least Squares method 

to pretreat Pitching and Azimuth angle data from the sensors, 

UKF for generating density function, PF for processing 

nonlinear non-Gaussian data and IMM for automatic 

bandwidth adjustment. Position and velocity accuracy of 

LSIMMUPF is compared with LSIMM and an improvement 

of 21%-33% is reported in position and velocity accuracy 

with a x4 computational cost. 
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Wan et al. (2010) propose using Cubature Kalman Filter 

(CKF) instead of UKF in the IMM algorithm. Their 

experiments in estimating the position and velocity shows 

that IMMCKF has slightly better accuracy compared to 

IMMUKF with a small improvement over computation time. 
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work is to derive optimal mode transition probabilities so that 
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Zhu et al. (2016) use fifth-degree CKF (5CKF) (Jia et al. 
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Liu and Wu (2017) improve IMM5CKF further and introduce 

Interacting Multiple Model Fifth-Degree Spherical Simplex-
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that although the standard IMM filters are useful for target 

tracking with weak non-linearity, they are not capable of 

tracking strongly non-linear and non-Gaussian targets; thus, 

IMM in combination with PFs are suggested. 

Wang et al. (2012) use three different target motion models, 

constant velocity (CV), constant acceleration (CA), and 

coordinated turn (CT) in order to model the moving patterns 

of the underwater target. Each model is filtered separately 

and the estimates are combined through probability update 

for an overall state estimation. In order to evaluate the 

performance of the proposed IMMPF algorithm, authors 

present the results of PF, EKF and UKF on a predefined 

simulation scenario using only CV model first. It is observed 

that PF estimates for position are more accurate compared to 

EKF and UKF. Secondly, a combined trajectory is simulated 

using the combination of CV, CT and CA and this time, the 

performances of PF and the proposed algorithm (IMMPF) are 

compared, again, in terms of position errors in each axis and 

combined position error. The results indicate that IMMPF 

yields higher tracking precision. However, since the 

simulation scenario sequentially combines the target motion 

models (CV, CT, CA), the performance of the algorithm 

under a more realistic and highly non-linear scenario where 

CV, CT, CA are added upon is unknown. In addition, there is 

no data on the performance comparison with other multiple 

model estimation methods like MMAE and IMM alone. 

The method proposed in by Guo et al. (2008) is similar to 

IMMPF, but instead of using standard PF, UKF based 

Unscented Particle Filter (UPF) is used. Authors implement 

the proposed Interacting Multiple Model Unscented Particle 

Filter (IMMUPF) method on a ground tracking problem. The 

performance of IMMUPF is compared with IMMPF, 

IMMEKF and IMMUKF in terms of root mean square errors 

(RMSEs) of position, velocity and acceleration in x and y 

axes. The simulation scenario combines CA and CV modes. 

Results indicate that IMMUPF achieves lower error rates, 

whereas the computation duration is substantially higher. 

Hong-tao and Feng-ju (2015) propose Least Square 

Interacting Multiple Model Unscented Particle Filter 

(LSIMMUPF) algorithm. Authors use Least Squares method 

to pretreat Pitching and Azimuth angle data from the sensors, 

UKF for generating density function, PF for processing 

nonlinear non-Gaussian data and IMM for automatic 

bandwidth adjustment. Position and velocity accuracy of 

LSIMMUPF is compared with LSIMM and an improvement 

of 21%-33% is reported in position and velocity accuracy 

with a x4 computational cost. 
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4.CONCLUSION 

KF is a widely used algorithm for the estimation problems. 

Its restriction of linear and Gaussian models have been 

overcome with the introduction of EKF, UKF and CKF. EKF 

and UKF provide first and higher order linearization 

approximations respectively for solving non-linear problems 

whereas CKF uses spherical-radial cubature rule to provide a 

solution for high-dimensional non-linear filtering problems. 

RKF provides an upper bound for estimation error covariance 

to handle model uncertainties. PF, on the other hand, deals 

with the restrictions of KF by solving non-linear systems 

with non-Gaussian noise (Ko et al. (2012)). Although the 

computational complexity of PF is higher, limiting the 

number of particles provides a better computational 

performance in addition to more accurate results compared to 

KF based solutions (Boers and Driessen (2003)). Multiple 

model filters are introduced for complex systems where it is 

not easy to model the system parameters. Multiple KFs run in 

parallel with different system models and the outputs are then 

fused to obtain more reliable estimates by assigning a 

probability to each filter. The most common methods used in 

the literature for multiple model estimation are Multiple 

Model Adaptive Estimation (MMAE) and Interacting 

Multiple Model (IMM). In MMAE, the residuals of the 

multiple filters are used to form the adaptive weights whereas 

IMM improves MMAE by reducing the complexity through 

mixing the initial condition of each filter at each time-step 

and obtaining lower mode estimation delays (Hwang et al. 

(2003)). There are both fixed structure (FSMM) and variable 

structure multiple models (VSMM). A basic taxonomy for 

the multiple model filters is presented in Fig.3. In this work, 

recent research on multiple model filters are reviewed and 

results of these works are presented. Table 2 presents an 

overview of the methods referenced in this paper. The 

methods, underlying multiple models, sub-filter types and 

claimed accuracy improvements in terms of position, velocity 

and attitude against the compared methods are provided in 

Table 2. Accuracy improvements in multiple axis are 

averaged and approximated. In general, it is observed that 

MMAE is used for navigation applications, whereas IMM is 

used for target tracking problems. Each of the methods have 

their own advantages and limitations. Since performance 

comes with a computational sacrifice, the method to be used 

should be chosen carefully, considering the characteristics of 

the system and computational resources available. 

IMM Based MMAE Based

KF Based PF Based

CKFRKFUKFEKFKF UPFPF

Fixed Structure 

FSMM

Variable Structure 

VSMM

 

Fig. 3. Basic Taxonomy for Multiple Model Kalman and 

Particle Based Filters 

Table 2. Accuracy Improvements of MM Methods 

 

Ref Name 
Sub 

Filter 

Improvement 

% 
Compared 

To 
Pos Vel Att 

M
M

A
E

 

Kang-hua(2007) Mod.MMAE KF 45 95 10 KF 

Li(2014) Mod.MMAE EKF 80 60  - MMAE 

Xiong(2015) RMMAE RKF 10  -  - MMAE 

Kottath(2015) SMMAE EKF  -  - 25 MMAE 

Kottath(2016) WMMAE EKF  -  - 80 MMAE 

Zhao(2017) MMUPF UPF  - -  10 MMUKF 

IM
M

 

Gao(2017) IMM-ARUKF 
AFUKF 
RUKF 

55  -  - UKF 

45  -  - AFUKF 

40  -  - RUKF 

Gao(2012) 

EKF-SIMM 
EKF-MIMM 

UKF-SIMM 

UKF-MIMM 

EKF 

UKF 

55 75  - IMMEKF 

25 45  - IMMUKF 

Wan(2010) IMM-CKF CKF 
15 20  - IMMEKF 

1 1  - IMMUKF 

Sun(2014) OMTM-IMM KF 50 80  - IMM 

Zhu(2016) IMM5CKF CKF 

5 45  - IMMUKF 

2 45  - IMMCKF 

35 75  - OMTMIMM 

Liu(2017) IMM5SSRCKF CKF 3 5  - IMM5CKF 

Wang(2012) IMMPF PF 40    - PF 

Guo(2008) IMMUPF UPF 
70 65  - IMMUKF 

20 35  - IMMPF 

Hong-tao(2015) LSIMMUPF UPF 20 30  - LSIMM 
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