
Turk J Elec Eng & Comp Sci
(2019) 27: 1012 – 1027
© TÜBİTAK
doi:10.3906/elk-1804-10

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Turkish lexicon expansion by using finite state automata

Burak ÖZTÜRK , Burcu CAN∗

Department of Computer Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey

Received: 03.04.2018 • Accepted/Published Online: 10.12.2018 • Final Version: 22.03.2019

Abstract: Turkish is an agglutinative language with rich morphology. A Turkish verb can have thousands of different
word forms. Therefore, sparsity becomes an issue in many Turkish natural language processing (NLP) applications.
This article presents a model for Turkish lexicon expansion. We aimed to expand the lexicon by using a morphological
segmentation system by reversing the segmentation task into a generation task. Our model uses finite-state automata
(FSA) to incorporate orthographic features and morphotactic rules. We extracted orthographic features by capturing
phonological operations that are applied to words whenever a suffix is added. Each FSA state corresponds to either a
stem or a suffix category. Stems are clustered based on their parts-of-speech (i.e. noun, verb, or adjective) and suffixes
are clustered based on their allomorphic features. We generated approximately 1 million word forms by using only a few
thousand Turkish stems with an accuracy of 82.36%, which will help to reduce the out-of-vocabulary size in other NLP
applications. Although our experiments are performed on Turkish language, the same model is also applicable to other
agglutinative languages such as Hungarian and Finnish.

Key words: Morphology, lexicon expansion, morphological generation, finite-state automata

1. Introduction
Morphological segmentation is the task of segmenting a word into its smallest meaning-bearing units called
morphemes, whereas morphological generation is the reverse task of morphological segmentation, which is the
task of generating various word forms from a given stem. For example, the word disgraceful can be split into
dis, grace, and ful, which is called morphological segmentation1 and morphological generation is the task of
generating disgrace, disgraceful, disgracefully, ungraceful, ungracefully and many others by using the stem grace.
However, it is also the task of not generating invalid word forms such as gracelyful or disungraceful. This
brings the challenge in morphological generation. Thus, morphological generation (i.e. word generation, lexicon
expansion)2 is usually inseparable from morphological segmentation, although the tasks are reverse of each
other.

In this article, we mainly investigate morphological generation, which plays a significant role in many
natural language applications such as machine translation, question answering, language generation, dialog
systems. For example, translation of a phrase with a rich morphology requires the right word form to be
∗Correspondence: burcucan@cs.hacettepe.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.

1The task is called morphological analysis when morphosyntactic labels of each morpheme are also learned. For example, the
morphological analysis of the word tables is table[Noun]+s[A3Pl] that tells table is a noun and s is a suffix that makes the noun
plural. Here, we only consider morphological segmentation. Other than that, given a morphological analysis, the task of generating
the correct word form is called morphological reinflection.

2We use morphological generation, lexicon expansion, and word generation interchangeably in this article.

1012

https://orcid.org/0000-0002-5415-7033
https://orcid.org/0000-0002-1700-0395

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

generated for a specific sentence. This is only possible through morphological generation because it is impossible
to build a language model with an infinite dictionary that includes all possible word forms in that language.
The task is even more implausible for the agglutinative languages. Instead of assuming a fixed-size dictionary
in any model, the correct word form should be generated when needed.

Morphological generation in Turkish involves orthography and morphotactics. Orthography corresponds
to changes in morphemes due to the spelling rules, where phonological operations applied while morphemes are
glued together. Morphotactics is concerned with how and in what order morphemes are glued together in order
to generate new word forms.

One of the methods for morphological segmentation/generation is the finite-state transducers (FSTs).
FSTs are good at handling both morphotactics and orthography. Because of this, they have been numerously
applied to morphological analysis. Supervised methods have usually been applied to morphological generation.
However, supervised learning requires a large amount of annotated data. Although Turkish has a regular
morphology, all the orthographic features and the morphological rules that correspond to morphotactics have to
be provided. Moreover, language is dynamic, and persistent need of update on the annotated data is a limitation.
For these reasons, in this article, we introduce a system based on minimally supervised learning for morphological
generation by using only morphologically segmented data, and no other information. Our model only uses the
output of any segmentation system (i.e. segmented data) and does not involve a segmentation mechanism itself
unlike the other morphological analyzer/generators. Therefore, the only goal is morphological generation. In
the first setting, we use gold segmentations that are produced by a supervised morphological segmentation
system. However, the results show that our method works also well without using any gold segmentation but
only using the output of an unsupervised morphological segmentation system in a fully unsupervised setting.

2. Related work

Turkish is an agglutinative language with a very rich but also regular morphology [1, 2]. The language is based
on both rich inflectional and derivational morphology.

Turkish morphological analysis/segmentation has been well studied. Most of the earlier work uses finite-
state transducers (FSTs) for Turkish morphological analysis in a supervised setting. When the two-level
morphology was proposed by Koskenniemi [3], it was adapted for the Turkish language by Oflazer [4]. The
setting was supervised and required all the morphotactics and orthographic rules to be involved manually. Sak,
Güngör, and Saraçlar [5] exploited the two-level rules of Oflazer [4] in a stochastic finite-state morphological
parser. Both methods [4, 5] involve morphological generation implicitly (through the inverse of the FSTs),
although the methods do only aim for morphological analysis and not generation. Eryiğit and Adalı [6] proposed
a morphological analyzer for Turkish. Morphotactic rules are used to define the finite-state machines. Similar
to ours, suffixes are grouped into several classes. For each suffix class, a finite-state machine is defined that
describes the concatenation rules of the suffixes. Çöltekin [7] introduced a Turkish morphological analyzer that
is also two-level similar to that of Oflazer [4]. Zemberek [8] is another morphological analyzer tool, which is also
based on finite-state automata where the morphotactic and orthographic rules are defined manually.

Morphological generation has been well studied on Arabic language. Arabic is a Semitic language with a
nonconcatenative morphology that makes morphological analysis and generation challenging. In Arabic, stems
are generated with a root and a vowel melody, which forms a pattern [9, 10]. For example, the Arabic stem
katab (means he wrote) is formed by the stem ktb and the vowel melody a-a using the pattern CVCVCV (C:

1013

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

consonant, V: vowel) [10]. Habash [11] reverses the Buckwalter Arabic morphological analyzer [12] by using its
database and converting it into a large-scale lexeme-based Arabic morphological generator. However, morpheme
features, such as number, gender, and case inflection, are given as input to the system in a supervised setting.
Another study on Arabic is by again Rasooli et al. [13]; it presents a morphological analyzer and generator
for Arabic dialects. The authors combine morphemes from different dialects with separate morphological and
orthographic representations. They implement the multitape approach of Kiraz [14] with an additional tape for
phonology and orthography that builds the system called MAGEAD.

All the works mentioned above are supervised. Rasooli et al. [15] introduced an unsupervised vocabulary
generator for low-resource languages in order to reduce the out-of-vocabulary word rate in natural language
processing applications, such as automatic speech recognition or optical character recognition. The model was
tested on seven languages: Assamese, Bengali, Pashto, Persian, Tagalog, Turkish, and Zulu. Rasooli et al. [15]
used Morfessor CatMAP [16] for unsupervised morphological segmentation to obtain the morphemes as input
into their system. They implemented weighted finite-state transducers (WFST) for the lexicon expansion model
using the learned morphemes. Finally, the generated word forms are reranked to filter overgenerated word forms
by using different techniques, such as reweighting the WFSTs with a letter trigraph language model or instead
of reweighting the WFSTs, by getting the n-best words generated by the WFSTs by reranking them according
to the trigraph probabilities. For example, the Turkish word çiçeklridn (the true word form is çiçeklerinden)
will have a low generation probability since the probability of seeing trigraphs klr and idn will be low.

Our work is mostly similar to that of Rasooli et al. [15]. We developed our model both in minimally
supervised and unsupervised settings. We also used morpheme categories similar to Köprü and Miller [17], and
also Eryiğit and Adalı [6]. We were motivated by both for clustering the stems and suffixes for generalizing the
rules in order to apply similar rules to stems that are syntactically similar.

We induced morphotactics and orthographic rules by using finite-state automata (FSAs) to build a mor-
phological generator. Although morphological analyzer FSTs can be converted into morphological generators,
to our knowledge, there is no specific work that focuses only on Turkish morphological generation by aiming to
find all possible word forms as a lexicon expansion problem in a minimally supervised or unsupervised learning
framework apart from the model proposed by Rasooli et al. [15]. However, our algorithm deviates from their
algorithm since we cluster both stems and suffixes to build the FSAs, whereas they learn the language model
using the actual stems and suffixes without using their classes. Additionally, Tantuğ and Eryiğit [18] proposed
probabilistic word root generation in Turkish by using the bigram letter probabilities. However, their method
only aims for generating roots and does not focus on inflectional or derivational morphology.

3. Allomorphs
Some morphs carry out the same function corresponding to the same meaning although they consist of different
letters and they are pronounced differently. These morphs are called allomorphs. Plural morphs -s and -ies are
examples to allomorphs in English.

Allomorphs are very common in some languages due to vowel harmony. Vowel harmony is the adaptation
of vowels in a word. Turkish is a language that applies vowel harmony intensely leading to severe allomorphy in
the language. For example, the accusative case of a word can be seen in different forms due to vowel harmony:
[ı], [i], [u], [ü]. Depending on the last vowel in the word, one of the morphemes in the allomorph set is selected.
The examples are given as follows:

1014

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

Example 3.1

ı baraj dam - baraj-ı the dam
i kent town - kent-i the town
u koyun sheep - koyun-u the sheep
ü üzüm grape - üzüm-ü the grape

Vowel harmony is not the only phonological process in Turkish. Unvoiced consonants (i.e. p, ç, t, k)
at the end of words mutate into voiced consonants (i.e. p:b, ç:c, t:d, k:ğ) if the first letter of the following
morpheme is a vowel. This process is called consonant mutation. The examples are given below:

Example 3.2

The accusative case: kitap-lık-ı becomes kitap-lığ-ı in the surface form (means the bookcase)
The accusative case: ağaç-ı becomes ağac-ı in the surface form (means the tree)
The dative case: şarap-a becomes şarab-a in the surface form (means to the wine)
The dative case: kağıt-a becomes kağıd-a in the surface form (means to the paper)

Consonant mutation and consonant harmony also produce allomorphs. For example, dır in para-dır
(means it is money) becomes tır in kağıt-tır (means it is a paper). Thus, dır and tır become allomorphs of
each other. Clustering allomorphs can be a good way to mitigate sparsity. Indeed, some Turkish morphological
analyzers use the capital letter notation for allomorphs. For example, A may correspond to a or e in any given
word in Oflazer, Göçmen and Bozsahin [19] which is a convention to represent allomorphs (e.g. lAr for lar and
ler; DA for da, de, ta, and te). We also use this notation in one of our experiments to mitigate sparsity (see
Section 4).

4. The lexicon expansion model and the algorithm

4.1. Data
We used the raw Turkish text corpus provided by Morpho Challenge 20093 as the training data. The text
corpus consists of 1 million sentences. We used the first 5000 sentences from this corpus in order to generate
various word forms. The first 5000 sentences involve 5630 unique words.

We obtained the morphological segmentation of words from an open-source morphological analyzer called
Zemberek [8]; this is regarded as the gold segmentations. Stems with no suffix in the corpus were discarded in
order to reduce the noise. Eventually, we obtained 3049 unique stems for training. Since the task is lexicon
expansion (in a minimally supervised setting), one of the goals is to use a small training set in order to generalize
the set as much as possible by generating all possible word forms.

4.2. Finding stem categories

We cluster stems so that stems in the same category are treated likewise when selecting a suffix to attach to
the end of the stem in order to generate new word forms. We use the distributional characteristics of stems for
clustering; i.e. two stems are categorically similar if they are attached with similar suffixes [20]. We used the
similarity metric given by Baek et al. [21]:

Sim(s1; s2) =

∑
mi∈M1∪M2

min(MI(s1,mi),MI(s2,mi))∑
mi∈M1∪M2

max(MI(s1,mi),MI(s2,mi))
(1)

3 http://research.ics.aalto.fi/events/morphochallenge2009/datasets.shtml/

1015

http://research.ics.aalto.fi/events/morphochallenge2009/datasets.shtml/

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

where s1 and s2 are the two stems. M1 is the suffix set with which s1 is seen in the corpus and M2 is the suffix
set with which s2 is seen in the corpus. MI is the mutual information between the given stem and suffix, which
is a measure that tells the mutual dependence between two variables. In other words, if the mutual information
between two random variables is high, it means that there is a natural dependence between these two variables.
Here, how similar two stems are is measured based on the mutual information of the two stems with the other
morphemes. Thus, the similarity metric measures the similarity between two mutual information values. For
example, there would be a high mutual information between walk and -ed, -ing, -s, the same also applies for
order and -ed, -ing, -s. Therefore, the two stems would be similar based on this suffix set.

We implemented an agglomerative hierarchical clustering algorithm. We gradually merged the cluster
pairs having the highest similarity based on Eq. 1. Merging was repeated until the similarity between cluster
pairs is above 0 . Eventually, we obtained 152 stem clusters.

We merged the stem clusters further to reduce the number of clusters to have stem categories as compact
as possible. Here, the ideal situation is to have only three categories: noun, adjective, and verb. We used the
Jensen–Shannon divergence that is the symmetric version of Kullback–Leibler (KL) divergence [22]:

JSD(S1||S2) =
1

2
DKL(S1||S2) +

1

2
DKL(S2||S1) (2)

The KL divergence between the two stem clusters S1 and S2 is computed as follows:

DKL(S1||S2) =
∑

mi∈M

pS1(mi)
pS1(mi)

pS2
(mi)

. (3)

Here, M = M1 ∪M2 , where M1 is the suffix set that the stems in S1 are seen with and M2 is the suffix set
that the stems in S2 are seen with. pS1

(mi) is the probability of the suffix mi being attached to stems in S1 .
Laplace smoothing is applied for the zero probabilities with a smoothing parameter 10−4 . We assigned the
value of the smoothing parameter empirically as a result of several experiments.

Finally, we obtained 89 stem clusters. Some of the clusters are given in Table 1. Verb, noun, and adjective
stems fall into different clusters. For example, Cluster 4 consists of only verb stems, whereas Cluster 1 and
Cluster 3 consist of only noun stems, and Cluster 5 consists of adjective stems. However, stems can diverge due
to allomorphy. For example, noun stems that can take different realizations of the plural morpheme (i.e. lar
and ler) diverge from each other (e.g. miras vs küre).

Table 1. Examples from some of the final stem categories.

Cluster 1: bilim, fizik, küre, cin, gelenek, birey , evren, istatistik, matem-
atik, zihin, beden
Cluster 2: görüş, yürüt, öngör, öldür, sök, bük, güt, büyült, öv, götür,
sürdür, düşür
Cluster 3: kaçak, ırk, dans, kalıp, sanat, miras, balık
Cluster 4: kur, dur, sor, uy, kor, yor, ok, otur, kaybol, sok, koştur, kop,
uyuştur, vur, korkut, kavur, dokun, duyur, durdur, duy, doldur, boz, unut,
bulundur, kon, tut, bulun, sun
Cluster 5: uygun, boş, bozuk, uzun, mutlu, yoğun, memnun, buz, impara-
tor, durgun, yolcu, tutuk, yolsuz, olumsuz

1016

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

4.3. Clustering allomorphs

We clustered allomorphs in two steps based on the algorithm proposed by Can [23]. In the first step, we
clustered allomorphs that diverge from each other with a vowel (e.g., da and de), in the second step we
clustered allomorphs that diverge with a consonant (e.g., ta and da). Here, we call these letters (that vary
in the allomorphs) allophones. Some of the final allomorph clusters are given in Table 2.

Table 2. Some of the resulting allomorph clusters.

ler, lar
cik, cIğ, cık, cük, cüğ
luk, lık, liğ, lüğ, lığ, lik, lük, luğ
dükçe, dikçe, dıkça, dukça
tüğ, tuk, tik, tuğ, tığ, tiğ, tük, tık
dIğ, düğ, dık, diğ, dük, duk, duğ, dik

4.4. Building FSA
We build FSA with the stem and allomorph clusters obtained in the previous steps. Each state in an FSA
corresponds to either a stem category Si or a suffix category Mi (where M = (C ∪ V)∗ ; C for consonat, V for
vowel). We build one FSA for each stem category by assigning the stem state as a start state. Each stem state
is linked to various suffix states if one of the stems in that category is seen with any other suffix in the suffix
state. A finite-state automaton is defined by a 5-tuple X = (A, I, f, S0, F) as follows (see Figure 1):

• A is the set of states, where A belongs to either a stem category Si or a suffix category Mi (i.e. allomorph
cluster).

• I is the alphabet, where I = M ∪ S (i.e. M : all suffixes, S : all stems)
• f is a transition function that links a state Si to another state Mj where ∃w′ = si+mj+ . . . , w′ ∈W, si ∈

Si,mj ∈Mj , or links Mi to another state Mj where ∃w′ = si+mi+mj+. . . , w′ ∈W,mi ∈Mi,mj ∈Mj ,
where W denotes the corpus.

• S0 is an item of A , which is called the start state, where ∃w′ = s0 + . . . , w′ ∈W, s0 ∈ S0 .
• F is a subset of A that are the final states, where F is either a stem category Si or a suffix category Mi

and ∃w′ = si, w
′ ∈W or ∃w′ = si +mi, w

′ ∈W .

S i

M k

M i M j

M
l Mn

Figure 1. An FSA where Si corresponds to a stem category and Mi , Mj , Mk , and Ml correspond to suffix categories
(i.e. each of them is an allomorph cluster).

A portion of a noun FSA is given in Figure 2 and a portion of a verb FSA is given in Figure 3. We obtain
89 FSA in total for verbs and nouns that corresponds to 89 stem categories.

1017

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

4.5. Word generation through the FSA

Words were generated through the FSA with a depth-first search. Since each state consists of a set of morphemes,
we followed a selection methodology based on the letter bigrams in order to decide which morpheme to adopt
from each state for generating the current word. Orthographic rules for the phonological operations were also
generated for applying any consonant change between the stem and the selected morpheme.

miras
balık
sanat
dans
kaçak
...

-ı

-çI

-lAr

-In -A

-ı -nA

-lIk -lA

-nI

-dIr -lAr

...

Figure 2. A portion of a noun FSA. A corresponds to either a or e and I corresponds to either i or ı [19].

kop
sor
kur
vur

kavur
...

-mış

-mA

-yAn -lAr

-dAn

-tIr

-lAr

...

-sI -ndA

-tIk

Figure 3. A portion of a verb FSA.

4.5.1. Selecting morphemes with letter bigrams
Letter bigrams were generated to apply consonant and vowel harmony while generating new word forms. We
extracted two types of bigrams: 1. the last letter of the stem or the last suffix in the word, the first consonant

1018

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

of the new suffix (CC or VC) 2. the last vowel of the stem or the last suffix in the word, the first vowel of the
suffix (VV). The first rule deals with consonant harmony, whereas the second rule deals with vowel harmony.
An example is given below:

Example 4.1

kitap + ta + dır − > “p:t” (CC) and “a:d” (VC) (means it is in the book)
masa + dan − > “a:a” (VV) (means from the table)
kalem + ler + in − > “e:e” (VV) and “e:i” (VV) (means of the pen or
your pens)

We extracted 306 letter bigrams out of which 281 were bigrams for the consonant changes and 25 bigrams
for the vowel harmony. Some of the bigrams and their probabilities are given in Table 3.

Table 3. Some of the letter bigrams and their probabilities computed by the relative frequency.

p:t - 0.00117 p:d - 0
s:t - 0.000584 s:d - 0
a:d - 0.00878 a:t - 0.0018
e:k - 0.00369 e:ğ - 0
e:i - 0.12 a:i - 0.0053
u:u - 0.05 u:ü - 0.000113
a:a - 0.075 a:e - 0.0022

4.5.2. Generating orthographic rules

We generated orthographic rules to apply consonant changes once the words are generated with the selection
method based on the bigram probabilities but still require a consonant change. These rules deal with consonant
mutation. Rules are defined analogously to Oflazer et al.’s [24] as follows:

f− > t|| Left Context _ + Right Context

Here, f transforms into t if the right context occurs just after the given left context and + denotes a morpheme
boundary. First, candidate rules were generated based on the analyses of the words (using the output of
Zemberek [8]). For example, we generated the candidate rules from the surface form kitabı matching with the
lexical form kitap+ı as given below:

Example 4.2

p − > b || a _ + ı
p − > b || ta _ + ı
p − > b || a _ + ın
p − > b || ta _ + ın

We defined a threshold of two letters from the end of the stem to the left context but we did not define
any threshold for the number of letters in the suffix while generating the rules. Once all the candidate rules
were generated, we counted how many times each rule was generated, that would be the rank of the rule. Rules
that are substrings of each other were categorized and only the one with the highest rank was selected from
each category.

1019

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

Once the rules with the highest rank were selected, they were generalized by aggregating based on their
context. For example, rules that diverge only with their contexts were aggregated if the union of the context
letters contains all of the vowels. The generalized rule set is given in Table 4.

Table 4. Final orthographic rules.

t − > d || Vowel _ + Vowel
k − > ğ || Vowel _ + Vowel
ç − > c || Vowel _ + Vowel
p − > b || Vowel _ + Vowel
a − > ∅ || Vowel _ + Uyor
e − > ∅ || Vowel _ + iyor

4.5.3. Word generation
Once the FSA were built and the rules were extracted, FSA were traversed for the word generation process.
Each pass through a stem state leads to a single stem, whereas each pass through a suffix state produces a stem
+ suffix concatenation (i.e. a word form).

Depth-first search is applied for each FSA. Each pass through a suffix state selects a group of suffixes.
Suffix selection is performed based on the letter bigrams. The selection involves two steps.

In the first selection, depending on the last letter of the word, suffixes that give the highest probability
with their first letters are selected (CC and VC). If there is more than one suffix that has the highest probability,
then all of them are selected. For example, if the generated word is kitap (means the book) and the suffix state
consists of da, ta, de, da, only ta and te win in this step (with letter bigram p-t which has a higher probability
compared to p-d), and the other two suffixes (i.e. da and de) are ruled out because of the consonant harmony.
If all suffixes in the state give zero letter bigram probability for the current word, search stops for this word
and it continues from the previous state through the other paths in the FSA recursively.

If all suffixes in the state start with a vowel, the second selection is applied without applying the first
selection (VV). This selection corresponds to the case of vowel harmony, thereby the selection uses only vowel
bigrams. A single suffix or a set of suffixes (having the highest VV bigram probabilities) remain at the end of
the second selection. If all of the bigrams give zero probability, the search continues from the previous state
without generating a word form. For example, if the word is kitap (means the book) and the suffix state consists
of suffixes such as ı, i, u, and ü, the letter bigram a-ı is selected (because of having the highest vowel bigram
probability) leading to a word form kitapı. Finally, only a single suffix wins from the suffix state to be attached
to the word. However, this is still not the final word form and orthographic rules will be applied on the word if
needed.

Here, we did not consider the situation where the word ends with a vowel and all the suffixes in the suffix
state begin with a vowel. An extra letter is added in Turkish for this situation and it was ignored in this study
(e.g. masa+y+a) (means to the table). Nevertheless, the buffer letters such as s, y, and n are already a part of
the suffix as a result of the morphological segmentation. One of the suffixes in the FSA is chosen based on the
letter bigram probabilities. Therefore, we never generated a word form such as masaa but instead we generated
word forms such as masaya, masana, and masasa. Since choosing the right buffer letter requires more analysis
on the words, we leave this as a future work and our model may generate incorrect word form such as masasa.

1020

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

Once the words are generated, orthographic rules are applied for the consonant changes, if needed. For
example, for the word kitapı the following rule:
p − > b || ”p” _ Vowel
is applied and the final word form becomes kitabı (means the book in the accusative case).

In Turkish, words do not end with ğ. We define end-of-word bigrams to prevent generating words ending
with ğ. For example, if the final state consists of morphemes ending with ğ and k, only the suffixes ending with
k are selected because k:$ has got a higher probability when compared to ğ:$ (i.e. $ denotes the end of the
word). This is applied for the final states.

miras
balık
sanat
dans
kaçak
...

-çI

-lAr

-lIk

-I -nA

-In -A

-lA

...

mirasçı

mirasçılık

mirasçılar

mirasçılıkla

mirasçıları

mirasçıların

mirasçılarına

mirasçılarına

Figure 4. The generation of different word forms from the stem miras by using the FSA given in Figure 2.

An example word generation is given in Figure 4 and the generation algorithm is given in Algorithm 1.

5. Experiments and results

5.1. Experiments in a minimally supervised setting

We obtained 152 stem categories by using the similarity measure defined in Eq. 1. We obtained 89 stem
categories by clustering the stems further with the Jensen–Shannon divergence. We evaluated the stem clusters
based on purity: ∑

purity(S;C) =
1

N

|S|∑
k=1

maxj∈C |Sk ∩ Cj |, (4)

where S denotes the resulting stem clusters, C denotes the gold stem clusters obtained from Zemberek. Here,
N is the total number of stems. We used three main stem clusters that correspond to the part-of-speech tag
of the stem, which are noun, adjective, and verb. Therefore, each resulting cluster was matched with the
gold cluster that involves the most common stems with the resulting cluster. We used only noun, verb, and
adjective stems since they are more salient compared to other stem categories. For 89 stem categories, the
purity was 0.87, whereas for 152 stem categories the purity was 0.89. A higher purity means that there is a
high overlap between the resulting clusters and the gold clusters. When more stem categories are merged, the
purity decreases because stems belonging to different syntactic categories are merged.

1021

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

Algorithm 1 Word generation algorithm
1: function GenerateWords

Input: A set of FSA X = {X1, X2, . . . } , letter bigrams, orthographic rules
2: for each: Xi in X do
3: for each: sj ∈ Si

0 do
4: w ← sj
5: Add w in W ′

6: k ← 0
7: Ai

k ← Si
0

8: for each: Ai
k+1 do

9: Ai
k ← Ai

k+1

10: if a suffix mi is selected from Ai
k then

11: w ← w +mi

12: Apply orthographic rules for w if needed
13: Add w in W ′

14: Ai
k ← Ai

k+1

15: else
16: Ai

k ← Ai
k−1

17: break
18: end if
19: end for
20: end for
21: end for
22: end function

We extracted 108 suffix categories as a result of the suffix clustering. We generated 120 candidate
orthographic rules from which we generalized to 8 orthographic rules by aggregating the rules having the same
context.

Since Turkish has a very productive morphology, the accuracy of our system can only be measured with
the number of words generated correctly. There is not such a gold set/dictionary for the evaluation of the
generated words in Turkish (and in any other agglutinative language since the number of possible word forms
is theoretically infinite). For this reason, we used Zemberek [8] to decide whether a generated word was valid
or not. If no analysis was given by Zemberek for a given word, then the word was counted as invalid. The
evaluation was based on accuracy:

Accuracy =
|V |
|W ′|

, (5)

where V denotes the valid words and W ′ denotes all the words that are generated by the model.
We did two experiments. In the first set of experiments, we used the 152 stem categories that we obtained

by using the similarity measure proposed by Baek et al. [21] (Eq. 1). We generated words by using different
sizes of stems ranging from 100 to 3049 . The results are given in Table 5. Even using 100 stems led to the
generation of 7491 word forms with an accuracy of 76.03%. With the complete dataset of stems, that is 3049
stems, we obtained an accuracy of 76.79%. Therefore, the higher the purity of the stem categories is, the higher
the accuracy is for the word generation.

In the second set of experiments, we used the 89 stem categories that were obtained by using the Jensen–
Shannon divergence (see Eq. 2). The results for different sizes of stems are given in Table 6. By using 3049
unique stems, we obtained nearly 1 million words with an accuracy of 74.02%. The accuracy drops when

1022

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

compared to the first set of experiments, but a larger set of word forms were generated by using fewer number
of stem categories.

Table 5. Word generation accuracy scores obtained from the stem categories that were clustered according to the
mutual-information-based similarity measure defined in Eq. 1.

Stem count Number of stem categories Number of generated words Accuracy (%)
100 30 7.491 76.03
200 45 13.093 72.67
500 75 37.041 78.59
1000 95 80.569 76.14
2000 114 172.881 77.65
3049 152 237.219 76.79

Table 6. Word generation accuracy scores obtained from the stem categories that were further clustered by using the
Jensen–Shannon divergence defined in Eq. 2.

Stem count Number of stem categories Number of generated words Accuracy (%)
100 24 10.737 76.07
200 30 26.017 73.11
500 44 104.745 77.47
1000 53 243.097 76.14
2000 68 527.170 75.50
3049 89 915.288 74.02

We further clustered the stems by aggregating the allomorphs, such that lar and ler become lAr; cı and
çı become Cı, and so on (see the notation in [19]). Aggregating allomorphs mitigate sparsity, therefore decrease
the number of stem categories. We obtained 33 stem categories by using Jensen-Shannon divergence on the
complete set of stems by using the aggregated allomorphs. The purity of the stem clusters becomes 0.88 for the
aggregated allomorphs. Using 33 stem categories, the system generated 1,516,769 word forms with an accuracy
of 73.19%.

We discovered that some suffixes were taken by stems only once or twice. We ruled out infrequent suffixes
(i.e. with a frequency 1 or 2) from each suffix category by terminating the generation process for the infrequent
suffixes. The results of this experiment are given in Table 7 for the frequency thresholds 1 and 2 separately. We
obtained an accuracy of 82.36% when the frequency threshold was set to 2.

Table 7. Word generation accuracy scores when the infrequent suffixes were ruled out from the suffix states.

Frequency threshold Number of generated words Accuracy (%)
1 845.467 80.11
2 744.061 82.36

Our model is based on a pipeline process (stem clustering, suffix clustering, applying the rules based on
bigram probabilities, applying orthographic rules, etc.). Therefore, any error emerging in one of the steps ends

1023

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

up with an invalid word form. This is one of the weaknesses of pipeline approaches. When the results were
analyzed, we observed that wrongly clustered stems and allomorphs caused most of the invalid words forms.

Without using any syntactic information, it is hard to cluster stems by using only the distributional
information of the attached suffixes. We believe that the results will improve if any syntactic knowledge is
incorporated in the model. Results are still promising for such a model by using a small set of training data
without using any manually defined rules or other information apart from the word segmentations.

Our model will be the first attempt for minimally supervised word generation in Turkish.

5.2. Experiments in an unsupervised setting

In the unsupervised setting, we used the unsupervised morphological segmentation system, Morfessor CatMAP [16]
to obtain the morphologically segmented words as training data. Stem categories, suffix categories, bigrams,
orthographic rules, and FSA were learned from the training data without using any other knowledge.

We used the Turkish word list provided by Morpho Challenge 20104 to generate the training data. We
selected the words having a frequency higher than 50 and discarded the rest to avoid the noisy words in the
word list. We obtained 26, 230 word types eventually.

We obtained 965 unique stems from 26, 230 words that were split by Morfessor CatMAP. We generated
53 stem categories, 548 suffix categories, and 381 unique bigrams with a total frequency of 44, 294 . We
could not produce any orthographic rules since Morfessor CatMAP does not provide any information about the
phonological changes. We used the two-level morphological analyzer by Oflazer [4] to decide whether the given
word form was valid or not. Our model generated 36, 648 unique word forms with an accuracy of 68.9%. We
also analyzed the results using Zemberek in order to be able to compare the unsupervised results to the results
obtained from the minimally supervised setting. We obtained an accuracy of 31.58% using Zemberek [8].

It is still not fair to compare the results obtained from the minimally supervised and unsupervised setting
since the number of generated word forms are different in both settings. Nevertheless, the results show that the
accuracy of the morphological generation model harshly drops in the unsupervised setting.

Additionally, we compared our model with the unsupervised lexicon expansion model called BabelGum
[15] that also uses Morfessor CatMAP [16] for the morphological segmentation. We used the same 26, 230 words
to run BabelGum. We split the word list into two and used one half to train the system and the other half
as the development data. In the simple model of BabelGum, all affixes are concatenated. For example, the
word kalem+ler+im (means my pens) is given as kalem + lerim (in the input data). In the bigram model, a
bigram language model is used without concatenating the affixes in the input data. Eventually, their model
generated around 1 million word forms for both models with an accuracy of around 10%, whereas we obtained
an accuracy of around 30% from our model by generating around only 36 thousand word forms. We believe that
the results are not compatible since the number of the generated word forms is quite different and it will not
be fair to compare both systems based on accuracy. Nevertheless, we included the results to give a comparative
idea about our model.

6. Discussion
We introduced a lexicon expansion model for Turkish in this article. Our system consists of several steps which
affect the final accuracy of the generated words. Morphological segmentation step is one of the primary steps
in the system that affects the accuracy. With the supervised morphological segmentation system Zemberek [8]

4 http://research.ics.aalto.fi/events/morphochallenge2009/datasets.shtml/

1024

http://research.ics.aalto.fi/events/morphochallenge2009/datasets.shtml/

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

we had 82.36% of accuracy, whereas it dropped to 68.9% when the unsupervised morphological segmentation
system Morfessor CatMAP [16] was used in the fully unsupervised setting. The number of the generated words
also dropped when Morfessor CatMAP was used because the morphological system undersplits the words and
FSA tend to be more shallow when compared to the supervised setting.

Our system generated around 1 million words from 3049 unique stems. This shows that the morphotactics
was applied effectively in the system with a generalization over the stems and suffixes. One of the advantages of
our system was to induce stem and suffix categories, we generalized over stem categories that lead to generate
more word forms. Using stem and suffix categories was one of the main differences with the other works in
the literature. For example, Rasooli et al. [15] build the finite-state machines using a language model for the
morphemes without generalizing over stem or suffix categories like our model. On the other hand, learning
stem and suffix categories also have an impact on the accuracy of the system. We believe that adopting better
clustering methods in these steps will also have a positive impact on the accuracy. We leave this direction for
future work.

As for the error analysis, we observed the common errors in the results. For example, there were word
forms such as, indiriliminde, giyimindeyi, giyimlerindeyi, giyilmeyerektir, giyebilereklerdir, eğililmediğini. Those
errors were mainly because of the noisy stem categories, where merging the FSAs led to more general word
generation rules such as de-yi, erek-tir, erek-ler. However, some of them require more information about the
stems and the suffixes that they can take. For example, the stem eğil (meaning to incline) cannot take a passive
suffix such as -il, which should be handled as an exception case. Once an invalid suffix is added to a word, all the
other generations using this suffix lead to an erroneous word form. In this case, the model generates erroneous
word forms such as eğililebil, eğililebilir, eğililebilirlik, eğililebilirliği, eğililebilme, eğililebilmesi, eğililebilmeler,
eğililebilmeleri, eğililebilerek using the invalid word form eğilil. Some of the errors were not orthographic but
semantical. For example, a word form such as birikmeliğin is orthographically and morphologically correct since
-me can be added to birik (meaning to accumulate) because it is a verb, -lik can appear after -me as a suffix that
converts a verb to a noun, and -in can appear after -lik since it can only be used with nouns and -lik can also
be added to a noun. However, the resulting word form birikmeliğin is not valid and does not correspond to a
valid meaning, which is also hard to learn in such a minimally supervised setting without using any exceptions.

7. Conclusion and future work
We proposed a novel word generation model using FSA for Turkish. We clustered stems and morphemes in
a fully unsupervised framework in order to generalize the morphological generation rules so that they can be
applied to syntactically similar stems. There is limited work on unsupervised or minimally supervised lexicon
expansion on Turkish. To our knowledge, Rasooli et al. [15] proposed the only unsupervised lexicon expansion
model. However, they did not generalize the lexicon expansion based on stem and suffix clusters. They built
finite-state machines based on the morpheme language model that was obtained from unsupervised segmentation
of the data. Therefore, our final FSAs mostly resemble the FSAs designed by Oflazer [4] (such as nominal FSAs,
verbal FSAs, adjective FSAs, etc). Hence, we believe that our work will fill this gap in the field. Many natural
language processing applications in Turkish suffer from sparsity due to the morphological productivity of the
Turkish language. A word generation system can be used to reduce the size of the out-of-vocabulary words in
any NLP task.

1025

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

References

[1] Göksel A, Kerslake C. Turkish: A Comprehensive Grammar. London, UK: Routledge Comprehensive Grammars,
2005.

[2] Lewis G. Turkish Grammar. Oxford, UK: Oxford University Press, 2001.

[3] Koskenniemi K. Two-level morphology: a general computational model for word-form recognition and production.
In: ACL ’84/COLING ’84 Proceedings of the 10th International Conference on Computational Linguistics and 22nd
annual meeting on Association for Computational Linguistics; 2–6 July 1984; Stanford, CA, USA. pp. 178-181.

[4] Oflazer K. Two-level description of Turkish morphology. In: Proceedings of the Sixth Conference on European
Chapter of the Association for Computational Linguistics; 21–23 April 1993; Utrecht, Netherlands: ACL. p. 472.

[5] Sak H, Güngör T, Saraçlar M. A stochastic finite-state morphological parser for Turkish. In: Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers; 2–7 August 2009; Singapore: ACL. pp. 273-276.

[6] Eryiğit G, Adalı E. An affix stripping morphological analyser for Turkish. In: Proceedings of the IASTED
International Conference on Artificial Intelligence and Applications; 16–18 February 2004; Innsbruck, Austria:
AIA. pp. 299-304.

[7] Çöltekin Ç. A freely available morphological analyzer for Turkish. In: Proceedings of the Seventh International Con-
ference on Language Resources and Evaluation; 2010; Valletta, Malta: European Language Resources Association
(ELRA). pp. 820-827.

[8] Afşin, A, Akın MD. Zemberek, an open source NLP framework for Turkic languages. Structure 2007; 10.

[9] Beesley KR. Arabic finite-state morphological analysis and generation. In: Proceedings of the 16th Conference on
Computational Linguistics - Volume 1; 1996; Copenhagen, Denmark: ACL. pp. 89-94.

[10] Cavalli-Sforza V, Soudi A, Mitamura T. Arabic morphology generation using a concatenative strategy. In:
Proceedings of the 1st North American Chapter of the Association for Computational Linguistics Conference;
2000; Seattle, WA, USA: ACL. pp. 86-93.

[11] Habash N. Large scale lexeme based Arabic morphological generation. In: Traitement Automatique des Langues
Naturelles; 2004. pp. 271-276.

[12] Backwalter T. Arabic morphological analyzer version 1.0. In: Linguistic Data Consortium; 2002; University of
Pennsylvania.

[13] Habash N, Rambow O, Kiraz G. Morphological analysis and generation for Arabic dialects. In: Proceedings of the
ACL Workshop on Computational Approaches to Semitic Languages; 29 June 2005; Ann Arbor, MI, USA: ACL.
pp. 17-24.

[14] Kiraz GA. Multi-tape two-level morphology: a case study in Semitic non-linear morphology. In: Proceedings of the
15th conference on Computational Linguistics-Volume 1; 5–9 August 1994; Kyoto, Japan: ACL. pp. 180-186.

[15] Rasooli MS, Lippincott T, Habash N, Rambow O. Unsupervised morphology-based vocabulary expansion. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers);
June 2014; Baltimore, MA, USA: ACL. pp. 1349-1359.

[16] Creutz M, Lagus K. Inducing the morphological lexicon of a natural language from unannotated text. In:
Proceedings of the International and Interdisciplinary Conference on Adaptive Knowledge Representation and
Reasoning; 2005. pp. 106-113.

[17] Köprü S, Miller J. A unification based approach to the morphological analysis and generation of Arabic. In: 3rd
Workshop on Computational Approaches to Arabic Script-based Languages at MT Summit XII; 26–30 August 2009;
Ottawa, Ontario, Canada. pp. 89-94.

[18] Tantuğ AC, Eryiğit G. Probabilistic Turkish word root generation. In: Proceedings of the 3rd Asia Pacific
International Symposium on Information Technology; 13–14 January 2004; İstanbul, Turkey.

1026

ÖZTÜRK and CAN/Turk J Elec Eng & Comp Sci

[19] Oflazer K, Göçmen E, Bozsahin C. An outline of Turkish morphology. In: Report on Turkish Natural Language
Processing Initiative Project; 1994.

[20] Öztürk B, Can B. Clustering word roots syntactically. In: Proceedings of the 24th Signal Processing and
Communication Application Conference; 16–19 May 2016; Zonguldak, Turkey.

[21] Baek DH, Lee H, Chang RH. Conceptual clustering of Korean concordances using similarity between morphemes;
2009.

[22] Kullback S, Leibler RA. On information and sufficiency. The Annals of Mathematical Statistics 1951; 22: 79-86.

[23] Can B. Unsupervised learning of allomorphs in Turkish. Turkish Journal of Electrical Engineering & Computer
Sciences 2017; 25: 3253-3260.

[24] Oflazer K, Nirenburg S, McShane M. Bootstrapping morphological analyzers by combining human elicitation and
machine learning. Computational Linguistics 2001; 27: 59-85.

1027

	Introduction
	Related work
	Allomorphs
	The lexicon expansion model and the algorithm
	Data
	Finding stem categories
	Clustering allomorphs
	Building FSA
	Word generation through the FSA
	Selecting morphemes with letter bigrams
	Generating orthographic rules
	Word generation

	Experiments and results
	Experiments in a minimally supervised setting
	Experiments in an unsupervised setting

	Discussion
	Conclusion and future work

